On the cohomology of foliations with
amenable groupoid

Alessandra lozzi

Abstract. We illustrate the proof of a vanishing theorem for the tangential de Rham
cohomology of a compact foliated space with amenable fundamental groupoid, by using
the existence of bounded primitives of closed bounded differential forms in degree above
the rank (for an appropriate notion). In the case of foliated bundles we give a proof of a
related theorem asserting the vanishing of the tangential singular cohomology, by using
methods in homological algebra.

1. A discussion of the main result

Given a differentiable manifold M, it is a classical problem to study the relation
between the topology and the geometry of M, in particular which restriction the
fundamental group of M imposes on the possible Riemannian geometries of M. A
fundamental result in this direction is the following:

Theorem 1.1 ([15], [8]). Let M be a compact Riemannian manifold with non-
positive sectional curvature kK < 0 and solvable fundamental group m (M). Then
k=0 (and, in fact, 71 (M) is virtually abelian).

More generally,

Theorem 1.2 ([16]). Let M be a compact Riemannian manifold such that k <0
and w1 (M) is amenable. Then k = 0.

We refer the reader to § 2.3 for a discussion of amenability and related topics,
and we limit ourselves to point out here that solvable groups are amenable.

The purpose of this paper is to illustrate some results whose motivation stems
from a proof of Theorem 1.2 for negatively curved manifolds which is due to
Gromov and Thurston and can be summarized in two steps:

1. The bounded cohomology H;; (X) of any topological space X is defined as the
singular cohomology of X, where we restrict our attention only to bounded
cochains, that is cochains ¢ such that

|clloo = sup{|e(o)| : o is a singular simplex in M} < oc.
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Then we have the following striking result (for a complete proof see [10]):
Theorem 1.3 ([9],[3]). For any countable CW complez X,
Hy (X) ~ Hy(m (X))

Since the bounded cohomology of an amenable group vanishes (see Re-
mark 2.9 and Corollary 4.2 with T' = {pt}), it follows that if X has amenable
fundamental group, then H} (X) = 0.

2. The second part of the proof follows from the following result:

Theorem 1.4 ([14]). Let M be a compact manifold with strictly negative
sectional curvature. Then there is a surjection

HJ (M) —H (M) ,
in degree 7 > 1.

Hence for a compact manifold, since HE™(M) (A1) # 0, Theorems 1.3 and 1.4 imply
the incompatibility between the amenability of the fundamental group and strictly
negative sectional curvature. However, if one extends the realm of generality of
the above results, one can obtain the following vanishing theorem:

Theorem 1.5 ([6]). Let (X,F) be a compact foliated space whose leaves are uni-
formly of rank at most r. If the fundamental groupoid of the foliation is amenable,
then the tangential de Rham cohomology By (X, F) vanishes for all j > r.

We refer the reader to § 2 for all the relevant definitions. However we mention
here that a prominent example of such situation is a compact space foliated by
locally symmetric spaces of R-rank r. Moreover tangential de Rham cohomology
has been considered by several authors with different degrees of regularity in the
the direction transverse to the leaves (see [13], for example, for an extensive list
of references), thus obtaining different theories (see § 2.1 for an example).

The initial approach to the proof of Theorem 1.5 was along the lines of Gro-
mov’s proof of Theorem 1.2, in the special case of foliated bundles whose leaves
have strictly negative curvature. The proof that eventually appeared in print in
[6], and whose outline is presented in § 3, does not make any use of bounded co-
homology, but uses rather a direct approach via an analogue of a Poincaré lemma
with estimates (Lemma 3.1). In that original approach Gromov’s definition of
bounded cohomology was used. Here we want to present instead a proof of a re-
lated vanishing theorem in the special case of foliated bundles (see Example 2.1
for the definition), in which the functorial approach to the bounded cohomology
of locally compact groups developed by Burger and Monod in [4] is exploited.
Although the definitions are ad hoc, it indicates a possible use of a systematic
development of the theory of the bounded cohomology of groupoids applied to
general foliations.

Theorem 1.6. LetY be a compact locally CAT(—1) space with fundamental group
T and universal covering Y. If (T, u) is a standard measure space with a measure
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class preserving amenable T'-action and X = (Y x T)/T, then the tangential sin-
gular cohomology HI(X, F) vanishes for all j > 1.

2. Definitions and Examples

We collect here the definitions needed in the sequel. We shall often prefer to give
illustrative examples rather than technical definitions.

2.1. Foliations

Let (X,F) be a topological space X with a foliation F whose leaves are smooth
Riemannian manifolds and such that the Riemannian structure is smooth along the
leaves and globally continuous. Assume that there is a measure A which is obtained
by combining a transverse measure, whose class is invariant under holonomy, with
the Lebesgue measure along the leaves.

Example 2.1.

e Any locally free smooth action of a connected Lie group on a manifold de-
termines a foliation.

e The space X = R? x R" P ig a foliation, and, in fact, any foliation looks
locally like a product U x X, where U C R™ P is an open set and ¥ is a
topological space. More generally, if Y is a Riemannian manifold and ¥ is
a topological space, then X =Y x X is a topological space with a foliation
whose leaves are Y x {o}, 0 € X.

e If Y and X are as above, if I acts properly discontinuously on Y and with
no fixed points and, moreover, if T acts on ¥, then X = (Y x ¥)/T is a
topological space with a foliation with leaves (Y x {o})/T's, where I, is the
stabilizer of o € ¥. The foliated space X is often referred to as a foliated
bundle.

Since the leaves of the foliation are Riemannian manifolds, they admit tangent
spaces which can then be assembled together to form the foliated tangent space
TF. Let T*F be the foliated cotangent bundle and AJT*F be its j-th exterior
power.

Definition 2.2 ([6]). If (X,F) is a foliated space, its tangential de Rham coho-
mology Hj (X, F) is the cohomology of the complex

VX, F)={w: X = NT*F : w,dw € L®(X,NT*F), and

w,dw are C™ along the leaves },
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where the differential is taken in the direction of the leaves and where

[lw||oo = esssup |lw |
zeX

= esssup sup{|wg(v1 A---Avj)| : v1,...,v; € TpF are orthonormal} .
zeX

As mentioned in § 1, one can choose to require different degrees of regularity
in the direction transversal to the leaves. For instance if one takes differential
forms which are just measurable on the total space without any assumption of
boundedness, then it was observed by Zimmer that the tangential de Rham coho-
mology thus defined vanishes in degree above one, provided that almost every leaf
is contractible (see [6]).

2.2. Fundamental groupoid

Definition 2.3. A groupoid G is a small category in which each morphism is an
isomorphism.

Hence the information which characterizes a groupoid is encoded by the set
of units Obj(G) and the set of morphisms Mor(G). We have moreover source
and target maps, s,t : Mor(G) — Obj(G) which determine when two morphisms
m1, My are composable, namely if and only if s(m2) = t(m1), in which case the
multiplication is (mq,m2) — mq o ma2. A few examples will serve the purpose of
clarifying this concept:

Example 2.4. e Let G be a group acting on a space X. Then the groupoid
G associated to the action is such that Obj(G) = X and Mor(G) = {(z,9) €
X x G}; moreover s : Mor(G) — Obj(G) and ¢ : Mor(G) — Obj(G) are
respectively defined by s(z,g) := = and t(z,g) := zg, and two morphisms
(z,9) and (z',g') are composable if and only if xg = 2, in which case

(x,9) o (z',9") = (=, 99").

e Let R C X x X be an equivalence relation on X. Then the groupoid Gr
associated to R is such that Obj(Gr) = X and Mor(Gr) = {(z,y) € R};
Here s(x,y) = = and ¢(x,y) = y, so that two morphisms (z,y), (z,w) € R
are composable if and only if y = z, in which case (z,y) o (y,w) = (z,w).

e If X is any topological space, its fundamental groupoid Gx is such that
Obj(Gx) = X and Mor(Gx) is the set of homotopy classes (with fixed end-
points) of paths. Evidently two morphisms are composable if and only if
the endpoint of a path (or, more precisely, of an equivalence class of paths)
coincides with the beginning point of the other path.

o As a generalization of the previous example, we finally have the definition of
the fundamental groupoid of a foliated topological space:
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Definition 2.5. If (X, F) is a foliated topological space, the fundamental groupoid
of the foliation G(x ) is the groupoid whose set of units Obj(G(x,)) is X and
whose set of morphisms Mor(Gx, r)) is the set of homotopy classes (endpoints
fixing) of paths contained in a leaf.

2.3. Amenability

One of the many classical equivalent definitions of amenability of a topological
group G requires that for every compact metric space X on which G acts continu-
ously, there exists on X a G-invariant Borel probability measure y. Note that the
space C(X) of continuous functions on X with the supremum norm is a separa-
ble Banach space with an isometric G-action, and the space of Borel probability
measures M (X) is a compact convex G-invariant subset of the unit ball of the
dual C*(X); (in the weak-x topology). Then an invariant measure y € M(X) is
nothing but a fixed point for the G-action on M(X), and one is hence lead to the
following definition:

Definition 2.6. A group G is amenable if and only if there exists a fixed point in
any affine G-space, that is in any compact convex G-invariant subset A C Ef in
the unit ball of the dual of a separable Banach space on which G acts isometrically
and continuously.

We mentioned already that cyclic groups and, more generally, solvable groups
are amenable (see for instance [17, Ch. 4, § 1]). Moreover, we shall use in what
follows that, among the parabolic subgroups of Lie groups, the only ones which
are amenable are the minimal parabolics.

In order to extend the definition of amenability of a group to a groupoid, we
first need to define the notion of action of a groupoid. Let E be a separable Banach
space, V — X an isometric Banach bundle with fiber E (that is a fiber bundle with
fiber E such that there is a covering of X and a corresponding trivialization of V'
with transition functions in Iso(E)), and let V* — X be its dual Banach bundle.
If V,, is the fiber of V' — X above the point z € X, let Iso(V') be the groupoid
with Obj(Iso(V)) = X and morphisms Mor(Iso(V)) = {Iso(V,,V,) : z,y € X},
that is the linear isomorphisms between fibers.

Definition 2.7. An action of a groupoid G on V is a functor from G to Iso(V)
which is the identity on objects, that is a map

p: Mor(G) — Mor(Iso(V))
(g:x—=9) = (p(g): Vo2 V)
such that p(gh) = p(g)p(h) whenever g and h are composable.

Once we have an action of G on V, a field of compact convex subsets of V*
parametrized by X is a subset A C V* such that each subset A, C V) is a
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compact convex subset of V*. We say that A is p-invariant if for any morphism
g 1z — y in Mor(G) and almost every z € X, we have that p(¢g~')*4, C Ay,
where p(g")* : V¥ — V*. We finally have:

Definition 2.8. A groupoid G is amenable is for every Borel representation of G on
an isometric Banach bundle V' — X with separable fiber and any p-invariant Borel
field A of compact convex subsets of V*, there exists a p-invariant section of A,
that is a Borel map s : X — V* with s(z) € A, and such that p(g~1)*(s(z)) = s(y)
for almost every z € X and all morphisms g : z — y.

Remark 2.9. e If G is the groupoid of an action, then G is amenable if and
only if the action is amenable [17, Definition 4.3.1].

o Recall that a transitive action is amenable if and only if the stabilizer of
a point is amenable. More generally, an action is amenable if and only if
the equivalence relation of the action is amenable and the stabilizers are
amenable ([1] or [2]). Analogously, the fundamental groupoid of a foliation
is amenable if and only if the foliation is amenable (that is the equivalence
relation induced on any transversal is amenable) and the fundamental groups
of the leaves are amenable (see for example [2]).

We can now give examples of foliations with amenable fundamental groupoid.

Example 2.10. e Let M be a compact Riemannian manifold with negative
sectional curvature and universal cover M, and let ¥ = M (c0) be the set of
equivalence classes of asymptotic geodesic rays. If T' = 7, (M), then X =
(]Tf x ¥)/T is a foliated space with amenable fundamental groupoid, since the
equivalence relation of the transversal ¥ is amenable and the fundamental
group T, of the leaf Lo = (M x {o})/T, is amenable since cyclic.

e Let Y be a symmetric space of non-compact type, G = Iso(Y") be its isometry
group (hence a semisimple group), I' < G a cocompact torsion-free lattice
and @ a parabolic subgroup. Then X = (Y x (G/Q))/T is a space foliated
by leaves (Y x [z])/T[;) and the fundamental groupoid of the foliation is
amenable if and only if @) is the minimal parabolic. Note that in this case
the non-amenability of @) is reflected in the non-amenability of the foliation,
although the fundamental groups of the leaves might still be amenable. This
is the case, for instance, if G = SL((p — 1)/2,C) for p a prime congruent
to 3 modulo 4 and @ is the parabolic subgroup which stabilizes the vector
(1,0,...,0) € C»=Y/2 in which case one might choose I' so that for each
[z] = gQ the leaf L[, has abelian fundamental group I'[,] = g TgnaQ, [6,
Corollary 4.5].

2.4. Rank of a manifold

The notion of rank that is needed in Theorem 1.5 is somewhat different from any
of the standard definitions. We say that a manifold M of non-positive curvature
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has rank r at a point m and with respect to a tangent vector v € T M, if r is the
largest dimension of a subspace W C T'M,, containing v such that every plane in
W containing v has sectional curvature zero. The uniform notion of rank that is
needed is then the following;:

Definition 2.11. Let M be a complete simply connected Riemannian manifold
with non-positive sectional curvature. We say that M is uniformly of rank at most
r if there is a positive constant C' such that, for every subspace of dimension r + 1
of every tangent space to M and every non-zero vector v in the subspace, there is
a plane with sectional curvature at most —C' containing v.

Notice that if M is a symmetric space this notion of rank coincides with the
usual one in terms of maximal dimension of flats.

2.5. Remarks

We give here some indication of examples which show that the hypotheses of
Theorem 1.5 are sharp. For instance one cannot expect to have vanishing of the
tangential cohomology in degree smaller or equal than the rank of the manifold,
since, already for the one leaf foliation consisting of a flat torus, the de Rham
cohomology does not vanish in top degree.

Moreover, also the full strength of the amenability of the fundamental groupoid
is necessary. In fact, on the one hand one can consider once again the foliation
consisting of just one leaf which is a compact quotient of a symmetric space of non-
compact type. In this case the equivalence relation on a transversal is amenable
(being the trivial one), but the fundamental group of the leaf is typically not
amenable. In many of such examples one has non-vanishing of the de Rham
cohomology in degree above the rank, as one can see for instance by taking any
compact quotient of any symmetric space of non-compact type, in which case the
volume form gives a non-vanishing class in top degree.

On the other hand, one can construct examples of foliated bundles with non-
amenable equivalence relation but such that the leaves have abelian fundamental
groups and for which the tangential de Rham cohomology groups do not vanish in
some degree above the rank. In fact:

Proposition 2.12 ([6]). For n # 3, let G = SL(n,C), ' < SL(n,C) a co-
compact lattice, Q < SL(n,C) the parabolic subgroup which stabilizes the vector
(1,0,...,0) € C" and Y = SL(n,C)/SU(n). Then for all j odd, with 3 < j <
2n — 3, Hix (Y x (G/Q))/T) #0.

Collecting the information from the above proposition and from Example 2.10,
if p > 7 is a prime such that p = 3 (mod 4), for all (p—1)/2 < j < p—4 and j odd,
H)z (Y x(G/Q))/T) # 0 despite the fact that R-rank(SL((p—1)/2,C)) = (p—3)/2.

We want to conclude this section by mentioning a possible relation between
our theorem and the main theorem in [16]. There Zimmer considered the case of a
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measure space X with a Riemannian measurable foliation F of finite total volume,
such that almost every leaf is a complete simply-connected manifold of non-positive
sectional curvature. He proved that if the foliation is amenable and if there exists
a transversally invariant measure, then almost every leaf is flat. Although this
theorem is much more general in that, for example, there is no rank assumption
on the leaves, Theorem 1.5 should imply this result in the case in which both can
be applied. In fact, in view of the simple-connectivity of the leaves, amenability
of the foliation coincides with amenability of the fundamental groupoid. Now
suppose that the leaves satisfy the uniform rank condition in Definition 2.11, for
instance are locally symmetric spaces of dimension n. Then, if one were to prove an
analogue of a theorem of Ruelle and Sullivan (see [13, Corollary 4.25], for example),
the existence of an absolutely continuous transversally invariant measure would
imply the existence of a non-zero class in Hjp (X, F). Hence, by Theorem 1.5, we
must have that n < R-rank(G), that is the leaves are flat.

3. A sketch of the proof of Theorem 1.5

The idea is simple. For each leaf £ of the foliation and each leafwise closed
differential form « of degree at least equal to the rank, there exists a canonical
convex set of bounded primitives of a, once « is restricted to the leaf £ and lifted to
its universal cover a. Then, by using the amenability of the fundamental groupoid,
it is possible to choose primitives from there convex sets coherently for all leaves.
More specifically:

Lemma 3.1. Let M be a complete simply-connected Riemannian manifold with
non-positive sectional curvature which is uniformly of rank at most r and let o €
QI (M) be a bounded smooth closed differential j-form, r < j < dim M. If M(o0)
is the boundary consisting of equivalence classes of asymptotic geodesic rays, then
there ezists a Borel map 3 : M(co) — Q™1 (M), B(€) := B¢, such that dfs =
and ||B]| = supy ||B¢|l < co. Moreover (3 is equivariant with respect to isometries.

The proof of the Lemma is basically the same as the proof of Poincaré lemma
with estimates. Let ¢¢(t) be the gradient flow associated to the gradient vector
field of the Busemann function b : M — R. Define a map &, : M x [0,1] = M,
by ®¢(m,t) = @e(t)(m) to use as a homotopy in the classical Poincaré lemma.
Namely, if ®;(a) = wo(t) + wi(t) A dt, define 3¢ = Jo  wi(t)dt. Note that the
existence of the map [ uses the fact that ¢¢(t) is a contraction on j tangent
vector, j > r + 1, that is that ||¢¢(t)(X1 A--- A X})|| decays exponentially.

We observe now the first consequence of the amenability of the fundamental
groupoid G(x, r), for which we need to define an appropriate action. Let L, be
the leaf through zo € X, and if z € £, let

Ly = {([d],2) : z € L4,,[d] is a homotopy class of paths from z to z}
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be its universal covering based at z. If y is another point in £;,, any homotopy
class [c] from z to y defines an isometry p([c]) : Ly — E;, by p([c))([d],z) =
([c7ted], z), which extends to a homeomorphism of the associated ideal boundaries
p(le]) : Lz(00) = Ly(00). Since L;(00) is a compact and metrizable, for every
x € X the space of continuous functions C(L;(o0)) is a separable Banach space,
so that we can consider the isometric Banach bundle V' — X with fiber C (Z; (00)),
on which G(x r) acts via p : Mor(Gx, 7)) — Mor(Iso(V)).

Hence we have a field of compact convex subsets of V* parametrized by X,
x — M(Ly) C C(Ly)} consisting of probability measures on £, which can be
easily seen to be G(x r)-invariant. The amenability of G x r) implies the existence

of a G(x, r)-invariant Borel section s : X — M(L;).
To conclude, let now a € Q7(X,F) be a closed form. If p, : £, — L, is the

projection, let us consider p*(alz,) € Q(L;), where |z, is the restriction of a

to £L;. By Lemma 3.1, there exists a Borel map 3 : £,(00) — Q9~1(L,), such

that dBe = p}(alz,) for every £ € £, and such that § is bounded uniformly in &.
Define now

8, = /~ Beds, () € 091(Ly),
L4 (00)

which has still the property that dg, = p%(a|cz,). Now we use twice the invariance
of the section s. Firstly, since s is invariant for morphisms z — x (that is for
homotopy paths in 7;(£;)), we obtain that there exists w, € Q/(L,) such that
Bz = p3(wz); secondly, since s is G x, r)-invariant (that is invariant with respect
to all morphisms z — y), we deduce that the differential form w, is independent
of the choice of the basepoint, namely that w, = w, if £, = £,. We have hence
defined a tangential form w € Q=1 (X, F) which inherits its Borel measurability
from s. O

4. Proof of Theorem 1.6

Given a discrete group T, if C,,(I'/) denotes the space of bounded functions on the
j-fold cartesian product I'/, the bounded cohomology of I' can be defined as the
cohomology of the complex

0——Cp (T)T ——Cp(T2)T ——C (T3 —— ...

with the usual homogeneous coboundary operator. However, just like in the case
of ordinary group cohomology, one can use instead an homological algebraic ap-
proach which has the advantage of being more flexible in that one can use reso-
lutions which are more appropriate to specific situations, as long as they satisfy
certain properties. In other words, it can be proven that the cohomology of any ad-
missible resolution by relatively injective ['-modules, is isomorphic to the bounded
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cohomology of I'. As in the case of ordinary group cohomology, admissibility of a
resolution involves the existence of homotopy operators which in this case should
be bounded in norm. Moreover, amenability of a I'-action is intimately related
to certain functions spaces being relatively injective I'-modules, which makes this
theory particularly fitting in this case and, more generally, whenever there is a
suitable boundary. All of this is very vague and it is just to give some of the
flavor of what follows: we refer the reader to [4], [12] and [5], where this theory
was developed (in much greater generality) for the background and the precise
definitions.

Let Y be a countable cellular space, 7, (Y) = T its fundamental group, Y its uni-
versal covering and (7', u) a standard measure space with a measure class preserv-
ing I'-action. If S; (Y) is the space of singular simplices in Y, let L2, (T, £°(S i ¥)))
denote the space of (equivalence classes of) maps a : T — €°°(Sj(}~’)) which are
measurable when €°°(Sj(1~")) is endowed of the weak-* topology as the dual of
2(S; (Y)), and which are essentially bounded. We then define the singular tan-
gential bounded cohomology H (X, F) of the foliated bundle X = (}7 x T)/T as
the cohomology of the complex

0—— L%, (T, £%°(So(V)))T — 1L, (T, (S (V)T — > ... (4.1)

with boundary operator
da(t)(s) = a(t)(ds),
where oo € L, (T, £°°(S; (Y))) and s € Sj+1(}~’).

The first application of the homological algebra approach to bounded cohomol-
ogy is the following:

Proposition 4.1. H; (X, F) ~ Hy(T, L*=(T)).

Proof. First of all observe that we have the identification
Les (T, £2(S5(Y))) = L=(T x 8;(Y)) = £(8;(Y), L=(T)),
so that the complex in (4.1) can be rewritten as the complex
0——=£2(So(Y), L®(T))T ——=£(8, V), L=(T))F — ...
Being this the non-augmented subcomplex of invariant vectors of the complex

0——=L®(T))——=£2(Sy(Y), L=(T)) —£>(S1 (Y), L=(T)) —=-- - ,
(4.2)
to prove the proposition it will be enough to show that (4.2) is an admissible
resolution by relatively injective I-modules (see [4] or [12]).
We start by observing that the properness of the action of ' on Y implies that,
for all j > 0, the spaces £°(S;(Y), L>°(T')) are relatively injective objects in the
category of isometric I-Banach spaces, [12, Definition 4.1.2 and Theorem 4.5.2].
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We need to define now appropriate homotopy operators. By using the usual
coning procedure (since Y is contractible) there are homotopy operators

£2°(851 (V) ===>(5;(¥))
h;

which are norm continuous, and such that ||h;|| < 1, ([9], [10]). We can now define
contracting homotopy operators ([12, § 7.1])

(981 (V), L (T)) <=t (8; (V), L°(T))

as follows: let « : Sj(i}) — L°(T) be a cochain, and for f € L*(T), define ay :
SJ(Y) — R by Oéf(S(j)) = (Oé(S(j)),f), for S3j) € S](Y) Then f — hj(()éf)(S(j,l))
is a continuous linear form on L!(T'), giving thus an element in L>°(T) denoted
Hj(a)(s(j—1))- This defines a norm continuous H; and hence the cohomology of
the complex

0——£(So(Y'), L(T))F —=£(Sy (V), L=(T))T — - ..
is isomorphic to H} (T', L°(T')), [12, Proposition 8.1.1]. O

This is the point where the amenability of the I'-action on T plays an essential
role.

Corollary 4.2. IfI' acts amenably on T, then HS, (X, F) = 0.

Proof. The amenability of the T'-action implies that L (T') is a relatively injec-
tive I'-module, which in turns implies easily that H} (I, L>°(T')) = 0, [12, Proposi-
tion 7.4.1]. 0

Now we need to relate the ordinary group cohomology of I' to the singular
cohomology of the foliated bundle. The idea is to use spaces very similar to those
used in the case of singular bounded cohomology but with no requirement on the
boundedness in the direction of the leaves. To this purpose, If Y is a compact
locally CAT(—1) space (that is a generalization, in the singular context, of a R-
rank one symmetric space), let o; (Y) denote the set of j-simplices lifted to ¥ of
any finite simplicial decomposition of Y. Observe that o; (V) is countable. Let

Loo(T, Maps(aj(f"),]R)) be the space of all maps a : T — Maps(aj(f’),R) such

that for every s(;) € 0;(Y), the function ¢ — a(t)(s(;)) is in L*(T') and define the
singular tangential cohomology H (X, F) of F, as the cohomology of the complex

0——>Loo (T, Maps(ao(¥), R))" —> Lo (T, Maps(o1 (¥), R))" — ... .

Observe that Lo, (T, Maps(c;(Y),R)) ~ Maps(c,(Y), L>°(T)); then a classical ar-
gument in ordinary group cohomology analogous to the one in the proof of Propo-
sition 4.1 shows that the resolution

0——= Maps(o(¥), L (T))" —= Maps(o1 (V), L=(T))F — - .
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is an admissible resolution by relatively injective modules (where all the concepts
have to be interpreted now in ordinary group cohomology) and hence its cohomol-
ogy computes H*(T', L>(T)).

Now that all cohomology spaces have been defined, finally the punchline. Since
Y is a compact locally CAT(—1) space then its fundamental group T is a Gromov-
hyperbolic group, [7]. The essential step now is a result of Mineyev [11], which
states that the map

H{ (T, V)—=H/(T,V)

is surjective for all j > 2 and all isometric Banach I'-modules V. In particular the
map

HJ (T, L>(T))—H/ (T, L>(T)) (4.3)
is surjective for j > 2.

Collecting the isomorphisms HJ (X, F) ~ H{(I',L>*(T)) and Hj(X,F) ~
H*(T', L*(T)), and using (4.3), we have:

Corollary 4.3. The map
Hg,b(Xa f)—»'Hg(X7 ‘7:)
is surjective for every j > 2.

Then Corollaries 4.2 and 4.3 immediately imply Theorem 1.6 if the I'-action
on T is amenable.
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