BOUNDED COHOMOLOGY AND REPRESENTATION
VARIETIES OF LATTICES IN PSU(1,n)
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ABSTRACT. We present a general technique to obtain rigidity re-
sults, based on homological methods in bounded cohomology de-
veloped in [3]. We illustrate this method by showing that lat-
tices in PSU(1,n), n > 2, admit no non-trivial deformations into
PSU(1,m), thus extending to the non-uniform case deformation
rigidity theorems & la Goldman-Millson ([8], [5], [11]).

1. THE RESULTS

Let X;, + = 1,2 be symmetric spaces, GG; the associated group of
orientation preserving isometries and I' < G a torsion free lattice. For
certain k’s we associate to every homomorphism 7 : I' = G5 a linear
map

I QF(X,)G = QF (X))

between the spaces of G;-invariant differential k-forms on X;, whose
evaluation on “characteristic classes” is constant on connected com-
ponents of the representation variety Rep(I',Gs) of T' into G5, and
which generalizes invariants introduced by Goldman [6] and Toledo
[11]. More precisely, let 7 : Q*(X3)9?2 — Hpr(I'\X1) be the mor-
phism with target in the de Rham cohomology of I'\ X;, induced by
any choice F; : X; — X3 of a smooth I'-equivariant map; we assume
on k that the L2-cohomology H(kz) (T\X,) injects into H ,(T'\X,), and
that the image of 7* is contained in H(kQ) (I'\X1). Then we obtain A
by composing 7% with the orthogonal projection of H(’;)(F\Xl) onto
Qk(Xl)GH'

We turn now to a specific situation. Let I' < PSU(1, n) be a torsion
free lattice in the group of orientation preserving isometries of complex
hyperbolic n-space Hgt, 7 : I' - PSU(1,m) a homomorphism, M =
I\H® and w, the Kéhler form on H. Observe that if n = 1 and M
is non-compact, then H?,(M) = 0 and in particular the class 7 (wy)
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vanishes, so that from now on, we shall assume that
n>2 or M is compact .

In this case H{, (M) injects into Hp (M) ([13, Theorem 6.9]) and

we identify it with its image. We shall then show that 7*(w,,) lies in
Hp) (M). If < -,- > denotes the natural scalar product on Hf, (M)
and wy, is the Kahler class on M, we have

‘[7(1'2) (wm) = 7'7(72)wn )

with
@ _ < ™ (wn), wn >

7
< Wpr, W >

Theorem 1.1. Under the above assumption we have
(1.1) P <1

Moreover, equality holds if and only if:
e 1 > 2 and there is an isometric embedding F' : Hit — H{ which
18 I'-equivariant;
e n =1 and () leaves a complex line invariant .

Since the cohomology class 7*(wy,,) € H3z(M) is a characteristic
class of the principal PSU(1,m) bundle over M associated to =, it is
constant on connected components of Rep(I', PSU(1,m)); in particu-
lar, equality holds in (1.1) if 7 lies in the component of the restriction
to I of a “standard” representation of PSU(1,n) into PSU(1, m), be-

cause in this case 7*(wy,) = +wys and thus |z§r2)| = 1. Hence,
Corollary 1.2. There are no non-trivial deformations of T' in PSU (1, m).

For I cocompact the above corollary was obtained by (Goldman and

Millson in [8]. When M is compact, one has I°™ (wn) = 4™ wn, where
22" — #eval(w*(w") [M])
i vol(M) me

with [M] the fundamental class of M in this case, Corlette (for n > 2,
[5]) and Toledo (for n = 1, [11]) obtained analogous rigidity results
concerning the invariant z?n). Notice however that if M is not compact,
then HZ% (M) = 0 and in particular the invariant 7*(w) € Hav (M)
vanishes.

For n = 1 and M non-compact the above corollary fails: indeed,
Gusevskii and Parker have constructed lattices in PSU(1, 1) admitting
quasi-Fuchsian deformations into PSU(1,2), [9].
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Sketch of the proof of Theorem 1.1: The theorem is a consequence
of a formula involving the invariant +2 and the Cartan angle ¢; :
Hé(00)? — [—1,1], which is a PSU(1, £)-invariant, alternating cocycle
on the boundary Hf(co) of HE, measuring the extent to which triples
of points fail to lie on the boundary of a complex geodesic ([7, §7.1]).
Observe that if 7(I') is bounded, the left hand side of (1.1) is clearly
zero, so that we may assume that 7(I") is unbounded and hence that
there exists a [-equivariant measurable map ¢ : HZ(oco) — H(c0).
Thus if u denotes the invariant probability measure on I'\SU (1, n), we
have

12 [ anlelom)plom), elom)dnle) =12 - ea(ar, 7
I\SU(1,n)

for almost every (z1,zq,73) € HZ(0c0)®. Applying (1.2) to triples of
points for which ¢, is maximal, we obtain the inequality in the theorem.
As for the equality case, it is based on the fact that the configuration of
points on which |c,| attains its maximal value 1 are exactly the triples
of points lying on chains, that is on boundaries of complex geodesics.
Thus, in the equality case, the boundary map ¢ sends almost every
chain into a chain; a modification of a theorem due to E. Cartan [4]
implies then that ¢ comes form an isometric embedding of H into
HZ. O

We shall now sketch a proof of the formula (1.2), which rests in an
essential way on the homological characterization of bounded continu-
ous cohomology and the relation of the latter to ordinary continuous
cohomology.

2. THE METHODS

2.1. Preliminaries on bounded cohomology. Let G be a locally
compact group. The bounded continuous cohomology Hjy .(G) of G
(with trivial coefficients) is defined as the cohomology of the complex
0— L2(G) 5 L®(GH)E 5 - - L(GMS 5 ...

where d is the standard coboundary operator. We recall here the main
concepts pertaining to the theory of bounded cohomology and refer
to [3], where this was developed, for details. In particular we shall
not recall here the definition of continuous bounded cohomology with
coefficients, although we shall use it in the proof of (2.3).

A continuous Banach G-module F is a Banach space on which G
acts continuously by isometric automorphisms; G-morphisms are lin-
ear continuous G-equivariant maps between (continuous) Banach G-
modules. We say that F is relatively injective (with respect to G) if
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for every injective admissible G-morphism ¢ : A — B of continuous
Banach G-modules A, B and every G-morphism «: A — E, there is a
G-morphism (3 : B — E which extends « and such that ||5|| < ||«

A B

16
E

2
—
Y
(0%

A (relatively injective) admissible resolution E, of R is then a sequence

0oRSE, 4B %...5E, % .

of (relatively injective) continuous Banach G-modules F, equipped
with G-morphisms d such that d> = 0 and continuous homotopy op-
erators h : £, — E, ;. The cohomology associated to any admissible
resolution FE, is the cohomology of the corresponding non-augmented
subcomplex of invariants

d d d d
0E SESS...5EYS .

If F, and F, are admissible resolutions of R and F, is relatively in-
jective, then the identity map i¢d : R — R extends to a G-morphism
of resolutions which is unique up to G-homotopy. If in addition also
E, is relatively injective, then any G-morphism of resolutions which
extends the identity id : R — R induces a canonical isomorphism of
the corresponding cohomology spaces (as topological vector spaces).

In what follows it will be essential to know that if (S,v) is a reg-
ular amenable G-space, that is an amenable G-space such that the
action of G on L'(S) is continuous, then the Banach G-module L>(S)
is relatively injective (and in fact, this provides a characterization of
amenable actions, although this will not be used here, [3]). It hence
follows that the continuous bounded cohomology of G can be computed
as the cohomology of the complex

0— L®(S)9 & L5279 & ... 5 12" & .

or alternatively of the subcomplex of the G-invariant alternating bounded
cocycles on S™. As an example of such situation, and which will be of
relevance to our case, recall that if I is a lattice in a semisimple Lie
group G and P < (G is a minimal parabolic subgroup, then both I' and
G act amenably on G/P.

Moreover, if we have a continuous homomorphism 7 : G; — Gy
between locally compact groups, and if (S;,v;) is a regular amenable
Gi-space, we can consider L>(S}) as a a Gi-admissible resolution via
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m and L*°(S}) as a G1-admissible resolution by injective objects. We
then obtain a G{-morphism of complexes

my + L(53) = L¥(ST)
extending the identity id : R — R, which is unique up to G;-homotopy.
Recall moreover that there is a natural comparison map

Hy (Gi) = HZ(GY)

to the continuous cohomology of GG;, such that, if 7* is the map induced
in cohomology by 7, the diagram

H; (G1) — H:(Gh)
(2.1) 1 }*
H; (G2) — HZ(G2)

commutes.

2.2. The diagram. For ; = 1,2, let X; be a symmetric space of non-
compact type and let G; = Isom(X;)?. If T' < G, is a lattice and
if : I' - G5 is a homomorphism, let F : X; — X5 be a smooth
[-equivariant map. The proof of the formula (1.2) is based on the
commutativity of the following diagram,

(2.2)
H*(B((G2/P2)*)%?) = Hjo(Go) — 0 (Xp)
%“ 1y J F~*
Hy(T) — Hp(M\Xy) — Hpp(I\Xy)
Lt Lt

H; (G1) — Q@ (X)&

which we now proceed to establish after giving the appropriate missing
definitions.

2.2.1. The triangle diagram.

(i) The complez B(Y™*): If Y is a compact metric space with a continu-
ous action of a locally compact group H which is regular with respect
to some probability measure on Y, let B(Y™) denote the space of all
bounded Borel functions on Y", with the supremum norm. This is a
Banach space on which H acts isometrically. Let By(Y™) be the space
of H-continuous vectors. One verifies that the complex

0o RS B(Y) S & By(v™) & ...

is an admissible H-resolution (see Section 2.1). (ii) The triangle: For
i = 1,2, let H; be locally compact groups and let (Y;,v;) be standard
regular amenable H;-spaces. Assume that Y3 is a compact metric space
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and that the action of Hy on Y5 is continuous. First, by considering
any Borel function on Y;* as an L*°-function, we get an Hy-morphism
of Hy-complexes

[T B(Yy) = L=(Yy)
extending the identity id : R — R. Moreover, we observed already in
Section 2.1 that there is an H;-morphism of complexes

my 2 LO(Yy) = L2 (YY)

extending the identity id : R — R, which is unique up to H;-homotopy.

Finally, since H; acts amenably on (Y7, v1), there is an Hy-equivariant
measurable map ¢ : Y7 — M(Ys) (where M(Y3) denotes the space
of probability measures on Y5), which gives rise to a continuous H;-
morphism of complexes

" B(Yy) — L*(YY)

defined in the following way. If ¢ : Y;* — R is a bounded Borel function,
define

O™(c) (1, -, yn) = ((41) @ -~ @ ©(yn)) (c)-

Observe that since every Borel function is the pointwise limit of a
sequence of continuous functions, the evaluation map of probability
measures on bounded Borel functions is Borel measurable in the weak
topology.

Clearly ®* extends id : R — R and is therefore unique up to H;-
homotopy.

From what we gathered so far, we have the diagram

* I oo *
Bos) 5o1e)
hY
o |y
L (YY)
Since ®* and 7} o f* are both continuous H;-morphisms of complexes
B(Yy) — L*°(Y{") extending the identity id : R — R, and they are
hence unique up to H;-homotopy, they induce the same maps in coho-
mology. Thus the diagram

H*((B(Y5)"™) N Hy (Hy)
o 1l
Hg,c(Hl)
commutes and implies the commutativity of the triangle diagram in

(2-2) if we take Yo = G2/ P, Hy = G and H; =T (so that H (') =
Hi ().
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2.2.2. The upper square. We have the commutative diagram (see (2.1)
in Section 2.1)

Hp (G2) — H:(Ga)

i Lt
Hy(T) — H*(T)

where the horizontal arrows are the natural comparison maps. Us-
ing the theorem of van Est [12]|, we identify H}(G3) with the space
0 (X5)%2 of Gy-invariant differential forms on Xo; identifying H*(T')
with the de Rham cohomology Hj,,(I'\X1), the map 7* is then given
by F* : Q*(X5)% — H},(T\X,), that is it is induced by the pullback
via I’ of differential forms. We consider now the diagram

(2.3)
Hy(I) Hiy (I\X1) — Hpp(T\X)
{ { {
H; (G1,L®(T\G1)) — Hi(Gy,L*(T\G1)) — H}(Gh, L, (T\G)))

loc

where all the horizontal arrows are natural comparison maps and the
vertical arrows are isomorphisms defined as follows. If f € L*°((G,/P,)")",
define +f(g1,...,9,)(h) = f(hg1,...,hg,), for h € G;. Then uf is in
the space L (G, L®(I'\G1))¢* of G1-equivariant essentially bounded
weakly-* measurable functions on G; with values in L*(I'\G;) and the
induced map in cohomology

H; (D) % Hi,(G1, L*(T\G)))
is an isomorphism, where we used again the characterization of bounded

cohomology recalled in Section 2.1. The isomorphism between H, (I'\X1)

and H!(G1, L*(T\G1)) is due to Borel (see [2, Theorem 3]) and the
last arrow is, modulo the identification of H*(I") with H} 5(I'\ X;), the
Eckman-Shapiro isomorphism in continuous cohomology (see [1]). We
use this diagram to define the factorization

Hy(T') = Hpy(I\X1) = Hpp(T\X4)
of the natural comparison map

Hy(T') = Hpgr(P\X1)

2.2.3. The lower square. Integration over I'\G; gives G1-invariant pro-
jections L*°(I'\G;) — C and L?(I'\G;) — C and hence a commutative
diagram

H; (G1,L®(T\G1)) — H(Gy, L*(T\G1))

1 \:
HI;k,c(Gl) — H:(Gl)



8 MARC BURGER AND ALESSANDRA I0ZZI

Via the isomorphisms used in Section 2.2.2 we obtain a commutative
diagram
Hy(T)  — Hy(T\Xy)
dty 1t
H; (G1) — Q(X)*
whose maps t;, and ¢ can be written explicitly as follows:
(i) For f € L®((G1/P))™)', we have

tbf(xla Tt 7xn) = ne f(gxla tee ,gxn)d,u(g)

(ii) For w an L2-differential form on I'\ X7,

tw = / GxW.
"Gy

In fact, t admits the following useful interpretation: identifying Q*(X;)%:
with a subspace of the L?-harmonic forms on I'\ X, itself naturally a
subspace of H)(I'\X1), the map ¢ is the precisely the orthogonal pro-
jection of Hf (I'\X1) onto *(X:)“".

2.3. Proof of the formula (1.2). Let G = PSU(1,/), X = HE and
let S = H{(c0) be the boundary of hyperbolic /-space. Then we have
that 9*(X)¢ = R - w, and the comparison map H; (G) — Q*(X) is
an isomorphism (see [3, Proposition 9]). Combining the fact that
H; .(G)=A{a€ L%, (S*)% : da =0}
with the fact that the Cartan angle
ce: S* —[-1,1]

is an alternating G-invariant Borel cocyle ([7, §7.1]), we get that if
[c] denotes the class of ¢, in L*(S?), then Hy (G) = R - [c]. Since
7(I') is unbounded, we may assume that ¢ : H*(c0) — M(H(0))
takes values in the Dirac masses. Thus we shall use the commutativity

of the triangle diagram Section 2.2.1 for the I'-equivariant measurable
map ¢ : H(oo) — Hf(c0), and deduce that the L* function

(z1, T2, w3) = co(p(gz1), P(972), P(973))

is a representative for 7} ([c,]) € HZ(T') which in turn, using the formula
for ¢, in Section 2.2.3, implies that the map

(24)  (w1,79,73) = - )Cm(@(gxl)a@(gﬂﬁz)asﬁ(gﬂ?s))dﬂ(g)

is a representative for ¢,m; ([c1])-
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On the other hand, using the fact that H(ZQ)(M) injects into H3 (M)
and the commutativity of the two squares in the diagram (2.2) in Sec-
tion 2.2 we have that

timi(len]) = A-lea]
tn* (W) = A-wp.

Finally, since ¢ is the orthogonal projection of H% (M) onto R - wyy,

we obtain that
yo S ™ (W), Wy >

< Wpnr, W >
which, together with (2.4), proves the formula (1.2).
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