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Abstract. We establish a version for measurable maps of a theo-
rem of E. Cartan [10] according to which a bijection of the bound-
ary of complex hyperbolic plane mapping chains into chains comes
from an isometry.

As an application, we prove a global rigidity result which was
originally announced in [5] and [16] with a sketch of a proof using
bounded cohomology techniques and then proven by Koziarz and
Maubon in [17] using harmonic map techniques. As a corollary one
obtains that a lattice in SU(p, 1) cannot be deformed nontrivially
in SU(q, 1), q ≥ p, if either p ≥ 2 or the lattice is cocompact. This
generalizes to noncocompact lattices a theorem of Goldman and
Millson, [13].

1. Introduction

The ideal boundary ∂H`
C

of complex hyperbolic `-space H`
C

carries a
rich geometry whose “lines”are the chains. A chain in ∂H`

C
is by defi-

nition the boundary of a complex geodesic in H`
C
; as such it is a circle

equipped with a canonical orientation, and it is uniquely determined by
any two points lying on it. The “geometry of chains” was first studied
by E. Cartan who showed that, analogously to the Fundamental The-
orem of Projective Geometry [1, Theorem 2.26], any automorphism of
the incidence graph of the geometry of chains comes, for ` ≥ 2, from
an isometry of H`

C
, [10]. The main result of this paper is a consequence

of an analog of Cartan’s theorem (see Theorem 2.1) in the measurable
setting. Namely we prove the following:

Theorem 1. Let p ≥ 2 and let ϕ : ∂Hp
C
→ ∂Hq

C
be a measurable map

such that for almost every chain and almost every triple (ξ, η, ζ) of
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distinct points on it, the triple ϕ(ξ), ϕ(η), ϕ(ζ) consists also of distinct
points on a chain and has the same orientation as (ξ, η, ζ). Then either

(1) there is a chain C ⊂ ∂Hq
C

such that ϕ(ξ) ∈ C for almost every
ξ ∈ ∂Hp

C
, or

(2) there is an isometric holomorphic embedding F : Hp
C
→ Hq

C

such that the map

∂F : ∂Hp
C
→ ∂Hq

C

induced on the boundary coincides with ϕ almost everywhere.

The precise meaning of the first “almost everywhere” condition in
the above theorem comes from the fact that the space of chains in ∂Hp

C

is a homogeneous space for SU(p, 1) and, as such, carries a canonical
invariant measure class.

As a corollary of this result and of the results in [3] and [4], we ob-
tain a rigidity theorem for representations of lattices Γ in SU(p, 1) into
PU(q, 1). To describe this, let us recall the invariant iρ, first introduced
in [5, 16], associated to any such homomorphism ρ : Γ → PU(q, 1). Let
Hq

C
be the complex hyperbolic q-space endowed with the Riemannian

metric of constant holomorphic sectional curvature -1, and let ωq be
the corresponding Kähler form. Let κq ∈ H2

c

(
PU(q, 1), R

)
be the con-

tinuous class which corresponds to ωq via the van Est isomorphism.
Let M := Γ\Hp

C
be the finite volume quotient and assume that either

p ≥ 2 or M is compact. Then the  L2-cohomology space H2
(2)(M) injects

into H2
dR(M) ' H2(Γ, R), and it is a fact that the pullback ρ∗(κq), seen

as an element of H2
dR(M), belongs to the subspace H2

(2)(M), see [3].
Since M is at any rate locally Hermitian symmetric, we may iden-

tify H•
(2)(M) with the space of harmonic  L2-forms on M ; in particular

H2
(2)(M) comes with the natural inner product of  L2-forms, and the

Kähler form ωM coming from ωp defines then an element of H2
(2)(M).

Our invariant iρ associated to ρ is then defined by:

(1.1) iρ :=
〈ρ∗(κq), ωM〉

〈ωM , ωM〉
,

and, with the above normalization of hyperbolic metric, we have

|iρ| ≤ 1 .

Let us call a representation ρ : Γ → PU(q, 1) maximal if iρ = 1. We
observe that the study of representations with iρ = −1 reduces to the
study of maximal representations by conjugating ρ with an antiholo-
morphic isometry of Hq

C
.
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Theorem 2. Let Γ < SU(p, 1) be a lattice and ρ : Γ → PU(q, 1)
be a maximal representation. Assume that p ≥ 2. Then there is an
equivariant isometric embedding

F : Hp
C
→ Hq

C

which is holomorphic.

V. Koziarz and J. Maubon gave in [17] a proof of Theorem 2 using
harmonic map techniques. We refer to the introduction of their article
for an excellent overview of the history and the context of the subject.

The invariant defined above has been introduced in [3] in a much
more general situation, in particular for a representation ρ : Γ →
Iso(X )◦, where Γ < SU(p, 1) is a lattice and X is now an arbitrary
Hermitian symmetric space of noncompact type. In this case iρ satis-
fies the inequality

|iρ| ≤ rank(X ),

and representations for which iρ = rank(X ) are coined maximal. The
case where p = 1, that is when Γ is a surface group, is the object of
an ongoing study (see [11, 12, 18, 15, 16, 8, 6, 7, 2]), and in this situ-
ation maximal representations lead to new interesting Kleinian groups
in higher rank. On the other hand, if p ≥ 2, we expect maximal
representations to come from totally geodesic, possibly holomorphic,
embeddings, as it is indeed the case when X = Hq

C
.

A different way of looking at iρ as a foliated Toledo number was
suggested to us by F. Labourie, and goes as follows. The space of
configurations of points lying on chains can be seen as the space at
infinity of the space of configurations

GHp
C

=

{
(x, Y ) : Y is a complex geodesic and x ∈ Y ⊂ Hp

C

}

of points lying on complex geodesics. This is the total space of a
foliation whose leaves are the fibers of the map

pr2 : GHp
C
→ Gp

(x, Y ) 7→ Y ,

where Gp is the set of complex geodesics; the leaves of this foliation are
transverse to the fibers of

pr1 : GHp
C
→ Hp

C

(x, Y ) 7→ x

which, incidentally, are compact. Given now Γ < PU(p, 1) a torsionfree
lattice, since pr1 is Γ-equivariant, we get a foliated space pr1 : GM →
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M lying above M = Γ\Hp
C
, where GM = Γ\GHp

C
is foliated by complex

geodesics. The restriction to the complex geodesics of the pullback
pr∗1(ωM) of the Kähler form ωM of M , defines a tangential form ωGM .
If then ρ : Γ → PU(q, 1) is a homomorphism and ω′

ρ is a bounded closed

representative of the class ρ∗(κq) ∈ H2
dR(M) (which always exists by

[3]), then the tangential form Ω′
ρ, obtained by restricting pr∗1(ω

′
ρ) to the

leaves of the foliations, differs from ωGM by a bounded function, whose
integral over GM gives iρ.

Application to Deformation Rigidity. If Γ is a discrete finitely gener-
ated group and L is a topological group, the space of homomorphisms
Rep(Γ, L) of Γ into L is topologized naturally as a closed subset of LS,
where S is a finite generating set of Γ. Let BL be the classifying space
of continuous principal L-bundles, and c ∈ H•(BL, R) a characteristic
class. It is a standard observation that the map

Rep(Γ, L) → H•(Γ, R)

ρ 7→ ρ•
B(c) ,

where ρ•
B : H•(BL, R) → H•(BΓ, R) = H•(Γ, R) denotes the pullback,

is constant on connected components of Rep(Γ, L).
Assume now that L is simple of Hermitian type and let K be a

maximal compact subgroup of L. It follows from the Iwasawa decom-
position that BK is homotopy equivalent to BL, and by Chern–Weil
theory H•(BK, R) is described by the K-invariant polynomials on the
Lie algebra k of K. Since L is simple Hermitian, the center Z(k) is one
dimensional and the orthogonal projection of k on Z(k) gives rise to
an invariant linear form which, via Chern–Weil theory, gives rise to a
class in H2(BK, R) = H2(BL, R). This class corresponds then via the
natural homomorphism H2(BL, R) → H2

c(L, R) to the Kähler class κY ,
and hence the commutativity of the diagram

H2(BL, R)
ρ
(2)
B

//

��

H2(BΓ, R)

=

��

H2
c(L, R)

ρ(2)

// H2(Γ, R)

implies that the map

Rep(Γ, L) → H2(Γ, R)

ρ 7→ ρ(2)(κY) ,

where Y is the symmetric space associated to L, is constant on con-
nected components of Rep(Γ, L).
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To turn to our immediate application, let us assume that p ≤ q and
let ρ0 : SU(p, 1) → PU(q, 1) be a standard homomorphism, that is a
homomorphism associated to any isometric holomorphic embedding

F : Hp
C
→ Hq

C
.

Observe that any two such embeddings Hp
C
→ Hq

C
are conjugate in

PU(q, 1); moreover, the stabilizer in PU(q, 1) of the image of F is the al-
most direct product of the image ρ0(SU(p, 1)) and its centralizer Z(ρ0)
in PU(q, 1), which is compact.

Corollary 3. Let ρ0 : SU(p, 1) → PU(q, 1) be a standard represen-
tation, let Γ < SU(p, 1) be a lattice and assume that p ≥ 2. Then any
representation ρ : Γ → PU(q, 1) in the path connected component of
ρ0|Γ in the representation variety Rep(Γ, PU(q, 1)) is, modulo conjuga-
tion by PU(q, 1), of the form ρ0 × χ, where χ is a homomorphism of Γ
into the compact group Z(ρ0).

Remark 4. We recall that if Γ < SU(p, 1) is cocompact, this was
proved by Goldman and Millson in [13]. On the other hand, Gusevskii
and Parker found quasi-Fuchsian deformations of a noncocompact lat-
tice Γ < SU(1, 1) into PU(2, 1), [14].

2. The Measurable Cartan Theorem

Let V be a complex vector space of dimension `+1 with a Hermitian
form h of signature (`, 1). The complex hyperbolic `-space H`

C
is the

cone of negative vectors in P(V ) equipped with the distance

cosh2 d
(
[v], [w]

)
:=

h(v, w)h(w, v)

h(v, v)h(w, w)
,

which turns it into a simply connected Riemannian manifold with sec-
tional curvature −4 ≤ κ ≤ −1 whose isometry group is PU(`, 1).

If 0 ≤ k ≤ `, any (k + 1)-dimensional nondegenerate indefinite linear
subspace W ⊂ V gives rise to a k-plane, that is a totally geodesic
holomorphically embedded isometric copy of Hk

C
. In particular, a 1-

plane is a complex geodesic in H`
C
.

The boundary ∂H`
C

consists of equivalence classes of asymptotic ge-
odesic rays and can be identified with a (2` − 1)-dimensional sphere
corresponding to the projectivization of the null cone of h. Boundaries
of k-planes are called k-chains and boundaries of complex geodesics in
H`

C
are simply referred to as chains. A chain is completely determined

by any two points that belong to it, and hence two distinct chains are
either disjoint or meet in exactly one point.
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Since the diagonal action on PU(`, 1) on (∂H`
C
)(3) is not transitive1, in

the following it will be useful to associate to triples of points in (∂H`
C
)(3)

a full invariant which does not have any analog in real hyperbolic spaces
except on the hyperbolic plane. Namely, if

〈 · , · , · 〉 :
(
C

`+1
)3

→ C

is the Hermitian triple product defined by

〈z1, z2, z3〉 = h(z1, z2)h(z2, z3)h(z3, z1) ,

define Cartan’s invariant angulaire

c` : (∂H`
C
)(3) → [−1, 1]

by

c`(ξ1, ξ2, ξ3) :=
2

π
Arg〈z1, z2, z3〉 ,

where the points zi ∈ C`+1 projects onto ξi ∈ ∂H`
C
, and where we

choose the convention that Arg(z) ∈
[
−π

2
, π

2

]
, [10]. Then c` extends

to a PU(`, 1)-invariant alternating cocycle on (∂H`
C
)3; in this section,

however, the relevant property of c` is that it detects exactly when three
points lie on a chain. Namely, |c`(ξ1, ξ2, ξ3)| = 1 if and only if ξ1, ξ2, ξ3

lie on a chain, and c`(ξ1, ξ2, ξ3) = 1 if and only if the triple (ξ1, ξ2, ξ3)
is positively oriented with respect to the canonical orientation on the
chain.

The goal of this section is to prove Theorem 1. This will be achieved
by proving in § 2.1 the following

Theorem 2.1. Let p ≥ 2 and let ϕ : ∂Hp
C
→ ∂Hq

C
be a measurable

map such that:

(i) for almost every chain C and almost every triple (ξ, η, ζ) of
distinct points on C, the triple ϕ(ξ), ϕ(η), ϕ(ζ) consists also of
distinct points which lie on a chain and have the same orienta-
tion as (ξ, η, ζ);

(ii) for almost every triple of points ξ, η, ζ not on a chain, ϕ(ξ),
ϕ(η), ϕ(ζ) are also not on a chain.

Then there is an isometric holomorphic embedding F : Hp
C
→ Hq

C
such

that the map

∂F : ∂Hp
C
→ ∂Hq

C

induced on the boundary coincides with ϕ almost everywhere.

1Throughout the paper, given a set X and a positive integer n ∈ N, we use the
notation X(n) to indicate the subset of Xn of n-ples consisting of distinct points.
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The reduction of Theorem 1 from Theorem 2.1 lies in the following
proposition, which will be proven in § 2.2.

Proposition 2.2. Let ϕ : ∂Hp
C
→ ∂Hq

C
be a measurable map satisfy-

ing (i) but not (ii) of Theorem 2.1. Then there exists a chain C ⊂ ∂Hq
C

such that for almost every ξ ∈ ∂Hp
C
, ϕ(ξ) ∈ C.

2.1. Proof of Theorem 2.1. The structure of the proof of Theo-
rem 2.1 goes as follows. We first show by induction that the statement
of the theorem for a fixed p follows from the analogous statement in
one lower dimension, provided p ≥ 3; this leaves us to show the state-
ment for p = 2. The next step is to show that if p = 2 any map
ϕ : ∂H2

C
→ ∂Hq

C
satisfying the hypotheses of Theorem 1 essentially

takes values in a two-chain; this will be achieved by an appropriate
convex hull argument. The last step is hence to show the assertion for
p = q = 2, for which we follow a strategy devised by Goldman for a
different proof of E. Cartan’s theorem.

2.1.1. Configuration spaces, I. In the sequel we will have to deal with
various configuration spaces and maps between them. Typically, we
will have the situation

p : W → V ,

where W, V are one of the following configuration spaces below and p
is a “projection”. In all cases, these configuration spaces are manifolds
and the maps p are fibrations. Thus W , V and every fiber of p will
be equipped with its canonical Lebesgue measure class, so that the
following Fubini-type statement holds: a measurable subset A ⊂ W is
of full measure if and only if for almost every v ∈ V the set p−1(v)∩A
is of full measure in p−1(v).

We list here for future reference some of the configuration spaces
occurring in the part of the proof dealing with the reduction to the
case in which p = q = 2. Let us start by observing that if Grassk1,k2(p)
denotes the Grassmannian of k1-planes in k2-planes in Hp

C
, we have

Grassk1,k2(p) ' SU(p, 1)/S
(
U(p − k2) × U(k2 − k1) × U(k1, 1)

)
.

Moreover we will use:

– if 1 ≤ k ≤ p, the space Pk,p of k-planes in Hp
C

and the space
Ck,p of k-chains in ∂Hp

C
are both isomorphic to Grassk,k(p);

– the space
{

(X, x) : X ∈ Pp−1,p, x ∈ X
}

of points on a (p − 1)-
plane is isomorpic to Grass0,p−1(p), and the fibers of the pro-
jection onto the second factor are the k-planes Pk,p(x) through
x ∈ Hp

C
, where

Pk,p(x) ' S
(
U(p) × U(1)

)
/S

(
U(p − k) × U(k) × U(1)

)
;
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– the space
{

(X, C) : X ∈ Pp−1,p, C ∈ Ck,p and C ⊂ ∂X
}

of chains in the boundary of (p − 1)-planes is isomorphic to
Grass1,p−1(p);

– the space of points in the boundary of a (p − 1)-plane

Isp−1(p) :=
{

(X, ξ) : X ∈ Pp−1,p, ξ ∈ ∂X
}

can be identified with
{
W ⊂ X : X ∈ Pk,p, W ⊂ X is an isotropic line

}
,

and as such is isomorphic to

SU(p, 1)/S
(
U(p − k) × Qk

)
,

where Qk < SU(k, 1) is a parabolic subgroup stabilizing an
isotropic line;

– the space
{

(X, ξ1, ξ2, ξ3) : X ∈ Pp−1,p, ξ1, ξ2, ξ3 ∈ ∂X
}

of triples
of points on the boundary of a (p − 1)-plane is the threefold

fibered product
(

Isp−1(p)
)3

f
of the configuration space Isp−1(p)

with respect to the first projection; it turns out to be a manifold,
as one can easily see using a standard transversality argument
since the projection if submersive;

– the space
{(

C, (ξ1, ξ2)
)

: C ∈ C1,p and (ξ1, ξ2) ∈ C(2)
}

is an

open set in the twofold fibered product
(

Isp−1(p)
)2

f
which, as

in the previous case, is a manifold.

2.1.2. Reduction to the case p = 2. We now let p ≥ 3, we assume that
the theorem holds for p − 1 and we will now show that it holds for
p. Let us start by observing that a simple verification using Fubini’s
theorem applied to the configuration spaces

{
(X, C) : X ∈ Pp−1,p, C ∈ C1,p, C ⊂ ∂X

}

and
{

(X, ξ1, ξ2, ξ3) : X ∈ Pp−1,p, and ξ1, ξ2, ξ3 ∈ ∂X
}

shows that, for almost every X ∈ Pp−1,p, the restriction ϕ|∂X of ϕ to
∂X is measurable and satisfies respectively the hypotheses (i) and (ii)
of Theorem 2.1.

Applying the induction hypothesis we get for almost every X ∈
Pp−1,p an isometric holomorphic embedding

FX : X → Hq
C
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such that ∂FX = ϕ|∂X almost everywhere. To extend FX to a well
defined function on Hp

C
, let us consider the set

{
(x, X) : X ∈ Pp−1,p(x) and there is FX : X → Hq

C
as above

with ∂FX = ϕ|∂X almost everywhere
}

which is thus of full measure in the configuration space
{

(x, X) : X ∈ Pp−1,p(x)
}

,

and let us define for almost every x ∈ Hp
C

and almost every X ∈
Pp−1,p(x) the function

f(x, X) := FX(x) .

Using again Fubini’s theorem, one checks that for almost every X1,
X2 ∈ Pp−1,p(x),

(2.1) ∂FX1 |∂X1∩∂X2 = ϕ|∂X1∩∂X2 = ∂FX2 |∂X1∩∂X2 .

For such X1 6= X2, since X1∩X2 is nonempty, it is then a (p−2)-plane,
and since p − 2 ≥ 1, we have that

∂X1 ∩ ∂X2 = ∂(X1 ∩ X2) 6= ∅ ,

which implies, using (2.1), that f(x, X1) = f(x, X2). Thus f(x, X) is
almost everywhere independent of X ∈ Pp−1,p(x) and gives rise to a
well defined map f : Hp

C
→ Hq

C
which by construction preserves the

distances of almost every pair of points. It is then easy to see that f
coincides almost everywhere with an isometric embedding Hp

C
→ Hq

C
.

This, together with the fact that ∂f = ϕ preserves the orientation on
chains, implies that the embedding must be holomorphic. �

2.1.3. Reduction to the case p = q = 2. Recall that any two distinct
chains are either disjoint or intersect in a point, and hence every pair
of distinct points (ξ, η) ∈ (∂Hp

C
)(2) determines a unique chain C(ξ, η).

Lemma 2.3. Let ϕ : ∂Hp
C
→ ∂Hq

C
be a measurable map satisfying the

hypothesis (i) of Theorem 2.1 and let c` : (∂H`
C
)3 → [−1, 1] be the

Cartan cocycle. Then for almost every (ξ1, ξ2) ∈ (∂Hp
C
)(2), we have

that

(1) ϕ(ξ1) 6= ϕ(ξ2), and
(2) for almost every ξ3 ∈ C(ξ1, ξ2), we have

ϕ(ξ3) ∈ C
(
ϕ(ξ1), ϕ(ξ2)

)

and
cq

(
ϕ(ξ1), ϕ(ξ2), ϕ(ξ3)

)
= cp(ξ1, ξ2, ξ3) .

As a consequence we obtain:
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Corollary 2.4. Let ϕ : ∂Hp
C
→ ∂Hq

C
be a measurable map satisfying

the hypothesis (i) of Theorem 2.1. Then there is a measurable map

(2.2) Φ : C1,p → C1,q

such that

(2.3) Φ
(
C(ξ1, ξ2)

)
= C

(
ϕ(ξ1), ϕ(ξ2)

)

for almost every (ξ1, ξ2) ∈ (∂Hp
C
)(2).

Proof of Lemma 2.3. Consider the measure class preserving bijection

(∂Hp
C
)(2) →

{
(C, ξ1, ξ2) : C ∈ C1,p, (ξ1, ξ2) ∈ C(2)

}

(ξ1, ξ2) 7→
(
C(ξ1, ξ2), ξ1, ξ2

)
.

Then the hypothesis (i) of Theorem 2.1 implies by Fubini that for
almost every C ∈ C1,p, for almost every (ξ1, ξ2) ∈ C(2) and for almost
every ξ3 ∈ C we have

(2.4) cq

(
ϕ(ξ1), ϕ(ξ2), ϕ(ξ3)

)
= cp(ξ1, ξ2, ξ3)

which, using the above bijection, is equivalent to the fact that for al-
most every (ξ1, ξ2) ∈ (∂Hp

C
)(2) and for almost every ξ3 ∈ C(ξ1, ξ2), (2.4)

holds, which shows that ϕ(ξ1) 6= ϕ(ξ2) and that (2) holds. �

Proof of Corollary 2.4. It is clear that if C ∈ C1,p is such that (2.4)
holds for almost every (ξ1, ξ2) ∈ C(2) and for almost every ξ3 ∈ C,
then in particular if (ξ1, ξ2) ∈ C(2) and (η1, η2) ∈ C(2) are such that the
equalities

cq

(
ϕ(ξ1), ϕ(ξ2), ϕ(ξ3)

)
= cp(ξ1, ξ2, ξ3)

cq

(
ϕ(η1), ϕ(η2), ϕ(η3)

)
= cp(η1, η2, η3)

hold for almost every ξ3, η3 ∈ C, we have that

ϕ(ξ1) 6= ϕ(ξ2) ,

ϕ(η1) 6= ϕ(η2) and

C
(
ϕ(ξ1), ϕ(ξ2)

)
∩ C

(
ϕ(η1), ϕ(η2)

)
⊃ EssIm(ϕ|C) ,

where EssIm(ϕ|C) denotes the essential image of ϕ|C . Since EssIm(ϕ|C)
cannot be reduced to a point, we have that

C
(
ϕ(ξ1), ϕ(ξ2)

)
= C

(
ϕ(η1), ϕ(η2)

)
,

which leads to the map

Φ : C1,p → C1,q(
C(ξ1, ξ2)

)
7→ C

(
ϕ(ξ1), ϕ(ξ2)

)

which is then well defined and satisfies (2.3). �
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In the sequel we will need a concrete way to choose a probability
measure on each chain C which is in the class of the Lebesgue measure.
Fix a Riemannian metric on ∂Hp

C
, for instance the K-invariant one,

where K is a maximal compact subgroup in SU(p, 1): for every ξ 6= η
in ∂Hp

C
, if S1 denotes the unit circle in C, let

fξ,η : S
1 → ∂Hp

C
,

be the unique parametrization of C(ξ, η) such that

– fξ,η(1) = ξ;
– fξ,η is orientation preserving, and
– fξ,η is a parametrization proportional to the arclength.

If we denote by µξ,η ∈ M1(∂Hp
C
) the probability measure supported on

C(ξ, η) defined by

µξ,η(F ) :=
1

2π

∫ 2π

0

F
(
fξ,η(eiθ)

)
dθ ,

then the map
(∂Hp

C
)(2) → M1(∂Hp

C
)

(ξ1, ξ2) 7→ µ(ξ1,ξ2) ,

is clearly continuous for the weak-∗ topology on M1(∂Hp
C
). Then we

have:

Lemma 2.5. Let λ be the K-invariant probability measure on ∂Hp
C
.

Then for every ξ1 ∈ ∂Hp
C
, the probability measure on ∂Hp

C
× ∂Hp

C

defined by

f 7→

∫

∂Hp
C

∫

∂Hp
C

(µ(ξ1,ξ2) ⊗ µ(ξ1,ξ3))(f)dλ(ξ1)dλ(ξ2)

for any continuous function f on ∂Hp
C
× ∂Hp

C
, is equivalent to λ ⊗ λ.

Proof. The measure defined above is the product with itself of the
measure on ∂Hp

C
given by

f 7→

∫

∂Hp
C

1

2π

∫ 2π

0

f
(
fξ1,η(eiθ)

)
dθdλ(η) ,

which is equivalent to λ since the chains through ξ1 give a smooth
foliation of ∂Hp

C
\ {ξ1}. �

Lemma 2.6. Let ξ1 ∈ ∂Hp
C
. For almost every (ξ2, ξ3) ∈ (∂Hp

C
)(2), for

almost every (a, b) ∈ C(ξ1, ξ2) × C(ξ1, ξ3) and for almost every c ∈
C(a, b), we have that:

ϕ(a) ∈ C
(
ϕ(ξ1), ϕ(ξ2)

)
;

ϕ(b) ∈ C
(
ϕ(ξ1), ϕ(ξ3)

)
;
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ϕ(c) ∈ C
(
ϕ(a), ϕ(b)

)
.

Proof. According to Lemma 2.3(2), the set

E :=
{

(a, b) ∈
(
∂HC)2 : for almost every c ∈ C(a, b),

we have ϕ(c) ∈ C
(
ϕ(a), ϕ(b)

)}

is of full λ ⊗ λ-measure. Thus, by Lemma 2.5, we have

1 =

∫

∂Hp
C

∫

∂Hp
C

(µ(ξ1,ξ2) ⊗ µ(ξ1,ξ3))(E)dλ(ξ1)dλ(ξ2)

which, taking into account that all measures involved are probability
measures, is equivalent to the conclusion of Lemma 2.6. �

Corollary 2.7. Let ϕ : ∂H2
C
→ ∂Hq

C
be a measurable map satisfying

the hypothesis (i) of Theorem 2.1. Then the essential image of ϕ is
contained in a 2-chain.

Proof. Fix (ξ1, ξ2, ξ3) not on a chain, for which Lemma 2.6 holds. Let
E ⊂ ∂H2

C
be the set of c ∈ ∂H2

C
such that there are (a, b) ∈ C(ξ1, ξ2)×

C(ξ1, ξ3) with c ∈ C(a, b) and Lemma 2.6 holds for a, b, c. Then E ⊂
∂H2

C
is of full measure. Moreover,

ϕ(c) is in the C-linear span of ϕ(a) and ϕ(b),

ϕ(a) is in the C-linear span of ϕ(ξ1) and ϕ(ξ2), and

ϕ(b) is in the C-linear span of ϕ(ξ1) and ϕ(ξ3) ,

so that for all c ∈ E, ϕ(c) is in the 2-chain determined by the 3-
dimensional space ϕ(ξ1) ⊕ ϕ(ξ2) ⊕ ϕ(ξ3). �

2.1.4. Configuration spaces, II. In the last part of the proof we will
need some more configuration spaces which, as manifolds, will come
equipped as before with a natural Lebesgue measure class. We will
use:

– the space Π of circles of positive radius in C, isomorphic to
Aff(C)/C?

1 ' C∗ n C/C?
1;

– the space of points on a circle ∆ =
{

(S, z); z ∈ S, S a circle in C
}

,
isomorphic to Aff(C);

– the space of triples of distincts points on a circle, which is an
open set in the fibered product

(∆)3
f :=

{
(S, z1, z2, z3) : C is a circle in C, (z1, z2, z3) ∈ C3

}

with respect to the projection on the second component.

Since circles through a point correspond to affine lines via an inversion,
we will also use the following configurations:
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– the space D of lines in C, which is isomorphic to Aff(C)/R∗nR;
– the space D(w) ' C∗ of lines in C through the point w ∈ C;
– the space K0 :=

{
(d, L) : L ∈ d, d ∈ D

}
of points on a line,

isomorphic to Aff(C);
– the space K :=

{
(d, A, B, C) : d ∈ D, and (A, B, C) ∈ d(3)

}
is

an open set in the manifold
{

(d, A, B, C) : d ∈ D, and (A, B, C) ∈ d3
}
' (K0)

3
f ,

where the fibered porduct is with respect to the projection on
the first component p1;

– the space

K1 :=
{

(d′, d, A, B, C, M) : (d, A, B, C) ∈ K, (d′, A) ∈ K0,

d′ 6= d, M /∈ d′ ∪ d
}

,

which is an open set in

(K × K0)f × C :=
{

(d′, A, B, C, d, M) : (d, A, B, C) ∈ K, (d′, A) ∈ K0,
}

where

(K × K0)f :=
{(

(d, A, B, C), (d′, L)
)
∈ K × K0 :

p2(d, A, B, C) = p2(d
′, L)

}
.

2.1.5. The Case p = q = 2.

Proof of Theorem 2.1. Let us denote by C1,2(ξ) the set of chains through
the point ξ ∈ ∂H2

C
and let now ϕ : ∂H2

C
→ ∂H2

C
be a measurable map

satisfying the hypotheses of Theorem 2.1 for p = q = 2. Let Φ : C1,2 →
C1,2 be the map induced almost everywhere on the set of chains defined
in (2.2), and let E ⊂ ∂H2

C
the subset of full measure such that for

every ξ ∈ E and almost every C ∈ C1,2(ξ), also Φ(C) ∈ C1,2(ϕ(ξ)). Fix
ξ ∈ E; composing with an element from SU(2, 1), we may assume that
ϕ(ξ) = ξ. The idea of the proof consists in considering a quotient map

πξ : ∂H2
C \ {ξ} → C

whose fibers are the chains through ξ (with ξ removed). Then, if gξ :
C → C denotes the induced measurable map such that the diagram

(2.5) ∂H2
C
\ {ξ}

ϕ
//

πξ

��

∂H2
C
\ {ξ}

πξ

��

C
gξ

// C

commutes, information about the behavior of the map ϕ in the direc-
tion transverse to the fiber of πξ will allow to conclude that gξ is an
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affine map of C. From this, adjusting appropriately the map ϕ via
elements of SU(2, 1), we will conclude that ϕ = Id almost everywhere,
and hence obtain the conclusion of the theorem.

To this purpose, let P be the stabilizer in SU(2, 1) of ξ, and let N
be its unipotent radical. Then ∂H2

C
\ {ξ} is a principal homogeneous

N -space, and the orbits of the center Z(N) are the chains through ξ
(with the point ξ removed). Since N/Z(N) can be identified with C,
the quotient map N → N/Z(N) induces a map

πξ : ∂H2
C
\ {ξ} → C

whose fibers are the chains through ξ and which enjoys the following
properties:

(P1) It is equivariant with respect to the homomorphism

ωξ : P � Aff(C)

induced from the identification

P/Z(N)
∼=

// Aff(C) .

(P2) for every chain C ⊂ ∂H2
C
\ {ξ}, πξ|C is injective with image a

circle in C;
(P3) for every circle S ⊂ C and any s ∈ ∂H2

C
\ {ξ} with πξ(s) ∈ S,

there is a (unique) chain C ⊂ ∂H2
C
\ {ξ} through s such that

πξ(C) = S.

Moreover, gξ induces a measurable map Gξ : Π → Π from the set
Π of circles in C into itself. To continue, we are going to need the
following result, whose proof we postpone.

Proposition 2.8. Let g : C → C be a measurable map and let us
assume that there exists a measurable map G : Π → Π such that for
almost every circle S ⊂ C, there is a circle G(S) ⊂ C such that:

(i) for almost every z ∈ S, g(z) ∈ G(S);
(ii) for almost every z1, z2, z3 ∈ S distinct, g(z1), g(z2), g(z3) ∈ G(S)

are distinct and in the same cyclic order;
(iii) for almost every z ∈ C the set

{
(S1, S2) : z ∈ Si, i = 1, 2, G(S1) = G(S2)

}

is of measure zero.

Then g coincides almost everywhere with an affine map z 7→ λz + c,
where λ ∈ C

× and c ∈ C.

Continuation of the proof of Theorem 2.1. Since two chains which
intersect in two points must coincide, and because of properties (P1),
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(P2) and (P3), then gξ satisfies the hypotheses of the above proposition
and hence gξ ∈ Aff(C).

Thus composing ϕ with an element h−1 ∈ P such that ωξ(h) = gξ

almost everywhere, we may assume that gξ = Id almost everywhere,
that is, for almost every C ∈ C1,2(ξ) and almost every ζ ∈ C, ϕ(ζ) ∈ C.
Now pick such a C and η ∈ C ∩ E, where E has been defined at the
beginning of the proof. Composing with an element from Z(N), we
may assume that ϕ(η) = η. But then the map gη : C → C fixes
πη(ξ), and since ϕ leaves invariant all chains through ξ, then gη leaves
invariant all circles through πη(ξ); this, together with the fact that by
Proposition 2.8 again gη coincides almost everywhere with an affine
map, implies that gη = IdC. But πη is injective when restricted to
every chain C ∈ C1,2(ξ) different from C(ξ, η) and, since gη = IdC, it
follows that ϕ|C = Id |C . Since the chains through ξ but not through
η foliate a set of ∂H2

C
of full measure, we conclude that ϕ coincides

almost everywhere with the identity. �

Proof of Proposition 2.8. By Fubini’s theorem, the set E of z ∈ C such
that (i), (ii) and (iii) hold for almost every circle through z is of full
measure in C; fixing z ∈ E and composing with an affine map, we may

assume that g(z) = z. Conjugating g with an inversion i : Ĉ → Ĉ

with respect to a circle with center z, we get a map f : C → C which
induces a map F : D → D on the set D of affine R-lines in C, satisfying
the following properties:

(i)’ for almost every d ∈ D and almost every P ∈ d, we have that
f(P ) ∈ F (d);

(ii)’ for almost every d ∈ D and almost every A, B, C ∈ d distinct,
the points f(A), f(B), f(C) are distinct and lie on F (d);

(iii)’ for almost every point w ∈ C, the set

{
(d1, d2) ∈ D(w)2 : F (d1) = F (d2)

}

is of measure zero in
(
D(w)

)2
.

Notice that in (ii)’ one could have stated also a condition corresponding
to the preservation of the cyclic ordering. However this is never used
for the maps f and F themselves and comes into play only at the very
end of the proof when we return to the map g, so that we chose to
ignore it.

The main point of the proof is the following claim, which we assume
for the moment and prove later:
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Claim. If f and F are as above, then f preserves almost everywhere
the property for four-tuples to be in anharmonic position: namely, if

[z1, z2, z3, z4] :=
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)

denotes the crossratio, and if, as in § 2.1.4,

K :=
{

(d, A, B, C) : d ∈ D, and A, B, C are distinct points on d
}

,

then for almost every (d, A, B, C) ∈ K, if D ∈ d and D′ ∈ F (d) are
points such that [A, B, C, D] = −1 and

[
f(A), f(B), f(C), D′

]
= −1,

then

f(D) = D′ .

Observe here that K is a manifold and, as such, is endowed with the
Lebesgue measure class. Assuming this claim, let us define

V−1 :=
{

(z1, z2, z3, z4) ∈ C
4 : [z1, z2, z3, z4] = −1

}
.

Then V1 is a three-dimensional complex manifold isomorphic to C(3)

via any of the four projections

pri : V−1 � C
(3)

consisting of dropping the i-th coordinate, for i = 1, . . . , 4. The original
map g has the property that

(2.6)
for a. e. (z1, z2, z3, z4) ∈ V−1

we have that
(
g(z1), g(z2), g(z3), g(z4)

)
∈ V−1 ,

where the almost everywhere statement is with respect to the natural
Lebesgue measure on V−1.

By Fubini’s theorem, fix z4 ∈ C such that if

V
(z4)
−1 :=

{
(z1, z2, z3) ∈ C : [z1, z2, z3, z4] = −1

}
,

then for almost every (z1, z2, z3) ∈ V
(z4)
−1 we have that the quadruple(

g(z1), g(z2), g(z3), g(z4)
)

is in V−1. Consider the composition

g̃ := i ◦ g ◦ j ,

where i and j are inversions with j(∞) = z4 and i
(
g(z4)

)
= ∞. Then

(2.6) holds with g replaced by g̃ and z4 replaced by ∞, so that, using
the definition of crossratio, one has that for almost every (z1, z2) ∈ C2

(2.7) 2g̃

(
z1 + z2

2

)
= g̃(z1) + g̃(z2) .
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We claim that this implies that g̃ is an R-affine transformation of C.
To this purpose, define h : C × C → C by

h(z1, z2) := g̃(z1) − g̃(z2) .

Using equation (2.7), one can easily see that for almost every (z1, z2) ∈
C2, the map

C −→ C

u 7→ h(u + z1, u + z2)

is almost everywhere constant, which implies that there exists a mea-
surable map h̃ : C → C such that

(2.8) h̃(z1 − z2) = g̃(z1) − g̃(z2)

for almost every (z1, z2) ∈ C2.
Applying this equation (2.8) to the pairs (z1, z2), (z2, z3) and (z1, z3),

one sees that h̃ is a measurable homomorphism of the additive group
(C, +), and hence coincides almost everywhere with an R-linear map,
which in turns, in view of (2.8), implies that g̃ is R-affine. But since
g̃ sends circles to circles, it is either C-affine or C-affine, so that g is
either a homography or an antihomography. But then, using that g has
to preserve cyclic order on circles, one concludes that g is C-affine. �

Proof of Claim. If f : C → C were an everywhere defined map which
satisfies (i)’, (ii)’, and (iii)’ pointwise, then the statement of the claim
would be nothing but an application of la méthode du quadrilatère

complet which we recall here [9].
Let A, B, C be three distinct points on a line d and, given another line

d′ 6= d, and a point M /∈ d∪d′, we construct a fourth point D ∈ d such
that [A, B, C, D] = −1. To this purpose, let P := dCM ∩d′, where dCM

is the line determined by the points C and M , and let Q := dBM ∩ d′.
If N := dPB ∩ dAM , then D := dQN ∩ d is the unique point such that
[A, B, C, D] = −1. Repeated applications of the properties (i)’, (ii)’,
and (iii)’ imply that [f(A), f(B), f(C), f(D)] = −1.

For a measurable function f : C → C for which all of the above
statements are true almost everywhere, the first thing to verify is that
the statement of the claim makes sense. This is however true since
properties (i)’ and (ii)’ imply that for almost every (d, A, B, C) ∈ K,
one has that

(2.9)
(
F (d), f(A), f(B), f(C)

)
∈ K

as well.
Let, as in § 2.1.4,

K0 :=
{

(d, A); d ∈ D, A ∈ d
}
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A

P

D
B

C

M

d

d’

N

Q

Figure 1. La méthode du quadrilatère complet.

and let

K1 :=
{

(d′, d, A, B, C, M) : (d, A, B, C) ∈ K, (d′, A) ∈ K0

and d′ 6= d, M /∈ d′ ∪ d
}

.

Like K, the spaces K0 and K1 are manifolds and are hence endowed
with their Lebesgue measure class. First we observe that properties
(ii)’ and (iii)’ together with a repeated use of Fubini’s theorem im-
ply that there is a subset E1 ⊂ K1 of full measure such that for all
(d′, d, A, B, C, M) ∈ E1, then

(
F (d′), F (d), f(A), f(B), f(C), f(M)

)
∈ K1 .

Now consider the following maps

mi : K1 → K ,
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for i = 1, . . . , 7, given by

m1 : (d′, d, A, B, C, M) 7→
(
dCM , C, M, P

)

m2 : (d′, d, A, B, C, M) 7→
(
dBM , B, M, N

)

m3 : (d′, d, A, B, C, M) 7→
(
dAM , A, Q, M

)

m4 : (d′, d, A, B, C, M) 7→
(
dPB, P, Q, B

)

m5 : (d′, d, A, B, C, M) 7→ (d′, A, P, N)

m6 : (d′, d, A, B, C, M) 7→
(
dNQ, N, Q, D

)

m7 : (d′, d, A, B, C, M) 7→ (d, A, B, D) ,

Let T ⊂ K be the subset consisting of (d, A, B, C) such that the triple(
f(A), f(B), f(C)

)
consists of pairwise distinct points and belong to

F (d), that is
(
F (d), f(A), f(B), f(C)

)
∈ K. Then, because of (2.9), the

set T is of full measure and it is easy to verify that then m−1
i (T ) ⊂ K1

is of full measure for i = 1, . . . , 7. Thus the same is true for

E ′
1 :=

7⋂

i=1

m−1
i (T ) ∩ E1 .

But then the previous pointwise argument shows that for all configu-
rations (d′, d, A, B, C, M) ∈ E ′

1,

if D ∈ d is such that [A, B, C, D] = −1

and D′ ∈ F (d) is such that
[
f(A), f(B), f(C), D′

]
= −1

then f(D) = D′. �

2.2. Proof of Proposition 2.2. We start with the following

Lemma 2.9. Let B ⊂ ∂Hp
C

be a measurable set of positive measure
such that for almost every (ξ, η) ∈ B(2), the set C(ξ, η) ∩ B is of full
measure in the chain C(ξ, η). Then B is a set of full measure in ∂Hp

C
.

Proof. We may pick a density point ξ ∈ B such that for almost every
η ∈ B, the set C(ξ, η) ∩ B has full measure in C(ξ, η). Now let

CB :=
{
C ∈ C(ξ) : C ∩ B has positive measure in C

}
.

Then by Fubini’s theorem we have that for almost every C ∈ CB and
almost every η ∈ C∩B, the set C(ξ, η)∩B is of full measure in C(ξ, η)
and hence, for all C ∈ CB, we have that

(2.10) C ∩ B is of full measure in C .

On the other hand, using that ξ is a density point, it is easy to see that
CB has full measure in C(ξ) and hence, again by (2.10) and Fubini’s
theorem, B has full measure in ∂Hp

C
. �
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Proof of Proposition 2.2. If (ii) fails, then the set

{(ξ, η, ζ) : ϕ(ξ), ϕ(η), ϕ(ζ) are on a chain}

is of positive measure in ∂Hp
C
. Observing by (i) that for almost every

(ξ, η) ∈ (∂Hp
C
)2 we have that ϕ(ξ) 6= ϕ(η), we deduce by Fubini’s

theorem that there exists (ξ, η) such that

(1) ϕ(ξ) 6= ϕ(η), and
(2) the set of

{
ζ ∈ ∂Hp

C
such that ϕ(ξ), ϕ(η), ϕ(ζ) are on a chain

}

is of positive measure.

Denoting by C the chain through ϕ(ξ) and ϕ(η), we conclude that
B := ϕ−1(C) is of positive measure and, in view of the hypothesis (i),
satisfies the assumptions of Lemma 2.9, which shows that ϕ−1(C) is of
full measure. �

3. Proof of Theorem 2

Let Γ < SU(p, 1) be a lattice, ρ : Γ → PU(q, 1) a homomor-
phism with nonelementary image and let ϕ : ∂Hp

C
→ ∂Hq

C
be the Γ-

equivariant measurable boundary map. For almost every chain C ∈ C1,p

let us denote by ϕC the restriction of ϕ to C. Denoting by µ the
SU(p, 1)-invariant probability measure on Γ\SU(p, 1), we established
in[4] the following formula which gives a measure of how much the
boundary map ϕ distorts a typical chain:

Theorem 3.1 ([4, Theorem 5.6 and Corollary 5.7]). Let Γ < SU(p, 1)
be a lattice, ρ : Γ → PU(q, 1) a homomorphism with nonelementary
image and ϕ : ∂Hp

C
→ ∂Hq

C
be the associated Γ-equivariant measurable

boundary map. For almost every chain C ∈ C1,p and almost every triple
(ξ, η, ζ) ∈ C3, we have

∫

Γ\SU(p,1)

cq

(
ϕC(gξ), ϕC(gη), ϕC(gζ)

)
dµ(ġ) = iρcp(ξ, η, ζ) ,

where iρ is defined in (1.1), and cq, cp are the Cartan cocycles.
If iρ = 1 then for almost every C ∈ C1,p and almost every (ξ1, ξ2, ξ3) ∈

C3

(3.1) cq

(
ϕC(ξ1), ϕC(ξ2), ϕC(ξ3)

)
= cp(ξ1, ξ2, ξ3) .

Proof of Theorem 2. We start by observing that since iρ = 1, then
ρ(Γ) < PU(q, 1) is nonelementary. In fact, if ρ(Γ) were elementary, it
would be contained in a closed amenable subgroup of PU(1, 1). Since
the class κq is bounded, its restriction to any closed amenable subgroup
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vanishes; thus elementarity of ρ(Γ) would imply that ρ∗(κq) = 0, and
hence iρ = 0.

Let now ϕ : ∂Hp
C
→ ∂Hq

C
be a Γ-equivariant measurable map. Then

equation (3.1) implies that ϕ satisfies the hypothesis of Theorem 1.
Let us show by contradiction that (2) holds. So assume that (1) holds,
in particular we may assume that q = 1. Let us observe that if I ⊂
S1 = ∂H1

C
is any interval such that ϕ−1(I) is of positive measure, then

ϕ−1(I) contains, up to a null set, an open subset of ∂Hn
C
: indeed for

any α 6= β such that [α, β] ∈ ϕ−1(I), the interval
{
ζ ∈ ∂Hp

C
: cp(α, ζ, β) = 1

}
⊂ C(α, β)

belongs of ϕ−1(I) (up to sets of measure zero), which easily implies the
assertion.

Now we claim that ker ρ is finite and Γ is cocompact. To prove the
claim, assume that N := ker ρ < Γ is infinite. Being discrete, its limit
set in ∂Hp

C
is nonvoid, hence equals ∂Hp

C
, which implies that N acts

minimally on ∂Hp
C
. Pick any interval I ⊂ S1 such that ϕ−1(I) has pos-

itive measure and let O ⊂ ∂Hp
C

be an open set such that O is included
in ϕ−1(I) up to a set of measure zero. Then ϕ being N -invariant, and
N acting minimally on ∂Hp

C
, we have that ∂Hp

C
= ∪n∈NnO is contained

in ϕ−1(I), up to measure zero. But since ϕ is not essentially constant,
one might find two disjoint intervals I1 and I2 such that ϕ−1(I1) and
ϕ−1(I2) are of positive measure and hence of full measure, which is a
contradition. This shows that ker ρ is finite. If Γ were not cocompact,
then – since p ≥ 2 – it would contain an integer Heisenberg group
which would be sent, almost injectively, into PU(1, 1). Since this is
impossible, it follows that Γ is cocompact.

Thus Γ and ρ(Γ) are commensurable, and hence their virtual co-
homological dimensions coincide; thus ρ(Γ) has virtual cohomological
dimension 4 and hence cannot be discrete in PU(1, 1). Being Zariski
dense, ρ(Γ) is therefore dense in PU(1, 1). Passing to a subgroup of
finite index of Γ, we may in addition assume that Γ is torsionfree and
ρ is injective. Since the set of elliptic elements is open in PU(1, 1), we
may pick γ 6= Id , with ρ(γ) elliptic. Since Γ is cocompact and torsion-
free, then γ is necessarily hyperbolic. Now pick a pair of open intervals
∅ 6= I ⊂ I ′ such that the complement of I ′ is of nonvoid interior. Let
O ⊂ ∂Hp

C
be a nonvoid open subset such that O ⊂ ϕ−1(I) up to a set

of measure zero. Conjugating by an element of Γ, we may assume that
the repulsive fixed point of γ is in O. Let now {nk}k∈N be a divergent
sequence of integers such that limk→∞ ρ(γ)nk = Id in PU(1, 1); we may
assume that ρ(γ)nkI ⊂ I ′ for all k ≥ 1. Then ∪k≥1γ

nkO = ∂Hp
C
\ {ξ},

where ξ is the attractive fixed point, and hence ϕ−1(I ′) equals ∂Hp
C

up
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to a set of measure zero. Since I ′ was arbitrary, this is a contradic-
tion. �
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