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Abstract If Γ < PSL(2,C) is a lattice, we define an invariant of a representation
Γ → PSL(n,C) using the Borel class β (n) ∈ H3

c(PSL(n,C),R). We show that this
invariant satisfies a Milnor–Wood type inequality and its maximal value is attained
precisely by the representations conjugate to the restriction to Γ of the irreducible
complex n-dimensional representation of PSL(2,C) or its complex conjugate.
Major ingredients of independent interest are the extension to degenerate config-
uration of flags of a cocycle defined by Goncharov and its study, as well as the
identification of H3

b(SL(n,C),R) as a normed space.

1 Introduction

Let M =Γ \H3 be a finite volume quotient of the real hyperbolic 3-space H3, where
Γ < PSL(2,C) is a torsion free lattice. There is a considerable body of work con-
cerning the representation variety Hom(Γ ,PSL(n,C)), the problem of finding ex-
plicit parametrizations of (large parts of) it, and expressing various invariants of
such representations like the “volume”, the Dehn invariant and the Chern–Simons
invariant in those parameters, [?, ?, ?]. In fact this representation variety is partic-
ularly rich when M is not compact, say with h ≥ 1 cusps, since for instance in this
case the character variety of Γ into PSL(n,C) locally has dimension (n− 1)h near
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πn |Γ , where πn : PSL(2,C)→ PSL(n,C) is the irreducible complex representation,
[?].

In this paper, we will study the volume of a representation ρ : Γ → PSL(n,C)
that we will rename as the Borel invariant of ρ . Indeed, the continuous cohomology
of PSL(n,C) in degree 3 is generated by a specific class called the Borel class β (n).
Our normalization of β (n) is that under the Van Est isomorphism it corresponds to
the PSU(n)-invariant 3-form on the space pn of Hermitian matrices of trace zero
given by

ωn(X ,Y,Z) = 2tr(i[X ,Y ]Z) .

In particular for PSL(2,C) it corresponds to the volume form of the hyperbolic met-
ric of constant curvature −1. We wil not use it in this paper, but 2iβ (n) coincides
with the Borel element Bo2 in [?, Definition 9.24].When M is compact, the defi-
nition of the Borel invariant of ρ is straightforward as it is the evaluation on the
fundamental class [M] of the pullback by ρ of the Borel class. If M has cusps, the
definition of this invariant presents interesting difficulties which we overcome by the
use of bounded cohomology. More precisely, β (n) can be represented by a bounded
cocycle, which gives rise to a bounded continuous class

βb(n) ∈ H3
cb(PSL(n,C),R).

The Borel invariant of ρ : Γ → PSL(n,C) is then defined as

B(ρ) = 〈ρ∗(βb(n)), [N,∂N]〉,

where N is a compact core of M. We refer the reader to Section ?? for a precise
interpretation of this formula. This definition does not use any triangulation, it is in-
dependent of the choice of compact core and can be made for any compact oriented
3-manifold whose boundary has amenable fundamental group.

The bounded cocycle entering the definition of βb(n) is constructed by means of
an invariant

Bn : F (Cn)4 −→ R

of 4-tuples of complete flags, which on generic 4-tuples has been defined and
studied by A.B. Goncharov, [?]. It generalizes the volume function in the case
F (C2) = P(C2) = ∂H3 (see Section ?? for a detailed discussion). This invariant
can also be used to give an efficient formula for B(ρ). To this end assume that M
has toric cusps. Let ϕ : C →F (Cn) be a decoration, that is any Γ -equivariant map
from the set of cusps C ⊂ ∂H3 of Γ into F (Cn), and let P1, . . . ,Pr be a family of
oriented ideal tetrahedra with vertices in C whose projections to M form an ideal
triangulation of M. If (P0

i ,P
1
i ,P

2
i ,P

3
i ) are the vertices of Pi, then

B(ρ) =
r

∑
i=1

Bn(ϕ(P0
i ),ϕ(P

1
i ),ϕ(P

2
i ),ϕ(P

3
i )) (1)

(see Section ?? for a proof). Notice that our formula for the volume does not in-
volve any barycentric subdivision of the ideal triangulation, nor any conditions on
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the decoration. Upon passing to a barycentric subdivision, or restricting to generic
decorations, one recovers from the right hand side of (??) the formulas in [?, ?, ?].

Our first result is that on the character variety Γ into PSL(n,C), the invariant B
attains a unique maximum at [πn|Γ ].

Theorem 1. Let Γ = π1(M) be the fundamental group of a complete finite volume
real hyperbolic 3-manifold and let ρ : Γ → PSL(n,C) be any representation. Then

|B(ρ)| ≤ n(n2−1)
6

Vol(M) ,

with equality if and only if ρ is conjugate to πn|Γ or to its complex conjugate πn|Γ .

The case of the character variety of Γ into PSL(3,C) is instructive: in [?] the
authors study the derivative of B on a Zariski open subset and show that it is entirely
expressed in terms of the eigenvalues of the holonomy at the cusps. In particular
boundary unipotent representations are critical points of B(ρ). The example of the
complement of the figure eight knot [?] suggests that in general there are many
boundary unipotent representations and therefore many critical points for B.

A large part of this paper is devoted to the study of the invariant Bn : F (Cn)4→R
on 4-tuples of flags (see Theorem ?? below), to the bounded class it defines and
the consequences, in combination with stability results by N. Monod in [?], for the
bounded cohomology of PSL(n,C). Our main result about the bounded cohomology
of these groups in degree 3 is:

Theorem 2. The class βb(n) is a generator of H3
cb(PSL(n,C),R) and its Gromov

norm is

‖βb(n)‖=
n(n2−1)

6
v3 ,

where v3 is the volume of a maximal ideal tetrahedron in H3. In addition βb(n)
restricts to βb(n−1) under the left corner injection SL(n−1,C) ↪→ SL(n,C) and to
(n(n2−1)/6) ·βb(2) under the irreducible representation πn : SL(2,C)→ SL(n,C).

The case n = 2 follows from work of Bloch [?]. Theorem ?? gives additional
evidence for the conjecture that for connected simple Lie groups with finite center,
the comparison map between bounded continuous and continuous cohomology is
an isomorphism. So far this conjecture has been established only in degree 2 [?], in
degree 3 for the isometry group of real hyperbolic n-space [?], and in degree 3 and
4 for SL(2,R) ([?] and [?] respectively).
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2 Outline of the Paper and the definition of the Borel invariant

The cocycle representing βb(n)

We start in Sections ?? and ?? by setting up a homological machinery involving
chains on configuration spaces; this is largely borrowed from Goncharov, [?]. The
aim is to define an invariant

Bn : F (Cn)4 −→ R

on the space of 4-tuples of complete flags in Cn and to show that it is a strict co-
cycle, that is a cocycle that is everywhere defined and that satisfies everywhere the
cocycle identity. The definition of the cocycle in general is rather technical, so we
will illustrate here only the case n = 3 in the dual setting, that is interchanging lines
and planes through the origin. Observe that interestingly, Falbel and Wang have just
proven [?] that this dual cocycle B̌n is not equal to Goncharovs cocycle Bn but only
cohomologous to it. Furthermore the authors give an explicit coboundary for the
difference of the two cocycles [?, Proposition 3.10].

A complete flag in C2 is a choice of a line in C2 or, equivalenly, of a point
P ∈ P(C2). Using the identification P2(C) = ∂H3, the invariant B2 = B̌2 associates
to four points in P(C2) the signed volume of the ideal tetrahedron that they define.

After projectivization, a complete flag F in P(C3) is given by a projective line
L⊂ P(C3) and a point P ∈ L. We denote it by F = {P ∈ L⊂ P(C3)} ∈F (P(C3)).
Given a complete flag F ∈F (P(C3)) and a projective line L′ ⊂ P(C3), we define
the intersection F ∩L′ to be the point in P(C3) given by

F ∩L′ =

{
L∩L′ if L 6= L′,
P if L = L′.

Now we define a cocycle B̌3 : F (P(C3))4→ R by sending four flags F0, . . . ,F3,
where Fi = {Pi ∈ Li ⊂ P(C3)}, to

B̌3(F0, . . . ,F3) =


VolLi(F0∩Li, . . . ,F3∩Li) if ∃ i 6= j with Li = L j,

VolL(F0∩L, . . . ,F3∩L) if ∩3
j=0 L j is a point,

∑
3
i=0 VolLi(F0∩Li, . . . ,F3∩Li) otherwise,

where in the second case, L is any projective line not containing the point ∩3
j=0L j

and VolL = B2 = B̌2 (respectively VolLi = B2 = B̌2) after the identification of Li
(respectively of L) with P(C2). To check that β3 is well defined we need some
observations.

Let P ∈ P(C3) be a point and L ⊂ P(C3) be a projective line not containing P.
We define a projection p : P(C3)r{P}→ L by sending a point x ∈ P(C3)r{P} to
the intersection of the line through P and x and the line L. Note that p is induced by
the projection C3 = P⊕L→ L, where P and L are the vector spaces corresponding
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Fig. 1 The generic case.

L0 = L2
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P1

P2

L3
P3

Fig. 2 The case in which two lines, in this case L0 and L2, coincide (but P0 6= P2 otherwise the two
flags (P0,L0) and (P2,L2) would be equal, in which case Vol = 0.

L

L0

P0

L3
P3

L2

P2
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P1

Fig. 3 The case in which ∩3
j=0L j is a point.
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to P and L respectively. The following lemma is immediate, using the fact that p
induces an isomorphism between L′ and L.

Lemma 3 Let L⊂ P(C3) be a projective line and P ∈ P(C3)rL a point. If p is the
projection p : P(C3)r{P}→ L defined above, then

VolL′(x0, . . . ,x3) = VolL(p(x0), . . . , p(x3)),

for any projective line L′ ⊂ P(C3) not containing P and any x0, . . . ,x3 ∈ L′.

Now we can verify that in the second case, the definition is independent of the
choice of L. Indeed, let L′ be another projective line not containing the point P =
L0 ∩L1 ∩L2 ∩L3. Then the projection p : P(C3)r {P} → L sends Fi ∩L′ = Li ∩L′

to Fi∩L = Li∩L (because Li is the line containing P and Fi∩L′) and the conclusion
follows from Lemma ??. Second, observe that the projective line Li = L j of the
first case might not be uniquely determined. This happens precisely if there are two
pairs of lines among the four flags which are equal. Since Vol is alternating, we can
without loss of generality suppose that L0 = L1 6= L2 = L3. But in this case we have
F0∩L2 = F1∩L2 = L0∩L2 and F2∩L0 = F3∩L0 = L2∩L0, so that for any choice
of i ∈ {0,1,2,3}, two of the four points on which the alternating cocycle VolLi will
be evaluated are equal, so the evaluation is 0. Finally, it is possible that the first and
second case happen simultaneously, in which case one easily checks that in both
cases one obtains 0.

We refer the reader to (??) in Section ?? for the definition of Bn for all n≥ 2 and
to [?], where B3−β3 is written as an explicit coboundary.

Theorem 4 1. The function Bn is a GL(n,C)-invariant alternating strict Borel
cocycle.

2. Its absolute value satisfies the inequality

|Bn(F0, . . . ,F3)| ≤
1
6

n(n2−1)v3 (2)

with equality if and only if F0, . . . ,F3 are, up to the action of GL(n,C), images
under the Veronese embedding of vertices of a regular ideal simplex in P(C2) =
∂H3.

Before outlining the proof of this theorem, we remark that, by evaluation on
(g0F,g1F,g2F,g3F), where F is a fixed flag in F (Cn), the cocycle Bn defines a
continuous bounded cohomology class of PSL(n,C), which we denote by βb(n) ∈
H3

cb(PSL(n,C),R) and call the bounded Borel class. The fact that this class is
bounded already follows from Goncharov’s almost everywhere defined cocycle, for
which the bound in (??) holds almost everywhere. However, the stability properties
in Theorem ?? under the left corner injection as well as the exact determination of
the norm require the use of the strict cocycle. The proof of Theorem ?? is presented
in Section ??.

The strategy of the proof of Theorem ?? (1) is similar to the one of the Key
Lemma of Goncharov [?, Key Lemma 2.1]. The main modification consists in the
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fact that we work with spaces of configurations of vectors allowed to be nongeneric.
To show that the function Bn is a strict Borel cocycle we will show that it can be
realized as the pullback via a map of complexes of a cocycle on an appropriate
space of “decorated” vector spaces. More precisely, we first introduce the space σk
of isomorphism classes of objects [V ;x0, . . . ,xk] consisting of a vector space V and a
(k+1)-tuple of vectors spanning it and proceed to construct a complex (Z[σk],Dk).
Then we define Vol : σ3 → R using the hyperbolic volume as in Section ?? (and
hinted at above). We proceed to show that D∗4Vol = 0 in Theorem ??. If Faff(Cn)

is the space of affine flags (see Section ??), Ralt(Faff(Cn)k+1)GL(n,C) is the space of
GL(n,C)-invariant alternating functions on Faff(Cn)k+1) and

Ralt(σk) = { f : σk→ R | f is alternating w.r.t. the Sk+1−action},

we finally construct a map of complexes

T ∗k : Ralt(σk)→ Ralt(Faff(Cn)k+1)GL(n,C)

which allows us to view Bn as the pullback Bn = T ∗3 (Vol) of the cocycle Vol on σ3
to the space of flags and conclude the proof of (1) of Theorem ??. In Section ??
we show the upper bound of Bn by induction in Theorem ??. In Section ?? we
analyze the equality case in (2) of Theorem ??. The proof relies in particular on the
noteworthy relationship

Bn(ϕn(ξ0), . . . ,ϕn(ξ3)) =
1
6

n(n2−1) ·VolH3(ξ0, . . . ,ξ3),

for all ξ0, ...,ξ3 ∈ P(C2) (see Proposition ??), where ϕn : P(C2)→F (Cn) is the
Veronese embedding. In addition, configurations of maximal 4-tuples of flags have
the same property than configurations of 4-points in ∂H3 of maximal volume:
namely, if Bn(F0, . . . ,F3) is maximal, then F3 is completely determined by F0,F1,F2
and the sign of Bn(F0, . . . ,F3).

The Borel invariant

Let Γ < PSL(2,C) be a lattice and ρ : Γ → PSL(n,C) a representation. We consider
first the case in which Γ < PSL(2,C) is torsion-free, so that the quotient M =Γ \H3

is a hyperbolic three-manifold and its cohomology is canonically isomorphic to the
cohomology of Γ .

If M is compact, then the top dimensional cohomology groups H3(Γ ,R) ∼=
H3(M,R) are canonically isomorphic to R, where the isomorphism is given by eval-
uation on the fundamental class [M]1. We define

1 Since we will only consider cohomology with real coefficients, from § ?? on for ease of notation
the coefficients will be not explicitly stated.
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B(ρ) = 〈ρ∗(β (n)), [M]〉 ,

where ρ∗ : H3
c(PSL(n,C),R)→ H3(Γ ,R) denotes the pull-back via ρ .

If M is not compact, the above definition fails since H3(Γ ,R)∼=H3(M,R)= 0. To
circumvent this problem we use bounded cohomology, following the approach initi-
ated in [?] and used also in [?]. Analogously to what happens in the ordinary group
cohomology, a representation ρ : Γ → PSL(n,C) induces a pullback in bounded
cohomology ρ∗ : H3

cb(PSL(n,C),R) → H3
b(Γ ,R) and the latter group is canoni-

cally isometrically isomorphic to the bounded singular cohomology H3
b(M,R) of the

manifold M. (The latter fact is true for any CW complex [?, ?], but in our case it is a
simple consequence of the fact that M is aspherical.) Let N ⊂M be a compact core
of M, that is the complement in M of a disjoint union of finitely many horospherical
neighborhoods Ei, i = 1, . . . ,k, of cusps. These have amenable fundamental groups
and thus the map (N,∂N)→ (M,∅) induces an isometric isomorphism in cohomol-
ogy, H3

b(M,R)∼= H3
b(N,∂N,R), [?], by means of which we can consider ρ∗(βb(n))

as a bounded relative class in H3
b(N,∂N,R). Finally, the image of ρ∗(βb(n)) via

the comparison map c : Hn
b(N,∂N,R)→ Hn(N,∂N,R) is an ordinary relative class

whose evaluation on the relative fundamental class [N,∂N] gives the definition of
the Borel invariant of the representation ρ ,

B(ρ) := 〈(c◦ρ
∗)(βb(n), [N,∂N]〉 , (3)

which is independent of the choice of the compact core N. If M is compact, we
recover the invariant previously defined. We complete the definition in the case in
which Γ has torsion by setting

B(ρ) :=
B(ρ|Λ )
[Γ : Λ ]

,

where Λ < Γ is a torsion free subgroup of finite index.
In order to give a geometric interpretation of this definition when Γ is torsion

free, we need to understand the composition of the maps

H3
cb(PSL(n,C))−→ H3

b(Γ )∼= H3
b(M)∼= H3

b(N,∂N)

at the cocycle level. The difficulty here lies in the isomorphism H3
b(Γ )∼= H3

b(N,∂N)
and we recall from [?, Section 3] that it admits the following explicit description:
we identify the universal cover Ñ of N with H3 minus a Γ -invariant collection of
open horoballs centered at the cusps C . Let p : Ñ → C be the Γ -equivariant map
sending each horosphere to the corresponding cusp, and for the interior of Ñ, fix
a fundamental domain for the Γ -action, map this fundamental domain to a chosen
cusp and extend Γ -equivariantly. The bounded cohomology of Γ can be represented
by Γ -invariant bounded cocycles on the set of cusps of Γ in ∂H3, and given such a
cocycle c : C 4→ R, we obtain a relative cocycle on (N,∂N) which we canonically
describe as a Γ -equivariant cocycle on (Ñ,∂ Ñ) as follows:
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{σ : ∆
3→ Ñ} 7→ c(p(σ(e0)), . . . , p(σ(e3))),

where e0, . . . ,e3 denote the vertices of the standard simplex ∆ 3.
Given a representation ρ : Γ → PSL(n,C) with ρ-equivariant decoration ϕ : C →

F (Cn), it follows from [?], using the crucial fact that the cocycle Bn is a Borel
cocycle defined everywhere, that the class ρ∗(βb(n)) ∈ H3(Γ ) is represented by
the cocycle ϕ∗(Bn). Thus, given any relative triangulation of (N,∂N), the Borel
invariant of the representation is computable as

B(ρ) =
r

∑
i=1

Bn(ϕ(P1
i ),ϕ(P

2
i ),ϕ(P

3
i ),ϕ(P

4
i )), (4)

where the (P0
i , . . . ,P

3
i ) are the simplices of the triangulation of N lifted to Ñ. This

works as well replacing the triangulation by any cycle representing the fundamental
class [N,∂N].

From an ideal triangulation of M as in [?], where degenerate tetrahedra – mean-
ing tetrahedra contained in planes – are allowed, we obtain a relative cycle repre-
senting the fundamental class [N,∂N] by triangulating the intersection of the ideal
triangulation with Ñ. The formula (??) now follows.

Finally, a simple cohomological argument using the naturality of the transfer
maps H3

b(Γ )→H3
cb(PSL(2,C)) allows us to reinterpret our Borel invariant in terms

of a multiplicative constant in Proposition ?? of Section ??. It is this interpretation
of the Borel invariant which we will use for the proof of our main Theorem ?? in
Section ??.

3 The cocycle representing βb(n)

In this section we define a cocycle representing βb(n). As already mentioned in the
introduction, the construction is a modification of a cocycle defined by Goncharov
[?] for generic configurations of flags. Notice however that the extension to all con-
figuration of flags requires substantial modifications.

3.1 Configuration spaces

For k,m ≥ 0, let σk(m) be the quotient of the set of all spanning (k + 1)-tuples
(x0, . . . ,xk) of vectors in Cm by the diagonal action of GL(m,C). Observe that for
k+1 < m, the set σk(m) is empty.

Given an m-dimensional complex vector space V and a (k+1)-tuple (x0, . . . ,xk)
of vectors spanning V , we obtain by choosing an isomorphism V → Cm a well de-
fined element of σk(m) denoted [V ;(x0, . . . ,xk)].

On
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σk := tm≥0σk(m) = σk(0)t·· ·tσk(k+1),

there are two kinds of face maps

ε
(k)
i , η

(k)
i : σk −→ σk−1,

for 0≤ i≤ k, given as

ε
(k)
i ([Cm;(x0, . . . ,xk)]) = [〈x0, . . . , x̂i . . . ,xk〉;(x0, . . . , x̂i, . . . ,xk)],

η
(k)
i ([Cm;(x0, . . . ,xk)]) = [Cm/〈xi〉;(x0, . . . , x̂i, . . . ,xk)],

where in the last definition, x j is understood as the image of x j in Cm/〈xi〉 and
〈y0, . . . ,y`〉 denotes the linear subspace spanned by the set {y0, . . . ,y`}. Observe that
on σk(m) both face maps take values in σk−1(m)tσk−1(m−1).

One can easily verify the following relations between these face maps; for all
0≤ j < i≤ k:

ε
(k−1)
j ε

(k)
i = ε

(k−1)
i−1 ε

(k)
j , (R1)

η
(k−1)
j η

(k)
i = η

(k−1)
i−1 η

(k)
j , (R2)

η
(k−1)
j ε

(k)
i = ε

(k−1)
i−1 η

(k)
j . (R3)

Let us denote, for k ≥ 0, by Z[σk] the free abelian group on σk and set Z[σk] = 0
for k≤−1. We extend the face maps to morphisms Z[σk]→ Z[σk−1]. For k≥ 1, we
define ∂k,dk and Dk : Z[σk]→ Z[σk−1] by

∂k(τ) :=
k

∑
i=0

(−1)i
ε
(k)
i (τ),

dk(τ) :=
k

∑
i=0

(−1)i
η
(k)
i (τ),

for τ ∈ σk, and extend this definition to ∂k = dk = 0 for k≤ 0. Finally, we set Dk :=
∂k−dk, for any k ∈ Z.

From the relations (??-??), we immediately deduce:

Lemma 5 Let k ∈ Z. Then

• ∂k−1∂k = 0,
• dk−1dk = 0,
• ∂k−1dk +dk−1∂k = 0,
• Dk−1Dk = 0.

We have thus established that (Z[σk],Dk) is a chain complex.
Observe that the symmetric group Sk+1 acts on σk(m) and hence on σk. We let

Ralt(σk) = { f : σk→ R | f is alternating w.r.t the Sk+1−action},
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and let D∗k : R(σk−1)→R(σk) denote the dual of Dk⊗R1 : R[σk]→R[σk−1]. Then
we obtain from Lemma ??:

Lemma 6 (Ralt(σk),D∗k) is a cochain complex.

3.2 The volume cocycle

We identify P(C2) with ∂H3, so that we have a map C2 r {0} → ∂H3 induced by
the canonical projection. We consider the map VolH3 : (∂H3)4 = P(C2)4→ R that
to a quadruple of points (x0,x1,x2,x3)∈ (∂H3)4 associates the signed volume of the
corresponding hyperbolic simplex. This extends to a function

Vol : σ3 −→ R

by setting Vol|σ3(m) = 0 for all m 6= 2 and

Vol([C2;v0, . . . ,v3]) :=
{

VolH3(v0, . . . ,v3) if vi 6= 0 for all i,
0 otherwise.

Theorem 7 The function Vol ∈ Ralt(σ3) satisfies D∗4Vol = 0.

Proof. First observe that D∗4Vol(τ) = Vol(D4τ) = 0 if τ ∈ σ4(0)tσ4(1)tσ4(4)t
σ4(5). Thus we have two cases to consider, namely τ ∈ σ4(2) and τ ∈ σ4(3).

Lemma 8 Let τ ∈ σ4(2). Then Vol(D4τ) = 0.

Proof. Let τ = [C2;v0, . . . ,v4], then

D∗4Vol(τ) =
4

∑
i=0

(−1)iVol([〈v0, . . . , v̂i, . . . ,v4〉;v0, . . . , v̂i, . . . ,v4])

−
4

∑
i=0

(−1)iVol([C2/〈vi〉;v0, . . . , v̂i, . . . ,v4]).

Suppose that v j 6= 0 for every j. Observe that whether v0, . . . , v̂i, . . . ,v4 generate C2

or not, we have

Vol([〈v0, . . . , v̂i, . . . ,v4〉,v0, . . . , v̂i, . . . ,v4]) = VolH3(v0, . . . , v̂i, . . . ,v4).

Indeed, if the vi’s do generate C2, this is the definition of Vol, and if not, then on
the one hand Vol([〈v0, . . . , v̂i, . . . ,v4〉,v0, . . . , v̂i, . . . ,v4]) = 0 and on the other hand
VolH3(v0, . . . , v̂i, . . . ,v4) = 0 since the projection of v j’s in ∂H3 = P(C2) coincide.
As all the v j 6= 0 and VolH3 is a cocycle on ∂H3 = P(C2), the first sum vanishes. So
does each term of the second sum since C2/〈vi〉 is 1-dimensional.
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If v j = 0 for some j, then for every i 6= j, the i-th term of the first and second
sums vanish since the null vector appears in the argument each time. It follows that
D∗4Vol(τ) is equal to

(−1) j{Vol([〈v0, . . . , v̂ j, . . . ,v4〉︸ ︷︷ ︸
C2

;v0, . . . , v̂ j, . . . ,v4])

−Vol([C2/〈v j〉︸ ︷︷ ︸
C2

;v0, . . . , v̂ j, . . . ,v4])
}
= 0,

which finishes the proof of the lemma. ut

In the case of a generic configuration of flags the following lemma is what Gon-
charov called the “five line identity”.

Lemma 9 Let τ ∈ σ4(3). Then Vol(D4τ) = 0.

Proof. Let τ = [C3;v0, . . . ,v4], then

D∗4Vol(τ) =
4

∑
i=0

(−1)iVol([〈v0, . . . , v̂i, . . . ,v4〉;v0, . . . , v̂i, . . . ,v4])

−
4

∑
i=0

(−1)iVol([C3/〈vi〉;v0, . . . , v̂i, . . . ,v4]).

We distinguish several cases:

v j = 0 for some j: For every i 6= j, the i-th term of the first and second sums van-
ish. The j-th terms are also both zero since both spaces 〈v0, . . . , v̂ j, . . . ,v4〉 and
C3/〈v j〉 are 3- and not 2-dimensional.

From now on we suppose that v j 6= 0 for every j.

〈vi〉= 〈v j〉 for some pair i 6= j: By alternation we can suppose that i = 0, j = 1. In
this case, 〈v1,v2,v3,v4〉= 〈v0,v2,v3,v4〉=C3 and the two first terms of the first
sum vanish. Since 〈v0〉 = 〈v1〉 the three last terms of the first sum vanish also.
In the second sum, the two first terms vanish since the null vector appears in the
argument, while the last three terms vanish since either v0 and v1 are zero in the
corresponding quotients or they span the same line.

We suppose from now on that all lines generated by the vi’s are distinct.

Dim(〈v0, . . . , v̂ j, . . . ,v4〉) = 2 for some j: By alternation we can suppose that j = 4.
Since no two vectors lie on the same line, it follows that 〈v0, . . . , v̂i, . . . ,v3〉 ∼=
C2 for every i ∈ {0, . . . ,3}; since the 5-tuple generates C3, we further get
〈v0, . . . , v̂i, . . . ,v3,v4〉= C3. The two sums for D∗4Vol(τ) thus reduce to

Vol([〈v0, . . . ,v3〉;v0, . . . ,v3])−
4

∑
i=0

(−1)iVol([C3/〈vi〉;v0, . . . , v̂i, . . . ,v4]).
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The composition of injection and projection

〈v0, . . . ,v3〉 ↪→ C3 −→ C3/〈v4〉

gives an isomorphism identifying

[〈v0, . . . ,v3〉;v0, . . . ,v3] = [C3/〈v4〉;v0, . . . ,v3].

Thus, the remaining term for the first sum cancels with the last term of the
second sum. We are left with

−
3

∑
i=0

(−1)iVol([C3/〈vi〉;v0, . . . , v̂i, . . . ,v3,v4]).

But since 〈v0, . . . , v̂i, . . . ,v3〉= 〈v0,v1,v2,v3〉 the projections of v j, for any i 6= j
between 0 and 3 generate the same complex line in the quotient C3/〈vi〉 so that
Vol vanishes on such configurations, finishing the proof in this case.

For every j, 〈v0, . . . , v̂ j, . . . ,v4〉= C3 and (v0, . . . ,v4) is not generic: Recall that a
q-tuple of vectors (w1, . . . ,wq) in Cm is generic if and only if Dim〈wi1 , . . . ,wik〉=
k whenever k ≤ m and the 1 ≤ i1, . . . , ik ≤ q are distinct. As we have assumed
that none of the v j vanish and no 4-subtuple generate C2, the only way this
5-tuple can be non-generic is if 3 among the vectors generate a 2-dimensional
subspace. We can without loss of generality suppose that Dim(〈v2,v3,v4〉) = 2.
Since 〈v0, . . . , v̂ j, . . . ,v4〉 = C3 for every j, the first sum vanishes. As in the
previous case, the images of v3 and v4 generate the same line in C3/〈v2〉; the
analogous statement holds for C3/〈v3〉 and C3/〈v4〉, so that the i-th term of the
second sum vanishes for i = 2,3,4. Finally, we have

C3 = 〈v2,v3,v4〉⊕〈v1〉= 〈v2,v3,v4〉⊕〈v0〉.

Since there exists g ∈GL(3,C) fixing the plane 〈v2,v3,v4〉 and sending v1 to v0
it follows that

Vol([C3/〈v0〉;v1,v2,v3,v4]) = Vol([C3/〈v1〉;v0,v2,v3,v4]),

finishing the proof of this case.
(v0, . . . ,v4) is generic: As in the previous case, the first sum cancels since the

spaces in the arguments are all 3-dimensional. Using the surjective linear maps
fi of the next Lemma ??, we have

[C3/〈vi〉;v0, . . . , v̂i, . . . ,v4] = [C2; fi(v0), . . . , fi(v̂i), . . . , fi(v4)].

Then Lemma ?? below implies that wk := 〈 fi(vk)〉 for i 6= k is independent of i,
so that the second sum now reduces to ∑

4
i=0(−1)iVolH3(w0, . . . , ŵi, . . . ,w4), for

w j ∈ fi(v j) for i 6= j, which is equal to 0 since VolH3 is a cocycle.
ut
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Lemma 10 Let v0, . . . ,v4 be a generic 5-tuple in C3 and let Li = 〈vi〉. Then there
are 5 lines `0, . . . , `4 in C2 and surjective linear maps fi : C3→ C2 with fi(Li) = 0
and fi(L j) = ` j for j 6= i.

Proof. We use {v2,v3,v4} as a basis of C3 and express everything in those coor-
dinates. Then v0 = (a2,a3,a4) and v1 = (b2,b3,b4) with all coordinates nonzero.
Let

g =

 a2/b2 0 0
0 a3/b3 0
0 0 a4/b4

 ∈ GL(3,C),

so that g(v1) = v0 and g(vi)∈C∗vi for i∈ {2,3,4}. Choose a surjection f0 :C3→C2

with kernel L0 and define

`0 = f0 ◦g(L0), `1 = f0(L1), `2 = f0(L2), `3 = f0(L3), `4 = f0(L4).

Then f0 automatically satisfies the conclusion of the lemma, and so does f1 = f0 ◦g.
We proceed to construct fi for i = 2,3,4. By symmetry, it is enough to construct f2.
Set f2 = µ0 f0 + µ1 f1, with µ0,µ1 6= 0 chosen such that f2(v2) = 0. Note that such
µ0 and µ1 exist since f0(v2) and f1(v2) belong to the same line `2 r{0} and do not
vanish. Since for i = 3,4 f0(vi) and f1(vi) both belong to `i, , then f2(vi) belongs
to `i as well. To show that f (Li) = `i it is thus enough to show that f2(vi), say
f2(v3) 6= 0. Suppose the contrary, then together with f2(v2) = 0 we get

µ0a2 +µ1b2 = 0,
µ0a3 +µ1b3 = 0,

and hence b2/a2 = b3/a3. But this implies b2v0− a2v1 = (b2a4− a2b4)v4 which
is a contradiction with the assumption that v0, . . . ,v4 is generic. Also, f2(v0) =
µ0 f0(v0)+µ1 f1(v0) = µ1 f (v0) ∈ `1 r{0} so that indeed f (L0) = `0, and similarly
f (L1) = `1, finishing the proof of the lemma. ut

Putting together Lemma ?? and ?? finishes the proof of Theorem ??. ut

4 Affine flags

A complete flag F in Cn is a sequence of n+1 vector subspaces F0 ⊂ F1 ⊂ ·· · ⊂ Fn

with dim(F j) = j. By an abuse of terminology, in the sequel by a “flag” we will
mean a complete flag. An affine flag (F,v) is a pair consisting of a flag F and an
n-tuple of vectors v = v1,v2, . . . ,vn such that

F j = Cv j +F j−1, j ≥ 1.

The group GL(n,C) acts naturally on the space F (Cn) of all flags and the space
Faff(Cn) of affine flags.
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We consider (Z[Faff(Cn)k+1],∂k), where Z[Faff(Cn)k+1] is the free abelian
group on Faff(Cn)k+1 and ∂k is the boundary map associated to the usual face maps
ε
(k)
i : Faff(Cn)k+1→Faff(Cn)k consisting in dropping the i-th component for k≥ 0.

We extend the definition to ∂0 :Z[Faff(Cn)]→ 0. Our aim is to construct a morphism
of complexes, or almost so,

Tk : (Z[Faff(Cn)k+1],∂k)−→ (Z[σk],Dk).

To this end, for every multiindex J ∈ [0,n−1]k+1, we define the map

tJ : Faff(Cn)k+1→ σk

by

tJ((F0,v0), . . . ,(Fk,vk)) :=

[
〈F j0+1

0 , . . . ,F jk+1
k 〉

〈F j0
0 , . . . ,F jk

k 〉
;(v j0+1

0 , . . . ,v jk+1
k )

]
and finally Tk : Z[Faff(Cn)k+1]→ Z[σk] by

Tk((F0,v0), . . . ,(Fk,vk)) = ∑
J∈[0,n−1]k+1

tJ((F0,v0), . . . ,(Fk,vk)).

Lemma 11 Let k ≥ 1 and let us consider the following diagram:

Z[Faff(Cn)k+1]
Tk //

∂k
��

Z[σk]

Dk

��
Z[Faff(Cn)k]

Tk−1 // Z[σk−1] .

We have:

1. If k is odd, Tk−1∂k−DkTk = 0.
2. If k is even, Tk−1∂k−DkTk evaluated on an affine flag equals

nk[0;(0, . . . ,0)︸ ︷︷ ︸
k

] ∈ Z[σk−1(0)].

Proof. One verifies the following relations for every 0≤ i≤ k and J ∈ [0,n−1]k+1:

(a) If ji ≤ n−2, then η
(k)
i tJ = ε

(k)
i tJ+δi , where δi = (0, . . . ,0,1,0, . . . ,0) with the 1

in the i-th position.
(b) If ji = n−1, then η

(k)
i tJ((F0,v0), . . . ,(Fk,vk)) = [0;(0, . . . ,0)].

(c) If ji = 0, then ε
(k)
i tJ = tJ(i)ε

(k)
i , where J(i) ∈ [0,n− 1]k is obtained from J by

dropping ji.

We evaluate
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DkTk((F0,v0), . . . ,(Fk,vk)) =
k

∑
i=0

(−1)i
(

∑
J

ε
(k)
i tJ((F0,v0), . . . ,(Fk,vk))

−∑
J

η
(k)
i tJ((F0,v0), . . . ,(Fk,vk))

)
.

Splitting the first inner sum into a sum over J ∈ [0,n−1]k+1 with ji = 0 and J with
ji ≥ 1, we obtain using (c) from the first contribution the value Tk−1ε

(k)
i ((Fj,v j))

while the second contribution together with the second inner sum adds up to
−nk[0;(0, . . . ,0)] using (a) and (b). ut

Now we dualize the objects so far considered, as in Section ??. For the natural
Sk+1-action on Faff(Cn)k+1, the spaces Ralt(Faff(Cn)k+1) of alternating cochains
together with the dual ∂ ∗k of ∂k ⊗R 1 form a complex. Denoting T ∗k the dual of
Tk⊗R 1 we obtain immediately from Lemma ??:

Proposition 12 The map T ∗k : Ralt(σk)→Ralt(Faff(Cn)k+1) is a morphism of com-
plexes, taking values in the subcomplex Ralt(Faff(Cn)k+1)GL(n,C) of GL(n,C)-
invariants.

In particular, defining now

Bn((F0,v0), . . . ,(F3,v3)) :=T ∗3 Vol((F0,v0), . . . ,(F3,v3))

= ∑
J∈[0,n−1]4

Vol

([
〈F j0+1

0 , . . . ,F j3+1
3 〉

〈F j0
0 , . . . ,F j3

3 〉
;(v j0+1

0 , . . . ,v j3+1
3 )

])
,

(5)
where Vol ∈ Ralt(σ3) is the function on σ3 defined in Section ?? we obtain

Corollary 13 The function Bn is a GL(n,C)-invariant alternating cocycle defined
on all 4-tuples of affine flags in Faff(Cn)4, which descends to a well defined
GL(n,C)- hence PGL(n,C)-invariant function on the space F (Cn)4 of 4-tuples
of flags.

Proof. That Bn is alternating follows from the same property of Vol. The fact that
it is a cocycle follows from Proposition ?? and Theorem ??. Finally, it descends to
F (Cn)4 since Vol([C2;v0, . . . ,v4]) only depends on the lines generated by v0, . . . ,v4.
ut

5 Boundedness of Bn

The aim of this section is to establish the following

Theorem 14 Let F0, ...,F3 ∈F (Cn) be arbitrary flags. Then
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Bn(F0, . . . ,F3)≤
1
6

n(n2−1) · v3.

where v3 denotes the volume of the maximal ideal tetrahedron in H3.

We start by introducing some useful notation and giving an argument for Theo-
rem ?? in the case in which the configuration of flags is generic.

Given four flags F0, . . . ,F3 ∈ F (Cn) we denote by F = (F0, . . . ,F3) the corre-
sponding quadruple of flags. For any multi-index J= ( j0, . . . , j3) with 0≤ ji≤ n−1
we let Q(F,J) be the quotient

Q(F,J) :=
〈F j0+1

0 , ...,F j3+1
3 〉

〈F j0
0 , ...,F j3

3 〉

and denote by f (F,J) ⊂ Q(F,J) the 4-tuple of 0 or 1-dimensional subspaces ob-
tained by projecting (F j0+1

0 , ...,F j3+1
3 ) to Q(F,J).

Furthermore, for any nonnegative integers k,n with k ≥ 1 we set

Ck(n) = ]

{
(a0, . . . ,ak−1)

∣∣∣∣∣ai ∈ N,
k−1

∑
i=0

ai = n

}
.

Note that Ck(0) = 1, Ck(1) = k, C1(n) = 1 and we have the recursive relation

Ck(n) =Ck−1(n)+Ck(n−1), (6)

for k≥ 2, n≥ 1. Indeed the set underlying Ck(n) is the disjoint union of the k-tuples
with ak−1 = 0 giving the term Ck−1(n) and the k-tuples with ak−1 ≥ 1 which is in
bijection with the set underlying Ck(n−1) via ak−1 7→ ak−1−1. Using the relation
(??) it is straightforward to conclude that

C4(n) =
(

n+1
1

)
C3(0)+

(
n+1

2

)
C2(1)+

(
n+1

3

)
C1(2)

=
1
6
(n+1)(n+2)(n+3).

Observe that C4(n− 2) is exactly the number of J = ( j0, . . . , j3) with 0 ≤ ji ≤
n−2 for which the dimension

dim(Q(F,J)) = 2,

for quadruple of flags F= (F0, . . . ,F3) ∈ (F (Cn))4 in general position. Let us out-
line the short argument assuming n≥ 3. We distinguish three cases:

• If j0 + ...+ j3 ≤ n−3, then the dimension of the vector space 〈F j0+1
0 , ...,F j3+1

3 〉
is equal to the minimum between n and j0 + · · ·+ j3 +4 so that the quotient has
dimension
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min{n, j0 + . . .+ j3 +4}− ( j0 + . . .+ j3)≥min{3,4} ≥ 3.

• If j0+ ...+ j3 = n−2 then 〈F j0+1
0 , ...,F j3+1

3 〉 has dimension n so that the quotient
has dimension 2.

• If j0 + ...+ j3 ≥ n−1, then the quotient has dimension 0 or 1.

We conclude that C4(n− 2) is the number of nonzero summand in Bn for generic
flags. This proves Theorem ?? for generic 4-tuples of flags. The non-generic case is
more involved and we start with the following simple observation.

Lemma 15 Let F = (F0, . . . ,F3) ∈F (Cn)4 be arbitrary 4-tuple of flags. Then for
every 0≤ j0, j1, j2 ≤ n−2 there exists at most one 0≤ j3 ≤ n−2 such that

Vol(Q(F,( j0, . . . , j3)); f (F,( j0, . . . , j3)) 6= 0.

Proof. If there is no j3 with 0≤ j3 ≤ n−2 such that dim(Q(F,J)) = 2 and F j3+1
3 6=

0 in Q(F,J), we are done. Otherwise take j3 minimal satisfying these two condi-
tions. This implies that F j0+1

0 ,F j1+1
1 ,F j2+1

2 all lie on the same line in Cn/〈F j3+1
3 〉

and hence in Cn/〈F j
3 〉 for any j > j3 and also in 〈F j0+1

0 , ...,F j+1
3 〉/〈F j0

0 , ...,F j
3 〉. Thus

the volume vanishes for j > j3. It clearly vanishes for j < j3 by definition of j3. ut

Notice that the lemma implies immediately that∣∣∣∣∣∣∣∣∣∣∣
∑

J∈

{
j0 = j1 = j2 = 0,
0≤ j3 ≤ n−2

}Vol(Q(F,J); f (F,J))

∣∣∣∣∣∣∣∣∣∣∣
≤ v3 (7)

and ∣∣∣∣∣∣∣∣∣∣∣
∑

J∈

{
j0 = j1 = 0

0≤ j2, j3 ≤ n−2

}Vol(Q(F,J); f (F,J))

∣∣∣∣∣∣∣∣∣∣∣
≤C2(n−2) · v3; (8)

in fact there are C2(n−2) = n−1 choices for j2 giving by Lemma ?? each at most
one nonzero summand. We will further show:

Lemma 16 Let F = (F0, . . . ,F3) ∈ (F (Cn))4 be an arbitrary quadruple of flags.
Then ∣∣∣∣∣∣∣∣∣∣∣

∑

J∈

{
j0 = 0

0≤ j1, j2, j3 ≤ n−2

}Vol(Q(F,J); f (F,J))

∣∣∣∣∣∣∣∣∣∣∣
≤C3(n−2) · v3.
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Proof (of Theorem ?? and Lemma ??). We prove the theorem and the lemma simul-
taneously by induction on n.

For n = 2 there is only one summand ( j0, ..., j3) = (0, ...,0) in both the theorem
and the lemma, so the inequalities are immediate. Suppose that the theorem and the
lemma are proven for n−1. By definition, we have

Bn(F0, . . . ,F4) = ∑
J∈{( j0,..., j3)|0≤ ji≤n−2}

Vol(Q(F,J); f (F,J)) .

Indeed if ji = n−1 then the quotient is 1 or 0-dimensional and the volume vanishes.
We split the above sum into three, summing over

J1 = {( j0, . . . , j3) | j0 = j1 = 0, 0≤ j2, j3 ≤ n−2},
J2 = {( j0, . . . , j3) | j0 = 0, 0 < j1 ≤ n−2, 0≤ j2, j3 ≤ n−2},
J3 = {( j0, . . . , j3) | 0 < j0 ≤ n−2,0≤ j1, j2, j3 ≤ n−2}.

We first analyze the sum over J3. Denote by V the image of a subspace V ⊂
Cn under the projection onto Cn/〈F1

0 〉. If F ∈F (Cn) is a complete flag, then we
denote by F ∈ F (Cn/〈F1

0 〉) the complete flag we obtain as the projection of F .
More precisely, the n+ 1 subspaces of F project onto n distinct subspaces in the
quotient, giving the n distinct subspaces of F :

F0︸︷︷︸
=F0

⊂ ...⊂ F i−1︸︷︷︸
=F i−1

⊂ F i = F i+1︸ ︷︷ ︸
=F i

⊂ F i+2︸︷︷︸
=F i+1

⊂ ...⊂ Fn︸︷︷︸
=Fn−1

= Cn/〈F1
0 〉,

for some 0 ≤ i ≤ n− 1. Note in particular that F j is equal to either F j or F j+1 (or
both in the unique case of j = i). The projection of F0 is

F0
0 = F1

0 ⊂ F2
0 ⊂ ...⊂ Fn

0 = Cn/〈F1
0 〉,

so in this case, the j-th space of F0 is always the projection of the ( j+ 1)-th space
of F0.

Note that since in the sum over J3, the index j0 is greater or equal to 1, we have
for each summand 1≤ j0 ≤ n−2, 0≤ j1, j2, j3 ≤ n−2 that

Vol(Q(F,J); f (F,J)) = Vol

 〈F j0+1
0 , ...,F j3+1

3 〉

〈F j0
0 , ...,F j3

3 〉
;F j0+1

0 , ...,F j3+1
3

 .

Furthermore, if jk, for 1≤ k≤ 3 is such that F jk
k = F jk+1

k then the space F jk+1
k is 0 in

the quotient and thus the volume vanishes. Instead of summing on the dimensions of
the spaces of the flags F0, ...,F3, we can thus sum over the dimensions of the spaces
of the quotient flags F0, ...,F3 and the sum over J3 becomes
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∑
0≤i0,...,i3≤n−3

Vol

(
〈F0

i0+1 , ...,F3
i3+1〉

〈F0
i0 , ...,F3

i3〉
;F0

i0+1
, ...,F3

i3+1

)
≤C4(n−3) · v3,

(9)

where the last inequality follows by the induction hypothesis in the theorem.
Similarly, for the sum over J2 we quotient by F1

1 to obtain

∑

J∈

{
j0 = 0, 1≤ j1 ≤ n−2
0≤ j1, j2, j3 ≤ n−2

}Vol(Q(F,J); f (F,J))

= ∑
i0 = 0

0≤ i1, i2, i3 ≤ n−3

Vol

(
〈F0

i0+1 , ...,F3
i3+1〉

〈F0
i0 , ...,F3

i3〉
;F0

i0+1
, ...,F3

i3+1

)

≤C3(n−3) · v3,

by the induction hypothesis in the lemma. Since the sum over J1 is by (??) bounded
by C2(n−2) · v3, it follows that the sum over J1 and J2 is indeed bounded by

(C2(n−2)+C3(n−3)) · v3 =C3(n−2) · v3,

which proves the lemma. It follows that Bn(F0, . . . ,F3) is bounded by

(C3(n−2)+C4(n−3)) · v3 =C4(n−2) · v3,

which proves the theorem. ut

In the next section we will characterize the equality case, for which it will be
useful to know, as a preliminary case, that equality can happen only if the flags are
in general position, i.e. flags for which

dim
(
〈F j0

0 , ...,F j3
3 〉
)
= j0 + ...+ j3

whenever j0 + ...+ j3 ≤ n. The proof of the following lemma uses some of the
arguments in the proof of Theorem ??.

Lemma 17 If equality holds in Theorem ?? then the flags F0, ...,F3 are in general
position.

Proof. We prove the lemma by induction on n. For n = 2 the four flags F0, ...,F3
(which are given by their lines F1

i ) are in general position if and only if dim(〈F1
i ,F

1
j 〉)=

2 for every i 6= j, i.e. if and only if the lines are distinct. But if two lines are
equal, then B2(F0, . . . ,F3) = 0. Suppose the lemma proven for n− 1. As before,
denote by F the projection of a complete flag F ∈ F (Cn) to a complete flag in
F (Cn/〈F1

0 〉). Recall that in particular, F j = F j or F j−1. Suppose that j is minimal
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such that F j
1 = F1

j−1 or equivalently such that F1
0 ⊂ F j

1 . By the proof of Theo-
rem ??, Bn(F0, . . . ,F3) is maximal if and only if each of the sums over J1,J2 and J3
is maximal. In particular, by symmetry, the sum over j0 = j2 = 0 is also maximal
and hence

∑
j0 = j2 = 0

0≤ j1, j3 ≤ m−2

Vol

(
〈F1

0 ,F
j1+1

1 ,F1
2 ,F

j3+1
3 〉

〈F j1
1 ,F j3

3 〉
;F1

0 ,F
j1+1

1 ,F1
2 ,F

j3+1
3

)

=C2(n−2) · v3.

But for j1 ≥ j, the space F1
0 is 0 in the quotient 〈F

1
0 ,F

j1+1
1 ,F1

2 ,F
j3+1

3 〉
〈F j1

1 ,F
j3

3 〉
, while for j1 = j−

1, the spaces F1
0 and F j

1 are equal in the quotient. In both cases, the volume vanishes.
By Lemma ?? it follows that the above sum is smaller or equal to ( j−1) ·v3, hence
we must have j−1≥C2(n−2) = n−1.

We have thus established that F1
0 ⊂ Fn

1 rFn−1
1 and by symmetry the same holds

for the flags F2 and F3. In particular, F j
k = Fk

j for k = 1,2,3 and 0≤ j≤ n−1, while

F j
0 = F0

j−1 for j ≥ 1.
Let 0 ≤ j0, j1, j2, j3 ≤ n be such that j0 + ...+ j3 ≤ n. Since the case j0 = ... =

j3 = 0 is trivial we can by symmetry suppose that j0 ≥ 1. Again, it follows from the
proof of the theorem that Bn(F0, . . . ,F3) is maximal if and only if the sum over J3 is
maximal. This sum is rewritten in (??) as

Bn−1(F0, ....,F3) =C4(n−3) · v3.

Thus by induction, the flags F0, ...,F3 are in general position. It remains to compute

dim(〈F j0
0 , ...,F j3

3 〉) = dim(〈F j0
0 , ...,F j3

3 〉)+1

= dim(〈F0
j0−1

,F1
j1 , ...,F3

j3〉)+1
= ( j0−1)+ j1 + j2 + j3 +1 = j0 + j1 + j2 + j3,

which finishes the proof of the lemma. ut

6 Maximality properties of the cocycle

The main result of this section is Theorem ??, in which we characterize the config-
uration of 4-tuples of flags on which Bn is maximal. This configuration is related
to the Veronese embedding to which we now turn. The irreducible representation
πn : PSL(2,C)→ PSL(n,C) induces a πn-equivariant boundary map

ϕn : P(C2)−→F (Cn),
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also known as the Veronese embedding. It is defined as follows: ϕn

([
x
y

])
is the

complete flag with (n−1)-dimensional space with basis



x
y
0
...

0


,



0
x
y
0
...
0


, ...,



0
...

0
x
y




,

where
[

x
y

]
are homogeneous coordinates on P(C2). The lower dimensional spaces

are then obtained inductively with basis v
′
i = xvi + yvi+1, for i = 1, ...,k− 1, where

{v1, ...,vk} is the basis of the k-dimensional space. More precisely, the basis of the
(n−2)-dimensional space is



x2

2xy
y2

0
...
0


, ...,



0
...
0
x2

2xy
y2




.

The (n− i)-dimensional space has as basis the vectors0, ...,0︸ ︷︷ ︸
k

,xi,

(
i
1

)
xi−1y1, . . . ,

(
i
j

)
xi− jy j, . . . ,

(
i

i−1

)
x1yi−1,yi,0, . . . ,0︸ ︷︷ ︸

n−i−k−1


T

, (10)

for k = 0, . . . ,n− i−1. We give another useful description of this complete flag. For
i = 1, . . . ,n−1, set

zn
i =

xi,

(
i
1

)
xi−1y,

(
i
2

)
xi−2y2, ... ,

(
i
i

)
yi,0, . . . ,0︸ ︷︷ ︸

n−i−1

T

.

Note that zn
i is the first vector of the basis in (??) of the (n−i)-th space of ϕn

([
x
y

])
,

that is the one corresponding to k = 0. Furthermore, since zn
i does not belong to the

space generated by zn
n−1,z

n
n−2, . . . ,z

n
i+1, the (n− i)-th space admits the alternative

basis {
zn

n−1,z
n
n−2, . . . ,z

n
i+1,z

n
i
}
.

With this at hand, it is easy to prove the following:
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Lemma 18 Let D be the (n− 1)× (n− 1) diagonal matrix with diagonal entries
1,2, . . . ,n− 1. Let p be the projection Cn → Cn−1 ∼= 〈e2, ...,en〉 with kernel 〈e1〉.
Then

D · p
(

ϕn

([
x
y

]))
= ϕn−1

([
x
y

])
,

for any
[

x
y

]
∈ P(C2).

Note that the projection p induces a map from the set of complete flags in Cn to
the set of complete flags in Cn−1. (See the proof of Theorem ?? and Lemma ?? for
a detailed description of the induced map.)

Proof. For y = 0, the complete flag ϕn

([
1
0

])
is given as

〈e1〉 ⊂ 〈e1,e2〉 ⊂ 〈e1,e2,e3〉 ⊂ ...⊂ 〈e1,e2, ...,en−1〉.

Its projection by p is the complete flag

〈e2〉 ⊂ 〈e2,e3〉 ⊂ ...⊂ 〈e2, ...,en−1〉.

Multiplication by D leaves this complete flag invariant, and this is indeed the image

of
[

1
0

]
under ϕn−1.

Suppose now that y 6= 0. We may assume that y = 1. Note that the projection

by p of the (n− i)-dimensional space of ϕn

([
x
y

])
is (n− i)-dimensional, so

p(zn
n−1), . . . , p(zn

i ) is a basis of it. We show that D · p(zn
i ) = i · zn−1

i−1 , from which
the lemma follows immediately. Indeed, projection by p erases the first entry of zn

i .
For the remaining entries, we have that the j-th entry of zn

i , for 2≤ j ≤ n is(
i
j

)
xi− j.

Multiplication by D will multiply this entry by j, giving

i ·
(

i−1
j−1

)
xi− j,

which is precisely i times the ( j−1)-th entry of zn−1
i−1 .

Theorem 19 Let F0, ...,F3 ∈F (Cn). Then

Bn(F0, . . . ,F3) =
1
6

n(n2−1) · v3

if and only if there exists g ∈ GL(n,C) and a positively oriented regular simplex
with vertices ξ0, ...,ξ3 ∈ P(C2) such that
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Fi = g(ϕn(ξi)),

for i = 0, ...,3.

Corollary 20 Let F0, ...,F3 ∈F (Cn) be a maximal 4-tuple, in the sense that

|Bn(F0, . . . ,F3)|=
1
6

n(n2−1) · v3.

If for F ∈F (Cn), there is equality

Bn(F0, . . . ,F2,F3) = Bn(F0, . . . ,F2,F),

then F = F3.

For the rest of this section, we will use the notation introduced after Lemma ?? at
the beginning of Section ??. The first direction of Theorem ?? will follow from the
following more general computation:

Proposition 21 Let ξ0, ...,ξ3 ∈ P(C2) and set Fi = ϕn(ξi). Then

Bn(F0, . . . ,F3) =
1
6

n(n2−1) ·VolH3(ξ0, . . . ,ξ3).

To prove Proposition ?? by induction, we first prove:

Lemma 22 Let ξ0, ...,ξ3 ∈ P(C2) and set Fi = ϕn(ξi). Then

∑
j0 = j1 = 0

0≤ j2, j3 ≤ n−2

Vol

(
〈F1

0 ,F
1
1 ,F

j2+1
2 ,F j3+1

3 〉
〈F j2

2 ,F j3
3 〉

;F1
0 ,F

1
1 ,F

j2+1
2 ,F j3+1

3

)

=C2(n−2) ·VolH3(ξ0, . . . ,ξ3).

Proof. Let ξ0, ...,ξ3 ∈ P(C2). If ξi = ξ j for i 6= j then both sides of the equality
vanish. By transitivity of SL2C on distinct triples of points, it is enough to prove the
lemma for the four points

ξ0 =

[
1
1

]
, ξ1 =

[
z
1

]
, ξ2 =

[
0
1

]
, ξ3 =

[
1
0

]
,

where z ∈ C. Then the line of the flag ϕn(ξ0) is generated by the vector(
1,
(

n−1
1

)
,

(
n−1

2

)
, ...,

(
n−1
n−1

)
,1
)T

and the the line of the flag ϕn(ξ1) is generated by the vector(
zn−1,

(
n−1

1

)
zn−2,

(
n−1

2

)
zn−3, ...,

(
n−1
n−1

)
z,1
)T

.
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The flag ϕn(ξ2) is

〈e1〉 ⊂ 〈e1,e2〉 ⊂ 〈e1,e2,e3〉 ⊂ ...⊂ 〈e1,e2, ...,en−1〉

and the flag ϕn(ξ3) is

〈en〉 ⊂ 〈en,en−1〉 ⊂ 〈en,en−1,en−2〉 ⊂ ...⊂ 〈en,en−1, ...,e2〉.

The quotient 〈F1
0 ,F

1
1 ,F

j2+1
2 ,F j3+1

3 〉/〈F j2
2 ,F j3

3 〉 can only be 2-dimensional if j2 +
j3 = n− 2. Fix 0 ≤ j2 ≤ n− 2. and notice that there are exactly C2(n− 2) = n− 1
such j2’s. Let j3 = n−2− j2. The space generated by ϕn(ξ2)

j2 and ϕn(ξ3)
n−2− j2 is

the space
〈ϕn(ξ2)

j2 ,ϕn(ξ3)
n−2− j2〉= 〈e1, ...,e j2 ,e j2+2, ...,en〉.

We choose as isomorphism between

Cn/〈ϕn(ξ2)
j2 ,ϕn(ξ3)

n−2− j2〉 ∼= C2 ∼= 〈e j2+1,e j2+2〉

the map which is induced by the orthogonal projection from Cn onto 〈e j2+1,e j2+2〉.
Then the four points defined by F1

0 ,F
1
1 ,F

j2+1
2 ,F j3+1

3 in the projectivisation of the
quotient are [(

n−1
j2

)
,

(
n−1
j2 +1

)]
,[(

n−1
j2

)
zn−( j2+1),

(
n−1
j2 +1

)
zn−( j2+2)

]
,

[1,0] and [0,1] .

Acting with the diagonal 2 by 2 matrix with entries
(n−1

j2

)−1
,
( n−1

j2+1

)−1
, and rescaling

the second vector by z−n+( j2+2), the four points become

[1,1] , [z,1] , [1,0] , [0,1] ,

which are exactly the original vertices ξ0, . . . ,ξ3. It follows that

Vol

(
〈F1

0 ,F
1
1 ,F

j2+1
2 ,Fn−1− j2

3 〉
〈F j2

2 ,Fn−2− j2
3 〉

;F1
0 ,F

1
1 ,F

j2+1
2 ,Fn−1− j2

3

)
= VolH3(ξ0, . . . ,ξ3),

which proves the lemma. ut

Proof (of Proposition ??). We prove the proposition by induction on n, establish-
ing first the cases of n = 2 and n = 3. For n = 2, there is nothing to prove. For
n = 3, let ξ0, ...,ξ3 ∈ P(C2). The volume B3(ϕ3(ξ0), ...,ϕ3(ξ3)) is written as a sum
over 0 ≤ j0, ..., j3 ≤ 1. For ( j0, ..., j3) = (0, ...,0) the quotient is 3-dimensional so
the summand is 0. We thus have at most four nonzero summands given by let-
ting one of the jk’s be equal to 1. The set {(0,0,1,0),(0,0,0,1)} is exactly the
set summed over in Lemma ?? for n = 3, so the value of the volume on these
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two multi-indices is equal to 2 ·VolH3(ξ0, . . . ,ξ3). By symmetry, the same holds
for {(1,0,0,0),(0,1,0,0)}, so that the value of B3(ϕn(ξ0), ...,ϕn(ξ3)) is indeed
4 ·VolH3(ξ0, . . . ,ξ3) =C4(1) ·VolH3(ξ0, . . . ,ξ3).

Suppose that n≥ 4 and let ξ0, ...,ξ3 ∈P(C2). As usual, the volume Bn(ϕn(ξ0), ...,ϕn(ξ3))
is written as a sum over 0≤ j0, ..., j3 ≤ n−2. We rewrite this sum as a sum over the
three sets

{1≤ j0 ≤ n−2, 0≤ j1, j2, j3 ≤ n−2},
{1≤ j1 ≤ n−2, 0≤ j0, j2, j3 ≤ n−2},
{ j0 = j1 = 0, 0≤ j2, j3 ≤ n−2}

minus the sum over

{1≤ j0, j1 ≤ n−2, 0≤ j2, j3 ≤ n−2}.

It follows from Lemma ?? that the third term is equal to C2(n− 2) · v3. Taking the
quotient by F1

0 , the first term becomes

Bn−1(ϕn(ξ0), ...,ϕn(ξ3)).

But by Lemma ??, and with D therein,

ϕn(ξi) = D−1
ϕn−1(ξi),

for 0≤ i≤ 3. In particular, the first term of the sum can be rewritten as

Bn−1(ϕn−1(ξ0), . . . ,ϕn−1(ξ3)),

which is equal to C4(n−3) ·VolH3(ξ0, . . . ,ξ3) by induction. By symmetry, the same
holds for the second term of the sum. For the fourth (and last) term, we take first the
quotient by F1

0 and then by F1
1 , apply twice Lemma ?? to conclude that it is equal to

Bn−2(ϕn−2(ξ0), . . . ,ϕn−2(ξ3)),

which by induction is equal to C4(n−4) ·VolH3(ξ0, . . . ,ξ3).
In conclusion, Bn(ϕn(ξ0), ...,ϕn(ξ3)) is equal to VolH3(ξ0, . . . ,ξ3) times

2 ·C4(n−3)+ C2(n−2)︸ ︷︷ ︸
=C3(n−2)−C3(n−3)

−C4(n−4)

=C4(n−3)+C3(n−2)−C3(n−3)+C4(n−3)−C4(n−4)︸ ︷︷ ︸
=C3(n−3)︸ ︷︷ ︸

=0

=C4(n−2),

which finishes the proof of the proposition. ut
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Lemma 23 The group GL(n,C) acts transitively on triples (F0,F1,L), where F0,F1 ∈
F (Cn) and L is a line in Cn such that (F0,F1,L) is in general position, that is such
that for every 0≤ j0, j1 ≤ n,

dim〈F j0
0 ,F j1

1 〉 = min{ j0 + j1,n},
dim〈F j0

0 ,F j1
1 ,L〉 = min{ j0 + j1 +1,n}.

Proof. It is well known that GL(n,C) acts transitively on the set of pairs of trans-
verse flags. As a result we may assume that

F0 =〈e1〉 ⊂ 〈e1,e2〉 ⊂ ...⊂ 〈e1,e2, ...,en−1〉,
F1 =〈en〉 ⊂ 〈en,en−1〉 ⊂ ...⊂ 〈en,en−1, ...,e2〉.

Let L = 〈v〉; if v j = 0 for some 1≤ j ≤ n, then dim〈F j−1
0 ,Fn− j

1 ,L〉= n−1, contra-
dicting the genericity assumption. Thus all the co-ordinates of v are non-zero; the di-
agonal matrix diag(1/v1, . . . ,1/vn) then stabilises F0,F1 and sends v to e1+ · · ·+en.
ut

Lemma 24 For any generic (in the sense of Lemma ??) triple (F0,F1,F1
2 ), where

F0,F1 ∈F (Cn) and F1
2 is a line, there exists a unique line F1

3 such that

∑
0≤ j0, j1 ≤ n−2

j0 + j1 = n−2

Vol

(
Cn

〈F j0
0 ,F j1

1 〉
;F j0+1

0 ,F j1+1
1 ,F1

2 ,F
1
3

)
=C2(n−2) · v3.

Proof. By Lemma ?? we may assume that

F0 = 〈e1〉 ⊂ 〈e1,e2〉 ⊂ ...⊂ 〈e1,e2, ...,en−1〉,

F1 = 〈en〉 ⊂ 〈en,en−1〉 ⊂ ...⊂ 〈en,en−1, ...,e2〉

and
L = 〈e1 + ...+ en〉.

For 0 ≤ j0 ≤ n− 2 let j1 = n− 2− j0. The space generated by F j0
0 and Fn−2− j0

1 is
the space

〈F j0
0 ,Fn−( j0+1)

1 〉= 〈e1, ...,e j0 ,e j0+2, ...,en〉.

The orthogonal projection of Cn onto 〈e j0+1,e j0+2〉 induces an isomorphism

Cn/〈F j0
0 ,F j1

1 〉 ∼= 〈e j0+1,e j0+2〉 .

Let v = (v1, ...,vn)
T be a generator of F1

3 . The points F j0+1
0 ,F j1+1

1 ,F1
2 ,F

1
3 are

mapped, in the projectivization of 〈e j0+1,e j0+2〉, to

[1,0] , [0,1] , [1,1] ,
[
v j0+1,v j0+2

]
.
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For this 4-tuple to be the vertices of a positively oriented regular simplex, we need
v j0+1/v j0+2 = ω = eiπ/3, for every 0≤ j0 ≤ n−2. Thus, F1

3 is generated by

(ωn−1,ωn−2, ...,ω,1)T ,

which proves the lemma. ut

Proof (of Theorem ??). The first direction of the theorem follows from the more
general Proposition ??. For the other direction, fix a positively oriented simplex
with vertices ξ0, ...,ξ3 ∈ P(C2). Let F0, ...,F3 be flags such that

Bn(F0, . . . ,F3) =C4(n−2) · v3.

By Lemma ?? this implies that the flags are in general position. By the transitiv-
ity of GL(n,C) on pairs of flags and 1-dimensional space all in generic positions
established in Lemma ??, we can assume that F0 = ϕn(ξ0), F1 = ϕn(ξ1) and the
1-dimensional space of F2 is F1

2 = ϕn(ξ2)
1. Maximality and genericity imply that

Vol

(
〈F j0+1

0 ,F j1+1
1 ,F j2+1

2 ,F j3+1
3 〉

〈F j0
0 ,F j1

1 ,F j2
2 ,F j1

3 〉
;F j0+1

0 ,F j1+1
1 ,F j2+1

2 ,F j3+1
3

)
= v3

for any j0 + ...+ j3 = n− 2. Thus it follows by Lemma ?? that F1
3 is uniquely

determined and since ϕn(ξ3)
1 by the other direction of the proof also satisfies the

condition of the lemma, it follows that F1
3 = ϕn(ξ3)

1.
Inductively suppose that F j

3 = ϕn(ξ3)
j. We will show that F j+1

3 = ϕn(ξ3)
j+1.

Indeed, look at the quotient Cn/F j
3 . By the genericity of ϕn(ξ0), ...,ϕn(ξ3), the pro-

jections F0,F1 of the flags F0 and F1 are still in general position and moreover, the
line F1

2 projects to a line F1
2 in general position with respect to F0,F1. Note that the

complete flag F3 projects to a complete flag F3 with F3
j3 = F j3+ j+1

3 . Maximality im-
plies that the volume is equal to v3 for the 4-tuple ( j0, ..., j3) = (k,n−k− j−2,0, j)
for any 0≤ k ≤ n− j−2, which we can rewrite as

Vol

(
〈F0

j0+1
,F j1+1

1 ,F2
1
,F3

1〉
〈F0

j0 ,F j1
1 〉

;F0
j0+1

,F j1+1
1 ,F2

1
,F3

1

)
= v3.

Thus by Lemma ??, F3
1
= F j+1

3 is completely determined by this maximality con-
dition. In particular, F j+1

3 is completely determined by the fact that

Vol

(
〈F j0+1

0 ,F j1+1
1 ,F1

2 ,F
j+1

3 〉
〈F j0

0 ,F j1
1 ,F j〉

;F j0+1
0 ,F j1+1

1 ,F1
2 ,F

j+1
3

)
= v3,

for any 0≤ j0 ≤ n− j−2 and j1 = n− j0− j−2. Since ϕn(ξ3)
j+1 also satisfies this

maximality condition by the other direction of the theorem, it follows that F j+1
3 =

ϕn(ξ3)
j+1.
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We have thus shown that F3 = ϕn(ξ3). By symmetry, we can apply the same
argument to show that F2 = ϕn(ξ2), which finishes the proof of the theorem. ut

7 Proof of Theorem ??

Recall that the space σk(n) is the quotient of {(x0, . . . ,xk) ∈ (Cn)k+1 | 〈x0, . . . ,xk〉=
Cn} by the diagonal GL(n,C)-action and is thus in a natural way a complex mani-
fold of dimension (k+ 1− n) · n. The symmetric group Sk+1 acts on σk(n) and we
let B∞

alt(σk) denote the Banach space of bounded alternating Borel functions on σk.
Together with D∗k , the dual of Dk⊗R 1 : R[σk]→ R[σk−1], we obtain a complex of
Banach spaces (B∞

alt(σ∗),D∗).
Using Proposition ??, we deduce that the restriction of T ∗k to the subcomplexes

of bounded Borel functions gives a morphism of complexes

T ∗k : B∞
alt(σk)→B∞

alt(Faff(Cn)k+1)GL(n,C).

Recall now that (B∞
alt(Faff(Cn)∗+1),∂∗) is a strong resolution of R by GL(n,C)-

Banach modules (see [?]) and thus we have a canonical map c∗ from the cohomol-
ogy of the complex of GL(n,C)-invariants to the bounded continuous cohomology
H∗cb(GL(n,C)) of GL(n,C). (As announced in § ??, we are dropping the explicit
dependence on the coefficients.) As a result, we obtain by composing ck with the
map induced in cohomology by T ∗k a map

Sk(n) : Hk(B∞
alt(σ∗))−→ Hk

cb(GL(n,C),R).

Proposition 25 For k ≥ 2 the diagram

Hk
cb(GL(n+1,C))

��

Hk(B∞
alt(σ∗))

Sk(n+1)
66

Sk(n) ((
Hk

cb(GL(n,C)),

where the vertical arrow is induced by the left corner injection, commutes.

Proof. If n≥ 2, let in : Cn ↪→ Cn+1 denote the embedding

x1
...

xn

 7→


x1
...

xn
0

 .
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We define in : Faff(Cn)→Faff(Cn+1) by in((F,v)) := (F ′,v′), where F ′ j := in(F j),
v′ j = in(v j) and v′n+1 = en+1, for 0≤ j ≤ n.

Let now J ∈ [0,n]k+1 and I = {i : 0≤ i≤ k such that ji = n}.
One verifies that if I =∅, then J ∈ [0,n−1]k+1 and

tJ(in((Fj,v j))) = tJ((Fj,v j)) , (11)

while if I 6=∅, then
tJ(in((Fj,v j))) = [C;δ

I
i ] , (12)

where δ I
i = 1 if i ∈ I and 0 otherwise.

We deduce from (??) and (??) that in induces for k ≥ 2 a commutative diagram
of complexes

B∞
alt(Faff(Cn+1)k+1)

i∗n

��

B∞
alt(σk)

T ∗k
66

T ∗k ((
B∞

alt(Faff(Cn)k+1).

Indeed, for k ≥ 2 alternating functions vanish on [C;(δ I
i )]. On the other hand i∗n

implements the restriction map in bounded cohomology associated to the left corner
injection. ut

Proof (of Theorem ??). We have βb(n) = S3(n)([Vol]), where Vol ∈B∞
alt(σ3) was

defined in Section ??. The compatibility under the left corner injection then follows
from the above proposition. Now H3

cb(GL(2,C)) is one dimensional, generated by
βb(2). Thus we deduce that βb(n) 6= 0 and dimH3

cb(GL(n,C))≥ 1. We will conclude
by using the stability results from Monod [?]. For n≥ 2, the diagram of short exact
sequence

(1) // C× Id �
� // GL(n,C) // // PGL(n,C) //

∼=
��

(1)

(1) // µn Id �
� //?�

OO

SL(n,C) // //
?�

OO

PSL(n,C) // (1)

induces a diagram of isometric isomorphisms in bounded cohomology

H∗cb(GL(n,C))

∼=
��

H∗cb(PGL(n,C))
∼=oo

H∗cb(SL(n,C)) H∗cb(PSL(n,C)) .
∼=oo

(13)
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Hence [?, Theorem 1.1 and Proposition 3.4] can be rephrased by saying that for 0≤
q≤ n, the standard embedding GL(n,C) ↪→ GL(n+1,C) induces an isomorphism

Hq
cb(GL(n+1,C))

∼= //Hq
cb(GL(n,C))

and an injection

Hq
cb(GL(q,C)) �

� //Hq
cb(GL(q−1,C)) .

Applying this to q = 3 we obtain that dimH3
cb(GL(n,C)) = 1, which proves the

first part of Theorem ??. As for the second part, it follows from Section ?? that
‖βb(n)‖∞ ≤ (1/6)n(n2−1)v3. For the other inequality, let ϕn : P(C2)→F (Cn) be
the Veronese embedding. Then

Bn(ϕn(ξ0), . . . ,ϕn(ξ3)) =
n(n2−1)

6
B2(ξ0, . . . ,ξ3)

by Proposition ?? and as a result, T ∗n (βb(n)) =
n(n2−1)

6 βb(2). Since ‖βb(2)‖∞ = v3,
we deduce

n(n2−1)
6

v3 = ‖π∗n (βb(n))‖∞ ≤ ‖βb(n))‖∞,

which, using (??), concludes the proof of Theorem ??. ut

8 Proof of Theorem ??

8.1 The Borel invariant as a multiplicative constant

The aim of this subsection is to identify the Borel invariant B(ρ) as a multiplicative
factor in the composition of certain bounded cohomology maps (Proposition ??) and
to establish the simple direction of Theorem ?? (Lemma ??). The proof is identical
to the corresponding statement in [?, Proposition 3.3] and is based on the existence
of a natural transfer map

H∗b(Γ )
transΓ // H∗cb(PSL(2,C))

defined by integrating a Γ -invariant cocycle over Γ \G to make it G-invariant.
We refer the reader to [?, Section 3.2] for the complete definitions and proofs.

Proposition 26 Let Γ be a lattice in PSL(2,C) and ρ : Γ → PSL(n,C) be a repre-
sentation. The composition

H3
cb(PSL(n,C))

ρ∗ // H3
b(Γ )

transΓ // H3
cb(PSL(2,C))∼= R
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maps βb(n) to B(ρ)
Vol(Γ \PSL(2,C))βb(2) and∣∣∣∣ B(ρ)

Vol(Γ \PSL(2,C))

∣∣∣∣≤ 1
6

n(n2−1).

Lemma 27 Let i : Γ ↪→ PSL(2,C) be a lattice embedding. Then

(πn ◦ i)∗βb(n) =
1
6
(n−1)n(n+1)Vol(i(Γ )\PSL(2,C))βb(2) .

Proof. Setting ρ = πn◦i in Proposition ??, we see that the pullback ρ∗ : H3
cb(PSL(n,C))→

H3
b(Γ ) factors through H3

cb(PSL(2,C)). The composition of maps of the proposition
thus becomes

H3
cb(PSL(n,C))

π∗n // H3
cb(PSL(2,C)) i∗ // H3

b(Γ )
transΓ // H3

cb(PSL(2,C))∼= R.

The conclusion is immediate from the fact that

π
∗
n (βb(n)) =

1
6
(n−1)n(n+1) ·βb(2)

(Theorem ?? ) and that transΓ ◦i∗ = Id. ut

8.2 Proof of Theorem ??

An essential aspect of bounded cohomology is that it can be implemented by al-
ternating L∞ invariant cocycles on an appropriate boundary, [?]. Then if a bounded
cohomology class can be represented by a strict cocycle, its pullback via a represen-
tation, for example ρ : Γ → PSL(n,C) in our case, can be implemented by boundary
maps, [?]. Recall that by Furstenberg, given any representation of Γ into PSL(n,C),
there is always an equivariant measurable map

ϕ : P(C2)−→M1(F (Cn)),

where M1(F (Cn)) denotes the space of probability measures on the flag space.
More precisely, for every γ ∈ Γ and almost every ξ ∈ P(C2), we have

ϕ(i(γ) ·ξ ) = ρ(γ) ·ϕ(ξ ). (14)

The bounded cohomology groups H3
cb(PSL(n,C)) and H3

b(Γ ) can both be com-
puted from the corresponding L∞ equivariant cochains on F (Cn) and ∂H3 = P(C2)
respectively. The image of βb(n) by ρ∗ : H3

cb(PSL(n,C))→Hn
b(Γ ) is represented at

the cochain level by the pullback by ϕ , or more precisely, by the following cocycle:
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(∂H3)4 −→ R
(ξ0, . . . ,ξ3) 7−→ ϕ(ξ0)⊗·· ·⊗ϕ(ξ3)[Bn],

where the last expression means that the cocycle Bn is integrated with respect to
the product of the four measures ϕ(ξ0), . . . ,ϕ(ξ3), [?]. It should however be noted
that the pullback in bounded cohomology cannot in general be implemented by
boundary maps, unless the class to pull back can be represented by a strict invariant
Borel cocycle [?].

The further composition with the transfer map amounts to integrating the pre-
ceding cocycle over a fundamental domain for Γ \PSL(2,C). In conclusion, since
transΓ ◦ρ∗(Bn) is by Proposition ?? equal to B(ρ)

Vol(Γ \PSL(2,C)) ·βb(2) and at the coho-
mology level there are no coboundaries in degree 3 [?], the map transΓ ◦ρ∗ sends
the cocycle Bn to B(ρ)

Vol(Γ \PSL(2,C))VolH3 . Thus, for almost every ξ0, . . . ,ξ3 ∈ ∂H3, we
have∫

Γ \PSL(2,C)
ϕ(gξ0)⊗·· ·⊗ϕ(gξ3)[Bn]dµ(ġ)=

B(ρ)

Vol(Γ \PSL(2,C))
VolH3(ξ0, . . . ,ξ3) .

(15)
It is however shown in [?, Proposition 4.2 for n = 3] that this almost everywhere

equality is in fact a true equality. As a consequence, we show that in the maximal
case, the map ϕ takes essentially values in the set of Dirac masses:

Corollary 28 Let i : Γ → PSL(2,C) be a lattice embedding, ρ : Γ → PSL(n,C)
a representation and ϕ : ∂H3 → M1(F (Cn)) a ρ-equivariant measurable map.
Suppose that |B(ρ)| = 1

6 n(n2 − 1) · Vol(Γ \PSL(2,C)). Then for almost every
ξ ∈ P(C2) the image ϕ(ξ ) is a Dirac mass.

Proof. Upon conjugating ρ by the anti-holomorphic map I induced by z 7→ z, we
can without loss of generality assume that B(ρ) = 1

6 n(n2−1) ·Vol(Γ \PSL(2,C)).
Assume VolH3(ξ0, . . . ,ξ3) = v3. Then (??) holds. We deduce then from the fact that
|Bn| is bounded by 1

6 n(n2−1)v3 (see Theorem ??) that

ϕ(gξ0)⊗·· ·⊗ϕ(gξ3)[Bn] =
1
6

n(n2−1)v3

for almost every g ∈ SL(2,C). As a consequence, for almost every (F0, . . . ,F3) ∈
F (Cn)4 with respect to the product measure ϕ(gξ0)⊗·· ·⊗ϕ(gξ3), we have equal-
ity

Bn(F0, . . . ,F3) =
1
6

n(n2−1)v3.

Fix a triple (F0,F1,F2) such that the previous equality holds for ϕ(gξ3)- almost
every F3. However, by Corollary ??, this F3 is unique which implies that the support
of ϕ(gξ3) is reduced to one point. Since this holds for almost every g ∈ SL(2,C),
the corollary is proven. ut

If equality |B(ρ)|= 1
6 n(n2−1)Vol(Γ \PSL(2,C)) holds, then upon conjugating

ρ by the anti-holomorphic map I which has the effect of changing the sign of B(ρ)
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and composing ϕ with the induced boundary map I, we can suppose that B(ρ) =
1
6 n(n2− 1)Vol(Γ \PSL(2,C)). It then follows from the above that ϕ maps almost
every maximal 4-tuples in P1(C) to maximal 4-tuples in F (Cn).

Theorem 29. Let ϕ : P(C2)→F (Cn) be a measurable map sending almost every
maximal 4-tuple in P(C2) to a maximal 4-tuple in F (Cn). Then there exists g ∈
PSL(n,C) such that

ϕ = g ·ϕn

almost everywhere.

The theorem is a straightforward generalization of the corresponding statement
with F (Cn) replaced by ∂H3 and PSL(n,C) replaced by PSL(2,C) which was
proven by Thurston for the generalization of Gromov’s proof of Mostow rigidity
for 3-dimensional hyperbolic manifolds. Our proof is a reformulation of Dunfield’s
detailed version [?, pp. 654-656] of Thurston’s proof [?, two last paragraphs of
Section 6.4] in the language of ergodic theory.

Let T denote the set of 4-tuples in ∂H3 whose convex hull is a regular simplex.
Denote by Λξ < Isom(H3) the reflection group generated by the reflections in the
faces of the simplex ξ . For ϕ : ∂H3 → F (Cn), we let T ϕ be the subset of T of
regular simplices being mapped to maximal 4-tuples (up to sign). More precisely,
we set

T ϕ :=
{
(ξ0, . . . ,ξ3) ∈ T

∣∣∣∣Bn(ϕ(ξ0), ...,ϕ(ξ3)) =
1
6

n(n2−1)VolH3(ξ0, . . . ,ξ3)

}
.

Exactly the same proof as in [?, Lemma 4.6] shows the following:

Lemma 30 Let ξ = (ξ0, ...,ξ3) ∈ T . Suppose that ϕ : ∂H3→F (Cn) is a map such
that for every γ ∈Λξ , the translate (γξ0, . . . ,γξ3) belongs to T ϕ . Then there exists a

unique g ∈ PSL(n,C) such that gϕn(ξ ) = ϕ(ξ ) for every ξ ∈
⋃3

i=0 Λξ ξi.

In the proof of Mostow Rigidity in dimension greater than or equal to 4,
Lemma ?? was sufficient to prove the corresponding Theorem ??. In dimension
3 however, an additional difficulty is due to the fact that the group Λξ is discrete in
Isom(H3) and in particular does not act ergodically on Isom(H3). For this reason,
we introduce the bigger group Γξ which will act ergodically on Isom(H3) (Propo-
sition ??) and for which we can prove the corresponding statement of Lemma ??
(Proposition ??). We set

Γξ := 〈Λξ ,γξ 〉,

where γξ is defined as follows: If ξ = (+∞,0,ξ2,ξ3) the isometry γξ induces the
map γ2 := z 7→ 2z on ∂H3 =C∪{+∞}. If ξ = (ξ0,ξ1,ξ2,ξ3) is any regular simplex,
let g ∈ PSL(2,C) be an isometry such that gξ0 = +∞ and gξ1 = 0. Set then γξ =

g−1γ2g.
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Proposition 31 Let ξ = (ξ0, ...,ξ3) ∈ T . Suppose that ϕ : ∂H3→F (Cn) is a map
such that for every γ ∈ Γξ , the translate (γξ0, . . . ,γξ3) belongs to T ϕ . Then there
exists a unique g ∈ PSL(n,C) such that gϕn(ξ ) = ϕ(ξ ) for every ξ ∈

⋃n
i=0 Γξ ξi.

Proof. For every ξ ∈ ∂H3, let Sξ denote the natural set of generators of Γξ consist-

ing of the reflections with respect to the faces of ξ and γ
±1
ξ

. Exactly as for reflection
groups, one shows that every γ ∈ Γξ can be written as a product γ = rk · . . . · r2 · r1,
where ri ∈ Sri−1·...·r1ξ . Indeed by definition γ = sk · . . . · s2 · s1 for si ∈ Sξ and we can
take

ri := (s1s2 . . .si−1)si(s1s2 . . .si−1)
−1 ∈ Sri−1·...·r1ξ ,

where
Sri−1·····r1ξ = (s1s2 . . .si−1)Sξ (s1s2 . . .si−1)

−1.

Let now ξ be as in the assumption of the proposition. By Theorem ??, for every
γ ∈ Γξ , there exists a unique gγ ∈ PSL(n,C) such that gγ ϕn(γξ ) = ϕ(γξi), for i =
0, . . . ,3. We need to show that gγ is independent of γ . Let γ = rk · . . . · r2 · r1 be as
above. We prove the independence of γ by showing grk·...·r2·r1 = grk−1·...·r2·r1 , where
for k = 1, the latter element of PSL(n,C) is gid. If rk is a reflection in one of the faces
of the simplex rk−1 · . . . · r2 · r1ξ the claim follows by Lemma ??. Up to conjugation,
we can suppose that the simplex rk−1 · . . . · r2 · r1ξ has the form η = (+∞,0,η2,η3).
In the case where rk = γ±1

η , the simplex rkη has the form (+∞,0,2±1η2,2±1η3) and
in particular γη = γγη η . It is thus enough to treat the case rk = γη . In this case, the
vertices of γη are vertices of the tessellation of η by Λη , which is a subgroup of Γξ ,
so the claim follows by Lemma ??. ut

Lemma 32 For every ξ ∈ T , the group Γξ acts ergodically on Isom(H3).

Proof. We could show by hand that Γξ ∩PSL(2,C) is dense in PSL(2,C), which is
equivalent to the ergodicity statement. We give however instead a geometric argu-
ment.

We claim that Λξ is of infinite index in Γξ . Let Λ ′
ξ
< Λξ be a torsion free sub-

group of finite index. Then M := Λ ′
ξ
\H3 is a finite volume manifold and ξ0,ξ1 are

cusps of M. Therefore the geodesic in H3 joining ξ0 and ξ1 maps properly to a biin-
finite geodesic in M. If Λξ were of finite index in Γξ , then some finite power of the
hyperbolic element γξ with fixed points ξ0 and ξ1 would be in Λ ′

ξ
and the geodesic

joining ξ0 to ξ1 would map to a periodic geodesic in M, which is a contradiction.
We conclude now by observing that Zariski density of Λξ implies density of Γξ

in the usual topology; in particular Γξ acts ergodically on Isom(H3) ut

The proof of Theorem ?? follows now completely analogously as in [?, Proposi-
tion 4.7], taking into account Lemma ??.

We have thus established that ϕ is essentially equal to g ·ϕn. It remains to see
that g realizes the conjugation between ρ and πn ◦ i. Indeed, replacing ϕ by g ·ϕn in
(??) we have
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(g ·ϕn)(i(γ) ·ξ ) = ρ(γ) · (g ·ϕn)(ξ ) ,

for every ξ ∈ ∂H3 and γ ∈ Γ . The πn-equivariance of ϕn allows us to rewrite this
equation as

g ·πn(i(γ))ϕn(ξ ) = ρ(γ) · (g ·ϕn)(ξ ) ,

Thus, gπn(i(γ)) and ρ(γ) ·g which both belong to PSL(n,C) act identically on the
image of ϕn, from which we conclude that they are equal. This concludes the proof
of Theorem ??.
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