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Abstract. In 2004 the second and third author introduced a large
family of representations of a free group Γ weakly contained in the
regular representation.

In this paper we enlarge a little bit this class for Γ so that the
new class Mult(Γ), of the multiplicative representations, is stable
under taking finite direct sums, under restriction to and induction
from a finite index subgroup.

As an application, using the properties of multiplicative repre-
sentations we define a new class of tempered unitary represenations
for a class of groups that includes for example all lattices of uni-
modular subgroups of automorphisms of a locally finite regular
tree.

The main tool is the detailed study of the properties of the
action of a free group on its Cayley graph with respect to a change
of generators, as well as the relative properties of the action of
a subgroup of finite index after the choice of a nice fundamental
domain.

1. Introduction

In 2004 the second and third author introduced in [KS04] a large fam-
ily of representations of a free group Γ, constructed from vector valued
multiplicative functions. These representations are all tempered, that
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is they are weakly contained in the regular representation or, equiva-
lently, they are representations of the reduced C∗-algebra C∗red(Γ). Such
an algebra is traceable, simple (see [Pow75]) and Type II, so that its
unitary dual cannot be parametrized by any standard measure space.
Even if one will never be able to “list” all possible tempered unitary
representations of Γ, the construction in [KS04] covers all specific irre-
ducible tempered representations of Γ presented in the literature that
are obtained by embedding Γ in the automorphism group of its Cayley
graph. Moreover, multiplicative representations are defined very ex-
plicitly and hence amenable to be an excellent source of tests samples.
Furthermore, they can be extended in a very natural way to bound-
ary representations, that is to representations of the cross product C∗-
algebra Γ n C(∂Γ) where C(∂Γ) is the C∗-algebra of the continuous
functions on the boundary ∂Γ of Γ. Because of all of these nice prop-
erties it is hence natural to try to extent the scope of the definition to
a class of groups as large as possible.

As defined in [KS04], this class of representations had however the
inconvenient property of being not very stable with respect to natural
operations such as inducing or restricting to a subgroup. Moreover,
as is, the definition is dependent on the choice of the generating set.
In this paper we propose a small, yet important modification of the
definition, that will insure that the class of representations so defined
has nice stability properties that we then proceed to prove. We finally
apply these results to extend the family of representations in [KS04] to
a class of groups that include, among others, virtually free groups and
appropriate subgroups of the automorphisms group of a regular tree.

More precisely, we recall that the definition in [KS04] of these rep-
resentations requires a set of data, called matrix system with inner
product, consisting of a (complex) vector space and a positive definite
sesquilinear form for each generator, as well as linear maps between any
two pairs of vector spaces, all subject to some compatibility condition
(recalled in § 2). In [KS04] the authors required the matrix system to
be irreducible, which resulted in representations that are irreducible as
representations of the cross product Γ n C(∂Γ). However, to ensure
enough stability for basic operations such as unitary induction and re-
striction to a finite index subgroup, we need to free ourselves from the
irreducibility of the matrix system.

The starting point in this paper is the following result, according to
which irreducibility of the matrix system is not essential: representa-
tions arising from non-irreducible matrix systems are anyway finitely
reducible in the following sense:
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Theorem 1. Every representation (π,H) constructed from a matrix
system with inner products (Va, Hba, Ba) decomposes into the orthogo-
nal direct sum with respect to B = (Ba) of a finite number of represen-
tations constructed from irreducible matrix systems.

We call such a representation multiplicative and, if Γ is a free group,
we denote by Mult(Γ) the class of representations that are unitarily
equivalent to a multiplicative representation (see § 3 for the precise
definition). That we are allowed to drop the dependence of the set of
free generators follows from the following important result:

Theorem 2. Let A and A′ be two symmetric sets of free generators
of a free group Γ, and let us denote by FA and FA′ the group Γ as
generated respectively by A and A′. Then for every π ∈ Mult(FA′)
there exists a matrix system with inner product indexed on A, such
that π ∈Mult(FA).

In particular the class Mult(Γ) is Aut(Γ)-invariant.

In [KS04] it is shown that the representations πs of the principal
spherical series of Figà-Talamanca and Picardello [FTP82], associated
to a generating set A, can be realized as multiplicative representations
with respect to scalar matrices acting on one dimensional spaces. The
reader should notice that spherical series arising from different gener-
ating sets A and A′ are inequivalent unless A is obtainable by A′ by
an automorphism of the Cayley graph associated to A′ (see [PS96]).
Nonetheless the spherical series associated to A′ can be realized as a
multiplicative representation with respect to A: in this case the new
matrices will fail to be scalars, as one can see in Example 6.10.

As announced, we can also prove stability properties with respect to
the induction and the restriction to a subgroup:

Theorem 3. Assume that Γ is a finitely generated non-abelian free
group and let Γ′ < Γ be a subgroup of finite index.

(1) If π ∈ Mult(Γ), then the restriction of π to Γ′ belongs to
Mult(Γ′).

(2) If π ∈Mult(Γ′), then the induction of π to Γ belongs to Mult(Γ).

Let us turn now to more general groups. Let Λ be any locally com-
pact group satisfying the following two conditions:

(∗) it admits an embedding of a free group Γ as a lattice, and
(∗∗) any two such free lattices are commensurable up to conjugation.

As an application of the above results, in this paper we define a new
class of representations, called Mult(Λ), for groups Λ satisfying the
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conditions (∗) and (∗∗) above, by inducing to Λ a multiplicative repre-
sentation from a (in fact, any) free subgroup Γ embedded as a lattice.
Note that an immediate consequence of Theorem 3 is the fact that the
class Mult(Γ) is well-defined if Γ is a free group, that is the class of
representations defined using matrix systems coincides with the class
obtained by inducing a multiplicative representation from a finite index
free subgroup. We prove the following:

Theorem 4. Let Λ be any locally compact group admitting a free group
Γ embedded as a lattice and such that any two such free lattices are
commensurable. Then:

(1) the class Mult(Λ) is not empty and consists of representations
that are weakly contained in the regular representation of Λ.

(2) the class Mult(Λ) does not depend on Γ

Examples of groups for which the theorem holds include for example
all virtually free groups. A less obvious example is obtained by taking a
unimodular subgroup Λ < Aut(T ) acting cocompactly on T , where T
is a regular tree of locally finite valency. Then there exists cocompact
lattices in Λ, and such cocompact lattices are always virtually free,
[BK90]. Furthermore, since any two finite graphs that admit a common
covering admit also a common finite covering, [Lei82], such group Λ
satisfies also condition (∗∗).

As we mentioned before, the representations of the class Mult(Γ)
are also representations of the cross product C∗-algebra Γ n C(∂Γ)
and hence they admit a boundary realization, that is, a relization on a
Hilbert space which is the direct integral over ∂Γ with respect to some
quasi-invariant measure.

It is proved in [IKS13] that every tempered representation of a torsion-
free not almost cyclic Gromov hyperbolic group Λ extends to a repre-
sentation of the crossed product Λ n C(∂Λ) and hence has a boundary
realization.

However, while the existence of such a boundary realization for a
representation of a Gromov hyperbolic group follows from general C∗-
algebra inclusion and extension properties using Hahn–Banach theo-
rem, and is hence highly non-constructive, for representations in the
class Mult(Γ) the boundary realization is more accessible and some-
times very concrete. Its uniqueness is also studied in details in the
scalar case in [KS01], but remains in general an open question.

We summarise in the next section the results needed from [KS04],
while we define the classes Mult and outline the structure of the paper
in § 3.
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2. Prolegomenon

Fix a symmetric set A of free generators for FA, A = A−1. Through-
out, when we use a, b, c, d, aj, for j ∈ N, for elements of FA, it is
intended that they are elements of A. There is a unique reduced word
for every x ∈ FA:

x = a1a2 . . . an where for all j, aj ∈ A and ajaj+1 6= e.

The Cayley graph of FA has as vertices V the elements of FA and as
undirected edges the couples {x, xa} for x ∈ FA, a ∈ A. This is a tree
T with #A edges attached to each vertex and the action of FA on itself
by left translation preserves the tree structure.

A sequence (x0, x1, . . . , xn) of vertices in the tree is a geodesic segment
if for all j, xj+1 is adjacent to xj and xj+2 6= xj. We denote such
geodesic segment joining x0 with xn with

[x0, x1, . . . , xn] or [x0, xn] ,

whenever the intermediate vertices are not important. If the vertex
z ∈ V is on the geodesic from x0 to xn, we write z ∈ [x0, xn]. We
define the distance between two vertices of the tree as the number of
edges in the geodesic segment joining them. This gives d(e, x) = |x|,
d(x, y) = |x−1y|.

Definition 2.1. A matrix system or simply system (Va, Hba) is a choice
of

• a complex finite dimensional vector space Va for each a ∈ A,
and
• a linear map Hba : Va → Vb for each pair a, b ∈ A, where Hba = 0

whenever ab = e.

Definition 2.2. A tuple of linear subspaces Wa ⊆ Va is called an
invariant subsystem of (Va, Hba) if

HbaWa ⊆ Wb for all a, b.

For any given invariant subsystem (Wa, Hba) of (Va, Hba) the quotient

system (Ṽa, H̃ba) is defined on Ṽa = Va/Wa in the obvious way:

H̃baṽa := H̃bava where va is any representative for ṽa.

The system (Va, Hba) is called irreducible if it is nonzero and if it
admits no invariant subsystems except for itself and the zero subsystem.

Definition 2.3. A map from the system (Va, Hba) to the system (V ′a, H
′
ba)

is a tuple (Ja) where Ja : Va → V ′a is a linear map and

H ′abJb = JaHab .
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The tuple (Ja) is called an equivalence if each Ja is a bijection. Two
systems are called equivalent if there is an equivalence between them.

Remark 2.4. A map (Ja) between irreducible systems (Va, Hba) and
(V ′a, H

′
ba) is either 0 or an equivalence. This is because the kernels

(respectively, the images) of the maps Ja constitute an invariant sub-
system.

For x ∈ V we set once and for all

(2.1)

E(x) := {y ∈ V : the reduced word for y ends with x}
= {y ∈ V : x−1 ∈ [e, y−1]}

C(x) := {y ∈ V : the reduced word for y starts with x}
= {y ∈ V : x ∈ [e, y]} .

Definition 2.5. A (vector-valued) multiplicative function is a function

f : FA →
∐
a∈A

Va

for which there exists N = N(f) ≥ 0 such that for every x ∈ V , with
|x| ≥ N

(2.2)
f(x) ∈ Va if x ∈ E(a)

f(xb) = Hbaf(x) if x ∈ E(a) and |xb| = |x|+ 1 .

We denote byH∞0 (Va, Hba) (orH∞0 is there is no risk of confusion) the
space of multiplicative functions with respect to the system (Va, Hba).

Note that if f satisfies (2.2) for some N = N0, it also satisfies (2.2)
for all N ≥ N0. We define two multiplicative functions f and g to be
equivalent, f ∼ g, if f(x) = g(x) for all but finitely many elements
of V and H∞ is defined as the quotient of the space of multiplicative
functions with respect to this equivalence relation H∞ := H∞0 / ∼.
The vector space structure on H∞ is given by pointwise multiplication
by scalars and pointwise addition, where we choose an arbitrary value
for (f1 + f2)(x) for those finitely many x for which f1(x) and f2(x) do
not belong to the same space Va.

In the following we will need a particular type of multiplicative func-
tion which we now define.

Definition 2.6. Let x be a reduced word in E(a) and va ∈ Va. A
shadow µ[x, va] is (the equivalence class of) a multiplicative function
supported on the cone C(x), such that

N
(
µ[x, va]

)
= |x| and µ[x, va](x) := va .
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It is clear that every multiplicative function can be written as the
sum of a finite number of shadows.

For each a ∈ A choose a positive definite sesquilinear form Ba on
Va × Va and set

(2.3) 〈f1, f2〉 :=
∑
|x|=N

∑
a

|xa|=|x|+1

Ba

(
f1(xa), f2(xa)

)
where N is large enough so that both fi satisfy (2.2). It is easy to verify
that for the definition to be independent of N the Ba must satisfy the
condition Ba(va, va) =

∑
bBb(Hbava, Hbava), for all a ∈ A and va ∈ Va.

Definition 2.7. The triple (Va, Hba, Ba) is a system with inner products
if (Va, Hba) is a matrix system, Ba is a positive definite sesquilinear form
on Va for each a ∈ A and for va ∈ Va

(2.4) Ba(va, va) =
∑
b∈A

Bb(Hbava, Hbava) .

We refer to (2.4) as to a compatibility condition.

Assuming that such a family exists, define a unitary representation
π of FA on H∞ by the rule

(2.5) (π(x)f)(y) = f(x−1y) .

The existence of a family of sesquilinear forms satisfying the com-
patibility condition was shown in [KS04] as follows.

Definition 2.8. For each a ∈ A, let Sa be the real vector space of
symmetric sesquilinear forms on Va × Va. Let S =

⊕
a∈A Sa. We say

that a tuple B = (Ba) ∈ S is positive definite (resp. positive semi-
definite) if each of its components is positive definite (resp. positive
semi-definite), in which case we write B > 0 (resp. B ≥ 0).

Let K ⊆ S denote the solid cone consisting of positive semi-definite
tuples. Define a linear map L : S → S by the rule

(2.6) (LB)a(va, va) =
∑
b

Bb(Hbava, Hbava) ,

where B = (Ba), and observe that L(K) ⊆ K.
The existence of a tuple (Ba)a∈A compatible with (Va, Hba) depends

on the eigenvalues of L, as stated in the following:

Lemma 2.9 ([KS04, § 4]). The spectral radius ρ of L is an eigenvalue
and there exists a tuple of positive semi-definite sesquilinear forms (Ba)
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on Va such that

(2.7)
∑
b

Bb(Hbava, Hbava) = ρBa(va, va) .

If the matrix system is irreducible then each Ba is strictly positive def-
inite and, up to positive multiplicative scalars, there exists a unique
tuple satisfying (2.7).

We refer to ρ as the Perron–Frobenius eigenvalue of the system
(Va, Hba).

It follows that, up to a normalization of the matrices Hba, every
matrix system becomes a system with inner products. Complete now
H∞ to H = H(Va, Hab, Ba) with respect to the norm defined in (2.3)
(where, again, we shall drop the dependence from (Va, Hab, Ba) unless
necessary) and extend the representation π defined in (2.5) to a unitary
representation on H.

Two equivalent systems (Va, Hba, Ba) and (V ′a, H
′
ba, B

′
a) give rise to

equivalent representations π and π′ on H = H(Va, Hab, Ba) and H =
H(V ′a, H

′
ab, B

′
a). In fact, if the tuple (Ja) gives the equivalence of the

two systems in Definition 2.3, the operator defined by

U
(
µ[x, va]

)
:= µ[x, Java]

for va ∈ Va extends to a unitary equivalence between (π,H(Va, Hab, Ba))
and (π′,H(V ′a, H

′
ab, B

′
a)). Notice that the converse is not true, namely

non-equivalent systems can give rise to equivalent representations: the
simplest example is given by any spherical representation of the princi-
pal series of Figà-Talamanca and Picardello corresponding to a non-real
parameter q−

1
2

+is [KS04, Example 6.3].

The irreducibility condition in the last statement in Lemma 2.9 is
only sufficient. In fact, even if the matrix system is reducible, we can
always assume that the Ba are strictly positive definite by passing to
an appropriate quotient, as the following shows:

Lemma 2.10. Let (Va, Hba, Ba) be a matrix system with inner product
and let π a multiplicative representation on H(Va, Hba, Ba). Then there

exist a matrix system with inner product (Ṽa, H̃ba, B̃a) and a represen-

tation π̃ on H̃(Ṽa, H̃ab, B̃a) equivalent to π such that B̃ = (B̃a) > 0.

Proof. If (Ba) is not strictly positive definite, then for some a ∈ A,

Wa := {wa ∈ Va \ {0} : Ba(wa, wa) = 0} 6= ∅ .
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Since for wa ∈ Wa

0 = Ba(wa, wa) =
∑
b

Bb(Hbawa, Hbawa)

and all the terms Bb(Hbawa, Hbawa) on the right are non-negative, each
of these must be zero. Thus, Hbawa ∈ Wb and we conclude that (Wa)
is a nontrivial invariant subsystem.

Let (Ṽa, H̃ba) be the quotient system. The tuple (B̃a) given by

B̃a(ṽa, ṽa) = Ba(va, va) for some va ∈ ṽa
is well-defined and strictly positive on (Ṽa). In the representation space
H∞(Va, Hba) define the invariant subspace

H∞W = {f ∈ H∞(Va, Hba) : f(xa) ∈ Wa for all a ∈ A and for all

x ∈ FA with |x| ≥ N(f) and |xa| = |x|+ 1} .

and consider the quotient representation πW onH∞(Va, Hba)/H∞W . Then
the representation space H∞(Va, Hba)/H∞W may be identified with the

space H∞(Ṽa, H̃ba) of vector-valued multiplicative functions taking val-

ues in
⊕

a∈A Ṽa and, after the appropriate completion, π is equivalent
to πW . �

3. The Class Mult

Definition 3.1. Given a free group FA on a symmetric set of generators
A, we say that a representation (ρ,H) belongs to the class Mult(FA)
if there exists a system with inner products (Va, Hba, Ba), a dense sub-
space M ⊆ H and a unitary operator U : H → H = H(Va, Hba, Ba)
such that

• U is an isomorphism between M and the space H∞(Va, Hba, Ba)
of vector-valued multiplicative functions.
• U(ρ(x)m) = π(x)(Um) for every m ∈M and x ∈ FA.

We call such a representation multiplicative.

We emphasise again that the representations defined in [KS04], were
built up from irreducible matrix systems. A representation that arises
from an irreducible matrix system with inner product is always irre-
ducible as a representation of the crossed product the C∗-algebra C(∂Γ),
while, as a representation of Γ is either irreducible or, in some special
cases, sum of two irreducible ones. We analyze here instead represen-
tations arising from non-irreducible matrix systems showing that they
are still well behaved in the sense that they decompose into an orthog-
onal direct sum of a finite number of representations obtained from
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irreducible matrix systems (see Theorem 2 for the statement and § 5
for the proof).

We can now proceed to analyse the properties of the family of the
multiplicative representations of a free group. The first thing to observe
is that the class Mult(FA) is independent of the generating system A,
and hence is invariant under group automorphisms (see Theorem 2 for
the statement and § 6 for the proof). This allows us to refine at once
the definition of the class of multiplicative representations.

Definition 3.2. Given a non abelian finitely generated free group Γ,
we say that a representation π belongs to the class Mult(Γ) if there
exists a symmetric set of generators A such that π ∈Mult(FA).

Observe that the property of being invariant under a change of gener-
ators is enjoyed by the class Mult(Γ), but not by single representations,
as will be shown in the Example 6.10 at the end of § 6.

Finally the stability properties of the class Mult(Γ) with respect to
the restriction and the induction to a subgroup (stated in Theorem 3
and proven in § 7.1 and § 7.2) allows us to proceed to define the class of
multiplicative representations for a group satisfying (∗) and (∗∗) in the
introduction, as follows: recall that if G is a locally compact topological
group and H < G is a discrete subgroup, we say that H is a lattice in
G if the quotient H\G admits a finite G-invariant measure.

Definition 3.3. Let Λ be a locally compact group admitting a free
group Γ as a lattice. We say that a representation π of Λ belongs to
the class MultΓ(Λ) if there exists and a representation ρ in the class
Mult(Γ) such that π is contained in IndΛ

Γ(ρ),

MultΓ(Λ) :=
{
π : ∃ ρ ∈Mult(Γ) such that π ≤ IndΛ

Γ(ρ)
}

In general the class of representations MultΓ(Λ) depends on Γ. The
next theorem shows however that the class MultΓ(Λ) does not depend
on the subgroup Γ within a commensurability class, up to conjugation.
Recall that two subgroups H1 < G and H2 < G are commensurable if
their intersection is of finite index in both and they are commensurable
up to conjugation if there exists g ∈ G such that H1∩g−1H2g has finite
index both in H1 and in g−1H2g.

Theorem 3.4. Let Γ be a free group embedded as a lattice in a locally
compact group Λ. Assume that any other free group embedded as a
lattice in Λ is commensurable to Γ up to conjugacy. Then MultΓ(Λ)
is independent of Γ.

Proof. Let Γi, i = 1, 2, be free subgroups embedded as lattices in Λ.
We shall prove that MultΓ1(Λ) = MultΓ2(Λ). Choose π ∈MultΓ1(Λ).
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By definition there exists ρ1 ∈Mult(Γ1) such that

(3.1) π ≤ IndΛ
Γ1

(ρ1) ,

and we look for ρ2 ∈ Mult(Γ2) such that π ≤ IndΛ
Γ2

(ρ2) so that π ∈
Mult(Γ2). By symmetry we will have proven the equality of the two
classes.

To this purpose, choose g ∈ Λ so that Γ0 := Γ1 ∩ gΓ2g
−1 has finite

index both in Γ1 and Γg2 := gΓ2g
−1 and let

ρ0 = ρ1|Γ0 and π2 := Ind
Γg

2
Γ0

(ρ0) .

By Theorem 3 ρ0 ∈Mult(Γ0) and π2 ∈Mult(Γg2).
By the general properties of induction (see for example [Mac76]), we

have that

π ≤ IndΛ
Γ1

(ρ1) ≤ IndΛ
Γ1

IndΓ1
Γ0

(ρ0) = IndΛ
Γg

2
Ind

Γg
2

Γ0
(ρ0) = IndΛ

Γg
2
(π2) ,

Fix now a free symmetric generating set A for Γ2 and define a rep-
resentation ρ2 of Γ2 by letting ρ2(γ) := π2(gγg−1). Then ρ2 can be
realized as a multiplicative representation with respect to the gener-
ating set g−1Ag and the theorem will be proved as soon as we show
that

Π := IndΛ
Γg

2
(π2) and Π̃ := IndΛ

Γ2
(ρ2)

are equivalent. To this purpose, let H2 denote the representation space
of π2. Recall that Π is acting on

IndΛ
Γg

2
(H2) :=

{
f : Λ→ H2 : π2(γ)f(v) = f(vγ−1), for all γ ∈ Γg2, v ∈ Λ

}
,

as the left regular representation, while Π̃ is also acting as the left
regular representation on the space

IndΛ
Γ2

(H2) :=
{
f : Λ→ H2 : ρ2(γ)f(v) = f(vγ−1), for all γ ∈ Γ2, v ∈ Λ

}
,

For every f ∈ IndΛ
Γg

2
(H2) define f̃ by letting

f̃(v) := f(gvg−1) .

It is easy to see that f̃ ∈ IndΛ
Γ2

(H2) and that

Π̃(h)f(v) = (Π̃g(h)f̃)(v)

where Π̃g is the representation defined as Π̃g(h) = Π̃(g−1hg). Since Π̃g

and Π̃ are equivalent as representations of Λ, the proof is concluded.
�

We remarked already that Theorem 3(1) and Theorem 3(2) guaran-
tee that if Λ is itself a free group the definition given here gives the
same class Mult(Γ) as defined in 3.2.
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Remark 3.5. Our Theorem 3.4 applies to any virtually free group and
hence to any non-uniform lattice Λ < PSL(2,R). Moreover, when Λ
is virtually free one can say more about the class Mult(Λ): the reader
may consult [IKS13].

Remark 3.6. To get another example of groups that fulfill the hypoth-
esis of our Theorem 3.4 let T be a uniform tree T , that is a locally finite
tree such that the group of automorphisms Aut(T ) is unimodular and
Aut(T )\T is finite. Let H < Aut(T ) be any unimodular subgroup act-
ing cocompactly on T . Then there exists uniform lattices Γ in H, and
such lattices are always virtually free, [BK90, Theorem 4.7]. Moreover,
every two cocompact lattices are commensurable up to conjugation in
Aut(T ), [BK90, Corollary 4.8]. In particular our theorem applies to
Aut(T ) as well asto any uniform lattice in PGL(2,Qp) (Qp denotes
the field of p-adic numbers).

Question 3.7. Our Theorem however does not apply to Λ = PGL(2,Qp)
itself, since two uniform lattices Γ1 and Γ2 need not be commensurable
in PGL(2,Qp): indeed there are infinitely many conjugacy classes of
uniform lattices ([Lub91], the reader should consult also [BL01]) in
PGL(2,Qp). It is known that it is possible to embed a free group
Γ1 as a lattice in PGL(2,Qp) in such a way that the representations
of the spherical principal series of PGL(2,Qp) restrict to the spher-
ical principal series of Γ1 with respect to a given set of generators
(see [FTP84]). Essentially Frobenius reciprocity (see [CS91, Proposi-
tion 1.1 ]) says the spherical principal series of PGL(2,Qp) belongs to
the class MultΓ1PGL(2,Qp): are there other irreducible representa-
tions of PGL(2,Qp) in this class? Is MultΓ1(PGL(2,Qp)) still inde-
pendent of Γ1? What happens of the supercuspidal representations of
PGL(2,Qp)?

4. Preliminary Results

4.1. The Compatibility Condition and the Norm of a Multi-
plicative Function. Let f be a function multiplicative for |x| ≥ N .
Fix any vertex x such that d(e, x) ≥ N and denote by t(x) the last
letter in the reduced word for x. Then the compatibility condition can
be rewritten as

(4.1) Bt(x)

(
f(x), f(x)

)
=

∑
y

|y|=|x|+1

Bt(y)

(
f(y), f(y)

)
,
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so that, from (2.3),

‖f‖2
H =

∑
|x|=N

‖f(x)‖2 ,

where

‖f(x)‖2 := Bt(x)(f(x), f(x)) .

The hypothesis of compatibility (2.4) has further consequences in
the computation of the norm of a function, that we illustrate now. We
start with some definitions and notation.

Definition 4.1. Let T be a tree of degree q+1 and X a finite subtree.
We say that X is non-elementary if it contains at least two vertices. If x
is a vertex of X , its degree relative to X is the number of neighborhoods
of x that lie in X . A finite subtree X is called complete if all its vertices
have relative degree equal either to 1 or to q + 1. The vertices having
degree 1 are called terminal while the others are called interior.

The set of terminal vertices is denoted by T (X ). If X is a complete
nonelementary subtree not containing e as an interior vertex, we denote
by x̄e the unique vertex of X which minimizes the distance from e
and xe the unique vertex of X connected to x̄e (which exists since
x̄e ∈ T (X )). We call X a complete (nonelementary) subtree based at
xe. We set moreover Te(X ) := T (X ) \ {x̄e} and denote by B(x,N) =
{y ∈ T : d(x, y) ≤ N} the (closed) ball of radius N centered at x ∈ T .

Lemma 4.2. Let X be any complete nonelementary subtree not con-
taining e as an interior vertex. With the above notation, assume that
f is a function multiplicative outside the ball B

(
e, |xe|

)
. Then

(4.2) ‖f(xe)‖2 =
∑

t∈Te(X )

‖f(t)‖2 .

Proof. Let

n = sup
x∈X

d(xe, x) .

The statement can be easily proved by induction on n. When n = 1 the
subtree X must be exactly B

(
xe, 1

)
and (4.2) reduces to (4.1). Assume

now that (4.2) is true for n and pick any y1 such that

d(xe, y1) = n+ 1 = sup
x∈X

d(xe, x) .

Denote by [xe, . . . , ȳ1, y1] the geodesic joining xe to y1. By construction
y1 is a terminal vertex while ȳ1 is an interior vertex. Let X1 be the sub-
tree obtained from X by removing all the q neighbors of ȳ1 at distance
n + 1 from xe. Now ȳ1 is a terminal vertex of X1. If the supremum
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over all the vertices of the new complete subtree X1 of the distances
d(xe, x) is n use induction, otherwise, if

n+ 1 = sup
x∈X1

d(xe, x) ;

pick any y2 such that n + 1 = d(xe, y2) and proceed as before. In a
finite number of steps we shall end with a finite complete subtree Xk
satisfying

n = sup
x∈Xk

d(xe, x)

for which (4.2) holds. Since by inductive hypothesis X can be obtained
from Xk by adding all the q neighbors of each point ȳi which are at
distance n+ 1 from xe, i = 1, . . . , k, again (4.2) follows from (4.1). �

We saw that the norm of a multiplicative function can be computed
as the sum of the values of ‖f(x)‖2, where x ranges over all terminal
vertices in B(e,N) for N large enough; building on the previous lemma,
the next result asserts that branching off in some direction along a
complete subtree and considering again all terminal vertices does not
change the norm.

Lemma 4.3. Let X be any finite complete subtree containing B(e,N)
and let f be multiplicative for |x| ≥ N . Then

‖f‖2
H =

∑
x∈T (X )

‖f(x)‖2 .

Proof. Let L ≥ N be the radius of the largest ball B(e, L) completely
contained in X , so that ‖f‖2

H =
∑
|x|=L ‖f(x)‖2.

If B(e, L) 6= X , the set of points

I :=
{
x ∈ X : d(e, x) = L and x /∈ T (X )

}
is not empty. Apply now Lemma 4.2 to the complete subtree Xx of X
based at x for all x ∈ I. �

4.2. The Perron–Frobenius Eigenvalue. Before we conclude this
section we prove the following two lemmas, which shed some light on
the possible values of the Perron–Frobenius eigenvalue of a given matrix
system. Both lemmas, together with Lemma 2.10, will be necessary in
the proof of Theorem 1.

Lemma 4.4. Let (Va, Hba, Ba) be a matrix system with inner product,
(Wa, Hba) an invariant subsystem. Let π be the multiplicative represen-
tation on H(Va, Hba, Ba) and let πW be the restriction of π to a multi-
plicative representation on H(Wa, Hba, Ba). Assume that the quotient

system (Ṽa, H̃ba) is irreducible. If the Perron–Frobenius eigenvalue ρ of
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the quotient system (Ṽa, H̃ba) is less than 1 then the representations π
and πW are equivalent.

Proof. By Lemma 2.10 we may assume that the Ba are strictly positive
definite. For each a let

W⊥
a := {va ∈ Va : Ba(wa, va) = 0 for all wa ∈ Wa}

be the orthogonal complement (with respect to Ba) of Wa in Va. Let

ϕa : Va → Ṽa, respectively Pa : Va → W⊥
a , denote the projection

of Va onto Ṽa and the orthogonal projection of Va onto W⊥
a . Set

H⊥ba := PbHbaPa. The following diagram

Va
ϕa // Ṽa

Va

=

OO

Pa

// W⊥
a

ϕa|W⊥a

OO

is commutative, so that the system (W⊥
a , H

⊥
ba) may be viewed as an

invariant subsystem of the quotient system (Ṽa, H̃ba). Since the dimen-
sions are the same, the two systems must be equivalent.

Denote by ρ the Perron-Frobenius eigenvalue of the system (Ṽa, H̃a).

By Lemma 2.9 there exists an essentially unique tuple B̃a of sesquilinear

forms on Ṽa such that

(4.3)
∑
b∈A

B̃b(H̃baṽa, H̃baṽa) = ρB̃a(ṽa, ṽa) ,

which can be chosen to be positive definite since the system (Ṽa, B̃a)
is irreducible. By identifying the finite dimensional subspaces W⊥

a and

Ṽa, the norms induced on W⊥
a by Ba and on Ṽa by B̃a are equivalent

and there exists a constant K so that

Ba

(
Pa(va), Pa(va)

)
≤ KB̃a

(
ϕ(va), ϕ(va)

)
for all a ∈ A.

Define, as in Lemma 2.10,

H∞W = {f ∈ H∞(Va, Hba) : f(xa) ∈ Wa for all a ∈ A and for all

x ∈ FA with |x| ≥ N(f) and |xa| = |x|+ 1} .

Under the assumption that ρ < 1, we shall prove that H∞W is dense in
H∞(Va, Hba) with respect to the norm induced by the Ba, from which
the assertion will follow. Choose f in H∞(Va, Hba) and ε > 0. Let
N = N(f) be such that f is multiplicative for n ≥ N and let us fix
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x ∈ FA and a ∈ A such that |x| ≥ N and |xa| = |x| + 1. Write
f(xa) = wa + w⊥a , where wa ∈ Wa and w⊥a ∈ W⊥

a , and observe that

(4.4)
Pb
(
f(xab)

)
= Pb

(
Hbaf(xa)

)
= Pb

(
Hba(wa + w⊥a )

)
= PbHbaw

⊥
a = H⊥baw

⊥
a .

Define now

g0 :=
∑

b: ab6=e

µ[xab, f(xab)− Pb(f(xab))]

and compute

‖f − g0‖2
H =

∑
b

|xab|=|x|+2

Bb

(
f(xab)− g0(xab), f(xab)− g0(xab)

)
=

∑
b

|xab|=|x|+2

Bb(H
⊥
baw

⊥
a , H

⊥
baw

⊥
a )

≤ K
∑
b

|xab|=|x|+2

B̃b(H
⊥
baw

⊥
a , H

⊥
baw

⊥
a )

= KρB̃a(w
⊥
a , w

⊥
a ) .

Let n be large enough so that

KρnB̃a(w
⊥
a , w

⊥
a ) < ε .

Let z := a1 . . . an a reduced word of length n so that y = xazb has
length |y| = |x|+ 2 + n. Define H⊥y = H⊥ban . . . H

⊥
a1a

and use induction
and (4.4) to see that

Pb(f(y)) = H⊥y w
⊥
a .

A repeated application of (4.3) yields∑
b∈A

∑
y∈C(xa)∩E(b)
|y|=|x|+2+n

B̃b(H
⊥
y w
⊥
a , H

⊥
y w
⊥
a ) = ρn+1B̃a(w

⊥
a , w

⊥
a ) .

If we set, as before,

gn :=
∑
b∈A

∑
y∈C(xa)∩E(b)
|y|=|x|+2+n

µ[y, f(y)− Pb(f(y))] ,
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then

‖f − gn‖2
H =

∑
b∈A

∑
y∈C(xa)∩E(b)
|y|=|x|+2+n

Bb

(
Pb(f(y)), Pb(f(y))

)
≤ K

∑
b∈A

∑
y∈C(xa)∩E(b)
|y|=|x|+2+n

B̃b(H
⊥
y w
⊥
a , H

⊥
y w
⊥
a )

= Kρn+1B̃a(w
⊥
a , w

⊥
a ) ,

and hence

‖f − gn‖2
H ≤ Kρn+1B̃a(w

⊥
a , w

⊥
a ) < ε .

Since gn belongs to HW this concludes the proof. �

Lemma 4.5. Let (Va, Hba, Ba) be a matrix system with inner products
and (Wa, Hba) a maximal nontrivial invariant subsystem with quotient

(Ṽa, H̃ba). Then there exists a tuple of strictly positive definite forms

on Ṽa with Perron–Frobenius eigenvalue ρ = 1.

Proof. We may assume that B := (Ba) > 0. The maximality of

(Wa, Hba) implies that the quotient system (Ṽa, H̃ba) is irreducible,
hence by Lemma 2.9 there exists a tuple of strictly positive definite

forms (B̃a) satisfying∑
b

B̃b(H̃baṽa, H̃baṽa) = ρB̃a(ṽa, ṽa)

for some positive ρ.

If the Perron–Frobenius eigenvalue ρ relative to (Ṽa, H̃ba) were strictly
smaller than one, by Lemma 4.4 the representations π onH(Va, Hba, Ba)
and πW on H(Wa, Hba, Ba) would be equivalent and we could restrict
ourselves to the new system (Wa, Hba, Ba) of strictly smaller dimension.

We may assume therefore that ρ ≥ 1.

Assume, by way of contradiction, that ρ > 1. Lift the B̃a to a positive
semi-definite form on Va by setting it equal to zero on Wa. Rewrite our
conditions in terms of the operator L defined in (2.6):

LB = B and LB̃ = ρB̃

where B = (Ba)a∈A and B̃ = (B̃a)a∈A. Since all the Ba are strictly

positive definite, there exists a positive number k such that kBa − B̃a

is strictly positive definite on Va for each a ∈ A. Hence for every integer
n

Ln(kB − B̃) = kLn(B)− Ln(B̃) = kB − ρnB̃ ≥ 0
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Choose now va ∈ Va so that B̃a(va, va) 6= 0 and n large enough to get
a contradiction. �

5. Stability Under Orthogonal Decomposition

Proof of Theorem 1. Let (Va, Hba, Ba) be a matrix system with inner
products and assume that B = (Ba) > 0 (see Lemma 2.10).

Let (Wa, Hba) be a maximal nontrivial invariant subsystem with ir-

reducible quotient (Ṽa, H̃ba) and let (B̃a) be a tuple of strictly positive
definite forms with Perron–Frobenius eigenvalue ρ = 1, whose existence

follows from Lemma 4.5. Pull back the forms (B̃a) to obtain a tuple
of positive semi-definite forms on Va which have Wa as the kernel and

which we still denote by B̃a. Define

λ0 = sup{λ > 0 : Ba − λB̃a ≥ 0 for all a ∈ A}

Since (B̃a) are strictly positive on W⊥
a , λ0 is finite. Moreover, for such

λ0, Ba − λ0B̃a is not strictly positive for some a and hence, for these
a’s

W 0
a := {va ∈ Va : (Ba − λ0B̃a)(va, va) = 0} 6= {0} .

Set

(B0)a := Ba − λ0B̃a

and observe that

B0 = B − λ0B̃ ≥ 0

L(B − λ0B̃) = LB − λ0LB̃ = B − λ0B̃ .

Arguing as in Lemma 2.10 one can see that also the (W 0
a ), and hence

the (Wa + W 0
a ), constitute an invariant subsystem. We claim that

Va = Wa ⊕ W 0
a . In fact, since B̃a|Wa ≡ 0, then Wa ∩ W 0

a = 0 for

all a. Moreover, if ϕa : Va → Ṽa denotes the projection, the system

ϕa(Wa ⊕W 0
a ) would be invariant and hence, by irreducibility of (Ṽa),

the image ϕa(Wa⊕W 0
a ) has to be all of Ṽa, that is to say Va = Wa⊕W 0

a

for all a. Moreover

Ba = B0
a + λ0B̃a

is the sum of two orthogonal forms. The representation (π,H) con-
structed from the system (Va, Hba, Ba) decomposes as the sum of the
two sub-representations corresponding to the systems (Wa, Hba, B

0
a)

and (W 0
a , Hba, B̃a) where the latter is an irreducible system. To com-

plete the proof repeat the above argument for the system (Wa, Hba, B
0
a):

since all the Va are finite dimensional, this reduction process will stop
with an irreducible subsystem. �
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6. Stability Under Change of Generators

We begin with some notation. Write ai, bi, ci, and αj, βj, γj, for
generic elements of A or A′, respectively. Denote by T and T ′ the
tree relative to the generating set A and A′, and by |x|, |x|′ the tree
distance of x from e in T and T ′. Every element has a unique expression
as a reduced word in both alphabets and we shall write z = a1 . . . an or
z = α1 . . . αk. If `(A,A′) denotes the maximum length of the elements
of A with respect to the elements of A′, then

|z|′ ≤ `(A,A′)|z| .
The two trees T and T ′ have the same set of vertices V , but, for a

given vertex y ∈ V , the geodesic [e, y] in T might be quite different
form the geodesic [e, y]′ in T ′. We recall from (2.1) that

C(z) = {y ∈ V : z ∈ [e, y]}
and we define analogously

C ′(z) = {y ∈ V : z ∈ [e, y]′} ,
Hence, if z = α1 . . . αk ∈ FA′ and z = a1 . . . an ∈ FA, C ′(z) consists of
all reduced words in the alphabet A′ of the form y = α1 . . . αks with
|y|′ = k + |s|′ while C(z) consists of all reduced words in the alphabet
A of the form w = a1 . . . ant with |w| = n+ |t|.

We remark that, for xy 6= e, in general we have that

C(xy) ⊆ xC(y) ,

as xC(y) might contain the identity and hence need not be a cone. The
following lemma gives conditions under which there is, in fact, equality.

Lemma 6.1. Let x, y ∈ V.

(i) xC(y) = C(xy) if and only if y does not belong to the geodesic
fom e to x−1 in T .

(ii) Let a ∈ A be such that |xa| = |x|+ 1 and assume that C ′(y) ⊆
C(a). Then xC ′(y) = C ′(xy).

Proof. The identity is not in xC(y) if and only if x does not cancel y,
that is, if and only if y /∈ [e, x−1].

To prove the second assertion, observe that, since |xa| = |x| + 1,
the element x−1 does not belong to C(a) and, a fortiori to C ′(y) by
hypothesis. Hence y does not belong the geodesic [e, x−1]′ in T ′, which,
by (i) is equivalent to saying that xC ′(y) = C ′(xy). �

The following easy lemma will be useful in the definition of the ma-
trices and the proof of their compatibility.
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Lemma 6.2. Let a ∈ A and z ∈ V such that C ′(z) ⊆ C(a). Then for
every b ∈ A, ab 6= e, the last letter of z and of bz in the alphabet A′

coincide.

Proof. If not, multiplication by b on the left would delete z, that is
the reduced expression in the alphabet A′ of the generator b ∈ A
would be b = α1 . . . αtz

−1. Taking the inverses one would have b−1 =
zαt

−1 . . . α1
−1, thus contradicting the hypothesis that C ′(z) ⊆ C(a).

�

We have seen in the last two lemmas the first consequences of the
inclusion of cones with respect to the two different sets of generators.
Analogous inclusions follow from the fact that, given two generating
systems A and A′, for every k ≥ 0 there exists an integer N = N(k)
such that the first N(k) letters of a word z in the alphabet A′ determine
the first k letters of z in the alphabet A. In other words, for any given
z ∈ V there exists N(|z|) and y with |y|′ ≤ N(|z|) so that

(6.1) C ′(y) ⊆ C(z) .

The set of y ∈ V with this property is not necessarily unique. To
refine the study of the consequences of this cone inclusion, we need to
consider, among the y that satisfy (6.1), those that are the “shortest”
with this property, in the appropriate sense. To make this precise, we
use the following notation:

ȳ is the last vertex before y in the geodesic [e, . . . , ȳ, y]′ ⊂ T ′

ỹz is the first vertex in the geodesic [e, y]′ such that C ′(ỹz) ⊆ C(z) .

(For ease of notation, we will remove the subscript z whenever this
does not cause any confusion.) For any z ∈ V we then define

Y (z) = {y ∈ V : C ′(y) ⊆ C(z) and C ′(ȳ) * C(z)}
= {y ∈ V : C ′(y) ⊆ C(z) and y = ỹz}

Then we have the following analogue of Lemma 6.1:

Corollary 6.3. For every a, b ∈ A, ab 6= e, we have

aY (b) = Y (ab) .

Proof. Let y ∈ Y (b). By Lemma 6.2, ay = aȳ. Since C ′ (ȳ) * C(b)
and C(b) ⊇ C ′(y) there exists a reduced word ȳt in the alphabet A′ so
that ȳt ∈ C(d) for some d ∈ A with d 6= b. Hence the element aȳt will
not be contained in C(ab). �

For any given π′ in Mult(FA′) we shall now construct π in Mult(FA)
so that π′ is either a subrepresentation or a quotient of π. Namely, if we
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are given a matrix system with inner products (V ′α, H
′
βα, B

′
α), we need

to define a new system (Va, Hba, Ba) in such a way that the original
system appears as a quotient or as a subsystem of the new one.

Definition 6.4. Let z = α1 . . . αk−1αk ∈ FA′ and define

V ′z = V ′αk
B′z = B′αk

.

We set

Va =
⊕
z∈Y (a)

V ′z Ba =
⊕
z∈Y (a)

B′z

We need now to define the new matrices Hba : Va → Vb, for b 6= a−1.
To this extent, take z ∈ Y (b). Since b 6= a−1, then az ∈ C(a) and

hence, by definition, (̃az)a ∈ Y (a). Then we have two cases: either

az = (̃az)a and hence az ∈ Y (a); or az = (̃az)a x with x 6= e. In this
case, if the reduced expression for x in the alphabet A′ is x = α1 . . . αn
and α 6= α−1

1 is the last letter (in A′) of (̃az)a , define

H ′az,ãz := H ′αnαn−1
. . . H ′α1α

where we wrote az, ãz for az, (̃az)a for ease of notation. The new
matrices Hba : Va → Vb can hence be defined to be block matrices
indexed by pairs (z, w), with z ∈ Y (b) and w ∈ Y (a), as follows:

(6.2) (Hba)z,w :=

{
Id if w = az = (̃az)a

H ′az,ãz if w = (̃az)a 6= az

and (Hba)z,w = 0 for all other w ∈ Y (a) with w 6= (̃az)a.

In the course of the definition we have shown that⋃
z∈Y (b)
b 6=a−1

(̃az)a ⊆ Y (a) ,

but to show that the matrices so defined give a compatible matrix
system we need to show that the above inclusion is in fact an equality,
namely:

Proposition 6.5. We have that

Y (a) =
⋃

z∈Y (b)
b 6=a−1

(̃az)a
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Proof. Take any w ∈ Y (a) so that C ′(w) ⊆ C(a). Hence either there
exists b 6= a−1 such that C ′(w) ⊆ C(ab), in which case w ∈ Y (ab),
or C ′(w) * C(ab) for all b 6= a−1. In this case, according to the
discussion after Lemma 6.2, there exists b 6= a−1 and tb ∈ V with the
following properties:

(1) |wtb|′ = |w|′ + |tb|′;
(2) C ′(wtb) ⊆ C(ab);
(3) tb is minimal with the above properties, that is C ′(wtb) * C(ab).

In the last case one has, by definition, wtb ∈ Y (ab). By Corollary 6.3
Y (ab) = aY (b), so that either w = az or wtb = az for some z ∈ Y (b).

Since w ∈ Y (a), it is obvious that w = (̃az)a when w = az. To

finish we must show that w = (̃wtb)a when wtb = az. By definition

(̃az)a is the first vertex in the geodesic [e, wtb]
′ = [e, az]′ such that

C ′((̃az)a) ⊂ C(a). But by hypothesis w ∈ Y (a), that is C ′(w) ⊂ C(a)

and C ′(w) * C(a). Thus (̃az)a = w. �

e a−1 a−2 = w

a−3 = w ∈ Y0(a−2)

a−4 = wα = wta−1 ∈ Y0(a−2)

a−1b = wβ = wtb ∈ Y0(a−1b)
wβ = b

C(a−1b)

C(a−1)
C(a−2)

a−3b−1 a−3b−1a−1 a−3b−1a−2 = wβ = wta−1 ∈ Y0(a−2)

C′(a−1b)

Figure 1: The trees T (in black) and T ′ (in red) associated
respectively to FA and FA′ , where A = {a, b, a−1, b−1} and A′ is
obtained with the change of generators a 7→ α and b 7→ β = a2b.

In the course of the proof of the above proposition we have dis-
tinguished two types of elements of Y (a), and we can consequently
conclude the following:
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Corollary 6.6. We have

Y (a) = Y0(a) t Y1(a) ,

where

Y1(a) : =
⋃

b 6=a−1

(Y (a) ∩ Y (ab))

=
{
w ∈ Y (a) : there exists b 6= a−1 and z ∈ Y (b), such that

w = az = (̃az)a
}

and

Y0(a) : =
{
w ∈ Y (a) : for all b 6= a−1, C ′(w) * C(ab)

}
=
{
w ∈ Y (a) : for some b 6= a−1 there exists z ∈ Y (b), such

that w = (̃az)a and az = w x, with x 6= e
}
.

To prove the compatibility condition we will make use of Lemma 4.2,
so that we need to construct an appropriate finite complete subtree in
T ′. Notice that for all w ∈ V \ {e}, the set w ∪ C ′(w) is a complete
subtree, but infinite. To ”prune” it so that it will be finite and still
complete, consider an element w ∈ Y0(a) and the following decomposi-
tion

C ′(w) =
{
y ∈ C ′(w) : C ′(y) * C(ab) for all b 6= a−1

}
∪
{
y ∈ C ′(w) : C ′(y) ⊆ C(ab) for some b 6= a−1

}
=I ′w ∪

⋃
b6=a−1

{
y ∈ C ′(w) : C ′(y) ⊆ C(ab)

}
,

where we have set

I ′w :=
{
y ∈ C ′(w) : C ′(y) * C(ab) for all b 6= a−1

}
.

Since the set I ′w is finite and w ∈ I ′w, we need to prune the other set.

Proposition 6.7. Let w ∈ Y0(a) and define

T ′w :=
⋃

b6=a−1

{
y ∈ C ′(w) : C ′(y) ⊆ C(ab), C ′(y) * C(ab)

}
=
⋃

b6=a−1

(
C ′(w) ∩ Y (ab)

)
.

The set
X ′w := {w} ∪ I ′w ∪ T ′w

is a finite complete subtree in T ′ whose terminal vertices are w and T ′w.
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Before proceeding to the proof, we remark that this kind of construc-
tion will be performed also in other parts of the paper, whenever we
need to associate to a closed ball in T a finite complete subtree in T ′
(see for example Lemmas 7.12, 7.13 and 7.14 in § 7.2).

Proof. By definition if y ∈ I ′w \ {w}, then y ∈ I ′w and if y ∈ T ′w, then
y ∈ I ′w. This shows in particular that T ′w ⊂ T (X ′w). To see that the
set of terminal vertices consists of {w} ∪ T ′w, observe that if y ∈ I ′w
and yα ∈ T ′ is such that |yα|′ = |y|′ + 1, then by construction either
yα ∈ I ′w or yα ∈ T ′w. �

We are now finally ready to prove the compatibility condition.

Proposition 6.8. The system (Va, Ba, Hba) is a compatible matrix sys-
tem in the sense of (2.4).

Proof. We need to show that if va ∈ Va, then

(6.3) Ba(va, va) =
∑
b6=a−1

Bb(Hbava, Hbava) .

Use Proposition (6.5) and Corollary (6.6) to write

Y (a) =
⋃

z∈Y (b)
b 6=a−1

(̃az)a = Y0(a) ∪ Y1(a) .

By definition of Ba we can write the left hand side of (6.3) as

Ba(va, va) =
∑

w∈Y0(a)

B′w(v′w, v
′
w) +

∑
w∈Y1(a)

B′w(v′w, v
′
w)

and, likewise the right hand side as∑
b 6=a−1

Bb(Hbava, Hbava) =
∑
b 6=a−1

∑
z∈Y (b)

∑
w=ãz

B′z(H
′
az,ãz v

′
w, H

′
az,ãz v

′
w) =

∑
b 6=a−1

∑
z∈Y (b)

∑
w=ãz 6=az
w∈Y0(a)

B′z(H
′
az,ãz v

′
w, H

′
az,ãz v

′
w)+

∑
b 6=a−1

∑
z∈Y (b)

∑
w=ãz=az
w∈Y1(a)

B′z(v
′
w, v

′
w) ,

where we used the definition of the Hba (6.2).
Write Y1(a) =

∐
b: b6=a−1(Y (a) ∩ Y (ab)), a disjoint union. Since, for

every b 6= a−1, the set Y (a)∩Y (ab) consists of those elements w of the
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form w = az = ãz for some z ∈ Y (b), using Lemma 6.2 we get∑
w∈Y1(a)

B′w(v′w, v
′
w) =

∑
b 6=a−1

∑
z∈Y (b)

∑
w=az∈Y1(a)

B′az(v
′
w, v

′
w) ,

so that showing (6.3) reduces to showing that∑
w∈Y0(a)

B′w(v′w, v
′
w) =

∑
b6=a−1

∑
z∈Y (b)

∑
w=ãz∈Y0(a)

B′z(H
′
az,ãz v

′
w, H

′
az,ãz v

′
w) .

To this purpose, observe that, for any element w ∈ Y0(a) there exists
a geodesic [w,wtb]

′ which starts at the vertex w and ends up in the
cone C(ab) for some b 6= a−1 (see Proposition 6.5 and Figure 1). This
geodesic is ”minimal” in the sense that C ′(wt̄b) would fail to be in the
cone C(ab). The endpoints wtb of these geodesics, for all possible b,
are exactly the terminal points T ′w of the tree X ′w. Hence, for each
w ∈ Y0(a), by Lemma 4.2 applied to the shadow µ[w, v′w] at the point
w and the tree X ′w, one has

B′w(v′w, v
′
w) =

∑
b6=a−1

B′wtb(v
′
wtb
, v′wtb) .

We need now to compare the two quantities B′wtb(v
′
wtb
, v′wtb) and

B′z(Haz,ãzv
′
w, Haz,ãzv

′
w).

By Proposition 6.5 we have seen that such terminal vertices can be
written as wtb = az for some z ∈ Y (b) and that ãza = w. By definition
of Hba one has

B′wtb(v
′
wtb
, v′wtb) = B′z(Haz,ãzv

′
w, Haz,ãzv

′
w)

where we have used again Lemma 6.2. Summing over w ∈ Y0(a) (or,
what is the same, over az ∈ Y0(a)), we obtain the desired assertion. �

Let now π be the left regular action of FA on H∞(Va, Hba) and let
H(Va, Hba, Ba) be the completion of H∞(Va, Hba) with respect to the
norm induced by the (Ba).

We define now the intertwining operator

U : H∞(V ′α, H
′
βα, B

′
α)→ H∞(Va, Hba, Ba) .

For every f ∈ H∞(V ′α, H
′
βα) and a reduced word xa in the alphabet A

we set

(Uf)(xa) :=
∑

y∈Y (xa)

f(y) .
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To see that U intertwines π′ to π fix any y ∈ V and assume that
|y| ≤ |x|+ 1. For any such x and y one has

π(y)Uf(xa) = Uf(y−1xa) =
∑

z∈Y (y−1xa)

f(z) =
∑

z∈y−1Y (xa)

f(z)

=
∑

u∈Y (xa)

f(y−1u) = U
(
π′(y)f

)
(xa)

since Y (y−1xa) = y−1Y (xa) if |y| ≤ |x|+1. It follows that Uπ′(y)f(xa)
and π(y)Uf(xa) differ only for a finite set of values of x, and hence are
equal in H∞(Va, Hba).

We conclude with the following

Theorem 6.9. U is unitary.

Proof. Assume that f ∈ H∞(V ′α, H
′
βα) is multiplicative for |y|′ ≥ N .

We may also assume that f is zero if |y′| ≤ N − 1. By the discussion
after Lemma 6.2 there exists an integer k such that |y| ≤ k whenever
|y|′ ≤ N . Define

S0
k = {z ∈ V : C ′(z) * C(x) for all x with |x| = k}

and

S ′(k) = {e} ∪ S0
k ∪

⋃
x∈V
|x|=k

Y (x) .

Arguing as in the proof of Proposition 6.7 one can show that S ′(k) is a
finite complete subtree in T ′ whose terminal vertices are the elements
of Y (x) for all x with |x| = k. Since every y belongs to C ′(y), we see
that S ′(k) contains the ball of radius N about the origin in T ′. Use
now Lemma 4.3 to conclude the proof. �

We conclude this section with an example illustrating the effect of a
nontrivial change of generators on a given multiplicative representation.

Example 6.10. Let Γ = FA, where A = {a, b, a−1, b−1}. Consider
the change of generators given by α = a and β = ab and let πs be
the spherical series representation of Figà–Talamanca and Picardello
[FTP82] constructed from the set of generators A′ = {α, α−1, β, β−1}.
Denote by a′, b′ the generic elements of A′. In [KS04] it is shown that
πs can be realized as a multiplicative representation with respect to the
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following matrix system:

Va′ = C ∀a′ ∈ A′

Hb′a′ = 3−
1
2

+is =: λ ∀a′, b′ ∈ A′

Ba′(v, v) =
|v|2

4
.

Moreover, in [PS96] it is also shown that it is impossible to realize πs
as any spherical representation arising from the generators a and b. We
show here that it is however possible to realize πs as a multiplicative
representation with respect to the other generators a and b. In fact one
can verify that

Y (a) = {α, β}
Y (b) = {α−1β}
Y (a−1) = {α−2, α−1β−1}
Y (b−1) = {β−1}

According to Definition 6.4 the spaces Va and Va−1 are two dimensional
while Vb = Vb−1 = C. The matrices appearing in (6.2) are:

Haa = Ha−1a−1 =

(
λ 0
λ 0

)
Hba−1 = Hb−1a =

(
λ 0

)
Hba = Hb−1a−1 =

(
0 1

)
Hbb = Hb−1b−1 = λ2

Hab = Ha−1b−1 =

(
λ
λ

)
Hab−1 = Ha−1b =

(
λ2

λ2

)
.

Let Wa (respectively Wa−1) denote the subspace of Va (respectively
Va−1) generated by the vector (1, 1). The reader can verify that the
subspaces Wa, Wa−1 , Wb = Vb = C and Wb−1 = Vb−1 = C consti-
tute an invariant subsystem and that the quotient system has Perron–
Frobenius eigenvalue zero. According to Lemma 4.4 the representation
πs is equivalent to the multiplicative representation constructed from
the subsystem W .
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7. Stability Under Restriction and Unitary Induction

In this section the set A of generators for Γ is fixed once and for
all. As before, we write x̄ for the (reduced) word obtained from x by
deleting the last letter of the reduced expression for x. Set also ā = e
if a belongs to A.

Definition 7.1. A Schreier system S in Γ is a nonempty subset of Γ
satisfying the following conditions:

(1) e ∈ S;
(2) if x ∈ S, then x̄ ∈ S.

Assume that Γ′ is a subgroup of finite index in Γ. Essential in the
following will be a choice of an appropriate fundamental domain D for
the action of Γ′ on the Cayley graph of Γ with respect to a symmetric set
of generators A. It is well known (see for example [Mas77, Chapter VI])
that one can choose in Γ a set S ′ of representatives for the left cosets
Γ′γ which is also a Schreier set. Identifying S ′ with an appropriate set
of vertices D of T , it turns out that D has the following properties:

• D is a finite subtree containing e.
• D is a fundamental domain with respect to the left action on

the vertices of T in the sense that the set of vertices of T is the
disjoint union of the subtrees x′D with x′ ∈ Γ′.

We shall refer to every such D as to a fundamental subtree.

Corresponding to that choice of D one has also a natural choice of
generators for Γ′, namely one can prove that Γ′ is generated by the set

(7.1) A′ :=
{
a′j ∈ Γ : d(D, a′jD) = 1

}
.

We shall assume in this Section that D is a fixed fundamental subtree
and that A′ is the corresponding generating set defined as in 7.1. We
write a′, b′, . . . to denote a generic element of A′.

The following lemma summarizes the properties of the translates
of D which will be used in several occasions to build finite complete
subtrees.

Lemma 7.2. Let γ′a′ 6= e be a reduced word in Γ′.

(1) There exists x ∈ Γ such that γ′a′D ⊂ C(x) but γ′D 6⊂ C(x).
Moreover γ′a′b′D ⊂ C(x) for all b′ such that a′b′ 6= e.

(2) The geodesic in T connecting γ′a′D and e crosses γ′D.

Proof. Let a′ ∈ A′ be a generator of Γ′ and D a fundamental subtree.
Let x(a′) ∈ a′D be the vertex of a′D closest to D. Since the distance
between D and a′D is one, there exists a unique edge (x, x(a′)) such
that x ∈ D and x(a′) ∈ a′D. We claim that a′D ⊂ C(x(a′)). Assume
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the contrary: namely assume that there exists v ∈ a′D whose reduced
word does not start with x(a′). Since a′D is a subtree it must contain
the geodesic [v, x(a′)] connecting v to x(a′), but this is impossible since
x ∈ [v, x(a′)]. Let b′ ∈ A′ be such that a′b′ 6= e. Denote by (w,w′)
(w ∈ a′D, w′ ∈ a′b′D) the unique edge connecting a′b′D to a′D. If
a′b′D 6⊂ C(x(a′)) it must be w = x(a′) and w′ = x, which is impossible.
By induction one has a′γ′D ⊂ C(x(a′)) for every γ′ so that a′γ′ =
1 + |γ′|.

Let now γ′a′ be a reduced word in Γ′ and let x(γ′a′) denote the vertex
of γ′a′D closest to D. Translating the picture by γ′−1 one can see that
γ′−1x(γ′a′) = x(a′), that is

(7.2) x(γ′a′) = γ′x(a′) .

Since we have
γ′a′D ⊂ γ′C(x(a′))

(1) will be proved as soon as we show that γ′C(x(a′)) = C(γ′x(a′)).
Let d′−1 denote the last letter of γ′, so that d′−1 6= a′. Since the two
subtrees d′D and a′D are both at distance one from D they cannot be
contained in the same cone: so that neither x(a′) is the first part of x(d′)
nor the converse. In particular x(a′) does not belong to the geodesic,
in T , [e, γ′−1] so that, by Lemma 6.1, γ′C(x(a′)) = C(γ′x(a′)).

To complete the proof observe that, since a′b′D ⊂ C(x(a′)) and
e ∈ D, the geodesic connecting D and a′b′D must cross x(a′).

�

7.1. Stability Under Restriction. The goal of this section is to
prove Theorem 3(1).

Choose D and A′ as in Definition 7.1. Although D is a finite subtree,
it is not complete. The strategy of the proof consists of completing D
to a complete subtree D′, then translating D′ by a generator of Γ′,
so that most of it (in fact, all of it with the exception of the unique
edge closer to the identity) is contained in a cone at distance one from
D. A wise definition of (Va′ , Hb′a′) and Ba′ , together with the help of
a shadow supported on the cone, will provide the construction of a
matrix system with inner product for the subgroup Γ′.

Let x(a′) denote the vertex of a′D closest to D, as in the proof
of Lemma 7.2. Let D′ be the subtree obtained by adding to D the
vertices x(a′) (and the relative edges) corresponding to all a′ ∈ A′.
Write x(a′) in the generators of Γ and denote by q(a′) the last letter of
its reduced expressions, that, with the notation used in (4.1), we have
that q(a′) = t(x(a′)).

Lemma 7.3. Let D, D′, x(a′) as above.
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(1) The subtree D′ is complete and its terminal vertices consist of
exactly all the x(a′)a′∈A′.

(2) For every a′, b′ ∈ A′, the vertex of a′b′D closest to a′D is a′x(b′).
(3) Assume that a′b′ 6= e. Then the geodesic joining e and a′x(b′)

crosses x(a′) and the last letter of a′x(b′) is q(b′).

Proof. (1) Let v ∈ D and assume that v′ is a neighbor of v. If v′ /∈ D
there exists x′ ∈ Γ′ and u ∈ D such that v′ = x′u. Hence the distance
between D and x′D is one: this implies that x′ = a′ for some a′ ∈ A′
and v′ = x(a′). This proves that every vertex of D is an interior vertex
of D′. Choose now any x(a′) and consider its q + 1 neighbors: one
of them belongs to D and the others, being at distance two from D,
cannot be in D′. This proves that D′ is complete with terminal vertices
x(a′)a′∈A′ .

(2) follows immediately from (7.2). In particular the vertex of a′b′D
closest to a′D is a′x(b′) = x(a′b′).

(3) By Lemma 7.2, the geodesic joining e and x(a′b′), crosses x(a′). In
terms of the generators of Γ this means that x(a′) is the first piece of
the reduced word for a′x(b′) and, in particular, passing from x(a′) to
a′x(b′), the last letter of x(a′) is not canceled. To prove the second
assertion, observe that e does not belong to x(b′)−1(a′)−1D. In fact, if
it did, one would have e = x(b′)−1(a′)−1ξ0 for some ξ0 ∈ D: but since
we also have x(b′) = b′ξ1 this would imply that ξ0 = ξ1 and b′ = (a′)−1.
Hence the subtree x(b′)−1(a′)−1D is contained in the cone C(c) for some
c ∈ A. Since

d(x(b′)
−1
D, x(b′)

−1
(a′)

−1
D) = d(D, (a′)

−1
D) = 1 ,

the subtree x(b′)−1D is at distance one from x(b′)−1(a′)−1D. This is
possible only in two ways: either x(b′)−1D is contained in C(c) or
x(b′)−1D contains the identity e. The second possibility is ruled out
because x(b′) /∈ D. This implies that the last letter of x(b′) is the same
as the last letter of a′x(b′). �

We collect here the results as they will be needed later.

Corollary 7.4. With the above notation the subtree a′D′ is a non-
elementary tree based at x(a′) whose terminal vertices are T (a′D′) =
{a′x(b′) : b′ ∈ A′}. The terminal vertex closest to e is a′x(a′−1), so
that

Te(a
′D′) = {a′x(b′) : b′ ∈ A′, a′b′ 6= e}

and

(7.3) a′x(b′) = x(a′)a1a2 . . . akq(b
′) = a′x(a′−1) . . . q(a′)a1a2 . . . akq(b

′)
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is the reduced expression of a′x(b′) in the alphabet A.

We are now ready to define the matrix system (Va′ , Hb′a′).

Definition 7.5. With (7.3) in mind, we set

Va′ := Vq(a′) , and

Hb′a′ :=

{
Hq(b′)ak . . . Ha2a1Ha1q(a′) if b′a′ 6= e

0 if b′a′ = e .

Lemma 7.6. The tuple (Ba′)a′∈A′ defined by

Ba′ := Bq(a′)

is compatible with the matrix system (Va′ , Hb′a′).

Proof. We need to prove that, for every va′ ∈ Va′

(7.4) Ba′(va′ , va′) =
∑

b′: a′b′ 6=e

Bb′(Hb′a′va′ , Hb′a′va′) .

Let µ[x(a′), va′ ] be the shadow as in Definition 2.6. Since by definition

Ba′(va′ , va′) =
∥∥µ[x(a′), va′ ](x(a′))

∥∥2
,

showing (7.4) is equivalent to showing that∥∥µ[x(a′), va′ ](x(a′))
∥∥2

=
∑

b′: a′b′ 6=e

∥∥Hb′a′µ[x(a′), va′ ](x(a′))
∥∥2
.

Moreover, since µ[x(a′), va′ ] is multiplicative, according to the definition
of Hb′a′ we have

(7.5) µ[x(a′), va′ ](a
′x(b′)) = Hb′a′µ[x(a′), va′ ](x(a′)) .

By Lemma 4.2, Corollary 7.4 and (7.5) it follows that∥∥µ[x(a′), va′ ](x(a′))
∥∥2

=
∑

t∈Te(a′D′)

∥∥µ[x(a′), va′ ](t)
∥∥2

=
∑

b′: b′a′ 6=e

∥∥µ[x(a′), va′ ](a
′x(b′))

∥∥2

=
∑

b′: a′b′ 6=e

∥∥Hb′a′µ[x(a′), va′ ](x(a′))
∥∥2
,

which completes the proof. �

We need to define now the intertwining operator between the re-
striction π|Γ′ to Γ′ of the representation π on H(Va, Hba, Ba) and the
representation ρ of Γ′ on H(Va′ , Hb′a′ , Ba′) defined by

ρ(x′)f(y′) := f(x′
−1
y′) ,
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for x′, y′ ∈ Γ′ and f ∈ H(Va′ , Hb′a′ , Ba′).

Definition 7.7. Let f ∈ H∞(Va, Hba, Ba). If x′ = y′a′ ∈ Γ′ with
a′ ∈ A′ and |x′|Γ′ = |y′|Γ′ + 1 (in the word metric with respect to the
generators A′), define

(Uf)(x′) := f
(
y′x(a′)

)
.

Proof of Theorem 3(1). It is easy to check that the operator U maps
the restriction to Γ′ of multiplicative functions in H∞(Va, Hba, Ba) to
multiplicative functions in H∞(Va′ , Hb′a′ , Ba′). In fact, if x′ = y′a′ ∈ Γ
with a′ ∈ Γ′ and |x′|Γ′ = |y′|Γ′ + 1, then, By Lemma 7.3 (3)

(Uf)(x′) = f
(
y′x(a′)

)
∈ Vt(y′x(a′)) = Vq(a′) .

Moreover, if y′a′b′ ∈ Γ′ with a′, b′ ∈ A′ and |y′a′b′|Γ′ = |y′|Γ′ + 2, then

(Uf)(y′a′b′) = f
(
y′a′x(b′)

)
= Hb′a′

(
f(y′a′)

)
.

Furthermore, it is straightforward to check that

U
(
π|Γ′(x′)f

)
= ρ(x′)(Uf) ,

thus completing the proof. �

7.2. Stability Under Unitary Induction. The goal of this section
is to prove Theorem 3(2).

Let Γ′ ≤ Γ be a subgroup of finite index and let D be a fundamental
subtree for the action of Γ′ on T . By Theorem 2 we may assume that
A′ is the generating set of Γ′ corresponding to D as in (7.1).

Suppose that we are given a matrix system with inner products
(Va′ , Hb′a′ , Ba′) relative to Γ′ and hence a representation π′ of the class
Mult(Γ′) acting on Hs := H(Va′ , Hb′a′ , Ba′). Because of Theorem 1
we may always assume that the system is irreducible. Let IndΓ

Γ′ (π
′)

denote the induced representation acting on IndΓ
Γ′ (Hs). We recall that

IndΓ
Γ′ (Hs) :=

{
f : Γ→ Hs : π′(h)f(g) = f(gh−1), for all h ∈ Γ′, g ∈ Γ

}
,

on which Γ acts by(
IndΓ

Γ′ (π
′)(g0)f

)
(g) := f(g0

−1g) ,

for all g0, g ∈ Γ. In particular f(g) is uniquely determined by its values
on a set of representatives for the right cosets of Γ′ in Γ, which can be
taken to be the set D−1 = {u−1 : u ∈ D}.

Denote by H∞s := H∞(Va′ , Hb′a′ , Ba′) the dense subspace Hs con-
sisting of multiplicative functions and define, with a slight abuse of
notation, the dense subset

IndΓ
Γ′ (H∞s ) :=

{
f : Γ→ H∞(Va′ , Hb′a′ , Ba′) : π′(h)f(g) = f(gh−1),

for all h ∈ Γ′, g ∈ Γ
}



STABILITY PROPERTIES OF MULTIPLICATIVE REPRESENTATIONS 33

which, by definition of H∞s , can be identified with

IndΓ
Γ′ (H∞s ) ∼=

{
ϕ : D−1 · Γ′ →

∐
a′∈A′

Va′ : π′(h)ϕ(g) = ϕ(gh−1),

for all h ∈ Γ′, g ∈ Γ and ϕ is multiplicative as a function of Γ′
}

via the map f 7→ Φ(f), where Φ(f)(x) := f(u−1)(h), for x = u−1h,
with h ∈ Γ′ and u ∈ D. The invariance property of functions in
IndΓ

Γ′ (H∞s ) imply that Φ(f) is well defined.
We want to show that there exists a matrix system with inner prod-

uct (Va, Hba, Ba) on Γ so that IndΓ
Γ′ (π

′) is equivalent to a multiplicative
representation π on H(Va, Hba, Ba). The vector spaces Va will be direct
sums of possibly multiple copies of the vector spaces Va′ , according to
some appropriately chosen ”coordinates” on subsets of the cones C(a).
To this purpose, let us define for any generator a of Γ, the set

P (a) = (D−1 · A′) ∩ C(a) .

The following lemma is technical, but only specifies the multiplicative
property of the chosen coordinates.

Lemma 7.8. Let us fix a ∈ A and v ∈ D.

(1) Assume that va−1 ∈ D and let c′ ∈ A′ be any generator. Then
av−1c′ ∈ P (a) if and only if v−1c′ ∈ P (b) for some b ∈ A with
ab 6= e.

(2) Assume that va−1 /∈ D. Then
(a) there exists c′ ∈ A′ and u ∈ D such that av−1 = u−1c′ ∈

P (a);
(b) furthermore for every d′ ∈ A′ such that c′d′ 6= e, there

exists a unique b ∈ A with ab 6= e such that v−1d′ ∈ P (b).

Proof. (1) Let b ∈ A be such that v−1c′ ∈ P (b). Then in particular v−1c′

starts with b and hence av−1c′ ∈ C(a) if ab 6= e. Since by hypothesis
va−1 ∈ D, it follows that av−1c′ ∈ P (a).

Conversely, let b ∈ A be such that v−1c′ ∈ C(b). Since av−1c′ ∈
P (a), it follows that ab 6= e. Moreover, since v ∈ D, we have that
v−1c′ ∈ P (b).

(2a) Since v ∈ D but va−1 /∈ D and D is a Schreier system, then
|va−1| = |v| + 1, that is d(va−1, D) = 1. By (7.1), there exist u ∈ D
and (c′)−1 ∈ A′ such that va−1 = (c′)−1u, from which it follows that
av−1 = u−1c′ ∈ P (a).

(2b) Choose d′ ∈ A′. By (7.1), D and d′D are disjoint subtrees at
distance one from each other. We claim that if d′ 6= (c′)−1, neither of
their translates av−1D and av−1d′D contains the identity e. In fact,
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if e were to belong to av−1D, we would have that va−1 ∈ D, which
is excluded by hypothesis. If on the other hand e were to belong to
av−1d′D, then we would have that for some u0 ∈ D, av−1 = u−1

0 (d′)−1.
But by (2a) we know that av−1 = u−1c′, so that, by uniqueness of
the decomposition, one would conclude that c′ = (d′)−1, which is also
excluded by hypothesis.

Hence both subtrees are contained in some cone C(b), where b ∈ A
and, since they are at distance one from each other, this cone must be
the same for both. But since v ∈ D, then a ∈ av−1D, so that av−1D,
and hence av−1d′D, are contained in C(a).

Since e ∈ D, this means in particular that av−1d′ ∈ C(a), so that
v−1d′ ∈ C(b) for some b such that ab 6= e. Hence v−1d′ ∈ P (b). �

We are now ready to define the matrix system (Va, Hba).

Definition 7.9. For every u ∈ D and a in A let Vu,a be the direct sum
of the spaces Vc′ for all c′ such that u−1c′ belongs to P (a), namely

Vu,a :=
⊕{

Vc′ : c′ ∈ A′ and u−1c′ ∈ P (a)
}
,

and set

(7.6) Va :=
⊕
u∈D

Vu,a =
⊕{

Vc′ : u ∈ D, c′ ∈ A′ and u−1c′ ∈ P (a)
}
.

In other words, we can think of the Va’s as consisting of blocks,
corresponding to elements u ∈ D each of them containing a copy of Vc′
whenever u−1c′ ∈ P (a). With this definition of the Va’s, we can now
define a map

U : IndΓ
Γ′ (H∞s (Va′ , Hb′a′))→

{
Γ→

⊕
a∈A

Va
}

with the idea in mind that the target will have to be the space of
multiplicative functions on some matrix system with inner product
(Va, Hba, Ba). Fix a ∈ A and let u−1c′ ∈ P (a). Then for all x ∈ Γ such
that |xa| = |x|+1 and for f ∈ IndΓ

Γ′ (H∞s (Va′ , Hb′a′)), we define Uf(xa)
to be the vector whose (u, c′)-component is given by

Uf(xa)u,c′ := Φ(f)(xu−1c′)

or, equivalently,

(7.7) Uf(xa) =
⊕
(u,c′)

f(xu−1)(c′)
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It is not difficult to convince oneself on how to construct the linear
maps Hba so that the functions Uf will be multiplicative: we give here
an explanation, and one can find the formula in (7.8).

Since the functions Uf will have to be multiplicative, if |xab| = |x|+2
they will have to satisfy

f(xav−1d′) = (Uf)(xab)v,d′ =
(
Hba(Uf)(xa)

)
v,d′

whenever v−1d′ ∈ P (b) for some Hba : Va → Vb to be specified. Think-
ing of the ”block decomposition” alluded to above, the linear maps Hba

will also be block matrices that will perform three kinds of operations
on a vector wa ∈ Va with coordinates wa = (wu,c′)u−1c′∈P (a).

– If there exists d′ ∈ A′ such that for some v ∈ D, av−1d′ ∈
P (a) and v−1d′ ∈ P (b), (see Lemma 7.8(1)), then Hba will just
move the (va−1, d′)-component of wa to the (v, d′)-component
of Hbawa. According to Lemma 7.8(1) this happens precisely
when va−1 ∈ D.

– If va−1 /∈ D, write, as in Lemma 7.8(2a), av−1 = u−1c′ and
take any d′ with c′d′ 6= e. If b is such that v−1d′ ∈ P (b) (cf.
Lemma 7.8(2b)) then Hba|Vu,c′ : Vu,c′ → Vv,d′ will be nothing but
Hd′c′ .

– In all other cases Hba will be set equal to zero .

More precisely we define
(7.8)

(Hbawa)v,d′ :=


(wa)va−1,d′ if va−1 ∈ D
Hd′c′(wa)u,c′ if va−1 /∈ D and av−1 = u−1c′

0 otherwise .

That this makes sense follows directly from Lemma 7.8 as we ex-
plained above.

The definition of a tuple of positive definite forms is now obvious,
namely the (u, c′)-component of Ba is given by the following

(7.9) (Ba)u,c′ := Bc′ where u−1c′ ∈ P (a)

Proposition 7.10. The tuple (Ba)a∈A is compatible with the system
Hba defined in (7.8).

Proof. We must check that, for every wa ∈ Va one has

Ba(wa, wa) =
∑
b: ab 6=e

Bb(Hbawa, Hbawa) .
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Remembering that, by definition of Va and Ba

(7.10) Ba(wa, wa) =
∑
u∈D

∑
u−1c′∈P (a)

Bc′
(
(wa)u,c′ , (wa)u,c′

)
,

we must prove that

(7.11)

∑
u∈D

∑
u−1c′∈P (a)

Bc′
(
(wa)u,c′ , (wa)u,c′

)
=

∑
b: ab 6=e

∑
v∈D

∑
v−1d′∈P (b)

Bd′
(
(Hbawa)v,d′ , (Hbawa)v,d′

)
.

Fix a in A and define

Da = {u ∈ D : u = va−1 for some v ∈ D} ,

so that

Da · a = {v ∈ D : v = ua for some u ∈ Da}
is in bijective correspondence withDa. Viceversa, to every v ∈ D\Da·a,
corresponds a unique u ∈ D \Da and c′ ∈ A′ such that av−1 = u−1c′.

Split the sums on each side of (7.11) to obtain

(7.12)

∑
u∈Da

∑
u−1c′∈P (a)

Bc′
(
(wa)u,c′ , (wa)u,c′

)
+

∑
u∈D\Da

∑
u−1c′∈P (a)

Bc′
(
(wa)u,c′ , (wa)u,c′

)
=
∑

v∈Da·a

∑
b: ab 6=e

∑
v−1d′∈P (b)

Bd′
(
(Hbawa)v,d′ , (Hbawa)v,d′

)
+

∑
v∈D\Da·a

∑
b: ab6=e

∑
v−1d′∈P (b)

Bd′
(
(Hbawa)v,d′ , (Hbawa)v,d′

)
.

We will show the equality

(7.13)

∑
u−1c′∈P (a)

Bc′
(
(wa)u,c′ , (wa)u,c′

)
=
∑
b: ab 6=e

∑
v−1d′∈P (b)

Bd′
(
(Hbawa)v,d′ , (Hbawa)v,d′

)
in the two cases

(1) u ∈ Da and v = ua ∈ Da · a,
(2) u /∈ Da and v 6= ua but v ∈ D.
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Then (7.12) will follow by summing (7.13) once over Da and once
over D \Da and adding the resulting equations.

(1) Let u ∈ Da, v = ua and u−1c′ ∈ P (a) for some c′ ∈ A′. According
to Lemma 7.8(1) one has v−1c′ ∈ P (b) for some b 6= a−1. The definition
of the matrices Hba implies that

Bc′
(
(wa)u,c′ , (wa)u,c′

)
=

Bc′
(
(wa)va−1,c′ , (wa)va−1,c′

)
=

Bc′
(
(Hbawa)v,c′ , (Hbawa)v,c′

)
,

so that ∑
c′: u−1c′∈P (a)

Bc′
(
(wa)u,c′ , (wa)u,c′

)
=

∑
c′: av−1c′∈P (a)

Bc′
(
(wa)va−1,c′ , (wa)va−1,c′

)
=
∑
b: ab 6=e

∑
c′: v−1c′∈P (b)

Bc′
(
(Hbawa)v,c′ , (Hbawa)v,c′

)
which proves (7.13) in the case u ∈ Da and v = ua ∈ Da · a.

(2) Fix now any v in D\Da ·a and write av−1 = u−1c′ (Lemma 7.8(2a)).
Choose any d′ with c′d′ 6= e and let b ∈ A with ab 6= e be the unique b
such that v−1d′ ∈ P (b) (Lemma 7.8(2b)) By definition of Hba

(Hbawa)v,d′ = Hd′c′(wa)u,c′ .

To every b corresponds a subset A′b of A′ consisting of all d′ such that

v−1d′ belongs to P (b) and we observed before that
⋃
bA
′
b = A′ \ (c′)−1.

Hence∑
b: ab 6=e

∑
v−1d′∈P (b)

Bd′
(
(Hbawa)v,d′ , (Hbawa)v,d′

)
=

∑
b: ab 6=e

∑
d′∈A′b

Bd′(Hd′c′(wa)u,c′ , Hd′c′(wa)u,c′) =

∑
d′∈A′\(c′)−1

Bd′(Hd′c′(wa)u,c′ , Hd′c′(wa)u,c′) = Bc′((wa)u,c′ , (wa)u,c′) ,

where the last equality is nothing but the compatibility of the (Ba′).
In particular to every v in D \Da · a corresponds a unique u in D \Da
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and a unique c′ ∈ A′ such that u−1c′ ∈ P (a) and∑
b: ab6=e

∑
v−1d′∈P (b)

Bd′
(
(Hbawa)v,d′ , (Hbawa)v,d′

)
= Bc′

(
(wa)u,c′ , (wa)u,c′

)
,

which proves (7.13) in the case v 6= ua. �

The upshot of the above discussion is that we have shown that
the map U takes values in the space of multiplicative functions. We
still need to show that U is an unitary operator and hence it ex-
tends to a unitary equivalence between IndΓ

Γ′ (H(Va′ , Hb′a′ , Ba′)) and
H(Va, Hba, Ba). The following theorem will complete the proof.

Theorem 7.11. Let Va, Hba and Ba be as in (7.6), (7.8) and (7.9)
and let

U : IndΓ
Γ′ (H∞(Va′ , Hb′a′ , Ba′))→ H∞(Va, Hba, Ba)

be as in (7.7). Then U is an unitary operator and hence it extends to
a unitary equivalence

U : IndΓ
Γ′ (H(Va′ , Hb′a′ , Ba′))→ H(Va, Hba, Ba) .

Proof. Let us simply write as before H∞s for H∞(Va′ , Hb′a′ , Ba′) and
H∞ for H∞(Va, Hba, Ba).

For every f ∈ IndΓ
Γ′ (H∞s ) we have by definition of the induced norm

that

‖f‖2
IndΓ

Γ′ (H
∞
s )

=
∑
u∈D

‖f(u−1)‖2
H∞s ,

and, since the above sum is orthogonal, we may assume that f is sup-
ported on z · Γ′ for some z ∈ D−1.

For such an f it will be hence enough to show that

‖Uf‖2
H∞ = ‖f(z)‖2

H∞s .

Using the definition of the norm in (2.3) as well as the definitons of
U in (7.7) and of Ba in (7.10) we obtain that for N large enough

‖Uf‖2
H∞ =

∑
a∈A

∑
|x|=N

|xa|=|x|+1

Ba

(
Uf(xa), Uf(xa)

)
=
∑
a∈A

∑
|x|=N

|xa|=|x|+1

∑
u−1c′∈P (a)

Bc′
(
f(xu−1)(c′), f(xu−1)(c′)

)
.
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Since f(z) ∈ H∞s , there exists M > 0 such that f(z) is multiplicative
outside the ball B′(e,M) in T ′ of radius M . To complete the proof it
will be hence enough to show the following

Lemma 7.12. There exists a finite complete subtree S ′ ⊂ T ′ contain-
ing B′(e,M) whose terminal elements are

T (S ′) = {γ′ = z−1xy ∈ Γ′ : |x| = N, |xa| = N + 1, y ∈ P (a)} .

Observe that since, according to the above lemma, γ′ ∈ T (S ′) has the
form γ′ = z−1xu−1c′ with u ∈ D and c′ ∈ A′, the invariance property
of f translates into the equality

f(z)(γ′) = f(xu−1)(c′) .

From this in fact, using Lemma 4.3 and denoting γ′ to be as before
the reduced word obtained by deleting the last letter (in Γ′) of γ′, we
deduce that

‖f(z)‖2
H∞s =

∑
γ′∈T (S′)
γ′=γ′c′

Bc′
(
f(z)(γ′), f(z)(γ′)

)
=
∑
a∈A

∑
|x|=N

|xa|=|x|+1

∑
u−1c′∈P (a)

Bc′
(
f(xu−1)(c′), f(xu−1)(c′)

)
,

thus concluding the proof. �

We need now to show Lemma 7.12. We start recording the following
obvious fact, which follows immediately from the observation that left
translates of D are subtrees (hence convex) and that cones are disjoint
and convex.

Lemma 7.13. Let Γ′ ≤ Γ be a subgroup of a free group with associated
trees T ′, T . Let D be a fundamental subtree in T for the action of Γ′.
Then for any w ∈ Γ and N > |w| we can write

T = wB(e,N) t
⊔
|x|=N
|xa|=N+1

wC(xa)

and
T ′ =

{
γ′ ∈ Γ′ : γ′D ∩ wB(e,N) 6= ∅

}
t

t
⊔
|x|=N
|xa|=N+1

{
γ′ ∈ Γ′ : γ′D ⊆ wC(xa)

}
.
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Clearly there are finitely many γ′ ∈ Γ′ such that γ′D ∩ w B(e,N) 6=
∅, but infinitely many γ′ ∈ Γ′ such that γ′D ⊆ wC(xa) for some fixed
x and a. The right finiteness condition is imposed in the following
lemma which implies Lemma 7.12.

Lemma 7.14. Fix any z ∈ Γ and choose N > |z| large enough so that
γ′D ∩ z−1B(e,N) 6= ∅ for all |γ′| ≤M . Define

S ′0 := {γ′ ∈ Γ′ : γ′D ∩ z−1B(e,N) 6= ∅} ,
S ′t := {γ′ ∈ Γ′ : γ′D ⊆ z−1C(xa) for some x, a with |xa| = N + 1

and γ′D * z−1C(xa)}
S ′ := S ′0 t S ′t .

Then S ′ is a finite complete subtree (containing B′(e,M)), whose ter-
minal vertices are T (S ′) = S ′t and can be characterized as follows

T (S ′) = {γ′ = z−1xy ∈ Γ′ : |x| = N, |xa| = N + 1, y ∈ P (a)} .

Proof of Lemma 7.14. We shall prove a sequence of simple claims. No-
tice that since |z| < N , then for all x ∈ Γ and a ∈ A such that
|xa| = |x| + 1 = N + 1, xa does not belong to the geodesic between e
and z and hence, according to Lemma 6.1, z−1C(xa) = C(z−1xa).
Claim 1. If γ′ ∈ S ′0, then γ′ ∈ S ′0 and hence the set S ′0 is a subtree.

Proof: Let v ∈ γ′D∩z−1B(e,N) be a vertex and let x0 = v, x1, . . . , xr =
e be a sequence of vertices of the unique geodesic in T from x0 = v to
xr = e. By convexity of z−1B(e,N), xj ∈ z−1B(e,N) for all 0 ≤ j ≤ r.
Since γ′D is a subtree, the set {i : 0 ≤ i ≤ r, xi ∈ γ′D} is an
interval, say [0, i0] ∩ Z. Let γ′′ ∈ Γ′ be (the unique element) such
that xi0+1 ∈ γ′′D. Then by construction d(γ′D, γ′′D) = 1 so that, by
Lemma 7.2 (2), γ′′ = γ′ and γ′D ∩ z−1B(e,N) 6= ∅, thus showing that
γ′ ∈ S ′0.

Claim 2. If γ′ ∈ S ′t, then γ′ ∈ S ′0 and hence the set S ′ is a subtree and
S ′t ⊆ T (S ′).
Proof: Let γ′ ∈ S ′t and let γ′D ⊂ z−1C(xa) with γ′D /∈ z−1C(xa).
Lemma 7.13 implies then immediately that γ′D ∩ z−1B(e,N) 6= ∅ and
hence γ′ ∈ S ′0.

Claim 3. The tree S ′ is complete and S ′t = T (S ′).
Proof: Let γ′ ∈ S ′0 and let a′ ∈ A′ so that |γ′a′|′ = |γ′|′ + 1. If
γ′a′ /∈ S ′0, then, by Lemma 7.13, γ′a′D ∈ z−1C(xa) for some |x| = N
and |xa| = N + 1. On the other hand γ′a′D = γ′D /∈ z−1C(xa) and
hence γ′ ∈ S ′t.
Claim 4. T (S ′) = {γ′ = z−1xy ∈ Γ′ : |x| = N, |xa| = N+1, y ∈ P (a)}.
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Proof: By definition if γ′ ∈ S ′t, then γ′D ⊆ z−1C(xa) and hence γ′ =
z−1xay, for some y ∈ Γ. However, since we have also that γ′D *
z−1C(xa), then z−1x ∈ γ′D. Thus there exists u ∈ D such that γ′ =
z−1xu−1.

g’d

dist

xax

g’bd

e

Figure 2: γ′ ∈ S ′t and γ′ ∈ S ′0 for z = e.

The assertion now follows by completing γ′ with its last letter c′ ∈ A′
in the reduced expression.

�
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