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ON RELATIVE PROPERTY (T)

to bob zimmer on his 60th birthday

Abstract

We present families of pairs (H�A,A) with relative property (T), where H is

a locally compact group acting continuously by automorphisms on a locally

compact abelian group A. The paper is completely self-contained.

1. Introduction

Property (T) for groups and for pairs (also referred to as relative property (T))

was first introduced by D. Kazhdan in his thesis [14] to show that lattices

in semisimple Lie groups are finitely generated. His proof that SL(n,R) has

property (T) for n ≥ 3 follows from the fact that the pair (SL(2,R)� R
2,R2)

has the relative property (T).

Recall that a unitary representation π : G→ U (H) of a locally compact

group G almost has invariant vectors if for every compact subset K ⊂ G and

for every ε > 0 there exists ξ ∈ H with ‖ξ‖ = 1 such that

sup
g∈K
‖π (g)ξ − ξ‖ < ε .

Equivalently, one says that the representation π weakly contains the trivial

representation 11G. Then a group G has property (T) if any representation that

almost has invariant vectors actually has invariant vectors. A typical example

of a group with property (T) is a connected semisimple real Lie group all of

whose factors have real rank at least 2, for example SL(n,R) for n ≥ 3, or any

lattice therein.

definition 1.1. Let L < G be a subgroup of a locally compact groupG. The

pair (G, L) has relative property (T) if whenever (π ,H) is a continuous unitary

representation of G, which almost has invariant vectors; there are nonzero

L-invariant vectors.
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Property (T) has several diverse applications in representation theory, er-

godic theory, operator algebras, lattices in algebraic groups over local fields,

geometric group theory, and the theory of networks. Aside the implicit use

of relative property (T) in [14], among its first applications there is the con-

struction of an infinite family of expanders [15], or the solution of Ruziewicz

problem for R
n, [16], both due to Margulis. Further applications include Ga-

boriau and Popa’s construction [11] of a noncountable family of free ergodic

measure-preserving non-orbit equivalent actions of the free group Fr in r ≥ 2

generators on a standard probability space (see also [21] or [10] for general-

izations) or Popa’s construction [20, 22, 23] of a factor of type II1 with trivial

fundamental group. Finally, although the fact that a pair (G, L) has relative

property (T) is a weaker condition than requiring that the group G itself has

property (T), in some situations relative property (T) will suffice; for example,

Navas [19] has proven that for the nonexistence of “interesting” C2-actions on

the circle, the relative property (T) of a pair (�,�0), where �0 is normal in �,

will suffice.

Just to give a flavor of how relative property (T) differs from property (T),

although we will not use these facts here, observe that if (G, L) has relative

property (T) this does not imply that either G or L have property (T), and

moreover, (SL(2,Z)� Z
2,Z2) has relative property (T) but neither SL(2,Z) nor

Z
2 have property (T). Furthermore, the fact that (G, L) has relative property (T)

does not imply that either G or L is compactly generated, as the example of

(SL(3,Z)×�,F∞×{e}), where � is any group that is not finitely generated

shows.1

Just as for property (T), several different characterizations of relative prop-

erty (T) are available, for example, in terms of strongly ergodic actions, in

terms of Von Neumann algebras, of positive definite functions, of isometric

actions of Hilbert spaces, and so on; moreover, it is possible to define relative

property (T) for pairs (G,X ) where X is any subset [6]. We refer the reader to

[13] and [6] and to the references therein.

It goes without saying that if either G or L is a group with property (T), then

the pair (G, L) has the relative property (T); nontrivial examples of pairs with

relative property (T) have been constructed in [5], in [8] (see Theorem 1.3 and

the comments thereafter) or in [25] (see the last paragraph of this introduc-

tion). The scope of this note is to present families of pairs (G, L) with relative

property (T) whose general form is the semidirect product G = H � A of a

1. Note, however, that if (G, L) has relative property (T), there exists a compactly generated
subgroup H containing L such that (H, L) has relative property (T); see [6].
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locally compact group H acting continuously by automorphisms on a locally

compact abelian group A and L = A.

1.1.

Let� beadiscrete group, S afinite set of primenumbers,Z[S] the ringobtained
inverting the primes in S and ρ : �→ GLN (Z[S]) a homomorphism. We will

denote by ρp : �→ GLN (Qp) the representation obtained by injecting Z[S]
into Qp, where Q∞ := R.

theorem 1.2. Assume that the image ρ(�) of � is Zariski dense in SLN. Then

the following are equivalent:

i) the pair (�� Z[S]N ,Z[S]N ) has relative property (T);

ii) the Z[�]-module Z[S]N is finitely generated;

iii) for every p ∈ S∪ {∞} the image ρp(�) < SLN (Qp) is not bounded; and

iv) there is no ρ∗p (�)-invariant probability measure on P((QN
p )
∗), for p ∈ S∪

{∞}.

We remark that (ii) is in contrast with the fact that, unless S = ∅, the
ring Z[S] is not finitely generated as a Z-module; moreover, it is remarkable

that although the relative property (T) is analytic in nature, the equivalent

property in (ii) above is purely algebraic. As it will be clear from the proof

(see Proposition 4.5) Zariski density is not needed for the equivalence of the

assertions (i) and (iv).

The motivation to establish results of the type of Theorem 1.2 comes from

[8], where the following is shown:

theorem 1.3. (fernós, [8]) Let � be a finitely generated group. Then the

following are equivalent:

i) there exists a representation ρ : �→ SLn(R) such that the real points

ρ(�)
Z
(R) of the Zariski closure of the image of ρ is not an amenable group;

and

ii)there exists a finite set of primes S, an integer N ∈ N, and a representation

�→ SLN (Z[S]) such that (�� Z[S]N ,Z[S]N ) has relative property (T).

example 1.4.

1)According to the Tits alternative, if k is any local field of zero character-

istic and � < GL(n, k) is a finitely generated subgroup, then either � is
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virtually solvable or it contains a free subgroup F2 in two generators that

is Zariski dense in �. Since � = SLN (Z) is not virtually solvable, then

there is a Zariski-dense F2 < SLN (Z) and thus (F2 � Z
N ,ZN ) has relative

property (T).

2)A topological version of the Tits alternative shown by Breuillard and

Gelander [4] asserts that if ki are local fields of zero characteristic and

� <
∏

GL(n, ki) is a finitely generated subgroup, then either � contains

an open solvable subgroup, or a finitely generated free subgroup that is

dense in �.

Using this result we show the following:

corollary 1.5. For every natural number N ∈ N and every nonempty finite

set of primes S, there is a finitely generated free group � < SLN (Z[S]) such that the

pair (�� Z[S]N ,Z[S]N ) has relative property (T).

1.2.

Now let ρ : G→ GL(V ) be a rational representation defined over Q, where

G is a connected, semisimple Q-group. Let ρR : GR → GL(VR) be the rep-

resentation on the level of real points. We say that ρR is totally unbounded

if for any GR-invariant subspace WR ⊂ VR of positive dimension, the group

ρ(GR)|WR
< GL(WR) is unbounded.

theorem 1.6. Let� ⊂ VQ be a Z-module of maximal rank invariant underGZ.

Let � < GZ and assume that � is Zariski dense in G. The following are equivalent:

i) the pair (���,�) has relative property (T); and

ii) the representation ρR : GR → GL(VR) is totally unbounded.

A remark is in order regarding the hypothesis of Zariski density of � in

G. There is a result of Borel [3, theorem 1] to the extent that if G contains no

connected normal Q-subgroups N �= {e} such that NR is compact, then GZ

is Zariski dense in G; this avoids the situation in which if G = G1×G2 with

Gi Q-groups, thenG1,Z×G2,Z = GZ ⊂ GR = G1,R×G2,R withG2,R compact,

which would prevent the Zariski density of GZ. So Theorem 1.6 applies to any

finite-index subgroup � of GZ, provided GR has no compact factors.

If ρR is irreducible with unbounded image, it is trivially totally unbounded

and hence the pair (���,�) has relative property (T). The construction of

such a representation for a group defined over Q, which is either adjoint or
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simply connected will be given in Lemma 4.7. As an application we have the

following:

corollary 1.7. If G is a connected real algebraic semisimple Lie group without

compact factors and � < G is an arithmetic lattice, then there is a linear represen-

tation �′ → SLN (Z) of a finite-index subgroup �′ < � such that (�′� Z
N ,ZN )

has relative property (T).

Theorem 1.6 is motivated by [25, theorems 1 and 4], where the same as-

sertion as in Corollary 1.7 is proven, under the additional hypothesis that the

group G is absolutely simple. Corollary 1.7 can also be deduced from [8, theo-

rems 3 and 7.1] by observing that such an arithmetic lattice� satisfies property

(F∞) in [8]. Just like in [25] the value of the integer N is explicitly given (see

the proof of Lemma 4.7). Moreover, if �′ < � is of finite-index k := [�,�′]
and (�′� Z

N ,ZN ) has relative property (T), then (�� Z
kN ,ZkN ) has relative

property (T), [8, step B in the proof of theorem 7.1].

Acknowledgments: The author thanks Marc Burger for useful conversations

during the preparation of this paper and the referee for helpful comments.

2. Generalities

We collect here, with proofs, few classical facts about relative property (T). We

start by recording here the following observation:

lemma 2.1. Let Hi,Bi be locally compact groups such that Hi acts on Bi via

a continuous action Hi → Aut (Bi), i = 1, 2, and let q : H1 � B1 → H2 � B2 be

a continuous homomorphism such that q(B1) = B2. If (H1 � B1,B1) has relative

property (T), then also (H2 � B2,B2) has relative property (T).

lemma 2.2. Let H,A1,A2, . . . ,An be locally compact groups such that H acts

on Aj via a continuous action H → Aut (Aj). The following are equivalent:

i) the pair (H � (A1× · · ·×An),A1× · · ·×An) has relative property (T); and

ii) the pair (H � Aj ,Aj) has relative property (T) for j = 1, . . . , n.

Proof. The implication (i)⇒(ii) follows from Lemma 2.1 by considering

the homomorphisms H � (A1× · · ·×An)→ H � Aj , while (ii)⇒(i) is in [8,

lemma 5.2], where it is used that relative property (T) is a property closed

under certain extensions. �
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The following corollary is essential in the proof of Proposition 4.5.

corollary 2.3. Let H and M be locally compact groups, � < M a cocompact

lattice and let ρ : H → Aut (M) be a continuous action by automorphisms preserv-

ing �. Then the pair (H ��,�) has relative property (T) if and only if the same

holds for the pair (H � M,M).

Although the above result is all we need, we are going to prove the following

more general result fromwhich the corollary can be obtained at once by setting

L := H �� and A := M � H � M =: G.

proposition 2.4. Let G be a locally compact group, A � G a normal subgroup,

and L < G a closed subgroup.

1) If (G,A) has relative property (T) and L\G has a finite G-invariant measure,

then the pair (L, L∩A) also has relative property (T).

2) If A/L∩A is compact with finite A-invariant measure and (L, L∩A) has

relative property (T), then (G,A) has relative property (T).

In order to prove this, we will use a strengthening of relative property (T).

We recall first that if π : G→ U (H) is a unitary representation of a locally

compact group G, we say that a sequence {ξn} ⊂ H of vectors is asymptotically

π (G)-invariant if ‖ξn‖ = 1 for all n and for every compact subset K ⊂ G we

have that

lim
n→∞ sup

k∈K
‖π (k)ξn− ξn‖ = 0 .2.1

If a group is σ -compact, a representation almost has invariant vectors if and

only if it has a sequence of asymptotically invariant vectors. Denote by HG the

subspace of H consisting of π (G)-invariant vectors. Then it is well known that

if G is a group with property (T) and π : G→ U (H) is a unitary representation

of G with a sequence {ξn} of asymptotically π (G)-invariant vectors, then

lim
n→∞ d(ξn,HG) = 0,

Where d denotes the distance to a subspace.

Similarly one has the following:

lemma 2.5. Let A � G be a normal subgroup of a locally compact group G such

that the pair (G,A) has relative property (T). If π : G→ U (H) is a continuous
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unitary representation and {ξn} ⊂ H is a sequence of asymptoticallyπ (G)-invariant

vectors, then

lim
n→∞ d(ξn,HA) = 0 .

Proof. Since A is normal in G, the Hilbert subspace HA is π (G)-invariant, so

that

H = HA⊕ (HA)⊥

is an orthogonal decomposition into π (G)-invariant subspaces. Let {ξn} ⊂
H be a sequence of asymptotically invariant vectors and let ξn = ζn+ ζ ′n
be the corresponding orthogonal decomposition, so that showing that

limn→∞ d(ξn,HA) = 0 is equivalent to showing that limn→∞ ‖ζ ′n‖ = 0.

Let us assume by contradiction that lim supn→∞‖ζ ′n‖ �= 0, that is, for some

ε > 0, let {ζ ′nk
} ∈ (HA)⊥ be a subsequence such that

for all k ∈ N we have ‖ζ ′nk
‖ ≥ ε .2.2

Since (HA)⊥ is π (G)-invariant and the orthogonal projection is norm decreas-

ing, we have that for all g ∈ G

‖π (g)ζ ′nk
− ζ ′nk
‖ ≤ ‖π (g)ξnk − ξnk‖

from which, using Equation 2.2, we obtain that

∥∥∥∥∥π (g)
(
ζ ′nk

‖ζ ′nk
‖

)
− ζ ′nk

‖ζ ′nk
‖

∥∥∥∥∥ ≤
1

ε
‖π (g)ξnk − ξnk‖ .

If nowK ⊂ G is any compact set, since the sequence {ξn} ⊂ H is asymptotically

π (G)-invariant, we have

lim
k→∞

sup
k∈K

∥∥∥∥∥π (g)
(
ζ ′nk

‖ζ ′nk
‖

)
− ζ ′nk

‖ζ ′nk
‖

∥∥∥∥∥ ≤ lim
k→∞

sup
k∈K

1

ε
‖π (g)ξnk − ξnk‖ = 0 ,

from which we deduce that the sequence {ζ ′nk
/‖ζ ′nk
‖} is also asymptotically

π (G)-invariant. Henceπ (G)|
(HA)

⊥ has non-zeroπ (A)-invariant vectors, which

is a contradiction. �
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Proof of Proposition 2.4.

1) Let (π ,H) be a representation of L that almost has invariant vectors.

Sinceweak containment is preservedunder induction, the representationω :=
IndG

L (π ) of G induced from π weakly contains the representation IndG
L (11L) in-

duced toG from the identity representation of L; the latter in turn has invariant

vectors since L\G has finite G-invariant measure and hence, by transitivity of

weak containment, ω almost has invariant vectors. Thus, since (G,A) has

relative property (T), the Hilbert space

Lω := {f : G→ H : f is measurable, f (�g) = π (�)(f (g)),
for almost every g ∈ G and for all � ∈ L

and
∫

L\G
‖f (g)‖2dμ(g) <∞}

of the representation ω has nonzero A-invariant vectors with respect to the

action (ω(g)f )(x) = f (xg) for all g ∈ G and almost all x ∈ G. Let f ∈ Lω be

such nonzero A-invariant vector. Then for all a ∈ A∩ L and almost all x ∈ G

we have

π (a)(f (x)) = f (ax) = f (x(x−1ax)) = f (x) ,

which shows that the space of (L∩A)-invariant vectors in H is not trivial and

hence shows (1).

2) Let π : G→ U (H) be a representation of G and {ξn} ∈ H be a sequence of

asymptotically π (G)-invariant vectors.2 Then {ξn} is also asymptotically π (L)-

invariant and since by hypothesis (L, L∩A) has relative property (T) and L∩
A is normal in L, by Lemma 2.5 there exists a sequence {ζn} ∈ HL∩A such

that limn→∞ ‖ξn− ζn‖ = 0. After rescaling if necessary, we may assume that

‖ζn‖ = 1. For all n ∈ N the vectors

ηn :=
∫

A/A∩L
π (a)ζn dλ(a) ∈ H ,

where λ is theA-invariant probabilitymeasure onA/A∩ L, are obviouslyπ (A)-

invariant, andwe only need to show that there exists an n ∈ N such that ηn �= 0.

2. For the sake of simplicity we assume in the sequel that all locally compact groups
are σ -compact. If not, the same arguments apply by replacing sequences with generalized
sequences.
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To see this, let F ⊂ A ⊂ G be a compact fundamental domain for the action

of A∩ L on A. Then for all a ∈ A there exists fa ∈ F and �a ∈ A∩ L such that

a = fa�a, so that, by π (L∩A)-invariance of ζn,

‖ηn− ζn‖ =
∥∥∥∥
∫

A/A∩L
π (a)ζn dλ(a)− ζn

∥∥∥∥ ≤
∫

A/A∩L
‖π (a)ζn− ζn‖ dλ(a)

≤ sup
fa∈F
‖π (fa)ζn− ζn‖ .

Nowwe observe that {ζn} is asymptoticallyπ (G)-invariant: indeed for all g ∈ G,

‖π (g)ζn− ζn‖ ≤ 2‖ζn− ξn‖+‖π (g)ξn− ξn‖ .

It follows that limn→∞ ‖ηn− ζn‖ = 0 and thus in particular ηn �= 0 for some

n ∈ N. �

lemma 2.6. Let �� A be a semidirect product of discrete groups, with A abelian,

and assume that (�� A,A) has relative property (T). Then the Z[�]-module A is

finitely generated.

Proof. Let An ↑ A be an increasing sequence of �-invariant subgroups finitely

generated over Z[�] and ∪An = A. Consider the �� A-regular action on

⊕
n≥1

�2(�� A/�� An) ;

the sequence δe(��An) is asymptotically invariant, hence there is anA-invariant

vector in some �2(�� A/�� An); this implies that there is a finite A-orbit in

(�� A/�� An) ∼= A/An and hence |A/An| < +∞. �

3. Algebraic Actions and Measure Theory

We start by recalling the classical fact that if k is a local field and Hk consists of

the k-points of an algebraic group defined over k, then any k-algebraic action

of Hk on the k-points of a k-variety has orbits, which are locally closed in the

Hausdorff topology [2]. Recall, moreover, that an action is almost effective if

the intersection of the stabilizers is a finite group.
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At the heart of what we are doing is the following theorem of Gromov: the

proof we recall here is more elementary than the original one and appears in

[1, théorème 6.5].

theorem 3.1. (gromov) Let k be a local field, H a k-algebraic group, W a

k-algebraic variety and H×W →W a k-algebraic action. Let μ ∈M1(Wk) be a

probability measure on Wk such that the Zariski closure of its support is W, and

assume that the action is almost effective. Then

StabHk (μ) := {h ∈ Hk : h∗μ = μ}

is compact.

Proof. Observe first of all that since supp (μ) ⊂Wk, then supp (μ)
Z ⊂Wk

Z
,

which, together with the hypothesis on the support of μ implies that Wk is

Zariski dense in W . This and the fact that the action is almost effective imply

that

⋂
x∈Wk

StabHk (x) =
⋂

x∈W

StabHk (x) is finite .3.1

TheNoetherian property for the k-algebraic group StabHk (x) implies that there

exist x1, . . . , xn ∈Wk such that

n⋂
j=1

StabHk (xj) =
⋂

x∈Wk

StabHk (x) .3.2

If we now let H act diagonally on Wn and define

O := {p ∈Wn : StabHk (p) is finite} ,

we deduce immediately from Equations 3.1 and 3.2 that O is not empty. Like-

wise it is easy to see that O is Zariski open and hence, if ν := μ⊗n, ν(Ok) > 0.

Since, moreover, Ok is Hk-invariant, then we conclude that ν|Ok is a finite

measure left-invariant by StabHk (μ).

Since Ok is open in WN
k and the Hk-orbits in Wk are locally closed, then

also the StabHk (μ)-orbits in Ok are locally closed in the Hausdorff topology.

By decomposing ν|Ok if necessary into ergodic components and applying

general considerations (see [26] or [12, 7]), we deduce that the finite StabHk
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(μ)-invariant measure on Ok is supported on an orbit StabHk (μ) · p0, with
p0 ∈ Ok. But

StabHk (μ) · p0 ∼= StabHk (μ)/StabHk (p0)∩StabHk (μ)

and, by hypothesis, StabHk (p0) is finite. It follows that StabHk (μ) supports a

finite measure that is invariant by translations and hence is compact. �

Wecan draw from this theorem someuseful consequences on the structure

of the stabilizer of a probability measure in projective space. The point is to be

able to deal with measures whose support is not necessarily Zariski dense and

with actions that are not necessarily effective. To apply the previous theorem

and for further reference, let us set up some notation. If k is a local field, let E

be a finite-dimensional vector space defined over k. If μ ∈M1(P(Ek)), let us

set

W := suppμZ ⊆ P(E)3.3

to be the projective subvariety defined as the Zariski closure of the support of

μ and define the algebraic subgroups

N(W ) :={h ∈ PGL(E) : h(W) =W}
I(W ) :={h ∈ PGL(E) : h|W = IdW } ,

3.4

where I(W ) is normal inN(W ) and both are defined over k. The above notation

will be typically applied when E is either a vector space as in the next corollary

or the dual of a vector space (the only difference of course is lying in the

action).

corollary 3.2. Let Vk be a finite-dimensional k-vector space seen as the set

of k-points of the corresponding vector space V over an algebraic closure of k. The

stabilizerStabPGL(Vk) (μ) of a probability measureμ ∈M1(P(Vk)) on the projective

space P(Vk) has a cocompact normal k-subgroup. More precisely, if W ⊂ P(V ) and

I(W ) are defined as in Equations (3.3) and (3.4), respectively, then I(W ) is a k-

subgroup of PGL(V ) such that I(W )k is normal in StabPGL(Vk) (μ) and the quotient

StabPGL(Vk) (μ)/I(W )k is compact.

Proof. By construction the group H := N(W )/I(W ) is defined over k and so is

the algebraic action H×W →W , which is in addition effective by construc-

tion. SinceN(W )k/I(W )k is theN(W )k-orbit of the identity in (N(W )/I(W ))k =
Hk, it is locally closed in theHausdorff topology and, being a topological group,
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is also closed; but StabPGL(Vk) (μ)/I(W )k being closed inN(W )k/I(W )k it is also

closed in Hk. Since the quotient StabPGL(Vk) (μ)/I(W )k is closed and contained

in the compact StabHk (μ), it is itself compact. �

remark 3.3. Furstenberg’s lemma [9] asserts that either the stabilizer of a prob-

ability measure μ on P(Vk) is compact or the support of the measure is contained

in the union of two proper subspaces. Using this lemma Zimmer has shown [26,

theorem 3.2.4] (see also [18]) that under the same hypotheses as in Corollary 3.2

StabPGL(Vk) (μ) has a normal subgroup of finite index that contains a cocompact

normal subgroup consisting of the k-points of a k-algebraic group.

4. Applications to Group Pairs

Let Vk be as in §3 a k-vector space identified with the k-points of a vector space

V over an algebraic closure of k, and let V∗k be its dual. If μ ∈M1(P(V∗k )),
define

Gμ := {h ∈ GL(Vk) : [h∗] ∈ StabPGL(V∗k ) (μ)}4.1

where h∗ denotes the transpose of h. Then we have

proposition 4.1. Let μ ∈M1(P(V∗k )). Then the pair (Gμ � Vk,Vk) does not

have relative property (T).

Proof. Let us consider W ⊂ P(V∗) and I(W ) as defined in Equations (3.3) and

(3.4) with E = V∗ and let us define

Iμ := {h ∈ Gμ : [h∗] ∈ I(W )k}
= {h ∈ GL(Vk) : [h∗] ∈ I(W )k} .

Let [λ] ∈ suppμ, where λ : Vk → k is a nonzero linear form. Then, by defini-

tion of Iμ, there exists a continuous homomorphism χλ : Iμ → k∗ such that

for every h ∈ Iμ

h∗λ = χλ(h)λ.4.2
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But this is equivalent to saying that the map

qλ : Iμ � Vk → k∗� k

(h, v) �→ (χλ(h), λ(v))

is a homomorphism. Since k is not compact and k∗� k is amenable, then

(k∗� k, k) does not have relative property (T) (see, for instance, [8, lemma 8.3]),

and since qλ is continuous with qλ(Vk) = k, then also (Iμ � Vk,Vk) does not

have relative property (T) (Lemma 2.1). But Iμ is a normal subgroup of Gμ

and Gμ/Iμ is compact by Corollary 3.2, so that Proposition 2.4(1) implies that

also (Gμ � Vk,Vk) does not have relative property (T). �

Our source of examples is the following:

theorem 4.2. Let k be a local field, Vk a finite-dimensional k-vector space en-

dowed with its structure of (additive) locally compact group, H a locally compact

group, and ρ : H → GL(Vk) a continuous representation. Then the following are

equivalent:

i) the pair (H � Vk,Vk) has relative property (T); and

ii) there is no H-invariant probability measure on P(V∗k ).

The proof of the implication (ii)⇒(i) was proven in [5, proposition 7

and examples] and is recalled below for completeness. The case in which

k = R and H is a semisimple connected Lie group was established in [24,

proposition 2.3]. The implication (i)⇒(ii) in the general case appears in [6,

proposition 3.1.9], but it follows here immediately from the above proposi-

tion. In fact, assume that via the contragredient action ρ∗ of ρ, the group H

fixes a measure μ ∈M1(P(V∗k )). With Gμ as in Equation 4.1, consider the

continuous homomorphism

H � Vk

ρ⊗Id
��Gμ � Vk .

Then Proposition 4.1 and the contrapositive of Lemma 2.1 imply that (H �

Vk,Vk) does not have relative property (T).

We recall now the proof of the implication (ii)⇒(i). Let ρ : H → GL(Vk)

be a continuous representation and let G := H � Vk. By fixing a nontrivial

character χ ∈ Homc (k,T) we get the usual isomorphism as locally compact
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groups of the Pontryagin dual V̂k of Vk with the dual V∗k , via

V∗k −→ V̂k

λ �−→ χ ◦ λ .
Given a continuousunitary representationπ : G→ U (H), wehave the spectral

measure

P : B(V∗k )→ P(H)

of π |Vk , that is, a map associating to every Borel set B ⊂ V∗k an orthogonal

projection satisfying certain additional properties. Essential is the fact that for

every ξ ∈ H,

μξ (B) := 〈P(B)ξ , ξ〉
defines a bounded positive Radon measure μξ ∈M+(V∗k ) on V∗k and

〈π (v)ξ , ξ〉 = μ̂ξ (v) =
∫

V∗k
χ(λ(v)) dμξ (λ) .

In other words, μξ is determined uniquely by the diagonal coefficients on Vk

associated to ξ and it is easy to see that P(B) is uniquely determined by the

map ξ �→ μξ (B); furthermore, we have for all h ∈ H and B ∈ B(V∗k )

P(ρ(h)∗B) = π (h)−1 P(B)π (h) .4.3

Now let ξ ∈ H and μξ ∈M+(V∗k ) and define

mξ := p∗(μξ |V∗k \{0})
to be the push- forward of the measure μξ |V∗k \{0} under the projection p : V∗k \
{0} → P(V∗k ). IfB ∈ B(P(V∗k )) is aBorel subset inP(V∗k ) andwesetB

′ = p−1(B),
using Equation 4.3 we have

mξ (ρ
∗(h)B)−mξ (B) = 〈P(ρ∗(h)B′)ξ , ξ〉− 〈P(B′)ξ , ξ〉

= 〈P(B′)π (h)ξ ,π (h)ξ〉− 〈P(B′)ξ , ξ〉
= Re 〈P(B′)(π (h)ξ + ξ),π (h)ξ − ξ〉 ,

so that

|mξ (ρ
∗(h)B)−mξ (B))| ≤ 2‖ξ‖ ‖π (h)ξ − ξ‖ .

Now for any subset K ⊂ H, introduce the following quantity

α(K , ρ) := inf
m∈M1(P(V∗k ))

sup
B∈B(P(V∗k ))

sup
h∈K
|m(ρ∗(h)B)−m(B)|
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which is somehow the extent to which “measures are moved by ρ∗(h).”
Since the total mass of the positive measure mξ is

μξ (P(V∗k )) = μξ (V∗k )−μξ ({0}) ,
and since there are no ρ(Vk)-invariant vectors if and only if μξ ({0}) = 0 for

every ‖ξ‖ = 1, we obtain the following:

proposition 4.3. Let ρ : G→ U (H) be a continuous unitary representation

of H � Vk with no nonzero Vk-invariant vectors. Then for every compact subset

K ⊂ H and for every ξ ∈ H with ‖ξ‖ = 1, we have that

max
h∈K
‖ρ(h)ξ − ξ‖ ≥ 1

2
α(K , ρ) .

The proof of Theorem 4.2(ii)⇒(i) will be complete if we show that H has

no invariant measure on P(V∗k ) via ρ if and only if there exists a compact set

K ⊂ H with α(K , ρ) > 0; but this is just an exercise.

4.1. Proof of the Results in §1.1

We adopt the same notation as in §1.1, namely, � is a discrete group, S

a finite set of primes, Z[S] the ring obtained inverting the primes in S,

ρ : �→ GLN (Z[S]) a representation, and ρp : �→ GLN (Qp) is the repre-

sentation obtained by composing ρ with the embedding Z[S] ↪→ Qp, where

Q∞ := R. Since the diagonal embedding

Z[S]N ↪→ R
N ×

∏
p∈S

Q
N
p

realizes Z[S]N as a cocompact lattice, Corollary 2.3 can be translated into the

following:

corollary 4.4. The pair (�� Z[S]N ,Z[S]N ) has relative property (T) if and

only if the pair (�� (RN ×∏p∈S Q
N
p ),R

N ×∏p∈S Q
N
p ) has relative property (T).

From this we deduce the equivalence of (i) and (iv) in Theorem 1.2, which

we record here separately as it does not require the hypothesis of Zariski

density of ρ(�) in SLN .

proposition 4.5. With the above hypotheses, the following are equivalent:

i) (�� Z[S]N ,Z[S]N ) has relative property (T); and
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ii)for every p ∈ S∪ {∞}, there is no ρ∗p (�)-invariant probability measure on

P((QN
p )
∗).

Proof. Using Corollary 4.4 and Lemma 2.2 we deduce that the pair (��

Z[S]N ,Z[S]N ) has relative property (T) if and only if (�� Q
N
p ,Q

N
p ) has relative

property (T) for every p ∈ S∪ {∞}. Theorem 4.2 then implies the equivalence

with (ii). �

Proof of Theorem 1.2. The chain of implications that we shall prove is as fol-

lows: (iii)⇒(iv)⇒(i)⇒(ii)⇒(iii), where, however, the equivalence (iv)⇔(i) is

the content of Proposition 4.5.

(iii)⇒(iv). We shall show the contrapositive statement; namely, we shall

assume that for some p ∈ S∪ {∞} there exists a ρ∗p (�)-invariant probabil-
ity measure μ and we shall prove that then the image ρp(�) ⊂ SLN (Qp) is

bounded.

Let W ⊂ P((Qp
N
)∗) and I(W ) be defined as in Equations 3.3 and 3.4 with

E = (Qp
N
)∗ and Qp an algebraic closure of Qp, and let us consider I′(W ) =

I(W ) ∩ PSLN . Since I′(W ) is normalized by ρ(�) and ρ(�) is Zariski dense in

SLN , then I′(W ) is a normal subgroup of PSLN and hence either trivial or the

full group. Obviously it cannot be the full group PSLN since this cannot fix

pointwise any nonempty subset in projective space. So since I′(W ) is trivial,

then by Corollary 3.2 StabPSL(QN
p ) (μ) is compact, so that ρp(�) is bounded.

(i)⇒(ii). This follows from Lemma 2.6.

(ii)⇒(iii). If p = ∞, then it is easy to see thatρ∞(�) cannot be boundedbecause
otherwise it would be conjugate into a maximal compact subgroup that is a

real algebraic group, thus contradicting the Zariski density of ρ(�) in SLN .

Let us assume thatZ[S]N isfinitely generated as amoduleoverZ[�], namely

there exist aj ∈ Z[S]N , with 1 ≤ j ≤ r , such that Z[S]N = ρ(Z(�))a1+ · · ·+
ρ(Z(�))ar . For p ∈ S, ni ∈ Z, and γi ∈ �, using the ultrametric inequality, we

have

∥∥∥∥∥∥
<∞∑

i

r∑
j=1

niρp(γi)aj

∥∥∥∥∥∥ ≤ max
j,i
‖niρp(γi)aj‖

= max
j,i
‖ρp(γi)aj‖ ≤ max

j
sup
γ∈�
‖ρp(γ )aj‖

so that if ρp(�) were to be bounded for any of the p’s in S, then Z[S]N would

also be bounded in Q
N
p , which is not the case. �
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In the course of the proof of the implication (iii)⇒(i) in Theorem 1.2 we

have proven the following fact, which we record as it might be of independent

interest and which could be deduced also from Furstenberg’s Lemma [9].

lemma 4.6. Let� < PSLN (Qp) be an unbounded closed subgroup that is Zariski

dense in PSLN. Then there exists no �-invariant probability measure on P(QN
p ).

Proof of Corollary 1.5. Since SLN (Z[S]) is an irreducible lattice in the product

SLN (R)×∏�∈S SLN (Q�), if p ∈ S is a fixed prime, the projection

αp : SLN (Z[S])→ SLN (R)×
∏

�∈S,��=p

SLN (Q�)

has dense image. We assume for the moment that we have proven that

αp(SLN (Z[s])) cannot contain an open solvable subgroup, so that by the

topological Tits alternative [4, theorem 1.6] there exists a free dense sub-

group � < αp(SLN (Z[S])) of finite rank, which is also dense in SLN (R)×∏
�∈S,��=p SLN (Q�). This implies in particular that for all � ∈ S, � �= p, the pro-

jection ρ� : α−1p (�)→ SLN (Q�) is unbounded. If we show that also the projec-

tion ρp : �→ SLN (Qp) is unbounded where � := α−1p (�) < SLN (Z[S]), then
Theorem1.2will imply that the pair (�� Z[s]N ,Z[s]N ) has relative property (T).
In fact, if theprojectionρp : �→ SLN (Qp)wereboundedwith compact closure

K , then � would be a discrete subgroup of SLN (R)×∏�∈S,��=p SLN (Q�)×K ,

contradicting the fact that its projection in SLN (R)×∏�∈S,��=p SLN (Q�) is

dense.

To complete the proof we need to verify that αp(SLN (Z[S])) does not have
open solvable subgroups. Let us start with the general observation that if

L < H < G are topological groups such that L is open in H and H is dense

in G, then the closure L of L is an open subgroup of G. By applying this to

H = αp(SLN (Z[S])) < SLN (R)×∏�∈S,��=p SLN (Qp), we have that if such open

solvable subgroup L < αp(SLN (Z[S])) were to exist, then ρ∞(L) would be an

open solvable subgroup of SLN (R), hence closed, and hence ρ∞(L) = SLN (R),

since SLN (R) is connected. This is not possible and the proof is completed. �

4.2. Proof of the results in §1.2

We now move on to the proof of the results in §1.2.

Proof of Theorem 1.6. In view of Theorem 4.2 it will be enough to prove the

equivalence of the following statements:
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1)There exists a ρ∗(�)-invariant probability measure on P(V∗
R
); and

2)The representation ρR : GR → GL(VR) is not totally unbounded.

Remark first of all that one should avoid the temptation of trying to deduce

Theorem 1.6 as an application of Theorem 1.2 (with p = ∞), as in order to do

so one should require in addition to the hypotheses of Theorem 1.6 also the

Zariski density of the image ρ(�) in SLN .

(2)⇒(1). By hypothesis let WR ⊂ VR be a ρR(G)-invariant subspace such that

ρR(G)|WR
is bounded. Then on P(WR) ⊂ P(VR) there exists a ρ(�)-invariant

probability measure.

(1)⇒(2). Let μ ∈M1(P(V∗
R
) be a ρ∗(�)-invariant probability measure and let

W ⊂P(V∗), N(W ), and I(W ) be as usual as defined in Equations 3.3 and 3.4

with E = V∗. If ρ∗ is the contragredient representation, by hypothesis for all
g ∈G,

[ρ∗(g)] ∈ N(W ) .

If we define N := {g ∈ G : [ρ∗(g)] ∈ I(W )}, then we have an injective homo-

morphism

G/N ↪→ N(W )/I(W ) ,

and, by passing to the real points, we have an induced homomorphism

h : GR/NR −→ N(W )R/I(W )R

that is at most finite-to-one. If p : GR → GR/NR denotes the usual projec-

tion, then h ◦ p(�) is relatively compact since it is contained in StabPGL(V∗
R
)

(μ)/I(W )R, which is compact by Corollary 3.2. Since h is at most finite-to-

one, we infer that p(�) is bounded. Since (NR)◦ is of finite index in NR, if

p1 : GR → GR/(NR)◦, then p1(�) is also bounded in GR/(NR)◦.
The rest of the proof will consist just in identifying the quotient GR/(NR)◦

to deduce that ρR is not totally unbounded. To this purpose, observe that the

connected component N◦ of N fixes pointwise every vector in the linear span

E of π−1(W ), where π : V∗ → P(V∗). In fact, for every [λ] ∈W , λ : V → C,

we have χλ : N → C
∗ given by

ρ∗(n)λ = χλ(n)λ
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for every n ∈ N . Thus, sinceN◦ is connected and a product of almostR-simple

factors of G, we get that χλ(N◦) = 1. Since

N ={g ∈ G : ρ∗(g)|W = IdW }
⊃{g ∈ G : ρ∗(g)|E = IdE} ⊃ N◦

then GR/(NR)◦ surjects onto GR/ ker {g �→ ρ∗(g)|ER
}. The fact that

GR/ ker {g �→ ρ∗(g)|ER
} ∼= im {g �→ ρ∗(g)|ER

} ⊂ GL(ER) ,

together with the fact that p1(�) was bounded in GR/(NR)◦, implies that

ρ∗(�)|ER
is bounded in GL(ER); again by Zariski density, ρ∗

R
(GR)|ER

is

bounded, thus showing that ρR is not totally unbounded. �

lemma 4.7. Let H be a connected Q-semisimple group that is either simply con-

nected or adjoint and with no factors of Q-rank= 0. Then there exists an irreducible

representation ρ : H → GL(V ) such that ρR : HR → GL(VR) is irreducible and

unbounded.

Proof. It will be enough to prove the assertion under the hypothesis that H

is Q-simple. In fact, since H = H1× · · ·×Hn, if a representation ρj : Hj →
GL(Vj) with the desired properties exists for each factorHi, then the Kronecker

product ρ :=⊗n
j=1 ρj : H → GL

(⊗n
j=1 Vj

)
will have the desired properties

for the group H.

So, recall (see for instance [17, pp. 47-48]) that if H is a connected almost

Q-simple group, there is a number field k and an absolutely simple k-group

L such that H = Resk/Q L. Thus, over C, H =∏σ :k→C
L
σ , where the prod-

uct is over all Archimedean places of k. If l denotes the Lie algebra of L, let

Ad1 := Ad : L→ Aut (l) be the adjoint representation of L and Adi : L
σi →

Aut (li). Then byWeil’s criterion ρ :=⊗n
i=1 Adi :

∏
L
σi → Aut (

⊗n
i=1 li) can

be defined over Q and, setting V :=⊗ li, we get an irreducible represen-

tation ρ : H → GL(V ); then ρR : HR → GL(VR) is also irreducible and with

unbounded image. �

Proof of Corollary 1.7. By hypothesis, there exists a connected semisimple

simply connected algebraic group H defined over Q and a surjective homo-

morphism h : HR � G such that h(HZ) is commensurable with�. By passing

to a subgroup of finite index�0 ≤ HZ, wemay assume that p|�0 is injective and
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has image �′ < � < G of finite index in �. If ρ : H → GL(V ) is the represen-

tation in Lemma 4.7 and dimV = N , Theorem 1.6 implies that (Hk � Z
N ,ZN )

has relative property (T); hence (�′� Z
N ,Zn) has relative property (T) where

the action of �′ on Z
N is via ρ ◦ h−1. �
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