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Abstract. We construct a new family of irreducible unitary rep-
resentations of a finitely generated virtually free group Λ. We prove
furthermore a general result concerning representations of Gromov
hyperbolic groups that are weakly contained in the regular repre-
sentation, thus implying that all the representations in this family
can be realized on the boundary of Λ. As a corollary, we obtain
an analogue of Herz majorization principle.

1. Introduction

Free groups are ubiquitous in mathematics and their representation
theory has been widely studied. However, a finitely generated free
group is not type I, and consequently there is no hope of explicitly pa-
rameterizing its unitary dual, that is the space of equivalence classes of
its irreducible unitary representations. In fact, to construct a unitary
representation of Γ it is only necessary to fix a Hilbert space H and to
choose a unitary operator for each generator. A “random” choice will
yield an irreducible representation. Likewise, because the free group
is not type I, the direct integral decomposition of a given unitary rep-
resentation into irreducibles is generally speaking not unique. Much
work on the representation theory of the free group has concentrated on
constructing specific interesting irreducible representations, on proving
them to be unitary, and on studying their common properties.
If we restrict our attention to those representations that are weakly

contained in the regular representation the situation drastically changes.
For brevity we shall say that a representation is tempered if it is weakly
contained in the regular representation. Using the fact that the re-
duced C∗ algebra of Γ is simple ([Pow75]), one can prove (see [KS01]

Date: June 11, 2012.
1991 Mathematics Subject Classification. Primary; 22D10, 43A65. Secondary:

15A48, 22E45, 22E40.
Key words and phrases. free group, Gromov hyperbolic group, irreducible

unitary representation, boundary realization, cross product, Herz majorization
principle.

A. I. was partial supported by the Swiss National Science Foundation project
2000021-127016/2; M.G.K. and T. S. were partially supported by PRIN.

1



2 ALESSANDRA IOZZI, M. GABRIELLA KUHN, AND TIM STEGER

or Theorem 4.3) that a tempered representation (π,H) can always be
realized as a subrepresentation of a boundary representation (see §2.1
for the definition). This implies in particular that the Hilbert space
H can be chosen to be a subspace of a direct integral of a measur-
able field of Hilbert spaces H∂Γ =

∫ ⊕

∂Γ
Hxdµ(x) over the boundary ∂Γ

of Γ for a suitable quasi-invariant measure µ which depends on the
representation.
In 2004, a large family of irreducible unitary tempered representa-

tions of the free group, the so-called multiplicative representations, was
introduced [KS04]. Although these representations have a very con-
crete and seemingly elementary definition, this family is large enough
to include all known specific irreducible tempered representations con-
structed using the action of Γ on its Cayley graph.
In [IKS] we extended the class in [KS04] to include also represen-

tations that are obtained with a similar procedure as in [KS04] but
are only finitely reducible. This has the advantage that this enlarged
class of representations, called the class Mult(Γ), is now stable under
many natural operations, such as the restriction to a subgroup and
the induction to a free supergroup (see [IKS]). Moreover, although
the construction presented in [KS04] seems to depend on the choice
of generators, the class Mult(Γ) is independent on that choice and in
fact it is invariant under the action of Aut(Γ). This fact is not true
for example for the restriction to the free group in two generators of
the spherical series of the group of automorphisms of the homogeneous
tree of valency four. (See Remark 2.3(2) for more on the irreducibility
of these representations.)

In this paper, in analogy with the case of the free group, we define
a new class of representations for virtually free groups. These groups
include for example PSL(2,Z) ∼= Z2 ∗Z3, whose commutator subgroup
is a torsion-free surface group and whose abelianization PSL(2,Z)ab ∼=
Z2 × Z3 has order six. Furthermore, virtually free groups are Gromov
hyperbolic and can be realized as fundamental groups of finite graph
of finite groups, [KPS73].
We define a class Mult(Λ) of unitary representations of a finitely

generated virtually free group Λ by inducing a representation of the
class Mult(Γ) from a (in fact, any) free subgroup Γ of finite index (see
§ 3) . For these classes of representations we prove the following

Theorem 1. Let Λ be a virtually free group.

(1) The classesMult(Λ) andMultirr(Λ) are non-empty and Aut(Λ)-
invariant (Corollary 3.5).
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(2) The representations in the class Mult(Λ) are weakly contained
in the regular representation (Corollary 3.6).

(3) The representations of the class Mult(Λ) are subrepresentation
of cocycle representations, that is representations of the cross
product Λ⋉ C(∂Λ) (Corollary 4.5).

As we mentioned earlier, the representations of the class Mult(Γ)
encompass all tempered representations of the free group Γ that arise
from the embedding of Γ into the group of automorphisms of its Cayley
graph (with respect to some set of generators). On the other hand, to
the authors’ knowledge, we are not aware of other realizations of any
of the representations in the class Multirr(Λ) of a virtually free group
Λ. Constructions similar to ours (in the cocompact case) can be found
for example in [BM11], where the authors show the irreducibility of the
quasi-regular representation of a compact surface group π1(Σ) on the
geodesic boundary1 ∂Σ with respect to the Patterson–Sullivan measure.
Likewise, in [BdlH97], the authors show that if H < L are discrete
groups such that H = CommL(H), then the induction to L of any
finite dimensional irreducible representation of H remains irreducible.
None of these results seem to have a nonempty intersection with our
construction.

The last item in the above theorem follows from the following result
that was already known for free groups and we record here for a general
Gromov hyperbolic group (see Theorem 4.3):

Theorem 2. Let G be a torsion free not almost cyclic Gromov hyper-
bolic group. Then every tempered representation of G is a subrepresen-
tation of a cocycle representation with respect to some quasi-invariant
measure.
If the representation is irreducible, the measure can be taken to be

ergodic.
Conversely, every cocycle representation is tempered.

As a consequence of this result we prove the following analogue of
Herz majorization principle:

Corollary 1. Let (π,H) be a tempered representation of a torsion free
not almost cyclic Gromov hyperbolic group G and let v be any vector in
H. Then there exists a quasi-invariant measure µ on ∂G and a positive

1One word of warning for the reader: what the authors in [BM11] call ”boundary
representation” is not what is referred to with the same terminology in this paper,
but what we call “quasi-regular” representation in Definition 4.2.
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function f ∈ L2(∂G, dµ) with ‖f‖2 = ‖v‖H such that

|〈π(x)v, v〉| ≤ |〈ρ(x)f, f〉|

where ρ is the quasi-regular representation on L2(∂G, dµ).

The measure on ∂G must however depend on the tempered represen-
tation, thus implying that a Harish-Chandra function cannot exist (see
Remark 4.9) and exhibiting one more instance of the fact that Gromov
hyperbolic group behave morally as rank one groups.

We remark that the above construction relies not only upon the sta-
bility properties of the class Mult(Γ) of a free group Γ (which were
proven in [IKS]), but also of the non-obvious corresponding properties
of the extension of multiplicative representations to boundary repre-
sentations (see for example Theorem B.1).

The structure of the paper is as follows. In § 2 we recall the defini-
tion of boundary representation of a free group – and, more generally,
of a Gromov hyperbolic group – and the construction of the bound-
ary multiplicative representations of the free group; we recall moreover
from [IKS] the stability properties of the class of representations of the
free group obtained from matrix systems with an inner product. In
§ 3 we define the classes Mult(Λ) and Multirr(Λ) of representations
of a finitely generated virtually free group Λ obtained by induction
from any free subgroup of finite index and we show both that Mult(Λ)
andMultirr(Λ) are Aut(Λ)-invariant and that these representations are
tempered. In § 4 we prove that (irreducible) tempered representations
of a Gromov hyperbolic group G are subrepresentations of cocycle rep-
resentations with respect to an (ergodic) measure and we deduce the
analogue of Herz majorization principle (Corollary 4.7). In the Appen-
dix B we prove the essential stability results for multiplicative boundary
representations that are not proven in [IKS].

Acknowledgments: The first named author thanks the Institute Mittag-
Leffler in Stockholm for their warm hospitality in the last phase of
the preparation of this paper. Likewise, the second named author is
grateful to the Forschungsinstitut für Mathematik at ETH, Zürich for
its hospitality. Finally, we thank the referee for many useful comments.

2. Preliminaries

2.1. Boundary Representations.
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Definition 2.1. Let G be any discrete group, A be a commutative
C∗-algebra and λ : G → Aut(A) a homomorphism of G into the group
of isometric automorphisms of A. A covariant representation of (G,A)
on a Hilbert space H is a triple (π, α,H) where

• π : G → U(H) is a unitary representation of G;
• α : A → L(H) is a C∗-representation of A in the space of
bounded linear operators on H;

• for all γ ∈ G and A ∈ A

π(γ)α(A)π(γ−1) = α
(
λ(γ)A

)
.

Two covariant representations (π, α,H) and (ρ, β,L) of G and A are
equivalent if there exists a unitary operator J : H → L, such that for
all γ ∈ G and all A ∈ A,

ρ(γ) J = J π(γ) and β(A) J = J α(A) .

If K is any compact metrizable space on which G acts continuously
and by isometries, the space of complex valued functions C(K) is a
C∗-algebra naturally endowed with a continuous isometric action of G,
λ : G → Aut

(
C(K)

)
, defined by

λ(γ)F (k) := F (γ−1k) ,

for all F ∈ C(K), γ ∈ G and k ∈ K.
In the case in which G is a Gromov hyperbolic group, the space K

can be taken to be the boundary of the Cayley graph associated to a
fixed generating system, which we denote by ∂G. For the sake of the
reader, we recall the definition of ∂G in the Appendix A. We mention
here only that ∂G is a compact metrizable space with the G-action
defined by (γ, ω) 7→ γ−1ω and that different generating sets correspond
to homeomorphic boundaries.

Definition 2.2. A boundary representation of a hyperbolic group G
on H is a covariant representation (π, α,H) of

(
G, C(∂G)

)
.

The reader who is familiar with crossed-product C∗-algebras will rec-
ognize that a boundary representation is nothing but a representation
of the crossed product C∗-algebra G⋉ C(∂G) (see § 4).
General Gromov hyperbolic groups will be considered again in their

full generality in § 4, while in the rest of this section we will consider
only free groups.
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2.2. Boundary Multiplicative Representations of the Free Group.

We begin with the definition of multiplicative representation in the con-
text of finitely generated free groups, referring to [KS04] for details and
proofs.
Let FA be a free group with a finite symmetric set of free generators

A. A matrix system (Va, Hba), is an assignment of a complex vector
space a 7→ Va for every generator a ∈ A and a linear map Hba :
Va → Vb, for every a, b ∈ A, such that Hba = 0 whenever ba = e.
An invariant subsystem (Wa, Hba) of the matrix system (Va, Hba) is an
assignment of vector subspaces a 7→ Wa ⊆ Va such that HbaWa ⊂ Wb

for all a, b ∈ A. If (Wa, Hba) is an invariant subsystem of (Va, Hba),

the quotient system (Ṽa, H̃ba) is the assignment a 7→ Ṽa := Va/Wa such

that H̃baṽa = H̃bava, for any representative va of ṽa ∈ Ṽa. A system
(Va, Hba) is called irreducible if it is nonzero and admits no nontrivial
invariant subsystems.
We endow FA with the word metric d(x, e) := |x| with respect to the

generating set A. We say that a function

f : FA →
⊔

a∈A

Va

is multiplicative if there exists N ≥ 0, depending only on f , such that
for all x with |x| ≥ N

(2.1)
f(x) ∈ Va if x = x′a is reduced

f(xb) = Hbaf(x) if x = x′a is reduced and ba 6= e .

We denote by H∞(Va, Hba) (or by H∞ if no confusion arises) the quo-
tient of the space of multiplicative functions with respect to the equiva-
lence relation according to which two multiplicative functions are equiv-
alent if they differ only on finitely many words.
If for every a ∈ A the Va’s are equipped with a positive definite

sesquilinear form Ba and if these forms satisfy the compatibility condi-
tion

(2.2) Ba(va, va) =
∑

b∈A

Bb(Hbava, Hbava)

for all va ∈ Va, then

(2.3) 〈f1, f2〉 :=
∑

|x|=N

∑

a
|xa|=|x|+1

Ba

(
f1(xa), f2(xa)

)

defines an inner product on H∞, where N should be taken to be large
enough that both f1 and f2 satisfy (2.1) outside the ball of radius
N . We remark that, up to a normalization, every matrix system
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(Va, Hba) admits a compatible tuple (Ba)a∈A of positive semidefinite
forms. When the matrix system is irreducible, then each Ba is strictly
definite positive and, up to multiple scalars, it is also unique. Whether
the system is irreducible or not, the triple (Va, Hba, Ba) will be called a
matrix system with inner product. We can hence define a representation
of FA on H∞(Va, Hba) by

(
π(x)f

)
(y) := f(x−1y) ,

which can be proved to be unitary. If H(Va, Hba, Ba) is the completion
of H∞(Va, Hba) with respect to the inner product in (2.3), then π ex-
tends to a unitary representation on H(Va, Hba, Ba), which we called
multiplicative.

The next step is to show that multiplicative representations extend
in a natural way to boundary representations of the free group.
The boundary ∂FA of a free group FA consists of the set of infinite

reduced words, with the topology defined by the basis

∂FA(x) := {ω ∈ ∂FA : the reduced word for ω starts with x} ,

for all x ∈ FA, x 6= e. The sets ∂FA(x) are both open and closed in
∂FA and ∂FA is a compact (as well as Hausdorff, perfect, separable,
and totally disconnected) space. In order to extend a given unitary
representation (π,H) of FA to a boundary representation, we need to
define an algebra C∗-homomorphism α : C(∂FA) → L(H) satisfying

(2.4) π(x)α(F )π(x−1) = α
(
λ(x)F

)
,

for any x ∈ FA and F ∈ C(∂FA).
For every x ∈ FA, x 6= e, let 1∂FA(x) denote the characteristic function

of ∂FA(x). Since the subalgebra spanned by the functions {1∂FA(x)}x∈FA

is a dense C∗-subalgebra of C(∂FA), it is sufficient to define απ(1∂FA(x))
for every x, and in fact on the dense subspace H∞ ⊂ H. Denote by
1FA(x) the characteristic function of the cone

(2.5) FA(x) := {y ∈ FA : the reduced word for y starts with x}

and define απ(1∂FA(x)) : H
∞ → H∞ by setting

(2.6)
(
απ(1∂FA(x))f

)
(y) := 1FA(x)(y)f(y) =

{
f(y) if y ∈ FA(x)

0 otherwise .

A routine calculation shows that (2.4) is verified and hence every multi-
plicative representation (π,H) gives rise in a natural way to a boundary
representation (π, απ,H) of FA.
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Remark 2.3. (1) When a boundary representation is considered
as a representation of FA it is always weakly contained in the
regular representation. This follows from general considerations
since FA acts amenably on ∂FA; a two pages proof specifically
for the case of the free group can be found in [KS96, § 2].

(2) In [KS04] it is shown that multiplicative representations built
from an irreducible system are irreducible as boundary rep-
resentations, (that is as representations of the cross-product
FA ⋉ C(∂FA), see § 4) while, as representations of FA, they
are either irreducible or, in some special cases, are sum of two
irreducible nonequivalent representations.

2.3. Stability Properties of Multiplicative Boundary Repre-

sentations. The definition of multiplicative representation seems to
depend on the generating set A that we have fixed. We shall see that
the dependence is only apparent, as soon as we allow general (not only
irreducible) matrix systems. The advantage of considering general ma-
trix systems is that the new class of representations so obtained is
closed under change of generators, restriction and induction. The price
to pay is not so high, as the following result shows:

Theorem 2.4 ([IKS]). If π is a representation constructed from a ma-
trix system with inner product (Va, Hba, Ba), then π decomposes as an
orthogonal direct sum with respect to (Ba)a∈A of a finite number of rep-
resentations defined from irreducible matrix systems and the same is
true when π is considered as a boundary representation.

We proceed now to infer further properties of multiplicative bound-
ary representations of FA.

Theorem 2.5 ([IKS]). Let FA be a group freely generated by the sym-
metric set A and let

(
π, απ,H(Va, Hba, Ba)

)
be a multiplicative bound-

ary representation constructed from a matrix system with inner prod-
ucts (Va, Hba, Ba)a∈A. If A

′ is another symmetric set of free generators
such that FA

∼= FA′, then there exists a multiplicative boundary rep-
resentation

(
π′, απ′,H(Vs, Hts, Bs)

)
constructed from a matrix system

with inner products (Vs, Hts, Bs)s∈A′, such that
(
π, απ,H(Va, Hba, Ba)

)

appears as a subrepresentation of
(
π′, απ′,H(Vs, Hts, Bs)

)
.

We can therefore denote a free group by Γ without any explicit de-
pendence on a free generating set.
We warn the reader that there is no guarantee that changing gener-

ators will preserve the irreducibility of the system: in [IKS] it is shown
that a representation of the principal series for the free group can be
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realized as a multiplicative representation from an irreducible matrix
system, but, once the simplest nontrivial change of generator is per-
formed, it arises from a quotient of a reducible matrix system.

Theorem 2.6 ([IKS]). Let Γ0 ≤ Γ be a subgroup of finite index in the
free group Γ. Then:

(1) the restriction to Γ0 of a multiplicative boundary representation
(π, απ,H) of Γ is a multiplicative boundary representation of
Γ0;

(2) if (π′, α′
π′,H) is a multiplicative boundary representation of Γ0,

then the induced representation IndΓ
Γ0
(π′) is a boundary multi-

plicative representation of Γ.

Strictly speaking, the theorems stated in this section are proved in
[IKS] when all the representations involved are considered only as rep-
resentations of the free group rather than as boundary representations.
The extension of these results to the case of boundary representations
is, in most of the cases, a straightforward verification. The one that is
a bit more involved is the proof of Theorem 2.6(2): since it uses heavily
the notations and the techniques of [IKS], we defer it to the appendix
of this paper.
The above theorems lead to the following:

Definition 2.7. Let Γ be a finitely generated free group. A representa-
tion ρ : Γ → U(H) is in the classMult(Γ) if there exist a symmetric set
A of free generators, a matrix system with inner product (Va, Hba, Ba), a
dense subspace M ⊂ H and a unitary operator J : H → H(Va, Hba, Ba)
such that

(1) J is an isomorphism between M and H∞(Va, Hba, Ba), and
(2) for allm ∈ M and x ∈ Γ, J

(
ρ(x)m

)
= π(x)(Jm), where π is the

multiplicative representation constructed from (Va, Hba, Ba).

3. The Classes Mult(Λ) and Multirr(Λ)

Definition 3.1. We say that a representation π of a virtually free
group Λ belongs to the class Mult(Λ) if there exists a finite index free
subgroup Γ ≤ Λ and a representation π′ in the class Mult(Γ) such that
π is a component of IndΛ

Γ(π
′),

Mult(Λ) :=
{
π ∈ Λ : ∃ π′ ∈ Mult(Γ) for some free subgroup Γ ≤ Λ

of finite index such that π ≤ IndΛ
Γ(π

′)
}
.

The next proposition shows that the subgroup Γ, that a priori de-
pends on the representation π, can in fact be chosen uniformly for all
representations.
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Proposition 3.2. Let Λ be a virtually free group and Γ0 < Λ any
finite index free subgroup. Then any representation π ∈ Mult(Λ) is a
subrepresentation of IndΛ

Γ0
(π′) for some π′ ∈ Mult(Γ0).

Proof. Let Γi, i = 0, 1, be free subgroups of finite index in Λ and
denote by Multi(Λ) the corresponding class of subrepresentations in-
duced from multiplicative representations of Γi. It is enough to show
that Mult0(Λ) = Mult1(Λ).
The stabilizer of the pair Γ0 × Γ1 ∈ Λ/Γ0 × Λ/Γ1 for the diagonal

action of Λ is Γ0∩Γ1. Hence Λ/Γ0∩Γ1, as well as Γ0/Γ0∩Γ1 and Γ1/Γ0∩
Γ1, are finite. Assume now that π ∈ Mult0(Λ). By definition there
exists a representation π0 of Γ0 such that π is a component of IndΛ

Γ0
(π0).

By general properties of induction (see for example [Mac76]), we have
that

π ≤ IndΛ
Γ0
(π0) ≤ IndΛ

Γ0

(
IndΓ0

Γ0∩Γ1
(π0|Γ0∩Γ1

)
)

= IndΛ
Γ0∩Γ1

(π0|Γ0∩Γ1
) = IndΛ

Γ1

(
IndΓ1

Γ0∩Γ1
(π0|Γ0∩Γ1

)
)
.

By Theorem 2.6(1) we know that π0|Γ0∩Γ1
∈ Mult(Γ0∩Γ1) and hence,

by Theorem 2.6(2), IndΓ1

Γ0∩Γ1
(π0|Γ0∩Γ1

) ∈ Mult(Γ1). It follows that
π ∈ Mult1(Λ) and, by symmetry, Mult0(Λ) = Mult1(Λ). �

The representation in the class Mult(Λ) are not necessarily irre-
ducible, but are however finitely reducible, as the following proposition
shows:

Proposition 3.3. Let Λ0 be a subgroup of finite index of a group
Λ and let π : Λ0 → U(H) be an irreducible representation. Then(
IndΛ

Λ0
(π), IndΛ

Λ0
(H)

)
is a finite sum of irreducible representations.

Proof. Let us set ρ := IndΛ
Λ0
(π) and L := IndΛ

Λ0
(H). Recall that

L :=
{
f : Λ → H : π(γ0)f(γ) = f(γγ0

−1), for all γ0 ∈ Λ0, γ ∈ Λ
}

on which Λ acts by (
ρ(γ)f

)
(η) := f(γ−1η)

for all η, γ ∈ Λ. The fact that Λ0 is of finite index in Λ, namely
Λ = ⊔u∈DuΛ0, where D is a finite set of representatives, induces a
finite decomposition

(3.1) L =
⊕

u∈D

Lu ,

where

Lu :=
{
f ∈ L : , supp(f) ⊂ uΛ0

}
.
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It is immediate to verify that for all η ∈ Λ and u ∈ D, one has that
ρ(η)Lu ⊆ Lηu and hence

ρ(uγ0u
−1)Lu ⊆ Lu

for all γ0 ∈ Λ0. Moreover for all u ∈ D, the evaluation operator

Eu : Lu → H

f 7→ f(u)

is a unitary isomorphism with the property that

π(γ0)Eu = Eu ρ(uγ0u
−1) ,

for all γ0 ∈ Λ0 and u ∈ D. In other words, Eu is an intertwining
operator between (π,H) and (ρ|uΛ0u−1 ,Lu). Since (π,H) is irreducible,
(ρ|uΛ0u−1,Lu) is irreducible as well.
Let now T : L → L be an intertwining operator for ρ. If pu : L → Lu

is the orthogonal projection, then, for all u, v ∈ D, pv T pu intertwines
(ρ|(vΛ0v−1)∩(uΛ0u−1),Lv) and (ρ|(vΛ0v−1)∩(uΛ0u−1),Lu). Since (vΛ0v

−1) ∩
(uΛ0u

−1) is of finite index both in vΛ0v
−1 and in uΛ0u

−1, each of the
above representations is finitely reducible, [Pog75, Corollary 2]. Hence
the space of intertwining operators between (ρ|(vΛ0v−1)∩(uΛ0u−1),Lv) and
(ρ|(vΛ0v−1)∩(uΛ0u−1),Lu) is finite dimensional, which forces the space of
intertwining operators of (ρ,L) to be finite dimensional as well. �

Definition 3.4. We say that a representation π of Λ belongs to the
class Multirr(Λ) if there exists a finite index free subgroup Γ ≤ Λ and
a representation π′ in the class Mult(Γ) such that π is an irreducible
component of IndΛ

Γ(π
′),

Multirr(Λ) :=
{
π ∈ Λ : ∃ π′ ∈ Mult(Γ) for some free subgroup Γ ≤ Λ

of finite index such that π ≤ IndΛ
Γ(π

′) and π is irreducible
}
.

The fact that this class is not empty follows from Proposition 3.3 and
the fact that, by Theorem 2.4, any representation in the class Mult(Γ)
is a finite sum of irreducible representations in the same class.

Corollary 3.5. For a finitely generated virtually free group Λ the
classes Mult(Λ) and Multirr(Λ) are Aut(Λ)-invariant.

Proof. Let α ∈ Aut(Λ), let Γ < Λ be a free subgroup of finite index
and let π ∈ Mult(Γ). For γ ∈ α(Γ) set πα(γ) := π(α−1γ). An easy
verification shows that

IndΛ
α(Γ)(π

α) ≃ IndΛ
Γ

(
π
)
◦ α .

The fact that πα ∈ Mult(α(Γ)) ([IKS]) and Proposition 3.2 show the
assertion. �
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We may then conclude:

Corollary 3.6. The representations of a finitely generated virtually
free group Λ in the class Mult(Λ) (and hence Multirr(Λ)) are weakly
contained in the regular representations.

Proof. Since representations in the class Mult of a free group are
weakly contained in the regular representation [KS96], the continu-
ity of the induction map ensures that every representation in the class
Mult(Λ) is weakly contained in the regular representation of Λ. �

4. Tempered Representations of Gromov Hyperbolic

Groups

In this section we prove further properties of the representations
in the class Mult(Λ), namely that they can be extended to boundary
representations (Theorem 4.3). This will follow from general arguments
in operator algebras which hold for a Gromov hyperbolic group and do
not depend on the particular construction of the class Mult(Λ), but
rather only on the fact that the representations in the class Mult(Λ)
are tempered. In this section G is a Gromov hyperbolic group.

We saw already that boundary representations are associated with
the action of G on its boundary ∂G and we mentioned that they are in
fact representations of the crossed product G⋉ C(∂G). We recall here
the definitions that will be needed for the proof of the next theorem
and at the same time clarify the above assertions.

Let A be a C∗-algebra and let us denote by A[G] the space of finitely
supported functions G → A,

A[G] :=

{ <∞∑

i

ζiδγi : ζi ∈ A, γi ∈ G

}
,

where δγ is the Kronecker function at γ ∈ G. If G acts on A by
isometric automorphisms λ : G → Aut(A), we endow A[G] with a C∗-
algebra structure as follows. Define the sum of two elements of A[G]
in the obvious way (as A-valued functions on G) and let

(4.1) (ζ1δγ1) · (ζ2δγ2) :=
(
ζ1λ(γ1)ζ2

)
δγ1γ2 .

Use the distributive law to extend (4.1) to a product on A[G]. Finally
set

(ζδγ)
∗ := λ(γ−1)ζ∗δγ−1 .
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In order to define a norm on A[G], take any covariant representation
(π, α,H) of (G,A) and for f =

∑
i ζiδγi ∈ A[G] define the operator

(π ⋉ α)(f) :=
∑

i

α(ζi)π(γi) .

Define now the universal norm

(4.2) ‖f‖ := sup ‖(π ⋉ α)(f)‖H ,

where the supremum is taken over all covariant representations (π, α,H)
of G. The completion of A[G] with respect to the above norm is the
(full) crossed product C∗-algebra G⋉A.
Given a C∗-representation α of A on H, one can always get a covari-

ant representation (λ̃, α̃) of (G,A) on ℓ2(G)⊗H by setting
(
α̃(ζ)ξ

)
(γ) := α(λ(γ−1)ζ)ξ(γ)

(
λ̃(γ′)ξ

)
(γ) := ξ(γ′−1

γ) ,

for all ζ ∈ A, γ, γ′ ∈ G and ξ ∈ ℓ2(G) ⊗ H. We remark, for further

purposes, that λ̃ consists of d copies of the regular representation πreg

of G, where d is the Hilbert dimension of H. The completion of A[G]
with respect to the reduced norm

‖f‖red := sup
α

‖(λ̃⋉ α̃)(f)‖ℓ2(G)⊗H ,

where the supremum in (4.2) is taken only over those covariant repre-

sentations of the form (λ̃, α̃), is the reduced crossed product C∗-algebra
G⋉red A.

Example 4.1. The examples of this construction relevant to our pur-
poses are the following:

• A = C is the C∗-algebra of complex numbers with the trivial
G-action; in this case G ⋉ C is called the group C∗-algebra,
denoted by C∗(G), and G ⋉red C is called the reduced group
C∗-algebra, denoted by C∗

red(G).
• A = C(∂G) is the C∗-algebra of continuous functions on the
boundary ∂G of G.

We conclude this discussion by exhibiting a universal construction
for representations of the cross product G⋉C(∂G) [Tak03, Chapter X,
Theorem 3.8] . Such representations are also called cocycle represen-
tations (see for instance the papers of C. Anantharaman [AD03] and
of C. Anatharaman and J. Renault [AR01]) and also appear in the
context of measured semidirect product groupoids (see [Ren80]).
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Let X be standard Borel space equipped with a G-quasi-invariant
positive measure µ. We assume here that G is acting on the left by mea-

surable bijections. Let P (ω, γ) := dµ(γ−1ω)
dµ(ω)

denote the Radon–Nikodym

cocycle of the G-action and let ω → Hω be a Borel field of Hilbert
spaces. Denote by H :=

∫ ⊕

X
Hωdµ(ω) the direct integral. For ω1 and

ω2 in X , denote by Iso(Hω1
,Hω2

) the space of all isometries from Hω1

to Hω2
. A unitary Borel cocycle is a map A : (ω, γ) ∈ X × G →

A(ω, γ) ∈ Iso(Hγ−1ω,Hω) such that

• A(ω, γ1γ2) = A(ω, γ1)A(γ1
−1ω, γ2) [a.e.µ], and

• the map ω →
〈
f(ω), A(ω, γ)g(γ−1ω)

〉
is measurable for every

pair of elements f , g ∈ H and every γ ∈ G.

We define a unitary representation π on H by

(4.3)
(
π(γ)f

)
(ω) := P

1

2 (ω, γ)A(ω, γ)f(γ−1ω) .

Definition 4.2. • If ω 7→ C is the trivial field of Hilbert spaces
and A is the trivial cocycle, then the representation π in (4.3)
is called the quasi-regular representation on L2(X, dµ).

• If X = ∂G, the representation π in (4.3) is called cocycle rep-
resentation.

We can now prove the following:

Theorem 4.3. Let G be a torsion free not almost cyclic Gromov hyper-
bolic group. Then every tempered representation of G is a subrepresen-
tation of a cocycle representation with respect to some quasi-invariant
measure.
If the representation is irreducible, the measure can be taken to be

ergodic and hence the dimension of Hω is almost everywhere constant.
Conversely, every cocycle representation is tempered.

Proof. The inclusion C →֒ C(∂G) defined by ζ 7→ ζ1∂G, where 1∂G ∈
C(∂G) denotes the function identically one on ∂G, induces a map φ :
C[G] → C(∂G)[G] defined by

φ

(∑

i

ζiδγi

)
:=

∑

i

ζi1∂Gδγi .

It is immediate to verify that φ is continuous with respect to the re-
duced norm on both sides: in fact, since α(1∂G) is the identity operator,
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then
∥∥∥∥φ

(∑

i

ζiδγi

)∥∥∥∥
red

= sup
α

∥∥∥∥(λ̃⋉ α̃)

(∑

i

ζi1∂Gδγi

)∥∥∥∥
ℓ2(G)⊗H

=

∥∥∥∥λ̃
(∑

i

ζiδγi

)∥∥∥∥
ℓ2(G)⊗H

=

∥∥∥∥πreg

(∑

i

ζiδγi

)∥∥∥∥
ℓ2(G)

=

∥∥∥∥
∑

i

ζiδγi

∥∥∥∥
red

.

Since the reduced C∗-algebra ofG is simple [Pow75] (see also [BCdlH94]
concerning lattices in semisimple Lie groups) the extension of the above
map φ is actually an inclusion

(4.4) φ : C∗
red(G) →֒ G⋉red C(∂G) .

Moreover, since the action of G on ∂G is amenable (see [Ada94] or the
more recent [Kai04]), the reduced crossed product and the full crossed
product coincide (see [AD02, Theorem 5.3])) and hence we have

(4.5) φ : C∗
red(G) →֒ G⋉ C(∂G) .

Assume now that π is tempered, that is there is an inequality of
operator norms ‖π(f)‖ ≤ ‖πreg(f)‖ for f ∈ A[G], where A = C(∂G),
[Fel60]. Then, by continuity, π extends to a representation of C∗

red(G).
By standard arguments involving the Hahn–Banach Theorem (see [Dix64,
Lemma 2.10.1]) one can see that π can be extended to a representation
π∂G of G⋉ C(∂G). The Hilbert space H∂G of the extended representa-
tion includes the original Hilbert space H, but it may be strictly larger.
By [Tak03, Chapter X, Theorem 3.8 and Theorem 3.15] the representa-
tions of the full crossed product are exactly the cocycle representations
for some quasi-invariant measure µ on ∂G and some field of Hilbert
spaces ω → Hω.
The same argument in [Dix64, Lemma 2.10.1] shows that if π is irre-

ducible one can require the extension π∂G to be also irreducible. Since
π∂G is irreducible, the corresponding measure µ is ergodic and, since
the map ω 7→ dim(Hω) is measurable and G-invariant, the dimension
of the Hilbert spaces Hω is constant [a.e.µ].
Finally, since cocycle representations are exactly the representations

of the full crossed-product C∗-algebra and since the action of G on ∂G
is amenable ([Ada94]), we have that the restriction of a representation
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of G ⋉ C(∂G) to G is weakly contained in the regular representation
(see [Kuh94]). �

Remark 4.4. The existence of the map (4.4), and hence of the inclu-
sion (4.5), is independent of the representation π and depends only on
the compactness of ∂G and the amenability of the G-action.

Corollary 4.5. Let Λ be a finitely generated virtually free group and
let π be a representation in the class Multirr(Λ). Then π is a subrepre-
sentation of a cocycle representation with respect to a quasi-invariant
ergodic measure µ on ∂Λ.

Proof. Theorem 4.3 and Corollary 3.6. �

Remark 4.6. Theorem 4.3 states that every tempered representation
(π,H) of a Gromov hyperbolic group G admits at least one extension
to an irreducible representation (π∂G,H∂G) of G ⋉red C(∂G). We call
such an extension a boundary realization for π. We say moreover that
a boundary realization is perfect if one can take H∂G = H.
Even if there is no a priori reason for (π∂G,H∂G) to be unique, we

have noticed that this is the case when G = Γ is a free group and
π is a representation of the class Mult(Γ) whose matrix coefficients
are sufficently “big” in the sense of [KS01]. In fact for all irreducible
tempered representations (π,H) of the free group known so far, there
are only three possibilities:

• π admits only one boundary realization which is perfect. In
this case the irreducible representation (π∂Γ,H) of Γ ⋉ C(∂Γ)
remains irreducible also when restricted to Γ; in this case we
say that π satisfies monotony.

• π admits only one boundary realization which is not perfect, so
that the inclusionH →֒ H∂Γ is proper. In this case the represen-
tation (π∂Γ,H∂Γ) is irreducible as representation of Γ⋉redC(∂Γ),
but, when restricted to Γ, it splits into the sum of two ir-
reducible inequivalent representations; we say that π satisfies
oddity.

• π admits exactly two perfect boundary realizations, no other
boundary realization is perfect and any other (not perfect) bound-
ary realization can be obtained as a linear combination of these
two perfect ones; in this last case we say that π satisfies duplic-
ity.

We believe that those are the only three possibilities for any tempered
representation of a free group, but we can prove it so far only for rep-
resentations of the class Mult(Γ), [KS01]. We think that the same
problem is well posed also for a Gromov hyperbolic group and perhaps
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passing to a more general class of groups will give a better understand-
ing of this phenomenon.

As a consequence of Theorem 4.3 we can state an analogue of Herz
majorization principle for Gromov hyperbolic groups.

Corollary 4.7. Let (π,H) be a tempered representation of a torsion
free Gromov hyperbolic group G that is not almost cyclic and let v be
any vector in H. Then there exists a quasi-invariant (not necessarily
ergodic) measure µ on ∂G and a positive function f ∈ L2(∂G, dµ) with
‖f‖2 = ‖v‖H such that

(4.6) |〈π(x)v, v〉| ≤ |〈ρ(x)f, f〉| ,

where ρ is the quasi-regular representation on L2(∂G, dµ).

Proof. By Theorem 4.3, there exists a quasi-invariant measure µ on ∂G
and a realization H =

∫ ⊕

∂G
Hωdµ(ω) of H as a direct integral of Hilbert

spaces, such that

(π(x)v)(ω) = P
1

2 (ω, x)A(ω, x)v(x−1ω) ,

where v ∈ H, P (ω, x) is the Radon–Nikodym derivative of µ with
respect to the G action and A(ω, x) is some unitary Borel cocycle .
Fix now v ∈ H and, for all ω ∈ ∂G, define

(4.7) f(ω) := ‖v(ω)‖ω .

Then f ∈ L2(∂G, dµ) and ‖f‖L2(∂G,dµ) = ‖v‖H.
Moreover

|〈π(x)v, v〉| =

∣∣∣∣
∫

∂G

〈A(ω, x)v(x−1ω), v(ω)〉ωP
1

2 (ω, x)dµ

∣∣∣∣

≤

∫

∂G

‖v(x−1ω)‖x−1ω‖v(ω)‖ωP
1

2 (ω, x)dµ

= 〈ρ(x)f, f〉 ,

where ρ is the quasi-regular representation on L2(∂G, dµ). �

Remark 4.8. If we take v ∈ H such that ‖v‖H = 1, we may replace µ
with a quasi-invariant probability measure in the same measure class
and use in (4.7) the constant function f := 1∂G identically one on ∂G,
to get the following majorization:

|〈π(x)v, v〉| ≤ 〈ρ(x)1∂G, 1∂G〉 .
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Remark 4.9. If H is a semisimple Lie group with finite center and
maximal compact K, there exists a unique K-invariant probability
measure µ on the maximal Furstenberg boundary H/P , for P a min-
imal parabolic. In this case the quasi-regular representation ρ on
L2(H/P, dµ) plays a very important role, namely the Harish-Chandra
function Ξ(x) = 〈ρ(x)1H/P , 1H/P 〉 dominates all spherical functions as-
sociated with tempered unitary representations. If H has property (T)
one can push this further by exhibiting a positive definite function Ψ
which dominates all positive definite non-constant spherical functions
on H . R. Howe and E. C. Tan constructed in their book [HT92, Chap-
ter V] such a function Ψ from Ξ for SL(n,R), for n ≥ 3, while the
more recent paper of H.Oh [Oh02] treats the general case.

We remark that the measure µ of Corollary 4.7 must depend on π,
making our case much more similar to SL(2,R), for which it is impossi-
ble to bound an arbitrary matrix coefficient (that is, not only spherical
functions) in terms of Ξ. To see this, let G be as in Theorem 4.3. For
any w ∈ G we have that 〈w〉 ∼= Z. Let πZ be the representation induced
from the trivial character of Z and 1[Z] the characteristic function of
the coset [Z]. If there were to exist a fixed measure µ such that (4.6)
holds for every tempered π, one would have

〈ρ(w)1∂G, 1∂G〉 ≥ 〈πZ(w)1[Z], 1[Z]〉 = 1 .

Since w ∈ G is arbitrary, this would then imply that 〈ρ( · )1∂G, 1∂G〉 ≡ 1
identically on G. If G is not amenable this is impossible, since ρ is
weakly contained in the regular representation.

Appendix A. Boundaries

Fix a generator system S for a Gromov hyperbolic group G and
denote byX its Cayley graph with respect to S. ThenX is a hyperbolic
geodesic space with respect to the word metric dX .
Fix, once and for all, a base point p ∈ X . A sequence of points

{xj ∈ X} is said to tend to infinity if

(A.1) lim
i,j→∞

(xi|xj)p = +∞ ,

where (x|y)p is the Gromov product defined by

(x|y)p :=
1

2

{
dX(x, p) + dX(y, p)− dX(x, y)

}
,

for all x, y, p ∈ X . It can be proved that (A.1) does not depend on the
choice of the basepoint p. Denote by S∞ the set of all sequences in X
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tending to infinity. Two sequences {xj} and {yj} in S∞ are equivalent
if

lim
j→∞

(xj |yj)p = +∞ .

It can be proved that this is a true equivalence relation. The boundary
at infinity ∂X of X is the set of all equivalence classes of sequences
tending to infinity. When a sequence {xj} represents a class ω ∈ ∂X ,
we say that xj converges to ω.
Another notion of boundary of a hyperbolic group can be given as

follows. A geodesic ray is an isometric embedding r : [0,+∞) → X of
R+ into X . Given a geodesic ray, there exists a unique r(∞) ∈ ∂X
such that r(tj) converges to r(∞) for every sequence of real points {tj}
going to +∞.
Denote by Rp the set of all geodesic rays starting at p (r(0) = p).

Two rays r and r′ are equivalent (r ∼ r′) if

dX
(
r(t), r′(t)

)
is bounded as t → ∞ .

The quotient set Rp/ ∼ is called the visual boundary of X and it can
be proved that it does not depend on the choice of p. Since Rp has a
topology derived from the uniform convergence on compact intervals
of geodesic rays, we endow Rp/ ∼ with its quotient topology. Since
G is finitely generated (see [dlHG90]) every closed ball is finite (hence
compact!) and so X is a proper geodesic space. By [Ohs02, Proposition
2.64] the visual boundary is compact and coincides with the boundary
at infinity defined above, so that we shall denote by ∂G any of these
two boundaries. The action of G on X extends in an obvious way to
an action on ∂G.

Appendix B. Proof of Theorem 2.6

As mentioned in § 2.3, the proof is just a straightforward verification
that however uses heavily all the operators and objects defined in [IKS].
We will hence show here only the following result; the other assertions
of Theorem 2.6 are left to the reader.

Theorem B.1. Let Γ0 ≤ Γ be a subgroup of finite index in the free
group Γ. If (π0,H0) ∈ Mult(Γ0) is a boundary representation of Γ0,
then the induced representation IndΓ

Γ0
(π0) is a boundary representation

of Γ in the class Mult(Γ).

We start by recalling some objects that were defined in [IKS] and
that will be needed in the proof.
Let T be the Cayley graph of the free group Γ with respect to a

symmetric set of free generators A, and let Γ0 ≤ Γ be a subgroup. T
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is a tree in which we fix an origin e and which is a metric space with
the word distance with respect to the generating set A. It is always
possible to choose a fundamental domain D for the action of Γ0 on T
having the following properties:

• D is a subtree containing e
• Γ0 is generated by the set

A′ :=
{
a′j ∈ Γ0 : d(D, a′jD) = 1

}
.

For any generator a ∈ A, define the set

P (a) := (D−1 ·A′) ∩ Γ(a) ,

where D−1 =
{
u−1 : u ∈ D

}
and

Γ(a) := {γ ∈ Γ : the reduced word for γ starts with a} .

If (Va′ , Hb′a′ , Ba′) is a matrix system with inner products for Γ0 and
π0 is a representation in the class Mult(Γ0) acting on the Hilbert
space H0 := H(Va′ , Hb′a′ , Ba′), we consider the induced representation

IndΓ
Γ0

(π0) on IndΓ
Γ0

(H0). If f ∈ IndΓ
Γ0
(H∞

0 ), the assignment f 7→ f̃ ,

where f̃(x) := f(u)(h) for x = uh, with h ∈ Γ0 and u ∈ D, provides
the identification

IndΓ
Γ0

(H∞
0 ) ∼=

{
f̃ : D · Γ0 →

∐

a′∈A′

Va′ : π0(h)f̃(g) = f̃(gh−1),

for all h ∈ Γ0, g ∈ Γ and f̃ is multiplicative as a function of Γ0

}
.

In [IKS],
(
IndΓ

Γ0
(π0), Ind

Γ
Γ0
(H0)

)
is proved to be equivalent to a mul-

tiplicative representation (π,H) on H := H(Va, Hba, Ba). The spaces
Va are indexed on pairs (u, c′) corresponding to elements u ∈ D and
c′ ∈ A′ such that u−1c′ ∈ P (a) while the Hba are block matrices that
will perform three kinds of operations on a vector wa ∈ Va with coordi-
nates wa = (wa)u,c′. We give for completeness the explicit expressions
for Va, Hba and Ba, but only the Va will be used in the sequel:

Va :=
⊕

u∈D

⊕

c′∈A′

u−1c′∈P (a)

Vc′ ,

(Hbawa)v,d′ :=





(wa)va−1,d′ if va−1 ∈ D

Hd′c′(wa)u,c′ if va−1 /∈ D and a−1v = u−1c′

0 otherwise ,

and

(Ba)u,c′ := Bc′ where u−1c′ ∈ P (a) .
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What will be important instead is the explicit form of the intertwining
operator

J : IndΓ
Γ0

(
H(Va′, Hb′a′ , Ba′)

)
→ H(Va, Hba, Ba)

defined as

(B.1) Jf(xa) :=
⊕

(u,c′)

f(xu−1)(c′)

on the dense subspace IndΓ
Γ0

(
H∞(Va′ , Hb′a′ , Ba′)

)
of IndΓ

Γ0

(
H(Va′ , Hb′a′ , Ba′)

)
.

Proof of Theorem B.1. We assume the result of Theorem 2.4, namely
the independence of the generating set.
Let Γ0 < Γ be a finite index free subgroup, (π0,H0) ∈ Mult(Γ0) a

boundary representation of Γ0 and let us consider as in (2.6) be the
associated boundary representation (π0, απ0

,H0) of Γ0.
Let λ denote the isometric action both of Γ on C(∂Γ) and of Γ0

on C(∂Γ0). If ϕ : ∂Γ0 → ∂Γ is the boundary homeomorphism, every
function F ∈ C(∂Γ) defines a function F ◦ ϕ ∈ C(∂Γ0), and hence, if
we define (with quite a dose of pedantry...) an action α of C(∂Γ) on
H0 by

(B.2) α(F ) := απ0
(F ◦ ϕ) ,

it is straightforward to verify that (π0, α,H0) is a covariant represen-
tation of

(
Γ0, C(∂Γ)

)
.

Let us now consider the induced representation πind := IndΓ
Γ0
(π0) on

Hind := IndΓ
Γ0
(H0). Define an action of C(∂Γ) on Hind by setting

(B.3)
(
Π(F )f

)
(x) := α

(
λ(x−1)F

)
f(x) ,

for f ∈ Hind, F ∈ C(∂Γ) and x ∈ Γ. We have to check that, under the
above assumptions, Π(F )f is still in Hind, namely

(B.4)
(
Π(F )f

)
(xγ) = π0(γ

−1)
(
Π(F )f

)
(x) .

But this is straightforward as, by using (B.3), the covariance of (π0, α,H0)
and (B.4), we verify that

Π(F )f(xγ) =α
(
λ(xγ)−1F

)
f(xγ)

=α
(
λ(γ−1)λ(x−1)F

)
f(xγ)

=π0(γ
−1)α

(
λ(x−1)F

)
π0(γ)f(xγ)

=π0(γ
−1)α

(
λ(x−1)F

)
f(x)

=π0(γ
−1)

(
Π(F )f

)
(x) .



22 ALESSANDRA IOZZI, M. GABRIELLA KUHN, AND TIM STEGER

In the same way one proves that

πind(γ)Π(F )πind(γ
−1) = Π

(
λ(γ)F

)

for all x ∈ Γ and F ∈ C(∂Γ), thus showing that (πind,Π,Hind) is a
boundary representation of Γ.
What is left to be shown is that if J is the operator that intertwines

(πind,Hind) and a multiplicative representation (π,H) of Γ, then J in-
tertwines also Π : C(∂Γ) → L(Hind) and απ : C(∂Γ) → L(H) (defined
respectively in (B.3) and (2.6)), namely that

(B.5) J Π(F ) = απ(F ) J ,

for all F ∈ C(∂Γ). It will be indeed enough to verify that for all f ∈ H∞

and F ∈ C(∂Γ)

J
(
Π(F )f

)
= απ(F )J(f) .

Using the direct sum decomposition in (3.1), we assume first that f
is supported on the coset Γ0 and that F = 1∂Γ(y) for some y ∈ Γ. By
definition of J in (B.1) , we have

(B.6) J
(
Π(1∂Γ(y))f

)
(xa) =

∑

u−1c′∈P (a)

(
Π(1∂Γ(y))f

)
(xu−1)(c′) ,

where by (B.3)
(
Π(1∂Γ(y))f

)
(xu−1) = α

(
λ(ux−1)

−1
1∂Γ(y)

)
f(xu−1) .

Since f is supported on Γ0 the right hand side of (B.6) is zero unless
xu−1 = γ ∈ Γ0: for these x and u, by using the definition of f and the
covariance property of (π0, α,H0), we have

α
(
λ(ux−1)

−1
1∂Γ(y)

)
f(xu−1) = α

(
λ(γ−1

)
1∂Γ(y))π0(γ

−1)f(e)

= π0(γ
−1)α(1∂Γ(y))f(e) = α(1∂Γ(y))f(γ) .

Substituting the result of these last two computations in (B.6) we ob-
tain

J
(
Π(1∂Γ(y))f

)
(xa) =

∑

x=γu
u−1c′∈P (a)

(
α(1∂Γ(y))f(γ)

)
(c′)

=
∑

x=γu
u−1c′∈P (a)

α(1∂Γ(y))f̃(γc
′) =

∑

x=γu
u−1c′∈P (a)
γc′∈Γ(y)

f̃(γc′) ,

where in the last equality we used the definition of α in (B.2) (and hence
of απ0

in (2.6)). We may assume that |x| > |y|, so that xa ∈ Γ(y) if
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and only if xu−1c′ = γc′ ∈ Γ(y); hence, by (2.6),

απ(1∂Γ(y))J(f)(xa) =1Γ(y)(xa)J(f)(xa)

=
∑

x=γu
u−1c′∈P (a)
γc′∈Γ(y)

f̃(γc′) = J
(
Π(1∂Γ(y))f

)
(xa) ,

which proves (B.5) for all f supported on Γ0.
Finally, if f is supported on uΓ0 for some u ∈ D then, applying (B.5)

to πind(u
−1)f (which is supported on Γ0) and using both the covari-

ance of (πind,Π,Hind) and of (π, απ,H) and the fact that J intertwines
(πind,Hind) and (π,H), one can easily verify (B.5) in general. �
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