The bounded Borel class and complex representations of 3-manifold groups

Michelle Bucher, Marc Burger and Alessandra Iozzi

Abstract

If $\Gamma<\operatorname{PSL}(2, \mathbb{C})$ is a lattice, we define an invariant of a representation $\Gamma \rightarrow \operatorname{PSL}(n, \mathbb{C})$ using the Borel class $\beta(n) \in \mathrm{H}_{\mathrm{c}}^{3}(\operatorname{PSL}(n, \mathbb{C}), \mathbb{R})$. We show that this invariant satisfies a Milnor-Wood type inequality and its maximal value is attained precisely by the representations conjugate to the restriction to Γ of the irreducible complex n-dimensional representation of $\operatorname{PSL}(2, \mathbb{C})$ or its complex conjugate. Major ingredients of independent interest are the extension to degenerate configuration of flags of a cocycle defined by Goncharov and its study, as well as the identification of $\mathrm{H}_{\mathrm{b}}^{3}(\mathrm{SL}(n, \mathbb{C}), \mathbb{R})$ as a normed space.

1 Introduction

Let $M=\Gamma \backslash \mathbb{H}^{3}$ be a finite volume quotient of the real hyperbolic 3-space \mathbb{H}^{3}, where $\Gamma<\operatorname{PSL}(2, \mathbb{C})$ is a torsion free lattice. There is a considerable body of work concerning the representation variety $\operatorname{Hom}(\Gamma, \operatorname{PSL}(n, \mathbb{C}))$, the problem of finding explicit parametrizations of (large parts of) it, and expressing various invariants of such representations like the "volume", the Dehn invariant and the Chern-Simons invariant in those parameters, [?, ?, ?]. In fact this representation variety is particularly rich when M is not compact, say with $h \geq 1$ cusps, since for instance in this case the character variety of Γ into $\operatorname{PSL}(n, \mathbb{C})$ locally has dimension $(n-1) h$ near

[^0]$\left.\pi_{n}\right|_{\Gamma}$, where $\pi_{n}: \operatorname{PSL}(2, \mathbb{C}) \rightarrow \operatorname{PSL}(n, \mathbb{C})$ is the irreducible complex representation, [?].

In this paper, we will study the volume of a representation $\rho: \Gamma \rightarrow \operatorname{PSL}(n, \mathbb{C})$ that we will rename as the Borel invariant of ρ. Indeed, the continuous cohomology of $\operatorname{PSL}(n, \mathbb{C})$ in degree 3 is generated by a specific class called the Borel class $\beta(n)$. Our normalization of $\beta(n)$ is that under the Van Est isomorphism it corresponds to the $\operatorname{PSU}(n)$-invariant 3-form on the space \mathfrak{p}_{n} of Hermitian matrices of trace zero given by

$$
\omega_{n}(X, Y, Z)=2 \operatorname{tr}(i[X, Y] Z) .
$$

In particular for $\operatorname{PSL}(2, \mathbb{C})$ it corresponds to the volume form of the hyperbolic metric of constant curvature -1 . We wil not use it in this paper, but $2 i \beta(n)$ coincides with the Borel element $B o_{2}$ in [?, Definition 9.24].When M is compact, the definition of the Borel invariant of ρ is straightforward as it is the evaluation on the fundamental class $[M]$ of the pullback by ρ of the Borel class. If M has cusps, the definition of this invariant presents interesting difficulties which we overcome by the use of bounded cohomology. More precisely, $\beta(n)$ can be represented by a bounded cocycle, which gives rise to a bounded continuous class

$$
\beta_{\mathrm{b}}(n) \in \mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(n, \mathbb{C}), \mathbb{R})
$$

The Borel invariant of $\rho: \Gamma \rightarrow \operatorname{PSL}(n, \mathbb{C})$ is then defined as

$$
\mathscr{B}(\rho)=\left\langle\rho^{*}\left(\beta_{\mathrm{b}}(n)\right),[N, \partial N]\right\rangle
$$

where N is a compact core of M. We refer the reader to Section ?? for a precise interpretation of this formula. This definition does not use any triangulation, it is independent of the choice of compact core and can be made for any compact oriented 3-manifold whose boundary has amenable fundamental group.

The bounded cocycle entering the definition of $\beta_{\mathrm{b}}(n)$ is constructed by means of an invariant

$$
B_{n}: \mathscr{F}\left(\mathbb{C}^{n}\right)^{4} \longrightarrow \mathbb{R}
$$

of 4-tuples of complete flags, which on generic 4-tuples has been defined and studied by A.B. Goncharov, [?]. It generalizes the volume function in the case $\mathscr{F}\left(\mathbb{C}^{2}\right)=\mathbb{P}\left(\mathbb{C}^{2}\right)=\partial \mathbb{H}^{3}$ (see Section ?? for a detailed discussion). This invariant can also be used to give an efficient formula for $\mathscr{B}(\rho)$. To this end assume that M has toric cusps. Let $\varphi: \mathscr{C} \rightarrow \mathscr{F}\left(\mathbb{C}^{n}\right)$ be a decoration, that is any Γ-equivariant map from the set of cusps $\mathscr{C} \subset \partial \mathbb{H}^{3}$ of Γ into $\mathscr{F}\left(\mathbb{C}^{n}\right)$, and let P_{1}, \ldots, P_{r} be a family of oriented ideal tetrahedra with vertices in \mathscr{C} whose projections to M form an ideal triangulation of M. If $\left(P_{i}^{0}, P_{i}^{1}, P_{i}^{2}, P_{i}^{3}\right)$ are the vertices of P_{i}, then

$$
\begin{equation*}
\mathscr{B}(\rho)=\sum_{i=1}^{r} B_{n}\left(\varphi\left(P_{i}^{0}\right), \varphi\left(P_{i}^{1}\right), \varphi\left(P_{i}^{2}\right), \varphi\left(P_{i}^{3}\right)\right) \tag{1}
\end{equation*}
$$

(see Section ?? for a proof). Notice that our formula for the volume does not involve any barycentric subdivision of the ideal triangulation, nor any conditions on
the decoration. Upon passing to a barycentric subdivision, or restricting to generic decorations, one recovers from the right hand side of (??) the formulas in [?, ?, ?].

Our first result is that on the character variety Γ into $\operatorname{PSL}(n, \mathbb{C})$, the invariant \mathscr{B} attains a unique maximum at $\left[\pi_{n} \mid \Gamma\right]$.

Theorem 1. Let $\Gamma=\pi_{1}(M)$ be the fundamental group of a complete finite volume real hyperbolic 3-manifold and let $\rho: \Gamma \rightarrow \operatorname{PSL}(n, \mathbb{C})$ be any representation. Then

$$
|\mathscr{B}(\rho)| \leq \frac{n\left(n^{2}-1\right)}{6} \operatorname{Vol}(M)
$$

with equality if and only if ρ is conjugate to $\left.\pi_{n}\right|_{\Gamma}$ or to its complex conjugate $\left.\bar{\pi}_{n}\right|_{\Gamma}$.
The case of the character variety of Γ into $\operatorname{PSL}(3, \mathbb{C})$ is instructive: in [?] the authors study the derivative of \mathscr{B} on a Zariski open subset and show that it is entirely expressed in terms of the eigenvalues of the holonomy at the cusps. In particular boundary unipotent representations are critical points of $\mathscr{B}(\rho)$. The example of the complement of the figure eight knot [?] suggests that in general there are many boundary unipotent representations and therefore many critical points for \mathscr{B}.

A large part of this paper is devoted to the study of the invariant $B_{n}: \mathscr{F}\left(\mathbb{C}^{n}\right)^{4} \rightarrow \mathbb{R}$ on 4-tuples of flags (see Theorem ?? below), to the bounded class it defines and the consequences, in combination with stability results by N. Monod in [?], for the bounded cohomology of $\operatorname{PSL}(n, \mathbb{C})$. Our main result about the bounded cohomology of these groups in degree 3 is:

Theorem 2. The class $\beta_{\mathrm{b}}(n)$ is a generator of $\mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(n, \mathbb{C}), \mathbb{R})$ and its Gromov norm is

$$
\left\|\beta_{\mathrm{b}}(n)\right\|=\frac{n\left(n^{2}-1\right)}{6} v_{3},
$$

where v_{3} is the volume of a maximal ideal tetrahedron in \mathbb{H}^{3}. In addition $\beta_{\mathrm{b}}(n)$ restricts to $\beta_{\mathrm{b}}(n-1)$ under the left corner injection $\mathrm{SL}(n-1, \mathbb{C}) \hookrightarrow \mathrm{SL}(n, \mathbb{C})$ and to $\left(n\left(n^{2}-1\right) / 6\right) \cdot \beta_{\mathrm{b}}(2)$ under the irreducible representation $\pi_{n}: \operatorname{SL}(2, \mathbb{C}) \rightarrow \operatorname{SL}(n, \mathbb{C})$.

The case $n=2$ follows from work of Bloch [?]. Theorem ?? gives additional evidence for the conjecture that for connected simple Lie groups with finite center, the comparison map between bounded continuous and continuous cohomology is an isomorphism. So far this conjecture has been established only in degree 2 [?], in degree 3 for the isometry group of real hyperbolic n-space [?], and in degree 3 and 4 for $\operatorname{SL}(2, \mathbb{R})$ ([?] and [?] respectively).

2 Outline of the Paper and the definition of the Borel invariant

The cocycle representing $\beta_{\mathrm{b}}(n)$

We start in Sections ?? and ?? by setting up a homological machinery involving chains on configuration spaces; this is largely borrowed from Goncharov, [?]. The aim is to define an invariant

$$
B_{n}: \mathscr{F}\left(\mathbb{C}^{n}\right)^{4} \longrightarrow \mathbb{R}
$$

on the space of 4-tuples of complete flags in \mathbb{C}^{n} and to show that it is a strict cocycle, that is a cocycle that is everywhere defined and that satisfies everywhere the cocycle identity. The definition of the cocycle in general is rather technical, so we will illustrate here only the case $n=3$ in the dual setting, that is interchanging lines and planes through the origin. Observe that interestingly, Falbel and Wang have just proven [?] that this dual cocycle \check{B}_{n} is not equal to Goncharovs cocycle B_{n} but only cohomologous to it. Furthermore the authors give an explicit coboundary for the difference of the two cocycles [?, Proposition 3.10].

A complete flag in \mathbb{C}^{2} is a choice of a line in \mathbb{C}^{2} or, equivalenly, of a point $P \in \mathbb{P}\left(\mathbb{C}^{2}\right)$. Using the identification $\mathbb{P}^{2}(\mathbb{C})=\partial \mathbb{H}^{3}$, the invariant $B_{2}=\check{B}_{2}$ associates to four points in $\mathbb{P}\left(\mathbb{C}^{2}\right)$ the signed volume of the ideal tetrahedron that they define.

After projectivization, a complete flag F in $\mathbb{P}\left(\mathbb{C}^{3}\right)$ is given by a projective line $L \subset \mathbb{P}\left(\mathbb{C}^{3}\right)$ and a point $P \in L$. We denote it by $F=\left\{P \in L \subset \mathbb{P}\left(\mathbb{C}^{3}\right)\right\} \in \mathscr{F}\left(\mathbb{P}\left(\mathbb{C}^{3}\right)\right)$. Given a complete flag $F \in \mathscr{F}\left(\mathbb{P}\left(\mathbb{C}^{3}\right)\right.$) and a projective line $L^{\prime} \subset \mathbb{P}\left(\mathbb{C}^{3}\right)$, we define the intersection $F \cap L^{\prime}$ to be the point in $\mathbb{P}\left(\mathbb{C}^{3}\right)$ given by

$$
F \cap L^{\prime}= \begin{cases}L \cap L^{\prime} & \text { if } L \neq L^{\prime} \\ P & \text { if } L=L^{\prime}\end{cases}
$$

Now we define a cocycle $\check{B}_{3}: \mathscr{F}\left(\mathbb{P}\left(\mathbb{C}^{3}\right)\right)^{4} \rightarrow \mathbb{R}$ by sending four flags F_{0}, \ldots, F_{3}, where $F_{i}=\left\{P_{i} \in L_{i} \subset \mathbb{P}\left(\mathbb{C}^{3}\right)\right\}$, to

$$
\check{B}_{3}\left(F_{0}, \ldots, F_{3}\right)= \begin{cases}\operatorname{Vol}_{L_{i}}\left(F_{0} \cap L_{i}, \ldots, F_{3} \cap L_{i}\right) & \text { if } \exists i \neq j \text { with } L_{i}=L_{j} \\ \operatorname{Vol}_{L}\left(F_{0} \cap L, \ldots, F_{3} \cap L\right) & \text { if } \cap_{j=0}^{3} L_{j} \text { is a point } \\ \sum_{i=0}^{3} \operatorname{Vol}_{L_{i}}\left(F_{0} \cap L_{i}, \ldots, F_{3} \cap L_{i}\right) & \text { otherwise }\end{cases}
$$

where in the second case, L is any projective line not containing the point $\cap_{j=0}^{3} L_{j}$ and $\mathrm{Vol}_{L}=B_{2}=\check{B}_{2}$ (respectively $\mathrm{Vol}_{L_{i}}=B_{2}=\check{B}_{2}$) after the identification of L_{i} (respectively of L) with $\mathbb{P}\left(\mathbb{C}^{2}\right)$. To check that β_{3} is well defined we need some observations.

Let $P \in \mathbb{P}\left(\mathbb{C}^{3}\right)$ be a point and $L \subset \mathbb{P}\left(\mathbb{C}^{3}\right)$ be a projective line not containing P. We define a projection $p: \mathbb{P}\left(\mathbb{C}^{3}\right) \backslash\{P\} \rightarrow L$ by sending a point $x \in \mathbb{P}\left(\mathbb{C}^{3}\right) \backslash\{P\}$ to the intersection of the line through P and x and the line L. Note that p is induced by the projection $\mathbb{C}^{3}=\bar{P} \oplus \bar{L} \rightarrow \bar{L}$, where \bar{P} and \bar{L} are the vector spaces corresponding

Fig. 1 The generic case.

Fig. 2 The case in which two lines, in this case L_{0} and L_{2}, coincide (but $P_{0} \neq P_{2}$ otherwise the two flags (P_{0}, L_{0}) and (P_{2}, L_{2}) would be equal, in which case $\mathrm{Vol}=0$.

Fig. 3 The case in which $\cap_{j=0}^{3} L_{j}$ is a point.
to P and L respectively. The following lemma is immediate, using the fact that p induces an isomorphism between L^{\prime} and L.

Lemma 3 Let $L \subset \mathbb{P}\left(\mathbb{C}^{3}\right)$ be a projective line and $P \in \mathbb{P}\left(\mathbb{C}^{3}\right) \backslash L$ a point. If p is the projection $p: \mathbb{P}\left(\mathbb{C}^{3}\right) \backslash\{P\} \rightarrow L$ defined above, then

$$
\operatorname{Vol}_{L^{\prime}}\left(x_{0}, \ldots, x_{3}\right)=\operatorname{Vol}_{L}\left(p\left(x_{0}\right), \ldots, p\left(x_{3}\right)\right)
$$

for any projective line $L^{\prime} \subset \mathbb{P}\left(\mathbb{C}^{3}\right)$ not containing P and any $x_{0}, \ldots, x_{3} \in L^{\prime}$.
Now we can verify that in the second case, the definition is independent of the choice of L. Indeed, let L^{\prime} be another projective line not containing the point $P=$ $L_{0} \cap L_{1} \cap L_{2} \cap L_{3}$. Then the projection $p: \mathbb{P}\left(\mathbb{C}^{3}\right) \backslash\{P\} \rightarrow L$ sends $F_{i} \cap L^{\prime}=L_{i} \cap L^{\prime}$ to $F_{i} \cap L=L_{i} \cap L$ (because L_{i} is the line containing P and $F_{i} \cap L^{\prime}$) and the conclusion follows from Lemma ??. Second, observe that the projective line $L_{i}=L_{j}$ of the first case might not be uniquely determined. This happens precisely if there are two pairs of lines among the four flags which are equal. Since Vol is alternating, we can without loss of generality suppose that $L_{0}=L_{1} \neq L_{2}=L_{3}$. But in this case we have $F_{0} \cap L_{2}=F_{1} \cap L_{2}=L_{0} \cap L_{2}$ and $F_{2} \cap L_{0}=F_{3} \cap L_{0}=L_{2} \cap L_{0}$, so that for any choice of $i \in\{0,1,2,3\}$, two of the four points on which the alternating cocycle $\operatorname{Vol}_{L_{i}}$ will be evaluated are equal, so the evaluation is 0 . Finally, it is possible that the first and second case happen simultaneously, in which case one easily checks that in both cases one obtains 0 .

We refer the reader to (??) in Section ?? for the definition of B_{n} for all $n \geq 2$ and to [?], where $B_{3}-\beta_{3}$ is written as an explicit coboundary.

Theorem 4 1. The function B_{n} is a $\operatorname{GL}(n, \mathbb{C})$-invariant alternating strict Borel cocycle.
2. Its absolute value satisfies the inequality

$$
\begin{equation*}
\left|B_{n}\left(F_{0}, \ldots, F_{3}\right)\right| \leq \frac{1}{6} n\left(n^{2}-1\right) v_{3} \tag{2}
\end{equation*}
$$

with equality if and only if F_{0}, \ldots, F_{3} are, up to the action of $\operatorname{GL}(n, \mathbb{C})$, images under the Veronese embedding of vertices of a regular ideal simplex in $\mathbb{P}\left(\mathbb{C}^{2}\right)=$ $\partial \mathbb{H}^{3}$.

Before outlining the proof of this theorem, we remark that, by evaluation on $\left(g_{0} F, g_{1} F, g_{2} F, g_{3} F\right)$, where F is a fixed flag in $\mathscr{F}\left(\mathbb{C}^{n}\right)$, the cocycle B_{n} defines a continuous bounded cohomology class of $\operatorname{PSL}(n, \mathbb{C})$, which we denote by $\beta_{\mathrm{b}}(n) \in$ $\mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(n, \mathbb{C}), \mathbb{R})$ and call the bounded Borel class. The fact that this class is bounded already follows from Goncharov's almost everywhere defined cocycle, for which the bound in (??) holds almost everywhere. However, the stability properties in Theorem ?? under the left corner injection as well as the exact determination of the norm require the use of the strict cocycle. The proof of Theorem ?? is presented in Section ??.

The strategy of the proof of Theorem ??(1) is similar to the one of the Key Lemma of Goncharov [?, Key Lemma 2.1]. The main modification consists in the
fact that we work with spaces of configurations of vectors allowed to be nongeneric. To show that the function B_{n} is a strict Borel cocycle we will show that it can be realized as the pullback via a map of complexes of a cocycle on an appropriate space of "decorated" vector spaces. More precisely, we first introduce the space σ_{k} of isomorphism classes of objects $\left[V ; x_{0}, \ldots, x_{k}\right]$ consisting of a vector space V and a $(k+1)$-tuple of vectors spanning it and proceed to construct a complex $\left(\mathbb{Z}\left[\sigma_{k}\right], D_{k}\right)$. Then we define Vol : $\sigma_{3} \rightarrow \mathbb{R}$ using the hyperbolic volume as in Section ?? (and hinted at above). We proceed to show that $D_{4}^{*} \mathrm{Vol}=0$ in Theorem ??. If $\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)$ is the space of affine flags (see Section ??), $\mathbb{R}_{\text {alt }}\left(\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{k+1}\right)^{\mathrm{GL}(n, \mathbb{C})}$ is the space of $\mathrm{GL}(n, \mathbb{C})$-invariant alternating functions on $\left.\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{k+1}\right)$ and

$$
\mathbb{R}_{\mathrm{alt}}\left(\sigma_{k}\right)=\left\{f: \sigma_{k} \rightarrow \mathbb{R} \mid f \text { is alternating w.r.t. the } S_{k+1} \text {-action }\right\},
$$

we finally construct a map of complexes

$$
T_{k}^{*}: \mathbb{R}_{\mathrm{alt}}\left(\sigma_{k}\right) \rightarrow \mathbb{R}_{\mathrm{alt}}\left(\mathscr{F}_{\mathrm{aff}}\left(\mathbb{C}^{n}\right)^{k+1}\right)^{\mathrm{GL}(n, \mathbb{C})}
$$

which allows us to view B_{n} as the pullback $B_{n}=T_{3}^{*}(\mathrm{Vol})$ of the cocycle Vol on σ_{3} to the space of flags and conclude the proof of (1) of Theorem ??. In Section ?? we show the upper bound of B_{n} by induction in Theorem ??. In Section ?? we analyze the equality case in (2) of Theorem ??. The proof relies in particular on the noteworthy relationship

$$
B_{n}\left(\varphi_{n}\left(\xi_{0}\right), \ldots, \varphi_{n}\left(\xi_{3}\right)\right)=\frac{1}{6} n\left(n^{2}-1\right) \cdot \operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right),
$$

for all $\xi_{0}, \ldots, \xi_{3} \in \mathbb{P}\left(\mathbb{C}^{2}\right)$ (see Proposition ??), where $\varphi_{n}: \mathbb{P}\left(\mathbb{C}^{2}\right) \rightarrow \mathscr{F}\left(\mathbb{C}^{n}\right)$ is the Veronese embedding. In addition, configurations of maximal 4-tuples of flags have the same property than configurations of 4 -points in $\partial \mathbb{H}^{3}$ of maximal volume: namely, if $B_{n}\left(F_{0}, \ldots, F_{3}\right)$ is maximal, then F_{3} is completely determined by F_{0}, F_{1}, F_{2} and the sign of $B_{n}\left(F_{0}, \ldots, F_{3}\right)$.

The Borel invariant

Let $\Gamma<\operatorname{PSL}(2, \mathbb{C})$ be a lattice and $\rho: \Gamma \rightarrow \operatorname{PSL}(n, \mathbb{C})$ a representation. We consider first the case in which $\Gamma<\operatorname{PSL}(2, \mathbb{C})$ is torsion-free, so that the quotient $M=\Gamma \backslash \mathbb{H}^{3}$ is a hyperbolic three-manifold and its cohomology is canonically isomorphic to the cohomology of Γ.

If M is compact, then the top dimensional cohomology groups $\mathrm{H}^{3}(\Gamma, \mathbb{R}) \cong$ $\mathrm{H}^{3}(M, \mathbb{R})$ are canonically isomorphic to \mathbb{R}, where the isomorphism is given by evaluation on the fundamental class $[M]^{1}$. We define

[^1]$$
\mathscr{B}(\rho)=\left\langle\rho^{*}(\beta(n)),[M]\right\rangle,
$$
where $\rho^{*}: \mathrm{H}_{\mathrm{c}}^{3}(\operatorname{PSL}(n, \mathbb{C}), \mathbb{R}) \rightarrow \mathrm{H}^{3}(\Gamma, \mathbb{R})$ denotes the pull-back via ρ.
If M is not compact, the above definition fails since $\mathrm{H}^{3}(\Gamma, \mathbb{R}) \cong \mathrm{H}^{3}(M, \mathbb{R})=0$. To circumvent this problem we use bounded cohomology, following the approach initiated in [?] and used also in [?]. Analogously to what happens in the ordinary group cohomology, a representation $\rho: \Gamma \rightarrow \operatorname{PSL}(n, \mathbb{C})$ induces a pullback in bounded cohomology $\rho^{*}: \mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(n, \mathbb{C}), \mathbb{R}) \rightarrow \mathrm{H}_{\mathrm{b}}^{3}(\Gamma, \mathbb{R})$ and the latter group is canonically isometrically isomorphic to the bounded singular cohomology $\mathrm{H}_{\mathrm{b}}^{3}(M, \mathbb{R})$ of the manifold M. (The latter fact is true for any CW complex [?, ?], but in our case it is a simple consequence of the fact that M is aspherical.) Let $N \subset M$ be a compact core of M, that is the complement in M of a disjoint union of finitely many horospherical neighborhoods $E_{i}, i=1, \ldots, k$, of cusps. These have amenable fundamental groups and thus the map $(N, \partial N) \rightarrow(M, \varnothing)$ induces an isometric isomorphism in cohomology, $\mathrm{H}_{\mathrm{b}}^{3}(M, \mathbb{R}) \cong \mathrm{H}_{\mathrm{b}}^{3}(N, \partial N, \mathbb{R}),[?]$, by means of which we can consider $\rho^{*}\left(\beta_{\mathrm{b}}(n)\right)$ as a bounded relative class in $\mathrm{H}_{\mathrm{b}}^{3}(N, \partial N, \mathbb{R})$. Finally, the image of $\rho^{*}\left(\beta_{b}(n)\right)$ via the comparison map $c: \mathrm{H}_{\mathrm{b}}^{n}(N, \partial N, \mathbb{R}) \rightarrow \mathrm{H}^{n}(N, \partial N, \mathbb{R})$ is an ordinary relative class whose evaluation on the relative fundamental class $[N, \partial N]$ gives the definition of the Borel invariant of the representation ρ,
\[

$$
\begin{equation*}
\mathscr{B}(\rho):=\left\langle\left(c \circ \rho^{*}\right)\left(\beta_{\mathrm{b}}(n),[N, \partial N]\right\rangle,\right. \tag{3}
\end{equation*}
$$

\]

which is independent of the choice of the compact core N. If M is compact, we recover the invariant previously defined. We complete the definition in the case in which Γ has torsion by setting

$$
\mathscr{B}(\rho):=\frac{\mathscr{B}\left(\left.\rho\right|_{\Lambda}\right)}{[\Gamma: \Lambda]},
$$

where $\Lambda<\Gamma$ is a torsion free subgroup of finite index.
In order to give a geometric interpretation of this definition when Γ is torsion free, we need to understand the composition of the maps

$$
\mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(n, \mathbb{C})) \longrightarrow \mathrm{H}_{\mathrm{b}}^{3}(\Gamma) \cong \mathrm{H}_{\mathrm{b}}^{3}(M) \cong \mathrm{H}_{\mathrm{b}}^{3}(N, \partial N)
$$

at the cocycle level. The difficulty here lies in the isomorphism $\mathrm{H}_{\mathrm{b}}^{3}(\Gamma) \cong \mathrm{H}_{\mathrm{b}}^{3}(N, \partial N)$ and we recall from [?, Section 3] that it admits the following explicit description: we identify the universal cover \widetilde{N} of N with \mathbb{H}^{3} minus a Γ-invariant collection of open horoballs centered at the cusps \mathscr{C}. Let $p: \widetilde{N} \rightarrow \mathscr{C}$ be the Γ-equivariant map sending each horosphere to the corresponding cusp, and for the interior of \widetilde{N}, fix a fundamental domain for the Γ-action, map this fundamental domain to a chosen cusp and extend Γ-equivariantly. The bounded cohomology of Γ can be represented by Γ-invariant bounded cocycles on the set of cusps of Γ in $\partial \mathbb{H}^{3}$, and given such a cocycle $c: \mathscr{C}^{4} \rightarrow \mathbb{R}$, we obtain a relative cocycle on $(N, \partial N)$ which we canonically describe as a Γ-equivariant cocycle on $(\widetilde{N}, \partial \widetilde{N})$ as follows:

$$
\left\{\sigma: \Delta^{3} \rightarrow \widetilde{N}\right\} \mapsto c\left(p\left(\sigma\left(e_{0}\right)\right), \ldots, p\left(\sigma\left(e_{3}\right)\right)\right)
$$

where e_{0}, \ldots, e_{3} denote the vertices of the standard simplex Δ^{3}.
Given a representation $\rho: \Gamma \rightarrow \operatorname{PSL}(n, \mathbb{C})$ with ρ-equivariant decoration $\varphi: \mathscr{C} \rightarrow$ $\mathscr{F}\left(\mathbb{C}^{n}\right)$, it follows from [?], using the crucial fact that the cocycle B_{n} is a Borel cocycle defined everywhere, that the class $\rho^{*}\left(\beta_{\mathrm{b}}(n)\right) \in \mathrm{H}^{3}(\Gamma)$ is represented by the cocycle $\varphi^{*}\left(B_{n}\right)$. Thus, given any relative triangulation of $(N, \partial N)$, the Borel invariant of the representation is computable as

$$
\begin{equation*}
\mathscr{B}(\rho)=\sum_{i=1}^{r} B_{n}\left(\varphi\left(P_{i}^{1}\right), \varphi\left(P_{i}^{2}\right), \varphi\left(P_{i}^{3}\right), \varphi\left(P_{i}^{4}\right)\right) \tag{4}
\end{equation*}
$$

where the $\left(P_{i}^{0}, \ldots, P_{i}^{3}\right)$ are the simplices of the triangulation of N lifted to \widetilde{N}. This works as well replacing the triangulation by any cycle representing the fundamental class $[N, \partial N]$.

From an ideal triangulation of M as in [?], where degenerate tetrahedra - meaning tetrahedra contained in planes - are allowed, we obtain a relative cycle representing the fundamental class $[N, \partial N]$ by triangulating the intersection of the ideal triangulation with \widetilde{N}. The formula (??) now follows.

Finally, a simple cohomological argument using the naturality of the transfer maps $\mathrm{H}_{\mathrm{b}}^{3}(\Gamma) \rightarrow \mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(2, \mathbb{C}))$ allows us to reinterpret our Borel invariant in terms of a multiplicative constant in Proposition ?? of Section ??. It is this interpretation of the Borel invariant which we will use for the proof of our main Theorem ?? in Section ??

3 The cocycle representing $\beta_{\mathrm{b}}(n)$

In this section we define a cocycle representing $\beta_{\mathrm{b}}(n)$. As already mentioned in the introduction, the construction is a modification of a cocycle defined by Goncharov [?] for generic configurations of flags. Notice however that the extension to all configuration of flags requires substantial modifications.

3.1 Configuration spaces

For $k, m \geq 0$, let $\sigma_{k}(m)$ be the quotient of the set of all spanning $(k+1)$-tuples $\left(x_{0}, \ldots, x_{k}\right)$ of vectors in \mathbb{C}^{m} by the diagonal action of $\operatorname{GL}(m, \mathbb{C})$. Observe that for $k+1<m$, the set $\sigma_{k}(m)$ is empty.

Given an m-dimensional complex vector space V and a $(k+1)$-tuple $\left(x_{0}, \ldots, x_{k}\right)$ of vectors spanning V, we obtain by choosing an isomorphism $V \rightarrow \mathbb{C}^{m}$ a well defined element of $\sigma_{k}(m)$ denoted $\left[V ;\left(x_{0}, \ldots, x_{k}\right)\right]$.

On

$$
\sigma_{k}:=\sqcup_{m \geq 0} \sigma_{k}(m)=\sigma_{k}(0) \sqcup \cdots \sqcup \sigma_{k}(k+1)
$$

there are two kinds of face maps

$$
\varepsilon_{i}^{(k)}, \eta_{i}^{(k)}: \sigma_{k} \longrightarrow \sigma_{k-1}
$$

for $0 \leq i \leq k$, given as

$$
\begin{gathered}
\varepsilon_{i}^{(k)}\left(\left[\mathbb{C}^{m} ;\left(x_{0}, \ldots, x_{k}\right)\right]\right)=\left[\left\langle x_{0}, \ldots, \widehat{x}_{i} \ldots, x_{k}\right\rangle ;\left(x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{k}\right)\right], \\
\eta_{i}^{(k)}\left(\left[\mathbb{C}^{m} ;\left(x_{0}, \ldots, x_{k}\right)\right]\right)=\left[\mathbb{C}^{m} /\left\langle x_{i}\right\rangle ;\left(x_{0}, \ldots, \widehat{x}_{i}, \ldots, x_{k}\right)\right],
\end{gathered}
$$

where in the last definition, x_{j} is understood as the image of x_{j} in $\mathbb{C}^{m} /\left\langle x_{i}\right\rangle$ and $\left\langle y_{0}, \ldots, y_{\ell}\right\rangle$ denotes the linear subspace spanned by the set $\left\{y_{0}, \ldots, y_{\ell}\right\}$. Observe that on $\sigma_{k}(m)$ both face maps take values in $\sigma_{k-1}(m) \sqcup \sigma_{k-1}(m-1)$.

One can easily verify the following relations between these face maps; for all $0 \leq j<i \leq k$:

$$
\begin{align*}
\varepsilon_{j}^{(k-1)} \varepsilon_{i}^{(k)} & =\varepsilon_{i-1}^{(k-1)} \varepsilon_{j}^{(k)}, \tag{R1}\\
\eta_{j}^{(k-1)} \eta_{i}^{(k)} & =\eta_{i-1}^{(k-1)} \eta_{j}^{(k)} \tag{R2}\\
\eta_{j}^{(k-1)} \varepsilon_{i}^{(k)} & =\varepsilon_{i-1}^{(k-1)} \eta_{j}^{(k)} . \tag{R3}
\end{align*}
$$

Let us denote, for $k \geq 0$, by $\mathbb{Z}\left[\sigma_{k}\right]$ the free abelian group on σ_{k} and set $\mathbb{Z}\left[\sigma_{k}\right]=0$ for $k \leq-1$. We extend the face maps to morphisms $\mathbb{Z}\left[\sigma_{k}\right] \rightarrow \mathbb{Z}\left[\sigma_{k-1}\right]$. For $k \geq 1$, we define ∂_{k}, d_{k} and $D_{k}: \mathbb{Z}\left[\sigma_{k}\right] \rightarrow Z\left[\sigma_{k-1}\right]$ by

$$
\begin{aligned}
& \partial_{k}(\tau):=\sum_{i=0}^{k}(-1)^{i} \varepsilon_{i}^{(k)}(\tau), \\
& d_{k}(\tau):=\sum_{i=0}^{k}(-1)^{i} \eta_{i}^{(k)}(\tau),
\end{aligned}
$$

for $\tau \in \sigma_{k}$, and extend this definition to $\partial_{k}=d_{k}=0$ for $k \leq 0$. Finally, we set $D_{k}:=$ $\partial_{k}-d_{k}$, for any $k \in \mathbb{Z}$.

From the relations (??-??), we immediately deduce:
Lemma 5 Let $k \in \mathbb{Z}$. Then

- $\partial_{k-1} \partial_{k}=0$,
- $d_{k-1} d_{k}=0$,
- $\partial_{k-1} d_{k}+d_{k-1} \partial_{k}=0$,
- $D_{k-1} D_{k}=0$.

We have thus established that $\left(\mathbb{Z}\left[\sigma_{k}\right], D_{k}\right)$ is a chain complex.
Observe that the symmetric group S_{k+1} acts on $\sigma_{k}(m)$ and hence on σ_{k}. We let

$$
\mathbb{R}_{\mathrm{alt}}\left(\sigma_{k}\right)=\left\{f: \sigma_{k} \rightarrow \mathbb{R} \mid f \text { is alternating w.r.t the } S_{k+1} \text {-action }\right\}
$$

and let $D_{k}^{*}: \mathbb{R}\left(\sigma_{k-1}\right) \rightarrow \mathbb{R}\left(\sigma_{k}\right)$ denote the dual of $D_{k} \otimes_{\mathbb{R}} \mathbb{1}: \mathbb{R}\left[\sigma_{k}\right] \rightarrow \mathbb{R}\left[\sigma_{k-1}\right]$. Then we obtain from Lemma ??:

Lemma $6\left(\mathbb{R}_{\text {alt }}\left(\sigma_{k}\right), D_{k}^{*}\right)$ is a cochain complex.

3.2 The volume cocycle

We identify $\mathbb{P}\left(\mathbb{C}^{2}\right)$ with $\partial \mathbb{H}^{3}$, so that we have a map $\mathbb{C}^{2} \backslash\{0\} \rightarrow \partial \mathbb{H}^{3}$ induced by the canonical projection. We consider the map $\operatorname{Vol}_{\mathbb{H}^{3}}:\left(\partial \mathbb{H}^{3}\right)^{4}=\mathbb{P}\left(\mathbb{C}^{2}\right)^{4} \rightarrow \mathbb{R}$ that to a quadruple of points $\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in\left(\partial \mathbb{H}^{3}\right)^{4}$ associates the signed volume of the corresponding hyperbolic simplex. This extends to a function

$$
\mathrm{Vol}: \sigma_{3} \longrightarrow \mathbb{R}
$$

by setting $\left.\operatorname{Vol}\right|_{\sigma_{3}(m)}=0$ for all $m \neq 2$ and

$$
\operatorname{Vol}\left(\left[\mathbb{C}^{2} ; v_{0}, \ldots, v_{3}\right]\right):= \begin{cases}\operatorname{Vol}_{\mathbb{H}^{3}}\left(v_{0}, \ldots, v_{3}\right) & \text { if } v_{i} \neq 0 \text { for all } i \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 7 The function $\mathrm{Vol} \in \mathbb{R}_{\text {alt }}\left(\sigma_{3}\right)$ satisfies $D_{4}^{*} \mathrm{Vol}=0$.
Proof. First observe that $D_{4}^{*} \operatorname{Vol}(\tau)=\operatorname{Vol}\left(D_{4} \tau\right)=0$ if $\tau \in \sigma_{4}(0) \sqcup \sigma_{4}(1) \sqcup \sigma_{4}(4) \sqcup$ $\sigma_{4}(5)$. Thus we have two cases to consider, namely $\tau \in \sigma_{4}(2)$ and $\tau \in \sigma_{4}(3)$.

Lemma 8 Let $\tau \in \sigma_{4}(2)$. Then $\operatorname{Vol}\left(D_{4} \tau\right)=0$.
Proof. Let $\tau=\left[\mathbb{C}^{2} ; v_{0}, \ldots, v_{4}\right]$, then

$$
\begin{aligned}
D_{4}^{*} \operatorname{Vol}(\tau) & =\sum_{i=0}^{4}(-1)^{i} \operatorname{Vol}\left(\left[\left\langle v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{4}\right\rangle ; v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{4}\right]\right) \\
& -\sum_{i=0}^{4}(-1)^{i} \operatorname{Vol}\left(\left[\mathbb{C}^{2} /\left\langle v_{i}\right\rangle ; v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{4}\right]\right) .
\end{aligned}
$$

Suppose that $v_{j} \neq 0$ for every j. Observe that whether $v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{4}$ generate \mathbb{C}^{2} or not, we have

$$
\operatorname{Vol}\left(\left[\left\langle v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{4}\right\rangle, v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{4}\right]\right)=\operatorname{Vol}_{\mathbb{H}^{3}}\left(v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{4}\right) .
$$

Indeed, if the v_{i} 's do generate \mathbb{C}^{2}, this is the definition of Vol, and if not, then on the one hand $\operatorname{Vol}\left(\left[\left\langle v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{4}\right\rangle, v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{4}\right]\right)=0$ and on the other hand $\operatorname{Vol}_{\mathbb{H}^{3}}\left(v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{4}\right)=0$ since the projection of v_{j} 's in $\partial \mathbb{H}^{3}=\mathbb{P}\left(\mathbb{C}^{2}\right)$ coincide. As all the $v_{j} \neq 0$ and $\operatorname{Vol}_{\mathbb{H}}{ }^{3}$ is a cocycle on $\partial \mathbb{H}^{3}=\mathbb{P}\left(\mathbb{C}^{2}\right)$, the first sum vanishes. So does each term of the second sum since $\mathbb{C}^{2} /\left\langle v_{i}\right\rangle$ is 1-dimensional.

If $v_{j}=0$ for some j, then for every $i \neq j$, the i-th term of the first and second sums vanish since the null vector appears in the argument each time. It follows that $D_{4}^{*} \operatorname{Vol}(\tau)$ is equal to

$$
\begin{aligned}
&(-1)^{j}\{\operatorname{Vol}([\underbrace{\left[\left\langle v_{0}, \ldots, \widehat{v_{j}}, \ldots, v_{4}\right\rangle\right.}_{\mathbb{C}^{2}} ; v_{0}, \ldots, \widehat{v_{j}}, \ldots, v_{4}]) \\
&-\operatorname{Vol}([\underbrace{\mathbb{C}^{2} /\left\langle v_{j}\right\rangle}_{\mathbb{C}^{2}} ; v_{0}, \ldots, \widehat{v_{j}}, \ldots, v_{4}])\}=0
\end{aligned}
$$

which finishes the proof of the lemma.
In the case of a generic configuration of flags the following lemma is what Goncharov called the "five line identity".

Lemma 9 Let $\tau \in \sigma_{4}(3)$. Then $\operatorname{Vol}\left(D_{4} \tau\right)=0$.
Proof. Let $\tau=\left[\mathbb{C}^{3} ; v_{0}, \ldots, v_{4}\right]$, then

$$
\begin{aligned}
D_{4}^{*} \operatorname{Vol}(\tau) & =\sum_{i=0}^{4}(-1)^{i} \operatorname{Vol}\left(\left[\left\langle v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{4}\right\rangle ; v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{4}\right]\right) \\
& -\sum_{i=0}^{4}(-1)^{i} \operatorname{Vol}\left(\left[\mathbb{C}^{3} /\left\langle v_{i}\right\rangle ; v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{4}\right]\right)
\end{aligned}
$$

We distinguish several cases:
$v_{j}=0$ for some j : For every $i \neq j$, the i-th term of the first and second sums vanish. The j-th terms are also both zero since both spaces $\left\langle v_{0}, \ldots, \widehat{v}_{j}, \ldots, v_{4}\right\rangle$ and $\mathbb{C}^{3} /\left\langle v_{j}\right\rangle$ are 3- and not 2-dimensional.

From now on we suppose that $v_{j} \neq 0$ for every j.
$\left\langle v_{i}\right\rangle=\left\langle v_{j}\right\rangle$ for some pair $i \neq j$: By alternation we can suppose that $i=0, j=1$. In this case, $\left\langle v_{1}, v_{2}, v_{3}, v_{4}\right\rangle=\left\langle v_{0}, v_{2}, v_{3}, v_{4}\right\rangle=\mathbb{C}^{3}$ and the two first terms of the first sum vanish. Since $\left\langle v_{0}\right\rangle=\left\langle v_{1}\right\rangle$ the three last terms of the first sum vanish also. In the second sum, the two first terms vanish since the null vector appears in the argument, while the last three terms vanish since either v_{0} and v_{1} are zero in the corresponding quotients or they span the same line.
We suppose from now on that all lines generated by the v_{i} 's are distinct.
$\operatorname{Dim}\left(\left\langle v_{0}, \ldots, \widehat{v_{j}}, \ldots, v_{4}\right\rangle\right)=2$ for some j : By alternation we can suppose that $j=4$. Since no two vectors lie on the same line, it follows that $\left\langle v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{3}\right\rangle \cong$ \mathbb{C}^{2} for every $i \in\{0, \ldots, 3\}$; since the 5-tuple generates \mathbb{C}^{3}, we further get $\left\langle v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{3}, v_{4}\right\rangle=\mathbb{C}^{3}$. The two sums for $D_{4}^{*} \operatorname{Vol}(\tau)$ thus reduce to

$$
\operatorname{Vol}\left(\left[\left\langle v_{0}, \ldots, v_{3}\right\rangle ; v_{0}, \ldots, v_{3}\right]\right)-\sum_{i=0}^{4}(-1)^{i} \operatorname{Vol}\left(\left[\mathbb{C}^{3} /\left\langle v_{i}\right\rangle ; v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{4}\right]\right)
$$

The composition of injection and projection

$$
\left\langle v_{0}, \ldots, v_{3}\right\rangle \hookrightarrow \mathbb{C}^{3} \longrightarrow \mathbb{C}^{3} /\left\langle v_{4}\right\rangle
$$

gives an isomorphism identifying

$$
\left[\left\langle v_{0}, \ldots, v_{3}\right\rangle ; v_{0}, \ldots, v_{3}\right]=\left[\mathbb{C}^{3} /\left\langle v_{4}\right\rangle ; v_{0}, \ldots, v_{3}\right]
$$

Thus, the remaining term for the first sum cancels with the last term of the second sum. We are left with

$$
-\sum_{i=0}^{3}(-1)^{i} \operatorname{Vol}\left(\left[\mathbb{C}^{3} /\left\langle v_{i}\right\rangle ; v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{3}, v_{4}\right]\right)
$$

But since $\left\langle v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{3}\right\rangle=\left\langle v_{0}, v_{1}, v_{2}, v_{3}\right\rangle$ the projections of v_{j}, for any $i \neq j$ between 0 and 3 generate the same complex line in the quotient $\mathbb{C}^{3} /\left\langle v_{i}\right\rangle$ so that Vol vanishes on such configurations, finishing the proof in this case.
For every $j,\left\langle v_{0}, \ldots, \widehat{v_{j}}, \ldots, v_{4}\right\rangle=\mathbb{C}^{3}$ and $\left(v_{0}, \ldots, v_{4}\right)$ is not generic: Recall that a q-tuple of vectors $\left(w_{1}, \ldots, w_{q}\right)$ in \mathbb{C}^{m} is generic if and only if $\operatorname{Dim}\left\langle w_{i_{1}}, \ldots, w_{i_{k}}\right\rangle=$ k whenever $k \leq m$ and the $1 \leq i_{1}, \ldots, i_{k} \leq q$ are distinct. As we have assumed that none of the v_{j} vanish and no 4 -subtuple generate \mathbb{C}^{2}, the only way this 5 -tuple can be non-generic is if 3 among the vectors generate a 2 -dimensional subspace. We can without loss of generality suppose that $\operatorname{Dim}\left(\left\langle v_{2}, v_{3}, v_{4}\right\rangle\right)=2$. Since $\left\langle v_{0}, \ldots, \widehat{v_{j}}, \ldots, v_{4}\right\rangle=\mathbb{C}^{3}$ for every j, the first sum vanishes. As in the previous case, the images of v_{3} and v_{4} generate the same line in $\mathbb{C}^{3} /\left\langle v_{2}\right\rangle$; the analogous statement holds for $\mathbb{C}^{3} /\left\langle v_{3}\right\rangle$ and $\mathbb{C}^{3} /\left\langle v_{4}\right\rangle$, so that the i-th term of the second sum vanishes for $i=2,3,4$. Finally, we have

$$
\mathbb{C}^{3}=\left\langle v_{2}, v_{3}, v_{4}\right\rangle \oplus\left\langle v_{1}\right\rangle=\left\langle v_{2}, v_{3}, v_{4}\right\rangle \oplus\left\langle v_{0}\right\rangle .
$$

Since there exists $g \in \operatorname{GL}(3, \mathbb{C})$ fixing the plane $\left\langle v_{2}, v_{3}, v_{4}\right\rangle$ and sending v_{1} to v_{0} it follows that

$$
\operatorname{Vol}\left(\left[\mathbb{C}^{3} /\left\langle v_{0}\right\rangle ; v_{1}, v_{2}, v_{3}, v_{4}\right]\right)=\operatorname{Vol}\left(\left[\mathbb{C}^{3} /\left\langle v_{1}\right\rangle ; v_{0}, v_{2}, v_{3}, v_{4}\right]\right)
$$

finishing the proof of this case.
$\left(v_{0}, \ldots, v_{4}\right)$ is generic: As in the previous case, the first sum cancels since the spaces in the arguments are all 3-dimensional. Using the surjective linear maps f_{i} of the next Lemma ??, we have

$$
\left[\mathbb{C}^{3} /\left\langle v_{i}\right\rangle ; v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{4}\right]=\left[\mathbb{C}^{2} ; f_{i}\left(v_{0}\right), \ldots, f_{i}\left(\widehat{v}_{i}\right), \ldots, f_{i}\left(v_{4}\right)\right] .
$$

Then Lemma ?? below implies that $w_{k}:=\left\langle f_{i}\left(v_{k}\right)\right\rangle$ for $i \neq k$ is independent of i, so that the second sum now reduces to $\sum_{i=0}^{4}(-1)^{i} \operatorname{Vol}_{\mathbb{H}^{3}}\left(w_{0}, \ldots, \widehat{w}_{i}, \ldots, w_{4}\right)$, for $w_{j} \in f_{i}\left(v_{j}\right)$ for $i \neq j$, which is equal to 0 since $\operatorname{Vol}_{\mathbb{H}^{3}}$ is a cocycle.

Lemma 10 Let v_{0}, \ldots, v_{4} be a generic 5-tuple in \mathbb{C}^{3} and let $L_{i}=\left\langle v_{i}\right\rangle$. Then there are 5 lines $\ell_{0}, \ldots, \ell_{4}$ in \mathbb{C}^{2} and surjective linear maps $f_{i}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$ with $f_{i}\left(L_{i}\right)=0$ and $f_{i}\left(L_{j}\right)=\ell_{j}$ for $j \neq i$.
Proof. We use $\left\{v_{2}, v_{3}, v_{4}\right\}$ as a basis of \mathbb{C}^{3} and express everything in those coordinates. Then $v_{0}=\left(a_{2}, a_{3}, a_{4}\right)$ and $v_{1}=\left(b_{2}, b_{3}, b_{4}\right)$ with all coordinates nonzero. Let

$$
g=\left(\begin{array}{ccc}
a_{2} / b_{2} & 0 & 0 \\
0 & a_{3} / b_{3} & 0 \\
0 & 0 & a_{4} / b_{4}
\end{array}\right) \in \operatorname{GL}(3, \mathbb{C})
$$

so that $g\left(v_{1}\right)=v_{0}$ and $g\left(v_{i}\right) \in \mathbb{C}^{*} v_{i}$ for $i \in\{2,3,4\}$. Choose a surjection $f_{0}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$ with kernel L_{0} and define

$$
\ell_{0}=f_{0} \circ g\left(L_{0}\right), \quad \ell_{1}=f_{0}\left(L_{1}\right), \quad \ell_{2}=f_{0}\left(L_{2}\right), \quad \ell_{3}=f_{0}\left(L_{3}\right), \quad \ell_{4}=f_{0}\left(L_{4}\right)
$$

Then f_{0} automatically satisfies the conclusion of the lemma, and so does $f_{1}=f_{0} \circ g$. We proceed to construct f_{i} for $i=2,3,4$. By symmetry, it is enough to construct f_{2}. Set $f_{2}=\mu_{0} f_{0}+\mu_{1} f_{1}$, with $\mu_{0}, \mu_{1} \neq 0$ chosen such that $f_{2}\left(v_{2}\right)=0$. Note that such μ_{0} and μ_{1} exist since $f_{0}\left(v_{2}\right)$ and $f_{1}\left(v_{2}\right)$ belong to the same line $\ell_{2} \backslash\{0\}$ and do not vanish. Since for $i=3,4 f_{0}\left(v_{i}\right)$ and $f_{1}\left(v_{i}\right)$ both belong to ℓ_{i}, , then $f_{2}\left(v_{i}\right)$ belongs to ℓ_{i} as well. To show that $f\left(L_{i}\right)=\ell_{i}$ it is thus enough to show that $f_{2}\left(v_{i}\right)$, say $f_{2}\left(v_{3}\right) \neq 0$. Suppose the contrary, then together with $f_{2}\left(v_{2}\right)=0$ we get

$$
\begin{aligned}
& \mu_{0} a_{2}+\mu_{1} b_{2}=0 \\
& \mu_{0} a_{3}+\mu_{1} b_{3}=0
\end{aligned}
$$

and hence $b_{2} / a_{2}=b_{3} / a_{3}$. But this implies $b_{2} v_{0}-a_{2} v_{1}=\left(b_{2} a_{4}-a_{2} b_{4}\right) v_{4}$ which is a contradiction with the assumption that v_{0}, \ldots, v_{4} is generic. Also, $f_{2}\left(v_{0}\right)=$ $\mu_{0} f_{0}\left(v_{0}\right)+\mu_{1} f_{1}\left(v_{0}\right)=\mu_{1} f\left(v_{0}\right) \in \ell_{1} \backslash\{0\}$ so that indeed $f\left(L_{0}\right)=\ell_{0}$, and similarly $f\left(L_{1}\right)=\ell_{1}$, finishing the proof of the lemma.

Putting together Lemma ?? and ?? finishes the proof of Theorem ??.

4 Affine flags

A complete flag F in \mathbb{C}^{n} is a sequence of $n+1$ vector subspaces $F^{0} \subset F^{1} \subset \cdots \subset F^{n}$ with $\operatorname{dim}\left(F^{j}\right)=j$. By an abuse of terminology, in the sequel by a "flag" we will mean a complete flag. An affine flag (F, v) is a pair consisting of a flag F and an n-tuple of vectors $v=v^{1}, v^{2}, \ldots, v^{n}$ such that

$$
F^{j}=\mathbb{C} \nu^{j}+F^{j-1}, \quad j \geq 1
$$

The group $\operatorname{GL}(n, \mathbb{C})$ acts naturally on the space $\mathscr{F}\left(\mathbb{C}^{n}\right)$ of all flags and the space $\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)$ of affine flags.

We consider $\left(\mathbb{Z}\left[\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{k+1}\right], \partial_{k}\right)$, where $\mathbb{Z}\left[\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{k+1}\right]$ is the free abelian group on $\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{k+1}$ and ∂_{k} is the boundary map associated to the usual face maps $\varepsilon_{i}^{(k)}: \mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{k+1} \rightarrow \mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{k}$ consisting in dropping the i-th component for $k \geq 0$. We extend the definition to $\partial_{0}: \mathbb{Z}\left[\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)\right] \rightarrow 0$. Our aim is to construct a morphism of complexes, or almost so,

$$
T_{k}:\left(\mathbb{Z}\left[\mathscr{F}_{\mathrm{aff}}\left(\mathbb{C}^{n}\right)^{k+1}\right], \partial_{k}\right) \longrightarrow\left(\mathbb{Z}\left[\sigma_{k}\right], D_{k}\right)
$$

To this end, for every multiindex $\mathbb{J} \in[0, n-1]^{k+1}$, we define the map

$$
t_{\mathbb{J}}: \mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{k+1} \rightarrow \sigma_{k}
$$

by

$$
t_{\mathbb{J}}\left(\left(F_{0}, v_{0}\right), \ldots,\left(F_{k}, v_{k}\right)\right):=\left[\frac{\left\langle F_{0}^{j_{0}+1}, \ldots, F_{k}^{j_{k}+1}\right\rangle}{\left\langle F_{0}^{j_{0}}, \ldots, F_{k}^{j_{k}}\right\rangle} ;\left(v_{0}^{j_{0}+1}, \ldots, v_{k}^{j_{k}+1}\right)\right]
$$

and finally $T_{k}: \mathbb{Z}\left[\mathscr{F}\right.$ aff $\left.\left(\mathbb{C}^{n}\right)^{k+1}\right] \rightarrow \mathbb{Z}\left[\sigma_{k}\right]$ by

$$
T_{k}\left(\left(F_{0}, v_{0}\right), \ldots,\left(F_{k}, v_{k}\right)\right)=\sum_{\mathbb{J} \in[0, n-1]^{k+1}} t_{\mathbb{J}}\left(\left(F_{0}, v_{0}\right), \ldots,\left(F_{k}, v_{k}\right)\right) .
$$

Lemma 11 Let $k \geq 1$ and let us consider the following diagram:

We have:

1. If k is odd, $T_{k-1} \partial_{k}-D_{k} T_{k}=0$.
2. If k is even, $T_{k-1} \partial_{k}-D_{k} T_{k}$ evaluated on an affine flag equals

$$
n^{k}[0 ; \underbrace{(0, \ldots, 0)}_{k}] \in \mathbb{Z}\left[\sigma_{k-1}(0)\right] .
$$

Proof. One verifies the following relations for every $0 \leq i \leq k$ and $\mathbb{J} \in[0, n-1]^{k+1}$:
(a) If $j_{i} \leq n-2$, then $\eta_{i}^{(k)} t_{\mathbb{J}}=\varepsilon_{i}^{(k)} t_{\mathbb{J}+\delta_{i}}$, where $\delta_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ with the 1 in the i-th position.
(b) If $j_{i}=n-1$, then $\eta_{i}^{(k)} t_{\mathbb{J}}\left(\left(F_{0}, v_{0}\right), \ldots,\left(F_{k}, v_{k}\right)\right)=[0 ;(0, \ldots, 0)]$.
(c) If $j_{i}=0$, then $\varepsilon_{i}^{(k)} t_{\mathbb{J}}=t_{\mathbb{J}(i)} \varepsilon_{i}^{(k)}$, where $\mathbb{J}(i) \in[0, n-1]^{k}$ is obtained from \mathbb{J} by dropping j_{i}.

We evaluate

$$
\begin{aligned}
D_{k} T_{k}\left(\left(F_{0}, v_{0}\right), \ldots,\left(F_{k}, v_{k}\right)\right)=\sum_{i=0}^{k}(-1)^{i} & \left(\sum_{\mathbb{J}} \varepsilon_{i}^{(k)} t_{\mathbb{J}}\left(\left(F_{0}, v_{0}\right), \ldots,\left(F_{k}, v_{k}\right)\right)\right. \\
& \left.-\sum_{\mathbb{J}} \eta_{i}^{(k)} t_{\mathbb{J}}\left(\left(F_{0}, v_{0}\right), \ldots,\left(F_{k}, v_{k}\right)\right)\right) .
\end{aligned}
$$

Splitting the first inner sum into a sum over $\mathbb{J} \in[0, n-1]^{k+1}$ with $j_{i}=0$ and \mathbb{J} with $j_{i} \geq 1$, we obtain using (c) from the first contribution the value $T_{k-1} \varepsilon_{i}^{(k)}\left(\left(F_{j}, v_{j}\right)\right)$ while the second contribution together with the second inner sum adds up to $-n^{k}[0 ;(0, \ldots, 0)]$ using (a) and (b).

Now we dualize the objects so far considered, as in Section ??. For the natural S_{k+1}-action on $\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{k+1}$, the spaces $\mathbb{R}_{\text {alt }}\left(\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{k+1}\right)$ of alternating cochains together with the dual ∂_{k}^{*} of $\partial_{k} \otimes_{\mathbb{R}} \mathbb{1}$ form a complex. Denoting T_{k}^{*} the dual of $T_{k} \otimes_{\mathbb{R}} \mathbb{1}$ we obtain immediately from Lemma ??:

Proposition 12 The map $T_{k}^{*}: \mathbb{R}_{\text {alt }}\left(\sigma_{k}\right) \rightarrow \mathbb{R}_{\text {alt }}\left(\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{k+1}\right)$ is a morphism of complexes, taking values in the subcomplex $\mathbb{R}_{\text {alt }}\left(\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{k+1}\right)^{\mathrm{GL}(n, \mathbb{C})}$ of $\operatorname{GL}(n, \mathbb{C})$ invariants.

In particular, defining now

$$
\begin{align*}
B_{n}\left(\left(F_{0}, v_{0}\right), \ldots,\left(F_{3}, v_{3}\right)\right): & =T_{3}^{*} \operatorname{Vol}\left(\left(F_{0}, v_{0}\right), \ldots,\left(F_{3}, v_{3}\right)\right) \\
& =\sum_{\mathbb{J} \in[0, n-1]^{4}} \operatorname{Vol}\left(\left[\frac{\left\langle F_{0}^{j_{0}+1}, \ldots, F_{3}^{j_{3}+1}\right\rangle}{\left\langle F_{0}^{j_{0}}, \ldots, F_{3}^{j_{3}}\right\rangle} ;\left(v_{0}^{j_{0}+1}, \ldots, v_{3}^{j_{3}+1}\right)\right]\right), \tag{5}
\end{align*}
$$

where $\operatorname{Vol} \in \mathbb{R}_{\mathrm{alt}}\left(\sigma_{3}\right)$ is the function on σ_{3} defined in Section ?? we obtain
Corollary 13 The function B_{n} is a $\mathrm{GL}(n, \mathbb{C})$-invariant alternating cocycle defined on all 4-tuples of affine flags in $\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{4}$, which descends to a well defined $\operatorname{GL}(n, \mathbb{C})$ - hence $\operatorname{PGL}(n, \mathbb{C})$-invariant function on the space $\mathscr{F}\left(\mathbb{C}^{n}\right)^{4}$ of 4-tuples of flags.

Proof. That B_{n} is alternating follows from the same property of Vol. The fact that it is a cocycle follows from Proposition ?? and Theorem ??. Finally, it descends to $\mathscr{F}\left(\mathbb{C}^{n}\right)^{4}$ since $\operatorname{Vol}\left(\left[\mathbb{C}^{2} ; v_{0}, \ldots, v_{4}\right]\right)$ only depends on the lines generated by v_{0}, \ldots, v_{4}.

5 Boundedness of B_{n}

The aim of this section is to establish the following
Theorem 14 Let $F_{0}, \ldots, F_{3} \in \mathscr{F}\left(\mathbb{C}^{n}\right)$ be arbitrary flags. Then

$$
B_{n}\left(F_{0}, \ldots, F_{3}\right) \leq \frac{1}{6} n\left(n^{2}-1\right) \cdot v_{3}
$$

where v_{3} denotes the volume of the maximal ideal tetrahedron in \mathbb{H}^{3}.
We start by introducing some useful notation and giving an argument for Theorem ?? in the case in which the configuration of flags is generic.

Given four flags $F_{0}, \ldots, F_{3} \in \mathscr{F}\left(\mathbb{C}^{n}\right)$ we denote by $\mathbb{F}=\left(F_{0}, \ldots, F_{3}\right)$ the corresponding quadruple of flags. For any multi-index $\mathrm{J}=\left(j_{0}, \ldots, j_{3}\right)$ with $0 \leq j_{i} \leq n-1$ we let $Q(\mathbb{F}, \mathbb{J})$ be the quotient

$$
Q(\mathbb{F}, \mathbb{J}):=\frac{\left\langle F_{0}^{j_{0+1}}, \ldots, F_{3}^{j_{3+1}}\right\rangle}{\left\langle F_{0}^{j_{0}}, \ldots, F_{3}^{j_{3}}\right\rangle}
$$

and denote by $f(\mathbb{F}, \mathbb{J}) \subset Q(\mathbb{F}, \mathbb{J})$ the 4-tuple of 0 or 1-dimensional subspaces obtained by projecting $\left(F_{0}^{j_{0}+1}, \ldots, F_{3}^{j_{3}+1}\right)$ to $Q(\mathbb{F}, \mathbb{J})$.

Furthermore, for any nonnegative integers k, n with $k \geq 1$ we set

$$
C_{k}(n)=\sharp\left\{\left(a_{0}, \ldots, a_{k-1}\right) \mid a_{i} \in \mathbb{N}, \sum_{i=0}^{k-1} a_{i}=n\right\} .
$$

Note that $C_{k}(0)=1, C_{k}(1)=k, C_{1}(n)=1$ and we have the recursive relation

$$
\begin{equation*}
C_{k}(n)=C_{k-1}(n)+C_{k}(n-1) \tag{6}
\end{equation*}
$$

for $k \geq 2, n \geq 1$. Indeed the set underlying $C_{k}(n)$ is the disjoint union of the k-tuples with $a_{k-1}=0$ giving the term $C_{k-1}(n)$ and the k-tuples with $a_{k-1} \geq 1$ which is in bijection with the set underlying $C_{k}(n-1)$ via $a_{k-1} \mapsto a_{k-1}-1$. Using the relation (??) it is straightforward to conclude that

$$
\begin{aligned}
C_{4}(n) & =\binom{n+1}{1} C_{3}(0)+\binom{n+1}{2} C_{2}(1)+\binom{n+1}{3} C_{1}(2) \\
& =\frac{1}{6}(n+1)(n+2)(n+3) .
\end{aligned}
$$

Observe that $C_{4}(n-2)$ is exactly the number of $\mathbb{J}=\left(j_{0}, \ldots, j_{3}\right)$ with $0 \leq j_{i} \leq$ $n-2$ for which the dimension

$$
\operatorname{dim}(Q(\mathbb{F}, \mathbb{J}))=2
$$

for quadruple of flags $\mathbb{F}=\left(F_{0}, \ldots, F_{3}\right) \in\left(\mathscr{F}\left(\mathbb{C}^{n}\right)\right)^{4}$ in general position. Let us outline the short argument assuming $n \geq 3$. We distinguish three cases:

- If $j_{0}+\ldots+j_{3} \leq n-3$, then the dimension of the vector space $\left\langle F_{0}^{j_{0+1}}, \ldots, F_{3}^{j_{3+1}}\right\rangle$ is equal to the minimum between n and $j_{0}+\cdots+j_{3}+4$ so that the quotient has dimension

$$
\min \left\{n, j_{0}+\ldots+j_{3}+4\right\}-\left(j_{0}+\ldots+j_{3}\right) \geq \min \{3,4\} \geq 3
$$

- If $j_{0}+\ldots+j_{3}=n-2$ then $\left\langle F_{0}^{j_{0+1}}, \ldots, F_{3}^{j_{3+1}}\right\rangle$ has dimension n so that the quotient has dimension 2 .
- If $j_{0}+\ldots+j_{3} \geq n-1$, then the quotient has dimension 0 or 1 .

We conclude that $C_{4}(n-2)$ is the number of nonzero summand in B_{n} for generic flags. This proves Theorem ?? for generic 4-tuples of flags. The non-generic case is more involved and we start with the following simple observation.

Lemma 15 Let $\mathbb{F}=\left(F_{0}, \ldots, F_{3}\right) \in \mathscr{F}\left(\mathbb{C}^{n}\right)^{4}$ be arbitrary 4-tuple of flags. Then for every $0 \leq j_{0}, j_{1}, j_{2} \leq n-2$ there exists at most one $0 \leq j_{3} \leq n-2$ such that

$$
\operatorname{Vol}\left(Q\left(\mathbb{F},\left(j_{0}, \ldots, j_{3}\right)\right) ; f\left(\mathbb{F},\left(j_{0}, \ldots, j_{3}\right)\right) \neq 0\right.
$$

Proof. If there is no j_{3} with $0 \leq j_{3} \leq n-2$ such that $\operatorname{dim}(Q(\mathbb{F}, \mathbb{J}))=2$ and $F_{3}^{j_{3}+1} \neq$ 0 in $Q(\mathbb{F}, \mathbb{J})$, we are done. Otherwise take j_{3} minimal satisfying these two conditions. This implies that $F_{0}^{j_{0}+1}, F_{1}^{j_{1}+1}, F_{2}^{j_{2+1}}$ all lie on the same line in $\mathbb{C}^{n} /\left\langle F_{3}^{j_{3}+1}\right\rangle$ and hence in $\mathbb{C}^{n} /\left\langle F_{3}^{j}\right\rangle$ for any $j>j_{3}$ and also in $\left\langle F_{0}^{j_{0+1}}, \ldots, F_{3}^{j_{+1}}\right\rangle /\left\langle F_{0}^{j_{0}}, \ldots, F_{3}^{j}\right\rangle$. Thus the volume vanishes for $j>j_{3}$. It clearly vanishes for $j<j_{3}$ by definition of j_{3}.

Notice that the lemma implies immediately that

$$
\left|\sum_{\mathrm{J} \in\left\{\begin{array}{c}
j_{0}=j_{1}=j_{2}=0, \tag{7}\\
0 \leq j_{3} \leq n-2
\end{array}\right\}} \operatorname{Vol}(Q(\mathbb{F}, \mathbb{J}) ; f(\mathbb{F}, \mathrm{~J}))\right| \leq v_{3}
$$

and

$$
\left|\begin{array}{c}
\sum_{J \in\left\{\begin{array}{c}
j_{0}=j_{1}=0 \\
0 \leq j_{2}, j_{3} \leq n-2
\end{array}\right.} \quad \operatorname{Vol}(Q(\mathbb{F}, \mathbb{J}) ; f(\mathbb{F}, \mathbb{J})) \tag{8}
\end{array}\right| \leq C_{2}(n-2) \cdot v_{3} ;
$$

in fact there are $C_{2}(n-2)=n-1$ choices for j_{2} giving by Lemma ?? each at most one nonzero summand. We will further show:

Lemma 16 Let $\mathbb{F}=\left(F_{0}, \ldots, F_{3}\right) \in\left(\mathscr{F}\left(\mathbb{C}^{n}\right)\right)^{4}$ be an arbitrary quadruple of flags.
Then

$$
\left|\sum_{J \in\left\{\begin{array}{c}
j_{0}=0 \\
0 \leq j_{1}, j_{2}, j_{3} \leq n-2
\end{array}\right\}} \operatorname{Vol}(Q(\mathbb{F}, \mathbb{J}) ; f(\mathbb{F}, \mathbb{J}))\right| \leq C_{3}(n-2) \cdot v_{3} .
$$

Proof (of Theorem ?? and Lemma ??). We prove the theorem and the lemma simultaneously by induction on n.

For $n=2$ there is only one summand $\left(j_{0}, \ldots, j_{3}\right)=(0, \ldots, 0)$ in both the theorem and the lemma, so the inequalities are immediate. Suppose that the theorem and the lemma are proven for $n-1$. By definition, we have

$$
B_{n}\left(F_{0}, \ldots, F_{4}\right)=\sum_{\mathbb{J} \in\left\{\left(j_{0}, \ldots, j_{3}\right) \mid 0 \leq j_{i} \leq n-2\right\}} \operatorname{Vol}(Q(\mathbb{F}, \mathbb{J}) ; f(\mathbb{F}, \mathbb{J}))
$$

Indeed if $j_{i}=n-1$ then the quotient is 1 or 0 -dimensional and the volume vanishes. We split the above sum into three, summing over

$$
\begin{aligned}
J_{1} & =\left\{\left(j_{0}, \ldots, j_{3}\right) \mid j_{0}=j_{1}=0,0 \leq j_{2}, j_{3} \leq n-2\right\} \\
J_{2} & =\left\{\left(j_{0}, \ldots, j_{3}\right) \mid j_{0}=0,0<j_{1} \leq n-2,0 \leq j_{2}, j_{3} \leq n-2\right\} \\
J_{3} & =\left\{\left(j_{0}, \ldots, j_{3}\right) \mid 0<j_{0} \leq n-2,0 \leq j_{1}, j_{2}, j_{3} \leq n-2\right\}
\end{aligned}
$$

We first analyze the sum over J_{3}. Denote by \bar{V} the image of a subspace $V \subset$ \mathbb{C}^{n} under the projection onto $\mathbb{C}^{n} /\left\langle F_{0}^{1}\right\rangle$. If $F \in \mathscr{F}\left(\mathbb{C}^{n}\right)$ is a complete flag, then we denote by $\bar{F} \in \mathscr{F}\left(\mathbb{C}^{n} /\left\langle F_{0}^{1}\right\rangle\right)$ the complete flag we obtain as the projection of F. More precisely, the $n+1$ subspaces of F project onto n distinct subspaces in the quotient, giving the n distinct subspaces of \bar{F} :

$$
\underbrace{\overline{F^{0}}}_{=\bar{F}^{0}} \subset \ldots \subset \underbrace{\overline{F^{i-1}}}_{=\bar{F}^{i-1}} \subset \underbrace{\overline{F^{i}}=\overline{F^{i+1}}}_{=\bar{F}^{i}} \subset \underbrace{\overline{F^{i+2}}}_{=\bar{F}^{i+1}} \subset \ldots \subset \underbrace{\overline{F^{n}}}_{=\bar{F}^{n-1}}=\mathbb{C}^{n} /\left\langle F_{0}^{1}\right\rangle,
$$

for some $0 \leq i \leq n-1$. Note in particular that \bar{F}^{j} is equal to either $\overline{F^{j}}$ or $\overline{F^{j+1}}$ (or both in the unique case of $j=i$). The projection of F_{0} is

$$
\overline{F_{0}^{0}}=\overline{F_{0}^{1}} \subset \overline{F_{0}^{2}} \subset \ldots \subset \overline{F_{0}^{n}}=\mathbb{C}^{n} /\left\langle F_{0}^{1}\right\rangle,
$$

so in this case, the j-th space of $\overline{F_{0}}$ is always the projection of the $(j+1)$-th space of F_{0}.

Note that since in the sum over J_{3}, the index j_{0} is greater or equal to 1 , we have for each summand $1 \leq j_{0} \leq n-2,0 \leq j_{1}, j_{2}, j_{3} \leq n-2$ that

$$
\operatorname{Vol}(Q(\mathbb{F}, \mathrm{~J}) ; f(\mathbb{F}, \mathrm{~J}))=\operatorname{Vol}\left(\frac{\left\langle\overline{F_{0}^{j_{0+1}}}, \ldots, \overline{F_{3}^{j_{3+1}}}\right\rangle}{\left\langle\overline{\left.\overline{F_{0}^{j_{0}}}, \ldots, \overline{F_{3}^{j_{3}}}\right\rangle} ; \overline{F_{0}^{j_{0}+1}}, \ldots, \overline{F_{3}^{j_{3}+1}}\right) ~}\right.
$$

Furthermore, if j_{k}, for $1 \leq k \leq 3$ is such that $\overline{F_{k}^{j_{k}}}=\overline{F_{k}^{j_{k}+1}}$ then the space $\overline{F_{k}^{j_{k}+1}}$ is 0 in the quotient and thus the volume vanishes. Instead of summing on the dimensions of the spaces of the flags F_{0}, \ldots, F_{3}, we can thus sum over the dimensions of the spaces of the quotient flags $\overline{F_{0}}, \ldots, \overline{F_{3}}$ and the sum over J_{3} becomes

$$
\begin{align*}
& \sum_{0 \leq i_{0}, \ldots, i_{3} \leq n-3} \operatorname{Vol}\left(\frac{\left\langle{\overline{F_{0}}}^{i_{0+1}}, \ldots,{\overline{F_{3}}}^{i_{3}+1}\right\rangle}{\left\langle{\overline{F_{0}}}^{i_{0}}, \ldots,{\overline{F_{3}}}^{i_{3}}\right\rangle} ;{\overline{F_{0}}}^{i_{0}+1}, \ldots,{\overline{F_{3}}}^{i_{3+1}}\right) \tag{9}\\
& \leq C_{4}(n-3) \cdot v_{3},
\end{align*}
$$

where the last inequality follows by the induction hypothesis in the theorem.
Similarly, for the sum over J_{2} we quotient by F_{1}^{1} to obtain

$$
\begin{aligned}
& \quad \sum_{\mathrm{J} \in\left\{\begin{array}{c}
j_{0}=0,1 \leq j_{1} \leq n-2 \\
0 \leq j_{1}, j_{2}, j_{3} \leq n-2
\end{array}\right\}} \operatorname{Vol}(Q(\mathbb{F}, \mathrm{~J}) ; f(\mathbb{F}, \mathrm{~J})) \\
& =\sum_{\substack{i_{0}=0}} \operatorname{Vol}\left(\frac{\left\langle{\overline{F_{0}}}^{i_{0+1}}, \ldots,{\overline{F_{3}}}^{i_{3}+1}\right\rangle}{\left\langle{\overline{F_{0}}}^{i_{0}}, \ldots,{\overline{F_{3}}}^{i_{3}}\right\rangle} ;{\overline{F_{0}}}^{i_{0}+1}, \ldots,{\overline{F_{3}}}^{i_{3+1}}\right) \\
& \quad \begin{array}{l}
0 \leq i_{1}, i_{2}, i_{3} \leq n-3
\end{array} \\
& \leq C_{3}(n-3) \cdot v_{3},
\end{aligned}
$$

by the induction hypothesis in the lemma. Since the sum over J_{1} is by (??) bounded by $C_{2}(n-2) \cdot v_{3}$, it follows that the sum over J_{1} and J_{2} is indeed bounded by

$$
\left(C_{2}(n-2)+C_{3}(n-3)\right) \cdot v_{3}=C_{3}(n-2) \cdot v_{3},
$$

which proves the lemma. It follows that $B_{n}\left(F_{0}, \ldots, F_{3}\right)$ is bounded by

$$
\left(C_{3}(n-2)+C_{4}(n-3)\right) \cdot v_{3}=C_{4}(n-2) \cdot v_{3}
$$

which proves the theorem.
In the next section we will characterize the equality case, for which it will be useful to know, as a preliminary case, that equality can happen only if the flags are in general position, i.e. flags for which

$$
\operatorname{dim}\left(\left\langle F_{0}^{j_{0}}, \ldots, F_{3}^{j_{3}}\right\rangle\right)=j_{0}+\ldots+j_{3}
$$

whenever $j_{0}+\ldots+j_{3} \leq n$. The proof of the following lemma uses some of the arguments in the proof of Theorem ??.

Lemma 17 If equality holds in Theorem ?? then the flags F_{0}, \ldots, F_{3} are in general position.

Proof. We prove the lemma by induction on n. For $n=2$ the four flags F_{0}, \ldots, F_{3} (which are given by their lines F_{i}^{1}) are in general position if and only if $\operatorname{dim}\left(\left\langle F_{i}^{1}, F_{j}^{1}\right\rangle\right)=$ 2 for every $i \neq j$, i.e. if and only if the lines are distinct. But if two lines are equal, then $B_{2}\left(F_{0}, \ldots, F_{3}\right)=0$. Suppose the lemma proven for $n-1$. As before, denote by \bar{F} the projection of a complete flag $F \in \mathscr{F}\left(\mathbb{C}^{n}\right)$ to a complete flag in $\mathscr{F}\left(\mathbb{C}^{n} /\left\langle F_{0}^{1}\right\rangle\right)$. Recall that in particular, $\overline{F^{j}}=\bar{F}^{j}$ or \bar{F}^{j-1}. Suppose that j is minimal
such that $\overline{F_{1}^{j}}={\overline{F_{1}}}^{j-1}$ or equivalently such that $F_{0}^{1} \subset F_{1}^{j}$. By the proof of Theorem ??, $B_{n}\left(F_{0}, \ldots, F_{3}\right)$ is maximal if and only if each of the sums over J_{1}, J_{2} and J_{3} is maximal. In particular, by symmetry, the sum over $j_{0}=j_{2}=0$ is also maximal and hence

$$
\begin{aligned}
& \quad \sum_{\substack{j_{0}=j_{2}=0 \\
0 \leq j_{1}, j_{3} \leq m-2}} \operatorname{Vol}\left(\frac{\left\langle F_{0}^{1}, F_{1}^{j_{1}+1}, F_{2}^{1}, F_{3}^{j_{3+1}}\right\rangle}{\left\langle F_{1}^{j_{1}}, F_{3}^{j_{3}}\right\rangle} ; F_{0}^{1}, F_{1}^{j_{1}+1}, F_{2}^{1}, F_{3}^{j_{3}+1}\right) \\
& =C_{2}(n-2) \cdot v_{3} .
\end{aligned}
$$

But for $j_{1} \geq j$, the space F_{0}^{1} is 0 in the quotient $\frac{\left\langle F_{0}^{1}, F_{1}^{j_{1}+1}, F_{2}^{1}, F_{3}^{j_{3+1}}\right\rangle}{\left\langle F_{1}^{j_{1}}, F_{3}^{j_{3}}\right\rangle}$, while for $j_{1}=j-$
1, the spaces F_{0}^{1} and F_{1}^{j} are equal in the quotient. In both cases, the volume vanishes. By Lemma ?? it follows that the above sum is smaller or equal to $(j-1) \cdot v_{3}$, hence we must have $j-1 \geq C_{2}(n-2)=n-1$.

We have thus established that $F_{0}^{1} \subset F_{1}^{n} \backslash F_{1}^{n-1}$ and by symmetry the same holds for the flags F_{2} and F_{3}. In particular, $F_{k}^{j}={\overline{F_{k}}}^{j}$ for $k=1,2,3$ and $0 \leq j \leq n-1$, while $\overline{F_{0}^{j}}={\overline{F_{0}}}^{j-1}$ for $j \geq 1$.

Let $0 \leq j_{0}, j_{1}, j_{2}, j_{3} \leq n$ be such that $j_{0}+\ldots+j_{3} \leq n$. Since the case $j_{0}=\ldots=$ $j_{3}=0$ is trivial we can by symmetry suppose that $j_{0} \geq 1$. Again, it follows from the proof of the theorem that $B_{n}\left(F_{0}, \ldots, F_{3}\right)$ is maximal if and only if the sum over J_{3} is maximal. This sum is rewritten in (??) as

$$
B_{n-1}\left(\overline{F_{0}}, \ldots, \overline{F_{3}}\right)=C_{4}(n-3) \cdot v_{3}
$$

Thus by induction, the flags $\overline{F_{0}}, \ldots, \overline{F_{3}}$ are in general position. It remains to compute

$$
\begin{aligned}
\operatorname{dim}\left(\left\langle F_{0}^{j_{0}}, \ldots, F_{3}^{j_{3}}\right\rangle\right) & =\operatorname{dim}\left(\left\langle\overline{F_{0}^{j_{0}}}, \ldots, \overline{F_{3}^{j_{3}}}\right\rangle\right)+1 \\
& =\operatorname{dim}\left(\left\langle\overline{F_{0}} \bar{j}_{0}-1,{\overline{F_{1}}}^{j_{1}}, \ldots,{\overline{F_{3}}}^{j_{3}}\right\rangle\right)+1 \\
& =\left(j_{0}-1\right)+j_{1}+j_{2}+j_{3}+1=j_{0}+j_{1}+j_{2}+j_{3}
\end{aligned}
$$

which finishes the proof of the lemma.

6 Maximality properties of the cocycle

The main result of this section is Theorem ??, in which we characterize the configuration of 4-tuples of flags on which B_{n} is maximal. This configuration is related to the Veronese embedding to which we now turn. The irreducible representation $\pi_{n}: \operatorname{PSL}(2, \mathbb{C}) \rightarrow \operatorname{PSL}(n, \mathbb{C})$ induces a π_{n}-equivariant boundary map

$$
\varphi_{n}: \mathbb{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathscr{F}\left(\mathbb{C}^{n}\right)
$$

also known as the Veronese embedding. It is defined as follows: $\varphi_{n}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$ is the complete flag with $(n-1)$-dimensional space with basis

$$
\left\{\left(\begin{array}{c}
x \\
y \\
0 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
x \\
y \\
0 \\
\vdots \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
x \\
y
\end{array}\right)\right\}
$$

where $\left[\begin{array}{l}x \\ y\end{array}\right]$ are homogeneous coordinates on $\mathbb{P}\left(\mathbb{C}^{2}\right)$. The lower dimensional spaces are then obtained inductively with basis $v_{i}^{\prime}=x v_{i}+y v_{i+1}$, for $i=1, \ldots, k-1$, where $\left\{v_{1}, \ldots, v_{k}\right\}$ is the basis of the k-dimensional space. More precisely, the basis of the $(n-2)$-dimensional space is

$$
\left\{\left(\begin{array}{c}
x^{2} \\
2 x y \\
y^{2} \\
0 \\
\vdots \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
x^{2} \\
2 x y \\
y^{2}
\end{array}\right)\right\}
$$

The $(n-i)$-dimensional space has as basis the vectors

$$
\begin{equation*}
(\underbrace{0, \ldots, 0}_{k}, x^{i},\binom{i}{1} x^{i-1} y^{1}, \ldots,\binom{i}{j} x^{i-j} y^{j}, \ldots,\binom{i}{i-1} x^{1} y^{i-1}, y^{i}, \underbrace{0, \ldots, 0}_{n-i-k-1})^{T} \tag{10}
\end{equation*}
$$

for $k=0, \ldots, n-i-1$. We give another useful description of this complete flag. For $i=1, \ldots, n-1$, set

$$
z_{i}^{n}=(x^{i},\binom{i}{1} x^{i-1} y,\binom{i}{2} x^{i-2} y^{2}, \ldots,\binom{i}{i} y^{i}, \underbrace{0, \ldots, 0}_{n-i-1})^{T}
$$

Note that z_{i}^{n} is the first vector of the basis in (??) of the $(n-i)$-th space of $\boldsymbol{\varphi}_{n}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$, that is the one corresponding to $k=0$. Furthermore, since z_{i}^{n} does not belong to the space generated by $z_{n-1}^{n}, z_{n-2}^{n}, \ldots, z_{i+1}^{n}$, the $(n-i)$-th space admits the alternative basis

$$
\left\{z_{n-1}^{n}, z_{n-2}^{n}, \ldots, z_{i+1}^{n}, z_{i}^{n}\right\}
$$

With this at hand, it is easy to prove the following:

Lemma 18 Let D be the $(n-1) \times(n-1)$ diagonal matrix with diagonal entries $1,2, \ldots, n-1$. Let p be the projection $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1} \cong\left\langle e_{2}, \ldots, e_{n}\right\rangle$ with kernel $\left\langle e_{1}\right\rangle$. Then

$$
D \cdot p\left(\varphi_{n}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)\right)=\varphi_{n-1}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)
$$

for any $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{P}\left(\mathbb{C}^{2}\right)$.
Note that the projection p induces a map from the set of complete flags in \mathbb{C}^{n} to the set of complete flags in \mathbb{C}^{n-1}. (See the proof of Theorem ?? and Lemma ?? for a detailed description of the induced map.)
Proof. For $y=0$, the complete flag $\varphi_{n}\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ is given as

$$
\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset\left\langle e_{1}, e_{2}, e_{3}\right\rangle \subset \ldots \subset\left\langle e_{1}, e_{2}, \ldots, e_{n-1}\right\rangle
$$

Its projection by p is the complete flag

$$
\left\langle e_{2}\right\rangle \subset\left\langle e_{2}, e_{3}\right\rangle \subset \ldots \subset\left\langle e_{2}, \ldots, e_{n-1}\right\rangle
$$

Multiplication by D leaves this complete flag invariant, and this is indeed the image of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ under φ_{n-1}.

Suppose now that $y \neq 0$. We may assume that $y=1$. Note that the projection by p of the $(n-i)$-dimensional space of $\varphi_{n}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$ is $(n-i)$-dimensional, so $p\left(z_{n-1}^{n}\right), \ldots, p\left(z_{i}^{n}\right)$ is a basis of it. We show that $D \cdot p\left(z_{i}^{n}\right)=i \cdot z_{i-1}^{n-1}$, from which the lemma follows immediately. Indeed, projection by p erases the first entry of z_{i}^{n}. For the remaining entries, we have that the j-th entry of z_{i}^{n}, for $2 \leq j \leq n$ is

$$
\binom{i}{j} x^{i-j}
$$

Multiplication by D will multiply this entry by j, giving

$$
i \cdot\binom{i-1}{j-1} x^{i-j}
$$

which is precisely i times the $(j-1)$-th entry of z_{i-1}^{n-1}.
Theorem 19 Let $F_{0}, \ldots, F_{3} \in \mathscr{F}\left(\mathbb{C}^{n}\right)$. Then

$$
B_{n}\left(F_{0}, \ldots, F_{3}\right)=\frac{1}{6} n\left(n^{2}-1\right) \cdot v_{3}
$$

if and only if there exists $g \in \mathrm{GL}(n, \mathbb{C})$ and a positively oriented regular simplex with vertices $\xi_{0}, \ldots, \xi_{3} \in \mathbb{P}\left(\mathbb{C}^{2}\right)$ such that

$$
F_{i}=g\left(\varphi_{n}\left(\xi_{i}\right)\right),
$$

for $i=0, \ldots, 3$.
Corollary 20 Let $F_{0}, \ldots, F_{3} \in \mathscr{F}\left(\mathbb{C}^{n}\right)$ be a maximal 4-tuple, in the sense that

$$
\left|B_{n}\left(F_{0}, \ldots, F_{3}\right)\right|=\frac{1}{6} n\left(n^{2}-1\right) \cdot v_{3} .
$$

If for $F \in \mathscr{F}\left(\mathbb{C}^{n}\right)$, there is equality

$$
B_{n}\left(F_{0}, \ldots, F_{2}, F_{3}\right)=B_{n}\left(F_{0}, \ldots, F_{2}, F\right),
$$

then $F=F_{3}$.
For the rest of this section, we will use the notation introduced after Lemma ?? at the beginning of Section ??. The first direction of Theorem ?? will follow from the following more general computation:
Proposition 21 Let $\xi_{0}, \ldots, \xi_{3} \in \mathbb{P}\left(\mathbb{C}^{2}\right)$ and set $F_{i}=\varphi_{n}\left(\xi_{i}\right)$. Then

$$
B_{n}\left(F_{0}, \ldots, F_{3}\right)=\frac{1}{6} n\left(n^{2}-1\right) \cdot \operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right)
$$

To prove Proposition ?? by induction, we first prove:
Lemma 22 Let $\xi_{0}, \ldots, \xi_{3} \in \mathbb{P}\left(\mathbb{C}^{2}\right)$ and set $F_{i}=\varphi_{n}\left(\xi_{i}\right)$. Then

$$
\begin{aligned}
& \sum_{\substack{j_{0}=j_{1}=0 \\
0 \leq j_{2}, j_{3} \leq n-2}} \operatorname{Vol}\left(\frac{\left\langle F_{0}^{1}, F_{1}^{1}, F_{2}^{j_{2}+1}, F_{3}^{j_{3+1}}\right\rangle}{\left\langle F_{2}^{j_{2}}, F_{3}^{j_{3}}\right\rangle} ; F_{0}^{1}, F_{1}^{1}, F_{2}^{j_{2}+1}, F_{3}^{j_{3}+1}\right) \\
& =C_{2}(n-2) \cdot \operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right) .
\end{aligned}
$$

Proof. Let $\xi_{0}, \ldots, \xi_{3} \in \mathbb{P}\left(\mathbb{C}^{2}\right)$. If $\xi_{i}=\xi_{j}$ for $i \neq j$ then both sides of the equality vanish. By transitivity of $\mathrm{SL}_{2} \mathbb{C}$ on distinct triples of points, it is enough to prove the lemma for the four points

$$
\xi_{0}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \xi_{1}=\left[\begin{array}{l}
z \\
1
\end{array}\right], \quad \xi_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \xi_{3}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

where $z \in \mathbb{C}$. Then the line of the flag $\varphi_{n}\left(\xi_{0}\right)$ is generated by the vector

$$
\left(1,\binom{n-1}{1},\binom{n-1}{2}, \ldots,\binom{n-1}{n-1}, 1\right)^{T}
$$

and the the line of the flag $\varphi_{n}\left(\xi_{1}\right)$ is generated by the vector

$$
\left(z^{n-1},\binom{n-1}{1} z^{n-2},\binom{n-1}{2} z^{n-3}, \ldots,\binom{n-1}{n-1} z, 1\right)^{T}
$$

The flag $\varphi_{n}\left(\xi_{2}\right)$ is

$$
\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset\left\langle e_{1}, e_{2}, e_{3}\right\rangle \subset \ldots \subset\left\langle e_{1}, e_{2}, \ldots, e_{n-1}\right\rangle
$$

and the flag $\varphi_{n}\left(\xi_{3}\right)$ is

$$
\left\langle e_{n}\right\rangle \subset\left\langle e_{n}, e_{n-1}\right\rangle \subset\left\langle e_{n}, e_{n-1}, e_{n-2}\right\rangle \subset \ldots \subset\left\langle e_{n}, e_{n-1}, \ldots, e_{2}\right\rangle
$$

The quotient $\left\langle F_{0}^{1}, F_{1}^{1}, F_{2}^{j_{2}+1}, F_{3}^{j_{3+1}}\right\rangle /\left\langle F_{2}^{j_{2}}, F_{3}^{j_{3}}\right\rangle$ can only be 2-dimensional if $j_{2}+$ $j_{3}=n-2$. Fix $0 \leq j_{2} \leq n-2$. and notice that there are exactly $C_{2}(n-2)=n-1$ such j_{2} 's. Let $j_{3}=n-2-j_{2}$. The space generated by $\varphi_{n}\left(\xi_{2}\right)^{j_{2}}$ and $\varphi_{n}\left(\xi_{3}\right)^{n-2-j_{2}}$ is the space

$$
\left\langle\varphi_{n}\left(\xi_{2}\right)^{j_{2}}, \varphi_{n}\left(\xi_{3}\right)^{n-2-j_{2}}\right\rangle=\left\langle e_{1}, \ldots, e_{j_{2}}, e_{j_{2}+2}, \ldots, e_{n}\right\rangle
$$

We choose as isomorphism between

$$
\mathbb{C}^{n} /\left\langle\varphi_{n}\left(\xi_{2}\right)^{j_{2}}, \varphi_{n}\left(\xi_{3}\right)^{n-2-j_{2}}\right\rangle \cong \mathbb{C}^{2} \cong\left\langle e_{j_{2}+1}, e_{j_{2}+2}\right\rangle
$$

the map which is induced by the orthogonal projection from \mathbb{C}^{n} onto $\left\langle e_{j_{2}+1}, e_{j_{2}+2}\right\rangle$. Then the four points defined by $F_{0}^{1}, F_{1}^{1}, F_{2}^{j_{2}+1}, F_{3}^{j_{3}+1}$ in the projectivisation of the quotient are

$$
\begin{aligned}
& {\left[\binom{n-1}{j_{2}},\binom{n-1}{j_{2}+1}\right]} \\
& {\left[\binom{n-1}{j_{2}} z^{n-\left(j_{2}+1\right)},\binom{n-1}{j_{2}+1} z^{n-\left(j_{2}+2\right)}\right],} \\
& {[1,0] \text { and }[0,1]}
\end{aligned}
$$

Acting with the diagonal 2 by 2 matrix with entries $\binom{n-1}{j_{2}}^{-1},\binom{n-1}{j_{2}+1}^{-1}$, and rescaling the second vector by $z^{-n+\left(j_{2}+2\right)}$, the four points become

$$
[1,1], \quad[z, 1], \quad[1,0], \quad[0,1],
$$

which are exactly the original vertices ξ_{0}, \ldots, ξ_{3}. It follows that

$$
\operatorname{Vol}\left(\frac{\left\langle F_{0}^{1}, F_{1}^{1}, F_{2}^{j_{2}+1}, F_{3}^{n-1-j_{2}}\right\rangle}{\left\langle F_{2}^{j_{2}}, F_{3}^{n-2-j_{2}}\right\rangle} ; F_{0}^{1}, F_{1}^{1}, F_{2}^{j_{2}+1}, F_{3}^{n-1-j_{2}}\right)=\operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right),
$$

which proves the lemma.
Proof (of Proposition ??). We prove the proposition by induction on n, establishing first the cases of $n=2$ and $n=3$. For $n=2$, there is nothing to prove. For $n=3$, let $\xi_{0}, \ldots, \xi_{3} \in \mathbb{P}\left(\mathbb{C}^{2}\right)$. The volume $B_{3}\left(\varphi_{3}\left(\xi_{0}\right), \ldots, \varphi_{3}\left(\xi_{3}\right)\right)$ is written as a sum over $0 \leq j_{0}, \ldots, j_{3} \leq 1$. For $\left(j_{0}, \ldots, j_{3}\right)=(0, \ldots, 0)$ the quotient is 3 -dimensional so the summand is 0 . We thus have at most four nonzero summands given by letting one of the j_{k} 's be equal to 1 . The set $\{(0,0,1,0),(0,0,0,1)\}$ is exactly the set summed over in Lemma ?? for $n=3$, so the value of the volume on these
two multi-indices is equal to $2 \cdot \operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right)$. By symmetry, the same holds for $\{(1,0,0,0),(0,1,0,0)\}$, so that the value of $B_{3}\left(\varphi_{n}\left(\xi_{0}\right), \ldots, \varphi_{n}\left(\xi_{3}\right)\right)$ is indeed $4 \cdot \operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right)=C_{4}(1) \cdot \operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right)$.

Suppose that $n \geq 4$ and let $\xi_{0}, \ldots, \xi_{3} \in \mathbb{P}\left(\mathbb{C}^{2}\right)$. As usual, the volume $B_{n}\left(\varphi_{n}\left(\xi_{0}\right), \ldots, \varphi_{n}\left(\xi_{3}\right)\right)$ is written as a sum over $0 \leq j_{0}, \ldots, j_{3} \leq n-2$. We rewrite this sum as a sum over the three sets

$$
\begin{gathered}
\left\{1 \leq j_{0} \leq n-2,0 \leq j_{1}, j_{2}, j_{3} \leq n-2\right\} \\
\left\{1 \leq j_{1} \leq n-2,0 \leq j_{0}, j_{2}, j_{3} \leq n-2\right\} \\
\left\{j_{0}=j_{1}=0,0 \leq j_{2}, j_{3} \leq n-2\right\}
\end{gathered}
$$

minus the sum over

$$
\left\{1 \leq j_{0}, j_{1} \leq n-2,0 \leq j_{2}, j_{3} \leq n-2\right\} .
$$

It follows from Lemma ?? that the third term is equal to $C_{2}(n-2) \cdot v_{3}$. Taking the quotient by F_{0}^{1}, the first term becomes

$$
B_{n-1}\left(\overline{\varphi_{n}\left(\xi_{0}\right)}, \ldots, \overline{\varphi_{n}\left(\xi_{3}\right)}\right)
$$

But by Lemma ??, and with D therein,

$$
\overline{\varphi_{n}\left(\xi_{i}\right)}=D^{-1} \varphi_{n-1}\left(\xi_{i}\right)
$$

for $0 \leq i \leq 3$. In particular, the first term of the sum can be rewritten as

$$
B_{n-1}\left(\varphi_{n-1}\left(\xi_{0}\right), \ldots, \varphi_{n-1}\left(\xi_{3}\right)\right),
$$

which is equal to $C_{4}(n-3) \cdot \operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right)$ by induction. By symmetry, the same holds for the second term of the sum. For the fourth (and last) term, we take first the quotient by F_{0}^{1} and then by F_{1}^{1}, apply twice Lemma ?? to conclude that it is equal to

$$
B_{n-2}\left(\varphi_{n-2}\left(\xi_{0}\right), \ldots, \varphi_{n-2}\left(\xi_{3}\right)\right),
$$

which by induction is equal to $C_{4}(n-4) \cdot \operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right)$.
In conclusion, $B_{n}\left(\varphi_{n}\left(\xi_{0}\right), \ldots, \varphi_{n}\left(\xi_{3}\right)\right)$ is equal to $\operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right)$ times

$$
\begin{aligned}
& 2 \cdot C_{4}(n-3)+\underbrace{C_{2}(n-2)}_{=C_{3}(n-2)-C_{3}(n-3)}-C_{4}(n-4) \\
= & C_{4}(n-3)+C_{3}(n-2)-\underbrace{C_{3}(n-3)+\underbrace{C_{4}(n-3)-C_{4}(n-4)}_{=C_{3}(n-3)}}_{=0} \\
= & C_{4}(n-2),
\end{aligned}
$$

which finishes the proof of the proposition.

The bounded Borel class and complex representations of 3-manifold groups
Lemma 23 The group $\operatorname{GL}(n, \mathbb{C})$ acts transitively on triples $\left(F_{0}, F_{1}, L\right)$, where $F_{0}, F_{1} \in$ $\mathscr{F}\left(\mathbb{C}^{n}\right)$ and L is a line in \mathbb{C}^{n} such that $\left(F_{0}, F_{1}, L\right)$ is in general position, that is such that for every $0 \leq j_{0}, j_{1} \leq n$,

$$
\begin{aligned}
\operatorname{dim}\left\langle F_{0}^{j_{0}}, F_{1}^{j_{1}}\right\rangle & =\min \left\{j_{0}+j_{1}, n\right\}, \\
\operatorname{dim}\left\langle F_{0}^{j_{0}}, F_{1}^{j_{1}}, L\right\rangle & =\min \left\{j_{0}+j_{1}+1, n\right\} .
\end{aligned}
$$

Proof. It is well known that $\operatorname{GL}(n, \mathbb{C})$ acts transitively on the set of pairs of transverse flags. As a result we may assume that

$$
\begin{aligned}
& F_{0}=\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset \ldots \subset\left\langle e_{1}, e_{2}, \ldots, e_{n-1}\right\rangle, \\
& F_{1}=\left\langle e_{n}\right\rangle \subset\left\langle e_{n}, e_{n-1}\right\rangle \subset \ldots \subset\left\langle e_{n}, e_{n-1}, \ldots, e_{2}\right\rangle .
\end{aligned}
$$

Let $L=\langle v\rangle$; if $v_{j}=0$ for some $1 \leq j \leq n$, then $\operatorname{dim}\left\langle F_{0}^{j-1}, F_{1}^{n-j}, L\right\rangle=n-1$, contradicting the genericity assumption. Thus all the co-ordinates of v are non-zero; the diagonal matrix $\operatorname{diag}\left(1 / v_{1}, \ldots, 1 / v_{n}\right)$ then stabilises F_{0}, F_{1} and sends v to $e_{1}+\cdots+e_{n}$.

Lemma 24 For any generic (in the sense of Lemma ??) triple (F_{0}, F_{1}, F_{2}^{1}), where $F_{0}, F_{1} \in \mathscr{F}\left(\mathbb{C}^{n}\right)$ and F_{2}^{1} is a line, there exists a unique line F_{3}^{1} such that

$$
\sum_{\substack{0 \leq j_{0}, j_{1} \leq n-2 \\ j_{0}+j_{1}=n-2}} \operatorname{Vol}\left(\frac{\mathbb{C}^{n}}{\left\langle F_{0}^{j_{0}}, F_{1}^{j_{1}}\right\rangle} ; F_{0}^{j_{0}+1}, F_{1}^{j_{1}+1}, F_{2}^{1}, F_{3}^{1}\right)=C_{2}(n-2) \cdot v_{3}
$$

Proof. By Lemma ?? we may assume that

$$
\begin{gathered}
F_{0}=\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset \ldots \subset\left\langle e_{1}, e_{2}, \ldots, e_{n-1}\right\rangle, \\
F_{1}=\left\langle e_{n}\right\rangle \subset\left\langle e_{n}, e_{n-1}\right\rangle \subset \ldots \subset\left\langle e_{n}, e_{n-1}, \ldots, e_{2}\right\rangle
\end{gathered}
$$

and

$$
L=\left\langle e_{1}+\ldots+e_{n}\right\rangle .
$$

For $0 \leq j_{0} \leq n-2$ let $j_{1}=n-2-j_{0}$. The space generated by $F_{0}^{j_{0}}$ and $F_{1}^{n-2-j_{0}}$ is the space

$$
\left\langle F_{0}^{j_{0}}, F_{1}^{n-\left(j_{0}+1\right)}\right\rangle=\left\langle e_{1}, \ldots, e_{j_{0}}, e_{j_{0}+2}, \ldots, e_{n}\right\rangle
$$

The orthogonal projection of \mathbb{C}^{n} onto $\left\langle e_{j_{0}+1}, e_{j_{0}+2}\right\rangle$ induces an isomorphism

$$
\mathbb{C}^{n} /\left\langle F_{0}^{j_{0}}, F_{1}^{j_{1}}\right\rangle \cong\left\langle e_{j_{0}+1}, e_{j_{0}+2}\right\rangle .
$$

Let $v=\left(v_{1}, \ldots, v_{n}\right)^{T}$ be a generator of F_{3}^{1}. The points $F_{0}^{j_{0}+1}, F_{1}^{j_{1}+1}, F_{2}^{1}, F_{3}^{1}$ are mapped, in the projectivization of $\left\langle e_{j_{0}+1}, e_{j_{0}+2}\right\rangle$, to

$$
[1,0], \quad[0,1], \quad[1,1], \quad\left[v_{j_{0}+1}, v_{j_{0}+2}\right] .
$$

For this 4-tuple to be the vertices of a positively oriented regular simplex, we need $v_{j_{0}+1} / v_{j_{0}+2}=\omega=e^{i \pi / 3}$, for every $0 \leq j_{0} \leq n-2$. Thus, F_{3}^{1} is generated by

$$
\left(\omega^{n-1}, \omega^{n-2}, \ldots, \omega, 1\right)^{T}
$$

which proves the lemma.
Proof (of Theorem ??). The first direction of the theorem follows from the more general Proposition ??. For the other direction, fix a positively oriented simplex with vertices $\xi_{0}, \ldots, \xi_{3} \in \mathbb{P}\left(\mathbb{C}^{2}\right)$. Let F_{0}, \ldots, F_{3} be flags such that

$$
B_{n}\left(F_{0}, \ldots, F_{3}\right)=C_{4}(n-2) \cdot v_{3} .
$$

By Lemma ?? this implies that the flags are in general position. By the transitivity of $\operatorname{GL}(n, \mathbb{C})$ on pairs of flags and 1-dimensional space all in generic positions established in Lemma ??, we can assume that $F_{0}=\varphi_{n}\left(\xi_{0}\right), F_{1}=\varphi_{n}\left(\xi_{1}\right)$ and the 1-dimensional space of F_{2} is $F_{2}^{1}=\varphi_{n}\left(\xi_{2}\right)^{1}$. Maximality and genericity imply that

$$
\operatorname{Vol}\left(\frac{\left\langle F_{0}^{j_{0}+1}, F_{1}^{j_{1}+1}, F_{2}^{j_{2}+1}, F_{3}^{j_{3}+1}\right\rangle}{\left\langle F_{0}^{j_{0}}, F_{1}^{j_{1}}, F_{2}^{j_{2}}, F_{3}^{j_{1}}\right\rangle} ; F_{0}^{j_{0}+1}, F_{1}^{j_{1}+1}, F_{2}^{j_{2}+1}, F_{3}^{j_{3}+1}\right)=v_{3}
$$

for any $j_{0}+\ldots+j_{3}=n-2$. Thus it follows by Lemma ?? that F_{3}^{1} is uniquely determined and since $\varphi_{n}\left(\xi_{3}\right)^{1}$ by the other direction of the proof also satisfies the condition of the lemma, it follows that $F_{3}^{1}=\varphi_{n}\left(\xi_{3}\right)^{1}$.

Inductively suppose that $F_{3}^{j}=\varphi_{n}\left(\xi_{3}\right)^{j}$. We will show that $F_{3}^{j+1}=\varphi_{n}\left(\xi_{3}\right)^{j+1}$. Indeed, look at the quotient $\mathbb{C}^{n} / F_{3}^{j}$. By the genericity of $\varphi_{n}\left(\xi_{0}\right), \ldots, \varphi_{n}\left(\xi_{3}\right)$, the projections $\overline{F_{0}}, \overline{F_{1}}$ of the flags F_{0} and F_{1} are still in general position and moreover, the line F_{2}^{1} projects to a line $\overline{F_{2}^{1}}$ in general position with respect to $\overline{F_{0}}, \overline{F_{1}}$. Note that the complete flag F_{3} projects to a complete flag $\overline{F_{3}}$ with ${\overline{F_{3}}}^{j_{3}}=\overline{F_{3}^{j_{3}+j+1}}$. Maximality implies that the volume is equal to v_{3} for the 4-tuple $\left(j_{0}, \ldots, j_{3}\right)=(k, n-k-j-2,0, j)$ for any $0 \leq k \leq n-j-2$, which we can rewrite as

$$
\operatorname{Vol}\left(\frac{\left\langle{\overline{F_{0}}}^{j_{0}+1}, \bar{F}_{1}^{j_{1}+1},{\overline{F_{2}}}^{1},{\overline{F_{3}}}^{1}\right\rangle}{\left\langle\bar{F}_{0}{ }^{j_{0}}, \bar{F}_{1}^{j_{1}}\right\rangle} ; \bar{F}_{0}^{j_{0}+1}, \bar{F}_{1}^{j_{1}+1}, \bar{F}_{2}^{1}, \bar{F}_{3}^{1}\right)=v_{3} .
$$

Thus by Lemma ??, ${\overline{F_{3}}}^{1}=\overline{F_{3}^{j+1}}$ is completely determined by this maximality condition. In particular, F_{3}^{j+1} is completely determined by the fact that

$$
\operatorname{Vol}\left(\frac{\left\langle F_{0}^{j_{0}+1}, F_{1}^{j_{1}+1}, F_{2}^{1}, F_{3}^{j+1}\right\rangle}{\left\langle F_{0}^{j_{0}}, F_{1}^{j_{1}}, F^{j}\right\rangle} ; F_{0}^{j_{0}+1}, F_{1}^{j_{1}+1}, F_{2}^{1}, F_{3}^{j+1}\right)=v_{3},
$$

for any $0 \leq j_{0} \leq n-j-2$ and $j_{1}=n-j_{0}-j-2$. Since $\varphi_{n}\left(\xi_{3}\right)^{j+1}$ also satisfies this maximality condition by the other direction of the theorem, it follows that $F_{3}^{j+1}=$ $\varphi_{n}\left(\xi_{3}\right)^{j+1}$.

We have thus shown that $F_{3}=\varphi_{n}\left(\xi_{3}\right)$. By symmetry, we can apply the same argument to show that $F_{2}=\varphi_{n}\left(\xi_{2}\right)$, which finishes the proof of the theorem.

7 Proof of Theorem ??

Recall that the space $\sigma_{k}(n)$ is the quotient of $\left\{\left(x_{0}, \ldots, x_{k}\right) \in\left(\mathbb{C}^{n}\right)^{k+1} \mid\left\langle x_{0}, \ldots, x_{k}\right\rangle=\right.$ $\left.\mathbb{C}^{n}\right\}$ by the diagonal $\operatorname{GL}(n, \mathbb{C})$-action and is thus in a natural way a complex manifold of dimension $(k+1-n) \cdot n$. The symmetric group S_{k+1} acts on $\sigma_{k}(n)$ and we let $\mathscr{B}_{\text {alt }}^{\infty}\left(\sigma_{k}\right)$ denote the Banach space of bounded alternating Borel functions on σ_{k}. Together with D_{k}^{*}, the dual of $D_{k} \otimes_{\mathbb{R}} \mathbb{1}: \mathbb{R}\left[\sigma_{k}\right] \rightarrow \mathbb{R}\left[\sigma_{k-1}\right]$, we obtain a complex of Banach spaces $\left(\mathscr{B}_{\text {alt }}^{\infty}\left(\sigma_{*}\right), D_{*}\right)$.

Using Proposition ??, we deduce that the restriction of T_{k}^{*} to the subcomplexes of bounded Borel functions gives a morphism of complexes

$$
T_{k}^{*}: \mathscr{B}_{\text {alt }}^{\infty}\left(\sigma_{k}\right) \rightarrow \mathscr{B}_{\text {alt }}^{\infty}\left(\mathscr{F}_{\mathrm{aff}}\left(\mathbb{C}^{n}\right)^{k+1}\right)^{\mathrm{GL}(n, \mathbb{C})}
$$

Recall now that $\left(\mathscr{B}_{\text {alt }}^{\infty}\left(\mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right)^{*+1}\right), \partial_{*}\right)$ is a strong resolution of \mathbb{R} by $\operatorname{GL}(n, \mathbb{C})$ Banach modules (see [?]) and thus we have a canonical map c_{*} from the cohomology of the complex of $\operatorname{GL}(n, \mathbb{C})$-invariants to the bounded continuous cohomology $\mathrm{H}_{\mathrm{cb}}^{*}(\mathrm{GL}(n, \mathbb{C}))$ of $\mathrm{GL}(n, \mathbb{C})$. (As announced in \S ??, we are dropping the explicit dependence on the coefficients.) As a result, we obtain by composing c_{k} with the map induced in cohomology by T_{k}^{*} a map

$$
S^{k}(n): \mathrm{H}^{k}\left(\mathscr{B}_{\mathrm{alt}}^{\infty}\left(\sigma_{*}\right)\right) \longrightarrow \mathrm{H}_{\mathrm{cb}}^{k}(\mathrm{GL}(n, \mathbb{C}), \mathbb{R})
$$

Proposition 25 For $k \geq 2$ the diagram

where the vertical arrow is induced by the left corner injection, commutes.
Proof. If $n \geq 2$, let $i_{n}: \mathbb{C}^{n} \hookrightarrow \mathbb{C}^{n+1}$ denote the embedding

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \mapsto\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n} \\
0
\end{array}\right)
$$

We define $i_{n}: \mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n}\right) \rightarrow \mathscr{F}_{\text {aff }}\left(\mathbb{C}^{n+1}\right)$ by $i_{n}((F, v)):=\left(F^{\prime}, v^{\prime}\right)$, where $F^{\prime j}:=i_{n}\left(F^{j}\right)$, $\nu^{\prime j}=i_{n}\left(v^{j}\right)$ and $v^{\prime n+1}=e_{n+1}$, for $0 \leq j \leq n$.

Let now $\mathbb{J} \in[0, n]^{k+1}$ and $I=\left\{i: 0 \leq i \leq k\right.$ such that $\left.j_{i}=n\right\}$.
One verifies that if $I=\varnothing$, then $\mathbb{J} \in[0, n-1]^{k+1}$ and

$$
\begin{equation*}
t_{\mathbb{J}}\left(i_{n}\left(\left(F_{j}, v_{j}\right)\right)\right)=t_{\mathbb{J}}\left(\left(F_{j}, v_{j}\right)\right), \tag{11}
\end{equation*}
$$

while if $I \neq \varnothing$, then

$$
\begin{equation*}
t_{\mathbb{J}}\left(i_{n}\left(\left(F_{j}, v_{j}\right)\right)\right)=\left[\mathbb{C} ; \delta_{i}^{I}\right], \tag{12}
\end{equation*}
$$

where $\delta_{i}^{I}=1$ if $i \in I$ and 0 otherwise.
We deduce from (??) and (??) that i_{n} induces for $k \geq 2$ a commutative diagram of complexes

Indeed, for $k \geq 2$ alternating functions vanish on $\left[\mathbb{C} ;\left(\delta_{i}^{I}\right)\right]$. On the other hand i_{n}^{*} implements the restriction map in bounded cohomology associated to the left corner injection.

Proof (of Theorem ??). We have $\beta_{\mathrm{b}}(n)=S^{3}(n)([\mathrm{Vol}])$, where $\mathrm{Vol} \in \mathscr{B}_{\text {alt }}^{\infty}\left(\sigma_{3}\right)$ was defined in Section ??. The compatibility under the left corner injection then follows from the above proposition. Now $\mathrm{H}_{\mathrm{cb}}^{3}(\mathrm{GL}(2, \mathbb{C}))$ is one dimensional, generated by $\beta_{\mathrm{b}}(2)$. Thus we deduce that $\beta_{\mathrm{b}}(n) \neq 0$ and $\operatorname{dim} \mathrm{H}_{\mathrm{cb}}^{3}(\mathrm{GL}(n, \mathbb{C})) \geq 1$. We will conclude by using the stability results from Monod [?]. For $n \geq 2$, the diagram of short exact sequence

induces a diagram of isometric isomorphisms in bounded cohomology

Hence [?, Theorem 1.1 and Proposition 3.4] can be rephrased by saying that for $0 \leq$ $q \leq n$, the standard embedding $\operatorname{GL}(n, \mathbb{C}) \hookrightarrow \operatorname{GL}(n+1, \mathbb{C})$ induces an isomorphism

$$
\mathrm{H}_{\mathrm{cb}}^{q}(\mathrm{GL}(n+1, \mathbb{C})) \stackrel{ }{\cong} \mathrm{H}_{\mathrm{cb}}^{q}(\mathrm{GL}(n, \mathbb{C}))
$$

and an injection

$$
\mathrm{H}_{\mathrm{cb}}^{q}(\mathrm{GL}(q, \mathbb{C})) \longleftrightarrow \mathrm{H}_{\mathrm{cb}}^{q}(\mathrm{GL}(q-1, \mathbb{C}))
$$

Applying this to $q=3$ we obtain that $\operatorname{dimH}_{\mathrm{cb}}^{3}(\operatorname{GL}(n, \mathbb{C}))=1$, which proves the first part of Theorem ??. As for the second part, it follows from Section ?? that $\left\|\beta_{\mathrm{b}}(n)\right\|_{\infty} \leq(1 / 6) n\left(n^{2}-1\right) v_{3}$. For the other inequality, let $\varphi_{n}: \mathbb{P}\left(\mathbb{C}^{2}\right) \rightarrow \mathscr{F}\left(\mathbb{C}^{n}\right)$ be the Veronese embedding. Then

$$
B_{n}\left(\varphi_{n}\left(\xi_{0}\right), \ldots, \varphi_{n}\left(\xi_{3}\right)\right)=\frac{n\left(n^{2}-1\right)}{6} B_{2}\left(\xi_{0}, \ldots, \xi_{3}\right)
$$

by Proposition ?? and as a result, $T_{n}^{*}\left(\beta_{\mathrm{b}}(n)\right)=\frac{n\left(n^{2}-1\right)}{6} \beta_{\mathrm{b}}(2)$. Since $\left\|\beta_{\mathrm{b}}(2)\right\|_{\infty}=v_{3}$, we deduce

$$
\left.\frac{n\left(n^{2}-1\right)}{6} v_{3}=\left\|\pi_{n}^{*}\left(\beta_{\mathrm{b}}(n)\right)\right\|_{\infty} \leq \| \beta_{\mathrm{b}}(n)\right) \|_{\infty}
$$

which, using (??), concludes the proof of Theorem ??.

8 Proof of Theorem ??

8.1 The Borel invariant as a multiplicative constant

The aim of this subsection is to identify the Borel invariant $\mathscr{B}(\rho)$ as a multiplicative factor in the composition of certain bounded cohomology maps (Proposition ??) and to establish the simple direction of Theorem ?? (Lemma ??). The proof is identical to the corresponding statement in [?, Proposition 3.3] and is based on the existence of a natural transfer map

$$
\mathrm{H}_{\mathrm{b}}^{*}(\Gamma) \xrightarrow{\operatorname{trans}_{\Gamma}} \mathrm{H}_{\mathrm{cb}}^{*}(\operatorname{PSL}(2, \mathbb{C}))
$$

defined by integrating a Γ-invariant cocycle over $\Gamma \backslash G$ to make it G-invariant.
We refer the reader to [?, Section 3.2] for the complete definitions and proofs.
Proposition 26 Let Γ be a lattice in $\operatorname{PSL}(2, \mathbb{C})$ and $\rho: \Gamma \rightarrow \operatorname{PSL}(n, \mathbb{C})$ be a representation. The composition

$$
\mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(n, \mathbb{C})) \xrightarrow{\rho^{*}} \mathrm{H}_{\mathrm{b}}^{3}(\Gamma) \xrightarrow{\text { trans }_{\Gamma}} \mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(2, \mathbb{C})) \cong \mathbb{R}
$$

maps $\beta_{\mathrm{b}}(n)$ to $\frac{\mathscr{B}(\rho)}{\operatorname{Vol}(\Gamma \backslash \operatorname{PSL}(2, \mathbb{C}))} \beta_{\mathrm{b}}(2)$ and

$$
\left|\frac{\mathscr{B}(\rho)}{\operatorname{Vol}(\Gamma \backslash \operatorname{PSL}(2, \mathbb{C}))}\right| \leq \frac{1}{6} n\left(n^{2}-1\right)
$$

Lemma 27 Let $i: \Gamma \hookrightarrow \operatorname{PSL}(2, \mathbb{C})$ be a lattice embedding. Then

$$
\left(\pi_{n} \circ i\right)^{*} \beta_{\mathrm{b}}(n)=\frac{1}{6}(n-1) n(n+1) \operatorname{Vol}(i(\Gamma) \backslash \operatorname{PSL}(2, \mathbb{C})) \beta_{\mathrm{b}}(2)
$$

Proof. Setting $\rho=\pi_{n} \circ i$ in Proposition ??, we see that the pullback $\rho^{*}: \mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(n, \mathbb{C})) \rightarrow$ $\mathrm{H}_{\mathrm{b}}^{3}(\Gamma)$ factors through $\mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(2, \mathbb{C}))$. The composition of maps of the proposition thus becomes

$$
\mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(n, \mathbb{C})) \xrightarrow{\pi_{n}^{*}} \mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(2, \mathbb{C})) \xrightarrow{i^{*}} \mathrm{H}_{\mathrm{b}}^{3}(\Gamma) \xrightarrow{\operatorname{trans}_{\Gamma}} \mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(2, \mathbb{C})) \cong \mathbb{R}
$$

The conclusion is immediate from the fact that

$$
\pi_{n}^{*}\left(\beta_{\mathrm{b}}(n)\right)=\frac{1}{6}(n-1) n(n+1) \cdot \beta_{\mathrm{b}}(2)
$$

(Theorem ??) and that $\operatorname{trans}_{\Gamma} \circ i^{*}=\mathrm{Id}$.

8.2 Proof of Theorem??

An essential aspect of bounded cohomology is that it can be implemented by alternating L^{∞} invariant cocycles on an appropriate boundary, [?]. Then if a bounded cohomology class can be represented by a strict cocycle, its pullback via a representation, for example $\rho: \Gamma \rightarrow \operatorname{PSL}(n, \mathbb{C})$ in our case, can be implemented by boundary maps, [?]. Recall that by Furstenberg, given any representation of Γ into $\operatorname{PSL}(n, \mathbb{C})$, there is always an equivariant measurable map

$$
\varphi: \mathbb{P}\left(\mathbb{C}^{2}\right) \longrightarrow M^{1}\left(\mathscr{F}\left(\mathbb{C}^{n}\right)\right)
$$

where $M^{1}\left(\mathscr{F}\left(\mathbb{C}^{n}\right)\right)$ denotes the space of probability measures on the flag space. More precisely, for every $\gamma \in \Gamma$ and almost every $\xi \in \mathbb{P}\left(\mathbb{C}^{2}\right)$, we have

$$
\begin{equation*}
\varphi(i(\gamma) \cdot \xi)=\rho(\gamma) \cdot \varphi(\xi) \tag{14}
\end{equation*}
$$

The bounded cohomology groups $\mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(n, \mathbb{C}))$ and $\mathrm{H}_{\mathrm{b}}^{3}(\Gamma)$ can both be computed from the corresponding L^{∞} equivariant cochains on $\mathscr{F}\left(\mathbb{C}^{n}\right)$ and $\partial \mathbb{H}^{3}=\mathbb{P}\left(\mathbb{C}^{2}\right)$ respectively. The image of $\beta_{\mathrm{b}}(n)$ by $\rho^{*}: \mathrm{H}_{\mathrm{cb}}^{3}(\operatorname{PSL}(n, \mathbb{C})) \rightarrow \mathrm{H}_{\mathrm{b}}^{n}(\Gamma)$ is represented at the cochain level by the pullback by φ, or more precisely, by the following cocycle:

The bounded Borel class and complex representations of 3-manifold groups

$$
\begin{aligned}
\left(\partial \mathbb{H}^{3}\right)^{4} & \longrightarrow \mathbb{R} \\
\left(\xi_{0}, \ldots, \xi_{3}\right) & \longmapsto \varphi\left(\xi_{0}\right) \otimes \cdots \otimes \varphi\left(\xi_{3}\right)\left[B_{n}\right]
\end{aligned}
$$

where the last expression means that the cocycle B_{n} is integrated with respect to the product of the four measures $\varphi\left(\xi_{0}\right), \ldots, \varphi\left(\xi_{3}\right)$, [?]. It should however be noted that the pullback in bounded cohomology cannot in general be implemented by boundary maps, unless the class to pull back can be represented by a strict invariant Borel cocycle [?].

The further composition with the transfer map amounts to integrating the preceding cocycle over a fundamental domain for $\Gamma \backslash \operatorname{PSL}(2, \mathbb{C})$. In conclusion, since $\operatorname{trans}_{\Gamma} \circ \rho^{*}\left(B_{n}\right)$ is by Proposition ?? equal to $\frac{\mathscr{B}(\rho)}{\operatorname{Vol}(\Gamma \backslash \operatorname{PSL}(2, \mathrm{C}))} \cdot \beta_{\mathrm{b}}(2)$ and at the cohomology level there are no coboundaries in degree 3 [?], the map $\operatorname{trans}_{\Gamma} \circ \rho^{*}$ sends the cocycle B_{n} to $\frac{\mathscr{B}(\rho)}{\operatorname{Vol}(\Gamma \backslash \operatorname{PSL}(2, \mathbb{C}))} \operatorname{Vol}_{\mathbb{H}^{3}}$. Thus, for almost every $\xi_{0}, \ldots, \xi_{3} \in \partial \mathbb{H}^{3}$, we have
$\int_{\Gamma \backslash \operatorname{PSL}(2, \mathbb{C})} \varphi\left(g \xi_{0}\right) \otimes \cdots \otimes \varphi\left(g \xi_{3}\right)\left[B_{n}\right] d \mu(\dot{g})=\frac{\mathscr{B}(\rho)}{\operatorname{Vol}(\Gamma \backslash \operatorname{PSL}(2, \mathbb{C}))} \operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right)$.
It is however shown in [?, Proposition 4.2 for $n=3$] that this almost everywhere equality is in fact a true equality. As a consequence, we show that in the maximal case, the map φ takes essentially values in the set of Dirac masses:

Corollary 28 Let $i: \Gamma \rightarrow \operatorname{PSL}(2, \mathbb{C})$ be a lattice embedding, $\rho: \Gamma \rightarrow \operatorname{PSL}(n, \mathbb{C})$ a representation and $\varphi: \partial \mathbb{H}^{3} \rightarrow M^{1}\left(\mathscr{F}\left(\mathbb{C}^{n}\right)\right)$ a ρ-equivariant measurable map. Suppose that $|\mathscr{B}(\rho)|=\frac{1}{6} n\left(n^{2}-1\right) \cdot \operatorname{Vol}(\Gamma \backslash \operatorname{PSL}(2, \mathbb{C}))$. Then for almost every $\xi \in \mathbb{P}\left(\mathbb{C}^{2}\right)$ the image $\varphi(\xi)$ is a Dirac mass.

Proof. Upon conjugating ρ by the anti-holomorphic map I induced by $z \mapsto \bar{z}$, we can without loss of generality assume that $\mathscr{B}(\rho)=\frac{1}{6} n\left(n^{2}-1\right) \cdot \operatorname{Vol}(\Gamma \backslash \operatorname{PSL}(2, \mathbb{C}))$. Assume $\operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right)=v_{3}$. Then (??) holds. We deduce then from the fact that $\left|B_{n}\right|$ is bounded by $\frac{1}{6} n\left(n^{2}-1\right) v_{3}$ (see Theorem ??) that

$$
\varphi\left(g \xi_{0}\right) \otimes \cdots \otimes \varphi\left(g \xi_{3}\right)\left[B_{n}\right]=\frac{1}{6} n\left(n^{2}-1\right) v_{3}
$$

for almost every $g \in \operatorname{SL}(2, \mathbb{C})$. As a consequence, for almost every $\left(F_{0}, \ldots, F_{3}\right) \in$ $\mathscr{F}\left(\mathbb{C}^{n}\right)^{4}$ with respect to the product measure $\varphi\left(g \xi_{0}\right) \otimes \cdots \otimes \varphi\left(g \xi_{3}\right)$, we have equality

$$
B_{n}\left(F_{0}, \ldots, F_{3}\right)=\frac{1}{6} n\left(n^{2}-1\right) v_{3} .
$$

Fix a triple $\left(F_{0}, F_{1}, F_{2}\right)$ such that the previous equality holds for $\varphi\left(g \xi_{3}\right)$ - almost every F_{3}. However, by Corollary ??, this F_{3} is unique which implies that the support of $\varphi\left(g \xi_{3}\right)$ is reduced to one point. Since this holds for almost every $g \in \operatorname{SL}(2, \mathbb{C})$, the corollary is proven.

If equality $|\mathscr{B}(\rho)|=\frac{1}{6} n\left(n^{2}-1\right) \operatorname{Vol}(\Gamma \backslash \operatorname{PSL}(2, \mathbb{C}))$ holds, then upon conjugating ρ by the anti-holomorphic map I which has the effect of changing the sign of $\mathscr{B}(\rho)$
and composing φ with the induced boundary map I, we can suppose that $\mathscr{B}(\rho)=$ $\frac{1}{6} n\left(n^{2}-1\right) \operatorname{Vol}(\Gamma \backslash \operatorname{PSL}(2, \mathbb{C}))$. It then follows from the above that φ maps almost every maximal 4-tuples in $P^{1}(\mathbb{C})$ to maximal 4-tuples in $\mathscr{F}\left(\mathbb{C}^{n}\right)$.

Theorem 29. Let $\varphi: \mathbb{P}\left(\mathbb{C}^{2}\right) \rightarrow \mathscr{F}\left(\mathbb{C}^{n}\right)$ be a measurable map sending almost every maximal 4-tuple in $\mathbb{P}\left(\mathbb{C}^{2}\right)$ to a maximal 4-tuple in $\mathscr{F}\left(\mathbb{C}^{n}\right)$. Then there exists $g \in$ $\operatorname{PSL}(n, \mathbb{C})$ such that

$$
\varphi=g \cdot \varphi_{n}
$$

almost everywhere.
The theorem is a straightforward generalization of the corresponding statement with $\mathscr{F}\left(\mathbb{C}^{n}\right)$ replaced by $\partial \mathbb{H}^{3}$ and $\operatorname{PSL}(n, \mathbb{C})$ replaced by $\operatorname{PSL}(2, \mathbb{C})$ which was proven by Thurston for the generalization of Gromov's proof of Mostow rigidity for 3-dimensional hyperbolic manifolds. Our proof is a reformulation of Dunfield's detailed version [?, pp. 654-656] of Thurston's proof [?, two last paragraphs of Section 6.4] in the language of ergodic theory.

Let T denote the set of 4-tuples in $\partial \mathbb{H}^{3}$ whose convex hull is a regular simplex. Denote by $\Lambda_{\underline{\xi}}<\operatorname{Isom}\left(\mathbb{H}^{3}\right)$ the reflection group generated by the reflections in the faces of the simplex $\underline{\xi}$. For $\varphi: \partial \mathbb{H}^{3} \rightarrow \mathscr{F}\left(\mathbb{C}^{n}\right)$, we let T^{φ} be the subset of T of regular simplices being mapped to maximal 4 -tuples (up to sign). More precisely, we set

$$
T^{\varphi}:=\left\{\left(\xi_{0}, \ldots, \xi_{3}\right) \in T \left\lvert\, B_{n}\left(\varphi\left(\xi_{0}\right), \ldots, \varphi\left(\xi_{3}\right)\right)=\frac{1}{6} n\left(n^{2}-1\right) \operatorname{Vol}_{\mathbb{H}^{3}}\left(\xi_{0}, \ldots, \xi_{3}\right)\right.\right\} .
$$

Exactly the same proof as in [?, Lemma 4.6] shows the following:
Lemma 30 Let $\underline{\xi}=\left(\xi_{0}, \ldots, \xi_{3}\right) \in T$. Suppose that $\varphi: \partial \mathbb{H}^{3} \rightarrow \mathscr{F}\left(\mathbb{C}^{n}\right)$ is a map such that for every $\gamma \in \Lambda_{\underline{\xi}}$, the translate $\left(\gamma \xi_{0}, \ldots, \gamma \xi_{3}\right)$ belongs to T^{φ}. Then there exists a unique $g \in \operatorname{PSL}(n, \mathbb{C})$ such that $g \varphi_{n}(\xi)=\varphi(\xi)$ for every $\xi \in \bigcup_{i=0}^{3} \Lambda_{\underline{\xi}} \xi_{i}$.

In the proof of Mostow Rigidity in dimension greater than or equal to 4, Lemma ?? was sufficient to prove the corresponding Theorem ??. In dimension 3 however, an additional difficulty is due to the fact that the group $\Lambda_{\underline{\xi}}$ is discrete in Isom $\left(\mathbb{H}^{3}\right)$ and in particular does not act ergodically on Isom $\left(\mathbb{H}^{3}\right)$. For this reason, we introduce the bigger group $\Gamma_{\underline{\xi}}$ which will act ergodically on Isom $\left(\mathbb{H}^{3}\right)$ (Proposition ??) and for which we can prove the corresponding statement of Lemma ?? (Proposition ??). We set

$$
\Gamma_{\underline{\xi}}:=\left\langle\Lambda_{\underline{\xi}}, \gamma_{\underline{\xi}}\right\rangle,
$$

where $\gamma_{\underline{\xi}}$ is defined as follows: If $\underline{\xi}=\left(+\infty, 0, \xi_{2}, \xi_{3}\right)$ the isometry $\gamma_{\underline{\xi}}$ induces the map $\gamma_{2}:=z \mapsto 2 z$ on $\partial \mathbb{H}^{3}=\mathbb{C} \cup\{+\infty\}$. If $\underline{\xi}=\left(\xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}\right)$ is any regular simplex, let $g \in \operatorname{PSL}(2, \mathbb{C})$ be an isometry such that $g \xi_{0}=+\infty$ and $g \xi_{1}=0$. Set then $\gamma_{\underline{\xi}}=$ $g^{-1} \gamma_{2} g$.

Proposition 31 Let $\underline{\xi}=\left(\xi_{0}, \ldots, \xi_{3}\right) \in T$. Suppose that $\varphi: \partial \mathbb{H}^{3} \rightarrow \mathscr{F}\left(\mathbb{C}^{n}\right)$ is a map such that for every $\bar{\gamma} \in \Gamma_{\underline{\xi}}$, the translate $\left(\gamma \xi_{0}, \ldots, \gamma \xi_{3}\right)$ belongs to T^{φ}. Then there exists a unique $g \in \operatorname{PSL}(\underline{n}, \mathbb{C})$ such that $g \varphi_{n}(\xi)=\varphi(\xi)$ for every $\xi \in \bigcup_{i=0}^{n} \Gamma_{\underline{\xi}} \xi_{i}$.
Proof. For every $\underline{\xi} \in \partial \mathbb{H}^{3}$, let $S_{\underline{\xi}}$ denote the natural set of generators of $\Gamma_{\underline{\xi}}$ consisting of the reflections with respect to the faces of $\underline{\xi}$ and $\gamma_{\xi}^{ \pm 1}$. Exactly as for reflection groups, one shows that every $\gamma \in \Gamma_{\underline{\xi}}$ can be written as a product $\gamma=r_{k} \cdot \ldots \cdot r_{2} \cdot r_{1}$, where $r_{i} \in S_{r_{i-1} \ldots . r_{1} \underline{\xi}}$. Indeed by definition $\gamma=s_{k} \cdot \ldots \cdot s_{2} \cdot s_{1}$ for $s_{i} \in S_{\underline{\xi}}$ and we can take

$$
r_{i}:=\left(s_{1} s_{2} \ldots s_{i-1}\right) s_{i}\left(s_{1} s_{2} \ldots s_{i-1}\right)^{-1} \in S_{r_{i-1} \ldots \cdot r_{1} \underline{\xi}}
$$

where

$$
S_{r_{i-1} \cdots r_{1} \underline{\xi}}=\left(s_{1} s_{2} \ldots s_{i-1}\right) S_{\underline{\xi}}\left(s_{1} s_{2} \ldots s_{i-1}\right)^{-1}
$$

Let now $\underline{\xi}$ be as in the assumption of the proposition. By Theorem ??, for every $\gamma \in \Gamma_{\xi}$, there exists a unique $g_{\gamma} \in \operatorname{PSL}(n, \mathbb{C})$ such that $g_{\gamma} \varphi_{n}(\gamma \xi)=\varphi\left(\gamma \xi_{i}\right)$, for $i=$ $0, \ldots, 3$. We need to show that g_{γ} is independent of γ. Let $\gamma=r_{k} \cdot \ldots \cdot r_{2} \cdot r_{1}$ be as above. We prove the independence of γ by showing $g_{r_{k} \cdot \ldots \cdot r_{2} \cdot r_{1}}=g_{r_{k-1} \cdot \ldots \cdot r_{2} \cdot r_{1}}$, where for $k=1$, the latter element of $\operatorname{PSL}(n, \mathbb{C})$ is g_{id}. If r_{k} is a reflection in one of the faces of the simplex $r_{k-1} \cdot \ldots \cdot r_{2} \cdot r_{1} \xi$ the claim follows by Lemma ??. Up to conjugation, we can suppose that the simplex $r_{k-1} \cdot \ldots \cdot r_{2} \cdot r_{1} \underline{\xi}$ has the form $\underline{\eta}=\left(+\infty, 0, \eta_{2}, \eta_{3}\right)$. In the case where $r_{k}=\gamma_{\eta}^{ \pm 1}$, the simplex $r_{k} \underline{\eta}$ has the form $\left(+\infty, 0,2^{ \pm 1} \eta_{2}, 2^{ \pm 1} \eta_{3}\right)$ and in particular $\gamma_{\underline{\eta}}=\gamma_{\gamma_{\underline{\eta}} \underline{\eta}}$. It is thus enough to treat the case $r_{k}=\gamma_{\underline{\eta}}$. In this case, the vertices of $\gamma_{\underline{\eta}}$ are vertices of the tessellation of $\underline{\eta}$ by $\Lambda_{\underline{\eta}}$, which is a subgroup of $\Gamma_{\underline{\xi}}$, so the claim follows by Lemma ??.

Lemma 32 For every $\underline{\xi} \in T$, the group $\Gamma_{\underline{\xi}}$ acts ergodically on $\operatorname{Isom}\left(\mathbb{H}^{3}\right)$.
Proof. We could show by hand that $\Gamma_{\underline{\xi}} \cap \operatorname{PSL}(2, \mathbb{C})$ is dense in $\operatorname{PSL}(2, \mathbb{C})$, which is equivalent to the ergodicity statement. We give however instead a geometric argument.

We claim that $\Lambda_{\underline{\xi}}$ is of infinite index in $\Gamma_{\underline{\xi}}$. Let $\Lambda_{\xi}^{\prime}<\Lambda_{\underline{\xi}}$ be a torsion free subgroup of finite index. Then $M:=\Lambda_{\xi}^{\prime} \backslash \mathbb{H}^{3}$ is a finite volume manifold and ξ_{0}, ξ_{1} are cusps of M. Therefore the geodesic in \mathbb{H}^{3} joining ξ_{0} and ξ_{1} maps properly to a biinfinite geodesic in M. If $\Lambda_{\underline{\xi}}$ were of finite index in $\Gamma_{\underline{\xi}}$, then some finite power of the hyperbolic element $\gamma_{\underline{\xi}}$ with fixed points ξ_{0} and $\xi_{1} \overline{\text { would be in } \Lambda_{\underline{\xi}}^{\prime}}$ and the geodesic joining ξ_{0} to ξ_{1} would map to a periodic geodesic in M, which is a contradiction.

We conclude now by observing that Zariski density of $\Lambda_{\underline{\xi}}$ implies density of $\Gamma_{\underline{\xi}}$ in the usual topology; in particular $\Gamma_{\underline{\xi}}$ acts ergodically on $\operatorname{Isom}\left(\mathbb{H}^{3}\right)$

The proof of Theorem ?? follows now completely analogously as in [?, Proposition 4.7], taking into account Lemma ??.

We have thus established that φ is essentially equal to $g \cdot \varphi_{n}$. It remains to see that g realizes the conjugation between ρ and $\pi_{n} \circ i$. Indeed, replacing φ by $g \cdot \varphi_{n}$ in (??) we have

$$
\left(g \cdot \varphi_{n}\right)(i(\gamma) \cdot \xi)=\rho(\gamma) \cdot\left(g \cdot \varphi_{n}\right)(\xi)
$$

for every $\xi \in \partial \mathbb{H}^{3}$ and $\gamma \in \Gamma$. The π_{n}-equivariance of φ_{n} allows us to rewrite this equation as

$$
g \cdot \pi_{n}(i(\gamma)) \varphi_{n}(\xi)=\rho(\gamma) \cdot\left(g \cdot \varphi_{n}\right)(\xi),
$$

Thus, $g \pi_{n}(i(\gamma))$ and $\rho(\gamma) \cdot g$ which both belong to $\operatorname{PSL}(n, \mathbb{C})$ act identically on the image of φ_{n}, from which we conclude that they are equal. This concludes the proof of Theorem ??.

Acknowledgements Michelle Bucher was supported by Swiss National Science Foundation project PP00P2-128309/1, Alessandra Iozzi was partial supported by the Swiss National Science Foundation projects 2000021-127016/2 and 200020-144373 and Marc Burger was partially supported by the Swiss National Science Foundation project 200020-144373. The authors thank the Institute Mittag-Leffler in Djursholm, Sweden, and the Institute for Advanced Studies in Princeton, NJ, for their warm hospitality during the preparation of this paper.

We are very grateful to Elisha Falbel for his interest and for many useful and enlightening conversations during the preparation of this paper.

[^0]: Michelle Bucher
 Section de Mathématiques Université de Genève, 2-4 rue du Lièvre, Case postale 64,1211 Genève 4, Suisse, e-mail: Michelle.Bucher-Karlsson@unige.ch
 Marc Burger
 Department Mathematik, ETH, Rämistrasse 101, 8092 Zürich, Schweiz, e-mail: burger@math. ethz.ch

 Alessandra Iozzi
 Department Mathematik, ETH, Rämistrasse 101, 8092 Zürich, Schweiz, e-mail: iozzi@math. ethz.ch

[^1]: ${ }^{1}$ Since we will only consider cohomology with real coefficients, from \S ?? on for ease of notation the coefficients will be not explicitly stated.

