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0. Introduction

In his paper [8] on bounded cohomology, Gromov made two observations which were the
springboard for this paper. One is that the bounded cohomology of a topological space with
amenable fundamental group vanishes, while the second is that the bounded cohomology of
a compact manifold with negative sectional curvature surjects onto the ordinary cohomology
(with real coefficients) in degrees two and above. The only examples to which these obser-
vations can both be applied are trivial, but if one extends one’s vision a bit, then there are
interesting situations in which variants of both these facts apply.

In this paper, we shall replace manifolds of negative curvature with topological foliations
whose leaves have negative curvature. The analogue of the fundamental group in this setting
is called the fundamental groupoid. This is a category whose objects are the points of the
foliated space, and whose morphisms are homotopy classes of paths contained in leaves. The
basic result we will prove is that, if the fundamental groupoid is amenable (in the spirit of the
definitions of Zimmer [18, 19, 21]), and the sectional curvature of the leaves is bounded away
from zero, then a suitable version of the tangential cohomology of the foliation vanishes
in degrees two and above. The tangential cohomology is here defined as the cohomology
of a suitable complex of leafwise differential forms, with the leafwise exterior derivative as
differential.

We shall in fact prove a more general result (Theorem 3.2) by allowing the leaves of the
foliation to be manifolds of nonpositive curvature, everywhere of rank at most r (in a suitably
uniform sense, see Definition 3.1). Under this less stringent hypothesis, we show that the
tangential cohomology of an foliation with amenable fundamental groupoid whose leaves
have this property vanishes in degree r+ 1 and above. Here, the notion of rank is somewhat
different from any of the standard definitions. We define the rank associated with a nonzero
tangent vector v to a nonpositively curved manifold to be the largest dimension of a subspace
to the tangent space such that every plane contained in the subspace and containing v has
sectional curvature zero. In the case of symmetric spaces, this coincides with any of the
usual notions of rank.

In the case in which the leaves have strict negative curvature it is possible to approach
these results in a manner completely parallel to Gromov’s approach in [8], and there may
well be some interest in such an approach. But since our interest is mainly in the vanishing
theorem, we have chosen to take a more direct route, avoiding completely any mention of
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2 VANISHING OF TANGENTIAL COHOMOLOGY

bounded cohomology. The essential idea of the proof is reasonably simple. For each leaf L
in the foliation, and each leafwise closed differential form α of sufficiently large degree, there
is a canonical convex set of bounded primitives for α, once α is restricted to L and lifted to
its universal cover. While it is not possible in general to choose primitives from these convex
sets coherently for all leaves, it is possible to do so under the assumption of amenability.

The structure of the paper is as follows. In section §1, we will define the notion of
a topological foliation and associated Borel and measurable structures, the fundamental
groupoid, and the notion of amenability. At the end of the section, some examples of
foliations with amenable fundamental groupoid are given. Section §2 defines the tangential
de Rham cohomology, both as the cohomology of a complex of leafwise differential forms
and sheaf-theoretically. Section §3 proves the vanishing theorem and in the final section we
illustrate the sharpness of the hypotheses of the theorem.

The ideas in this paper have been used by Nevo and Zimmer in a recent preprint [11]
in which they analyze the structure of spaces with an action of a semisimple Lie group.
Also, once this paper was completed, we were informed that A. Wienhard had obtained with
similar methods Lemma 3.3 in the special case of differential forms on symmetric spaces of
noncompact type.

Acknowledgements The second author wishes to thank the Department of Geometry and
Topology of the University of Santiago de Compostela for its hospitality while this article was
being finished. The third author thanks CIMAT for its hospitality during very preliminary
phases of this work, Marc Burger for many useful conversations and for pointing out the
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essential point of the proof of Lemma 4.4.

1. Topological foliations and amenability

We will adopt our basic framework from Moore and Schochet [10].

Definition 1.1. Let X be a separable metrizable topological space. A foliation F of X is a
covering U of X by open sets together with homeomorphisms ϕU : U → LU × NU for each
U ∈ U , where LU ⊂ Rn is open and NU is a topological space. These are assumed to satisfy
the following compatibility conditions:

(1) For any pair U, V ∈ U , the transition function

τUV = ϕV ◦ ϕ−1
U : ϕU(U ∩ V ) → ϕV (U ∩ V )

is a homeomorphism which can be written in the form

τ(l, n) = (τ1(l, n), τ2(n)),

where l ∈ LU , n ∈ NU , τ1(l, n) ∈ LV and τ2(n) ∈ NV .
(2) If U, V ∈ U have nonempty intersection, then the restriction of τUV to each leaf of

U ∩V (where a leaf is a set of the form ϕ−1
U (LU ×n)∩V ) is smooth, and the leafwise

partial derivatives (of all orders) of each τUV are all continuous as functions on U∩V.
We assume further that the set of pairs {(U, ϕU)|U ∈ U} is maximal among all such col-
lections satisfying the conditions above. Each pair (U, ϕU) is referred to as a plaque for
F .
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A leaf of (X,F) is a subset of X defined as follows. We can construct a more refined
topology on X by replacing the topology on each NU above by the discrete topology, and
continuing to require that each ϕU be a homeomorphism. The leaves are then the connected
components of X in this new topology. Each leaf carries the structure of a smooth manifold,
and the collection of tangent bundles to the various leaves assembles naturally to give a
topological vector bundle TF over X; the cotangent bundles to the leaves also assemble to
give the foliated cotangent bundle T ∗F . A Riemannian metric on (X,F) is a positive definite
inner product on TF which is continuous on X and smooth along the leaves. The situation
of interest to us is one where (X,F) carries a Riemannian metric with nonpositive sectional
curvature along the leaves. Leafwise differential forms of degree p are sections of ΛpT ∗F ; for
a leafwise differential form ω of degree p which is C1 along the leaves, the leafwise exterior
derivative dω is well-defined as a section of Λp+1T ∗F .

There is a natural Borel structure on X generated by subsets of plaques which take the
form A × B, where B ⊂ NU is an element of the σ-algebra of subsets generated by the
open subsets of NU , and A is a Lebesgue measurable subset of LU . We shall refer to a Borel
structure B on X as compatible with the topology if it is generated by subsets of plaques of
the form A×B, where A ⊂ LU is a Lebesgue measurable subset of LU , and B ⊂ NU is Borel
with respect to a Borel structure on NU which refines the one generated by open subsets
of NU . One situation in which this occurs is when there is a transverse invariant measure
on (X,F), in which case it is natural to complete the Borel structure on any transversal by
adding the subsets of measure zero. We shall say that (X,F) is a measurable topological
foliation if it has a compatible Borel structure B together with a designated σ-subalgebra
M, referred to as the subsets of measure zero; the σ-algebra of sets of measure zero should
include all subsets of plaques whose intersection with each leaf has Lebesgue measure zero.

It will be necessary to work with the fundamental groups of the leaves of X, assembled in
some meaningful way to reflect the topology on X. More generally, it will be necessary to
take account of the way in which paths in leaves wrap around X. This leads to the notion
of the fundamental groupoid π(X,F) of (X,F). A groupoid is a category in which every
morphism is invertible. A topological groupoid is a small groupoid in which the set X (the
unit space) of objects and the set G of all morphisms are provided with topologies such that

(1) the subset of composable morphisms in G×G is closed, and the composition map is
continuous;

(2) the source and target maps G→ X are open and continuous; and
(3) the inversion map G→ G is a homeomorphism.

We will regularly abuse notation by denoting a groupoid by its set of morphisms G. There
are analogous notions of Borel and measurable groupoids. In the case of a Borel groupoid, we
require Borel structures on X and G rather than topological ones, and the structure maps are
required to be Borel. By a measurable space we mean a standard Borel space with a specified
σ-subalgebra of sets, regarded as above as being sets of measure zero. Measurable maps are
Borel maps which map sets of measure zero to sets of measure zero. For a measurable
groupoid, we require measurable structures on the unit space and set of morphisms, and we
require that the structure maps be measurable.

There are interesting special cases of the notion of a topological groupoid of which it is
worthwhile to take note. One is the case where a topological space X admits an action of a
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topological group G. One can take X to be the unit space of a topological groupoid in which
the morphisms from x ∈ X to y ∈ X are the elements g ∈ G such that gx = y. Another
special case is that of a topological space with an equivalence relation.

The objects of the fundamental groupoid π(X,F) are points of X. The set of morphisms
from x to y is nonempty only if x and y lie in the same leaf L, and consists of homotopy
classes of continuous paths γ : [0, 1] → L with γ(0) = x, γ(1) = y. The topology on the set
of morphisms is defined as follows. Consider the set Map([0, 1], X) of continuous maps from
[0, 1] to X endowed with the compact–open topology. The subset P of paths with images
contained in single leaves of F can then be given the induced topology. There is a surjective
map P → π(X,F); the required topology is the quotient topology. If (X,F) is a measurable
topological foliation, then π(X,F) inherits the structure of a measurable groupoid.

It is sometimes useful to work with a subgroupoid of the fundamental groupoid, corre-
sponding to some choice of transversal. Let T be a complete Borel transversal for (X,F),
i.e. a Borel subset of X which intersects each leaf in a countable set of points. Then the full
subcategory π(X,F)T of π(X,F) whose set of objects is T is a Borel subgroupoid, and the
inclusion induces an equivalence of categories.

We now import the notion of amenability into the discussion. Let E be a separable Banach
space, and E∗ the dual Banach space with the weak∗-topology. An isometric Banach space
bundle over a topological space X with fiber E is a topological fiber bundle V → X with fiber
E such that there is a covering of X with corresponding local trivializations of V such that
the transition functions take values in the isometry group of E. V ∗ is the dual (isometric)
Banach space bundle where the fibers V ∗

x above each point x ∈ X are isomorphic to E∗.
Now suppose we have a Borel structure on X which refines the one generated by the

topology. This induces a Borel structure on V ∗, where we take the Borel structure on E∗

generated by open sets in the weak∗ topology. A Borel field of compact convex subsets of V ∗

parametrized by X is a Borel subset A ⊂ V ∗ such that each set Ax = p−1(x) is a compact
convex subset of V ∗

x for each x ∈ X, where p : A → X is the restriction of the projection
map from V ∗ to X. There is a topological groupoid with unit space X which we shall denote
by Iso(V ). For any x, y in X, the corresponding set of morphisms is the set Iso(Vx, Vy) of
linear isometries from Vx to Vy. We topologize this as a subspace of Hom(p∗1V, p

∗
2V ), where

p1, p2 : X ×X → X are the projections onto the first and second factors, and the fibers are
given the operator norm topology. We interpret Iso(V ) as a Borel groupoid.

If X is the unit space of a groupoid G, then an action of G on V is a map ρ which assigns
to any morphism g : x → y a linear isometry ρ(g) : Vx → Vy, satisfying the condition that
ρ(gh) = ρ(g)ρ(h) when g, h ∈ G are composable. More briefly, it is a functor from G to
Iso(V ) which is the identity on objects. If G is a Borel groupoid, then a Borel representation
is a representation ρ which is Borel. If X is in addition a measurable space, then an action
of G is said to preserve a family A of compact convex sets if ρ(g−1)∗ maps Ax onto Ay for
almost every x ∈ X and every g ∈ G which is a morphism from x to y. A is said to have
a ρ-invariant section if there is a Borel map s : X → E∗ with s(x) ∈ Ax which is almost
everywhere ρ-invariant, i.e. ρ(g−1)∗(s(x)) = s(y) for almost every x ∈ X, and any g which is
a morphism from x to y.
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Definition 1.2. A measurable groupoid is amenable if, for every Borel representation ρ on
an isometric Banach space bundle with separable fiber E and ρ-invariant Borel field A of
compact convex subsets of E∗, there is a ρ-invariant section of A.

The notion of amenability as defined here agrees with the definitions put forward by Zim-
mer in [18, 19, 21] in the special cases of groupoids arising from group actions and equivalence
relations, where the latter are groupoids with at most one morphism with given source and
target. Zimmer’s definitions are formulated in terms of restrictions of the relevant groupoids
to groupoids with countable equivalence classes. Hence the equivalence of Zimmer’s defini-
tion with the one given above follows from the fact that A has an invariant section if and
only if the restriction of A to a complete transversal has a section which is invariant under
the action of the groupoid obtained by taking the full subcategory of the original groupoid
corresponding to the set of objects contained in the transversal. A formulation in terms
of groupoids, very similar to the one given here, is in the review (MR57:10438, written by
François Combes) of [18] in Mathematical Reviews. The definition above coincides with the
one given by C. Anantharaman-Delaroche and J. Renault in [3, Definition 4.2.6]. Note also
that there is a notion of a foliation being amenable, meaning that the (countable) equivalence
relation induced on a transversal is amenable, [20]. This is a somewhat more general notion
than that of a foliation having an amenable fundamental groupoid, as the latter is equivalent
to the amenability of the foliation together with the amenability of the fundamental groups
of the leaves. The proof of these facts generalizes a theorem of S. Adams ([1], [2]), which
asserts that an action of a locally compact second countable group on a regular measure
space S is amenable if and only if the equivalence relation on S defined by the G-action is
amenable and almost all stabilizers are amenable. It is only this result that will be used in
what follows.

The most obvious example of a compact topological foliation with negatively curved leaves
and an amenable fundamental groupoid is constructed as follows. Let M be a compact
Riemannian manifold with negative sectional curvature. There is a compactification of the
universal cover M̃ of M by a “sphere at infinity” whose points correspond to asymptotic
equivalence classes of geodesic rays; denote this sphere by Σ. Now form a topological foliation
of the space

X = (M̃ × Σ)/π1(M)

with leaves given by the images of sets of the form M̃ × {σ} in X. There is a measurable
structure on Σ, given by the sets of Lebesgue measure zero under the identification of Σ with
any unit tangent sphere by means of projection along geodesics. This measurable structure
is invariant under the action of the fundamental group. By [13], the action of π1(M) on Σ
is amenable; since for all σ ∈ Σ the stabilizer Γσ is amenable (since cyclic), this foliation has
an amenable fundamental groupoid.

There is a generalization of the example in the previous paragraph, as follows. Again take
M to be a compact manifold with negative curvature, but now assume that we also have
an isomorphism of π1(M) with the fundamental group of a complete Riemannian manifold
N with sectional curvature pinched between two negative constants. Suppose that there
is an invariant closed subset Λ ⊂ Σ′ of the sphere at infinity associated with the universal
cover of N, and an invariant measurable structure on Λ. By [14], the action of π1(N) on Λ is



6 VANISHING OF TANGENTIAL COHOMOLOGY

amenable with respect to this structure, and we can construct the foliated space in the last
paragraph, with Λ replacing Σ. This foliation also has an amenable fundamental groupoid.
As a concrete example, one could take a faithful homomorphism with discrete image from
the fundamental group of a compact surface of genus at least 2 into SO(n, 1). The Lebesgue
measure class on the sphere at infinity of n-dimensional hyperbolic space is invariant, so the
associated foliated bundle has an amenable fundamental groupoid.

Examples of amenable foliations with nonpositively curved leaves of higher rank can be
constructed in a similar manner. Let Y be a symmetric space of noncompact type with a
semisimple group G as isometry group, and Γ a uniform, torsion-free lattice in G. For a
minimal parabolic subgroup P ⊂ G, F = G/P is an amenable Γ-space ([19, 21]) and for all
[g] ∈ G/P the stabilizer Γ[g] = g−1Γg ∩ P is amenable. As above, X = (Y × F )/Γ is an
amenable foliated space.

Further examples of foliations with amenable fundamental groupoid and negatively curved
leaves were pointed out to us by V. Kaimanovich. Let X be a topological space foliated with
simply-connected leaves which are Riemannian manifolds with negative sectional curvature.
Consider the space X ′ consisting of pairs (x, r) such that x ∈ X and r : R+ → Lx is
a geodesic ray starting at x and contained in the leaf Lx through x, equipped with the
equivalence relation (x, r) ∼ (x′, r′) if and only if x and x′ are in the same leaf Lx and r
and r′ define the same point in the boundary Lx(∞) of Lx. In other words we consider the
foliation obtained by replacing each leaf Lx with a family of leaves parameterized by the
sphere at infinity Lx(∞). The foliation thus obtained has amenable fundamental groupoid,
[9].

2. Tangential de Rham cohomology

In this section, we will introduce the tangential de Rham cohomology of a foliated topo-
logical space (X,F). Fix a leafwise Riemannian metric on (X,F). We will assume that a
measurable structure has been imposed on (X,F). There are a number of possible choices for
the degree of regularity which one can impose on differential forms in directions transverse to
the foliation. For our purposes, the correct choice is that they should be L∞. Let Dp

k(X,F)
be the space of L∞-sections of ΛpT ∗F which are Ck forms along almost every leaf, satisfying
the condition that the leafwise exterior derivatives are L∞ sections of Λp+1T ∗F which are
Ck along almost every leaf. Here, we allow k ∈ {0, 1, 2, ...,∞}; when k = 0, the leafwise
exterior derivative is taken in the sense of currents, and we say that a current is C0 along
a leaf if it is represented by integration against a continuous differential form. We simplify
the notation when k = 0 by setting D∗(X,F) = D∗

0(X,F). For any k, there is an associated
tangential de Rham complex (D∗

k(X,F), d), where d is the leafwise exterior derivative. We
shall denote the cohomology groups of this complex by H∗(X,F); we have suppressed the
dependence on k in the notation since, as we shall show in a moment, the groups turn out
to be independent of k.

Another means of approach to these groups is to realize them as cohomology groups of
a sheaf over X. In order to do this, we shall assume henceforth that X is compact. Define
a presheaf S over X by assigning to each open set U ⊂ X the vector space of functions
which are locally L∞ on U and almost everywhere constant on each leaf of F|U . It is easy
to verify that this satisfies all the requirements to be a sheaf on X, so we may consider the
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sheaf cohomology groups H∗(X,S). We may also consider the tangential de Rham sheaves
Dp
k of leafwise differential forms on open subsets of X which satisfy the local analogues of

the conditions defining elements of D∗
k(X,F). As above Dp = Dp

0. Since we are assuming X
is compact, the global sections of Dp

k are elements of D∗
k(X,F). With respect to the leafwise

exterior derivative, these assemble to form an exact complex of sheaves. (The main point here
is that the proof of the Poincaré lemma can be done in a family of disks so that, if the initial
family of closed forms varies in an L∞

loc-manner, then the resulting family of primitives is
also L∞

loc.) The essential observation which allows us to relate the sheaf theoretic cohomology
groups to the tangential de Rham groups is the following.

Proposition 2.1. Suppose X is compact. For any k ∈ {0, 1, 2, . . . ,∞}, the complex of
tangential de Rham sheaves give a resolution of S by fine sheaves. In particular, for any k,
the de Rham group Hp(X,F) is isomorphic to Hp(X,S).

Proof: It is apparent that the de Rham complex gives a resolution of S for any k, so the
only thing to see is that each Dp

k is a fine sheaf. The latter follows from existence of suitable
partitions of unity subordinate to locally finite covers of X. For any locally finite cover of
X, there is a refinement U whose elements are in the collection of open sets defining the
foliation, as in Definition 1.1. For any U ∈ U , it is easy to define a continuous function νU
on X with support in U which is smooth along each leaf. Because the cover is locally finite,
we can then define

µU =
νU∑
V ∈U νV

,

which gives a partition of unity with the required properties. Multiplication by µU gives an
endomorphism of Dp

k, so the latter is a fine sheaf. QED

3. Vanishing of tangential de Rham cohomology

If M is a manifold of nonpositive curvature, then the rank of M at a point m ∈ M
associated with a nonzero tangent vector v ∈ TMm is the largest dimension of a subspace
W of TMm containing v such that every plane in W containing v has sectional curvature
zero. If there are no planes with sectional curvature zero, the rank is one. As noted in the
introduction, this differs from the usual definitions of rank, e.g. in terms of the dimension
of spaces of parallel Jacobi fields or in terms of maximal dimensions of flats. However, it
coincides with them in the case of locally symmetric spaces.

We shall actually need a uniform version of this notion of rank, as described in the following
definition.

Definition 3.1. Suppose M is a complete simply-connected Riemannian manifold with non-
positive sectional curvature. M is said to be uniformly of rank at most r if there is a positive
constant c such that, for every subspace of dimension r+ 1 of every tangent space to M and
every nonzero vector v in the subspace, there is a plane with sectional curvature at most −c
containing v.

This follows automatically from the assumption that the leaves have rank at most r if, for
example, the sectional curvature function is continuous on the bundle of Grassmannians of
tangent 2-planes to leaves, or if the leaves are locally symmetric.
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This section is devoted to the proof of the following theorem.

Theorem 3.2. Suppose X is a compact foliated topological space which is measurable. Sup-
pose also that X is endowed with a leafwise Riemannian metric with nonpositive curvature
along the leaves, such that all the leaves are uniformly of rank at most r. If (X,F) has an
amenable fundamental groupoid, then the tangential de Rham cohomology groups vanish in
degrees r + 1 and higher.

For the proof of this, we will use the complex D∗(X,F) defined in the last section. The
strategy of proof is simple: we will first find a family of chain contractions of this complex
restricted to (the universal cover of) a single leaf, and then use amenability to choose these
contractions coherently over the whole of X. The proof begins with the following quantitative
version of the Poincaré lemma.

Lemma 3.3. Suppose M is a complete simply-connected Riemannian manifold with nonpos-
itive sectional curvature which is uniformly of rank at most r. Let M be the compactification
of M by equivalence classes of asymptotic geodesic rays. Let Dp(M) be the Banach space of
C0 differential p-forms on M with exterior derivatives which are currents representable by
integration against C0 forms, with norm given by

‖ α ‖= |α|C0 + |dα|C0.

For any p ∈ {r + 1, ..., dimM} and α ∈ Dp(M) satisfying dα = 0, there exists a bounded
Borel map β of ∂M into Dp−1(M) such that each form βx in the image satisfies the condition

that dβx = α. Furthermore, if f : M →M ′ is an isometry and f : ∂M → ∂M
′
is the induced

map on the spheres at infinity, then β ′ : ∂M
′ → Dp−1(M) satisfies f∗ ◦ β = β ′ ◦ f.

Proof: The proof is essentially the proof of the Poincaré lemma with estimates. Fix
α ∈ Dp(M) satisfying dα = 0. For x ∈ ∂M, we define βx as follows. Let bx : M → R be the
Busemann function associated to x. This function is unique up to an additive constant, so
the gradient vector field νx is well-defined. Let ϕx(t) be the flow associated to −νx.

For t > 0, we claim that ϕx(t) acts as a contraction on the differential forms on M of
degree r+ 1 or larger, with norm decaying exponentially to zero. The differential of ϕx(t) is
determined by Jacobi fields in M in the following manner. For any m ∈ M, let γ(t) be the
unique geodesic in M passing through m = γ(0) and satisfying limt→∞ γ(t) = x. For each
tangent vector v ∈ TMm, there is a unique stable Jacobi field Jv(t) along γ with Jv(0) = v,
i.e. a unique Jacobi field satisfying Jv(0) = v with |Jv(t)| bounded for t ≥ 0 (see [12], V.4.14).
The value of the differential of ϕx(t) applied to v is Jv(t). Assume that v is perpendicular to
γ′(0), and let K(Jv(t), γ

′(t)) be the sectional curvature of M along the plane generated by
Jv(t) and γ′(t). A standard calculation is that

d2

dt2
|Jv(t)|2 = 2|∇Jv(t)|2 −K(Jv(t), γ

′(t))|Jv(t) ∧ γ′(t)|2;

see [12], V.4.1. This implies that the function |Jv(t)|2 is convex, since the sectional curvature
is nonpositive. In particular, since it is a bounded function on the positive part of the
real line, it is either constant or decreasing there. Suppose v1, v2, ..., vk are chosen from an
orthonormal basis of TMm which includes γ′(0). We wish to estimate the rate of decay of
|ϕx(t)∗(v1 ∧ . . . ∧ vk)|2, assuming that k ≥ r + 1. There are two cases to consider: the case
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where γ′(0) is among the vi and the case where it is not. However, since ϕx(t)∗γ
′(0) = γ′(t)

has constant length, it is enough to consider |ϕx(t)∗(v1 ∧ . . . vk)|2 with k ≥ r + 1, and γ ′(0)
not among the vi. Set fi(t) = |ϕx(t)∗vi|2. Then

|ϕx(t)∗(v1 ∧ . . . vk)|2 ≤ Πk
i=1fi.

Furthermore,

d2

dt2
Πk
i=1fi =

k∑

i=1

f ′′
i Πj 6=ifj + 2

∑

i<j

f1 . . . f
′
i . . . f

′
j . . . fk.

Since each of the fi is nonincreasing, the last term is nonnegative, while at least one of the
fi satisfies the condition that f ′′

i ≥ cfi, so

d2

dt2
Πk
i=1fi ≥ cΠk

i=1fi.

This implies that Πk
i=1fi decays exponentially, which means that |ϕx(t)∗(v1 ∧ . . . vk)|2 does

also. Note also that the boundedness of the norms of the stable Jacobi fields, together with
the convexity of those norms, implies that their norms are nonincreasing. Thus, each ϕx(t)
is a contraction.

Choose a smooth increasing function λ : [0, 1) → [0,∞) which is surjective. Define
Φx : M × [0, 1) → M by Φx(m, t) = ϕx(λ(t))m. For any α ∈ Dp(M), there is a unique
decomposition of Φ∗

xα as ω0(t) + dt∧ω1(t), where ω0 and ω1 have interior product zero with
T = ∂

∂t
. We have

ω1 = iTΦ∗
xα,

where iT is interior product with T. We can rewrite this as

iTΦ∗
xα = Φ∗

x(iνx
α) = iνx

Φ∗
xα

since T and νx are both Φx-related to νx. By the argument in the previous paragraph, if the
degree of α is at least r + 1, the restriction of Φ∗

xα to M × {t} is bounded independently of
t, and in fact decays to zero as t → 1. Since νx is a bounded vector field, ω1(t) is bounded
independently of t. Define

βx = −
∫ 1

0

ω1(t) dt,

where t is the variable along [0, 1]. The argument above implies that βx is a bounded con-
tinuous (p− 1)-form on M.

Next, we need to see that dβx = α (as currents) assuming dα = 0. This means that, for
any smooth compactly supported form η on M of degree n− p,∫

M

α ∧ η = (−1)p
∫

M

β ∧ dη.

Let η̃ be the pullback of η to M × [0, 1). Then
∫

M

β ∧ dη = −
∫ 1

0

∫

M

dt ∧ ω1 ∧ dη̃ = −
∫ 1

0

∫

M

Φ∗
xα ∧ dη̃.

But
Φ∗
xα ∧ dη̃ = (−1)pd(Φ∗

xα ∧ η̃).
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Stokes’ Theorem implies (approximating by smooth forms, if necessary) that
∫ 1

0

∫

M

Φ∗
xα ∧ dη̃ = lim

c→1−

∫ c

0

∫

M

Φ∗
xα ∧ dη̃ = (−1)p lim

c→1−

∫

M

(φx(λ(c))∗α− α) ∧ η =

(−1)p+1

∫

M

α ∧ η.

To see that the dependence of βx on x is Borel, fix a countable sequence of nested closed
metric balls Bi in M whose union is all of M. Associated to each Bi is a semi-norm ‖ α ‖i
which is analogous to the norm on Dp−1(M) except that the C0-norms of α and dα are
measured only on Bi. Furthermore,

‖ α ‖= sup
i

‖ α ‖i .

Each of these semi-norms defines a topology on Dp−1(M) with basis given by sets of the
form

Ui(η, ρ) = {µ ∈ Dp−1(M)| ‖ µ− η ‖i< ρ},
where η ranges over Dp−1(M) and ρ over positive real numbers. It is relatively easy to see
that β is continuous with respect to each of these topologies, since α and dα are uniformly
continuous on any compact set and ϕ : M × ∂M × R → M is continuous and C1 in the
directions tangent to M. On the other hand, if

U(η, ρ) = {µ ∈ Dp−1(M)| ‖ µ− η ‖< ρ},
then β−1(U(η, ρ)) = β−1(∩iUi(η, ρ)) = ∩iβ−1(Ui(η, ρ)) is a countable intersection of open
sets in ∂M, so is a Borel set. Since sets of the form U(η, ρ) generate the Borel structure on
Dp−1(M), this implies that β is a Borel map.

Finally, it is clear that the construction of β is natural with respect to isometries of M.
QED

If µ is a probability measure on ∂M, then we can define a form βµ ∈ Dp−1(M) satisfying
dβµ = α by

βµ =

∫

∂M

βxdµ(x).

This gives an affine map from the convex set P(∂M ) of probability measures on ∂M to
the set of primitives for α in Dp−1(M). This map is continuous with respect to the weak∗

topology on P(∂M ). With this topology, P(∂M ) is a compact set.
It is now easy to prove the theorem. If S → X is the unit sphere bundle of TF , then each

fiber Sx is naturally identified with the sphere at infinity Σ for the universal cover L̃x of the
leaf passing through x by means of the “visual” map. There is a natural isometric Banach
space bundle V over X whose fiber over x ∈ X is the Banach space of continuous real-valued
functions on the fiber Sx of S. We can define a representation of the fundamental groupoid
of (X,F) on V as follows. Fix a morphism σ : x → y in the fundamental groupoid, and

choose a lift of x to a point x̃ in L̃x. This determines a lift of σ to L̃x, and thus a lift ỹ of

y to L̃x. There are canonical homeomorphisms of the unit spheres at x̃ and ỹ with Σ, and
thus with each other. This determines an isometry from the space of continuous functions
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on the unit sphere at x̃ to the space of continuous functions on the unit sphere at ỹ. Upon
identifying the unit spheres above with those below, we obtain an isometry from Vx to Vy.
It is straightforward to check that this is independent of the choice of lifting. For each fiber
V ∗
x of V ∗, we take Px ⊂ V ∗

x to be the probability measures. These form a Borel field P of
compact convex sets which is clearly π(X,F)-invariant.

Since the fundamental groupoid is assumed to be amenable, there is a Borel section ξ :
X → P which is essentially invariant. If α is an element of Dp(X,F) satisfying dα = 0,
then the construction in the lemma and the paragraph following its proof give a leafwise
(p− 1)-form β which is essentially bounded, leafwise continuous and satisfies dβ = α, and is
defined on almost every leaf in X. The measurability of β follows from that of ξ. As explained
in the previous section, the vanishing of the groups when k = 0 implies the vanishing of the
de Rham groups for any k. This concludes the proof.

It is worth pointing out a remark made by R. Zimmer upon hearing Theorem 3.2. One can
consider the cohomology of the complex of leafwise differential forms which are measurable
on the total space (i.e. without the assumptions of essential boundedness of the forms and
their exterior derivatives made above). Zimmer points out that, if a.e. leaf of the foliation is
contractible, then the cohomology of this complex vanishes in degrees above one. This follows
since these cohomology groups can be identified with the measurable groupoid cohomology
of Feldman and Weiss [6] if a.e. leaf is contractible. The measurable groupoid cohomology is
an invariant of measurable stable orbit equivalence. By a result of Connes–Feldman–Weiss
[5], if the foliation is amenable then there is a measurable stable orbit equivalence with an
action by the integers. The cohomology groups are then isomorphic to the group cohomology
of the integers with coefficients in representation given by the group of measurable functions
on a measure space, and thus vanishes in degrees above one.

4. On the hypotheses of Theorem 3.2

Observe first of all that the tangential cohomology groups in Theorem 3.2 clearly do not
vanish in degree less than or equal the rank of the leaves, as is obvious by considering a flat
torus with the foliation consisting of a single leaf.

Our goal now is to give examples to show how the full strength of the amenability of the
fundamental groupoid is essential in the theorem. First consider a compact quotient of a
symmetric space of noncompact type, with the foliation by a single leaf. The fundamental
group of the leaf is not amenable if it is not flat, but the induced equivalence relation on
a tranversal is amenable. (Note that the action of the fundamental group on a transversal
is not amenable.) In many such examples there will be nonvanishing cohomology in the
prohibited range; for example, any compact quotient of a Hermitian symmetric domain has
nontrivial cohomology in all even degrees, generated by the powers of the Kähler form. This
shows that the amenability of the equivalence relation on a transversal is not sufficient.

One can also construct examples (see Example 4.6) in which the equivalence relation
induced on any transversal is nonamenable and the fundamental groups of the leaves are
all amenable, but the conclusion of Theorem 3.2 fails. Namely, we will construct a foliated
bundle X = (Y ×G/Q)/Γ, where Y is a symmetric space with isometry group G, Q < G is a
non-amenable subgroups (so that the equivalence relation is not amenable) and the foliated
de Rham cohomology of X does not vanish in some degrees above the rank (Corollary 4.3),
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although Γ can be chosen in such a way that the fundamental groups g−1Γg∩Q of the leaves,
g ∈ G, are abelian (Corollary 4.5).

For this purpose, let Dj
∞(Y ) be the space of smooth differential j-forms on Y . Recall

that, by the Van Est isomorphism theorem [15], the complex of G-invariant differential
forms on Y with the usual exterior derivative computes the continuous cohomology of G,
H∗
c (G) = D∗

∞(Y )G. More generally, if Q < G is any closed subgroup, the complex D∗
∞(Y )Q

is an admissible resolution by injective Q-modules and hence its cohomology is canonically
isomorphic to the continuous cohomology of Q, H∗

c (Q) ' H∗(D∗
∞(Y )Q). Moreover, the

natural inclusion of complexes D∗
∞(Y )G ↪→ D∗

∞(Y )Q extends the identity R → R and hence
induces the restriction map in cohomology, r : H∗

c (G) → H∗
c (Q).

Proposition 4.1. The restriction map r factors through the tangential cohomology of (Y ×
G/Q)/Γ,

H∗
c (G)

ϕ∗

((RRRRRRRRRRRRR

r

,,

H∗
c (Q)

H∗((Y ×G/Q)/Γ,F)

ψ∗

66lllllllllllll

where Γ < G is any lattice.

Hence if the map r is injective, the tangential cohomology of (Y ×G/Q)/Γ cannot vanish
(provided of course that the continuous cohomology of G does not vanish). To give an
example of such situation, let G = SL(n,C), and let i : SL(n − 1,C) ↪→ SL(n,C) be the

natural inclusion defined by i(g) =

(
1 0
0 g

)
.

Proposition 4.2. If Q < SL(n,C) is any closed subgroup such that i(SL(n − 1,C)) < Q,
the map r : Hj

c (SL(n,C)) → Hj
c (Q) is injective with nonzero image for all 3 ≤ j ≤ 2n− 3,

j odd, n ≥ 3.

Corollary 4.3. If Q < SL(n,C) is as above, and Γ < SL(n,C) is a cocompact lattice, then
Hj((Y × (SL(n,C)/Q))/Γ,F) 6= 0, 3 ≤ j ≤ 2n− 3, j odd, n ≥ 3.

Proof of Proposition 4.1. We start by showing that there is a map

ϕ(j) : Hj
c (G) = Dj

∞(Y )G → Hj((Y × (G/Q))/Γ,F) ,

defined as follows. Any G-invariant differential j-form ω on Y induces a tangential form ωQ

on Y × G/Q which is independent of the second coordinate, bounded and Γ-invariant, and
hence descends to a differential form on (Y ×G/Q)/Γ which is closed (since dω = 0). Denote
by ωQ = ϕ(j)(ω) its (essentially bounded) class in H j((Y ×G/Q)/Γ,F).

Let Dj
∞(X,F) be the space of tangential differential j-forms on X = (Y × G/Q)/Γ,

and define the map ψ(j) : Dj
∞(X,F) → Dj

∞(Y )Q as follows. Given α ∈ Dj
∞(X,F), let α̃ ∈

Dj
∞(Y ×G/Q,F) be its lift to a Γ-invariant lift tangential differential form on (Y ×G/Q,F).

Define a map Sα : G/Q→ Dj
∞(Y ) by Sα([g]) := α̃(·,[g]). Observe that

sup
[g]∈G/Q

‖Sα([g])‖ ≤ sup{α(y,[g]) : (y, [g]) ∈ Y ×G/Q} <∞ ,
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and that the map Sα is Γ-equivariant with respect to the right action on Dj
∞(Y ), namely

γ−1Sα([g]) = Sα(γ[g]) for all γ ∈ Γ and almost every [g] ∈ G/Q. It follows that for almost

all [g] ∈ G/Q, the map B
[g]
α : G → Dj

∞(Y ) defined by h 7→ B
[g]
α (h) = hSα(h[g]) is left Γ-

invariant, namely B
[g]
α (γh) = B

[g]
α (h) for all γ ∈ Γ, h ∈ G, and hence descends to a map B

[g]
α :

Γ\G → Dj
∞(Y ). Define now Bα : G/Q → Dj

∞(Y ) by Bα([g]) :=
∫
Γ\GB

[g]
α (h)dµ(h), where µ

is the right G-invariant probability measure on Γ\G (recall that Sα is essentially bounded).
It is easy to check that Bα is right G-equivariant, that is that Bα(h[g]) = h−1Bα([g]) for all
h ∈ G and almost every [g] ∈ G/Q. Let E ⊂ G/Q be a set of full measure on which the above
condition is satisfied, and let [g] ∈ E withQg = StabG([g]). Then the differential formBα([g])
is Qg-invariant, so that g−1Bα([g]) in Q-invariant and we can define ψ(j)(α) = g−1Bα([g])
(notice that, because of the G-equivariance of Bα, ψ(α) does not depend on the particular
choice of [g] ∈ E).

A straightforward verification shows that ψ(j) is a map of complexes, and hence induces a
map ψ∗ in cohomology, and that the composition ψ∗ ◦ ϕ∗ is the restriction map r. QED

Proof of Proposition 4.2. Observe first of all that there is an isomorphism between the con-

tinuous cohomology of SL(n,C) and the singular cohomology of its compact dual symmetric
space SU(n),

H∗
c (SL(n,C))

'
//H∗

sing(SU(n)) ,

([4, § 10]). Moreover, we have an isomorphism

i(j) : Hj
sing(SU(n))

'
//Hj

sing(SU(n− 1)) ,

for 1 ≤ j ≤ 2n−3, which is induced by the natural inclusion i(g) =

(
1 0
0 g

)
(see [16, Chapter

VII, Corollary 6.3] applied to the fibration SU(n− 1) → SU(n) → S2n−1 and [22, Théorème
2.1]). It follows that also the map i(j) : Hj

c (SL(n,C)) → Hj
c (SL(n−1,C)) is an isomorphism

for 1 ≤ j ≤ 2n − 3, n ≥ 3. Moreover, H j
c (SL(n,C)) 6= 0 for j = 2i − 1, 2 ≤ i ≤ n ([22,

Théorème 2.1]). Since the map i∗ factors through the map r, the latter must be injective.
QED

We shall now construct a cocompact lattice Γ < SL(n,C) such that the fundamental
group g−1Γg ∩Q of the leaf through [g] is abelian for all g ∈ G. For this purpose, let us first
recall how to construct central division algebras over an algebraic number field. Let L be a
cyclic extension of an algebraic number field F of degree n (that is a Galois extension of F
of degree n with cyclic Galois group) and let σ be a generator of the Galois group Gal(L/F ).
For m ∈ F×, define a ring

Lm[σ] =

{ n−1∑

i=0

aiσ
i : ai ∈ L

}
,

with multiplication given by:

• σa = σ(a)σ for a ∈ L, and
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• σjσk =

{
σj+k if j + k ≤ n− 1

mσj+k−n if j + k ≥ n.

Then Lm[σ] is a central division algebra if and only if mk /∈ NL/F (L×) for k = 1, 2, . . . , n−1,
where NL/F : L× → F× is the norm of L over F defined by NL/F (x) = xσ(x) . . . σn−1(x),
for x ∈ L×. If we view EndL(Lm[σ]) as a right L-vector space, using the identification
EndL(L

m[σ]) ' Matn×n(L) with respect to the basis {1, σ, . . . , σn−1}, let ρ : Lm([σ]) →
Matn×n(L) be the regular representation defined by ρ(u)(v) = uv for u, v ∈ Lm([σ]).

To avoid redundant generalities, let us now specialize the discussion to particular fields:
specifically, let p be a prime with p ≡ 3 (mod 4) and let ξ be a primitive p-th root of unity.
Then the cyclotomic field L := Q[ξ] is a cyclic extension of the quadratic field F := Q[

√−p]
over which it is hence of degree n = (p − 1)/2, [7, Theorem 48]. Since Q[ξ] ⊂ C, we can
think of ρ as taking values into Matn×n(C). Then it is a classical result that

(1) Γ := ρ(R) ∩ SL
(
p− 1

2
,C

)
,

where R ⊂ Lm[σ] is the subring

R =

{ (p−3)/2∑

i=0

aiσ
i : ai ∈ Z[ξ]

}
,

is a lattice in SL(p−1
2
,C). Moreover if we can choose m ∈ Q[

√−p]× such that mk /∈
NQ[ξ]/Q[

√−p](Q[ξ]×) for 1 ≤ k ≤ p−3
2

, then Γ is cocompact, as it is easy to see that it contains
no unipotent elements. In fact, if there were to exist a ∈ R such that ρ(a) has eigenvalue
1, then 0 = det(ρ(a) − 1) = det(ρ(a − 1)). Hence ρ(a − 1), as well as a − 1, would not be
invertible. Since Lm[σ] is a division algebra by our assumption on the image of the norm not
containing powers of m, it follows that we must have that a = 1. Now we show that such a
choice of m is possible in our setup.

Lemma 4.4. Let ξ be a primitive p-th root of unity, where p ≡ 3 (mod 4) is a prime. Let
q ∈ Q× ⊂ Q[

√−p]× be a prime such that qr 6≡ 1 (mod p) for all r ∈ {1, 2, . . . , p− 2}. Then
qk /∈ NQ[ξ]/Q[

√−p](Q[ξ]×) for k = 1, 2, . . . , p−1
2
−1, and hence Lq[σ] is a cyclic division algebra.

Notice that saying that qr 6≡ 1 (mod p) for all 1 ≤ r ≤ p − 2 is equivalent to saying
that q is a generator of the multiplicative group of the finite field with p elements Fp. Since
F×
p ' Zp−1 is cyclic, let a ∈ N be a generator of F×

p . Then in particular gdc(a, p) = 1, so
that, by Dirichlet theorem, the arithmetic progression {a + jp : j ∈ N} contains an infinite
number of primes, each of them satisfying the hypothesis of Lemma 4.4.

Proof of Lemma 4.4 Let us start recalling that if K ⊂ F ⊂ L is a tower of fields,
then NL/K = NF/K ◦ NL/F (see, for example, [7]). In our case we shall consider the fields

Q ⊂ Q[
√−p] ⊂ Q[ξ], so that

∣∣Q[ξ] : Q
∣∣ = p− 1, and we will show the following:

Claim: If q ∈ Z× is a prime such that qr 6≡ 1 (mod p) for all 1 ≤ r ≤ p − 2, then qi /∈
NQ[ξ]/Q(Q[ξ]×) for i = 1, 2, . . . , p− 2.

To conclude the proof it is then enough to observe that the same q ∈ Q× thought of as an
element in Q[

√−p]× is such that qh /∈ NQ[ξ]/Q[
√−p](Q[ξ]×), for h = 1, 2, . . . , (p − 3)/2. In
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fact, if by contradiction there were t ∈ Q[ξ]× such that, for some h ∈ {1, 2, . . . , (p− 3)/2},
qh = NQ[ξ]/Q[

√−p](t), then, by applying NQ[
√−p]/Q, we would have

NQ[ξ]/Q(t) = NQ[
√−p]/Q

(
NQ[ξ]/Q[

√−p](t)
)

= NQ[
√−p]/Q(qh) = qhσQ[

√−p]/Q(qh) = q2h ,

where σQ[
√−p]/Q is the generator of the Galois group Gal(Q[

√−p]/Q). But since 1 ≤ h ≤
(p− 3)/2, we have that 1 < 2 ≤ 2h ≤ p− 3 < p− 2, contradicting the claim.

To conclude, we give a proof of the Claim which is a generalization of a similar argument
in [17, 9.48]. Assume by contradiction that there exist t ∈ Q[ξ] and i ∈ {1, 2, . . . , p − 2}
such that NQ[ξ]/Q(t) = qi. Let r ∈ Z+ be the smallest integer such that tr ∈ Z[ξ], and set

tr = s =
∑p−2

i=0 aiξ
i ∈ Z[ξ]. Observe that q - gcd(a0, . . . , ap−2). In fact, if it did, then we

would have that s/q := s′ ∈ Z[ξ]. Then

qirp−1 = NQ[ξ]/Q(t)NQ[ξ]/Q(r) = NQ[ξ]/Q(tr)

= NQ[ξ]/Q(s) = NQ[ξ]/Q(s′q)

= NQ[ξ]/Q(s′)qp−1 .

Since by hypothesis i ≤ p − 2, then q|r and t(r/q) = s/q = s′ ∈ Z[ξ], contradicting the
minimality of r.

Evaluating once again the norm on both sides of the equality s = tr, we can think of the left
hand side NQ[ξ]/Q(s) as a product of polynomials in x (mod f), where f(x) = xp−1+· · ·+x+1
is the minimal polynomial of ξ, each corresponding to an iterate of the automorphism σQ[ξ]/Q

generating Gal(Q[ξ]/Q),

s0(x) . . . sp−2(x) = qirp−1 (mod f) .

Clearly s0(x) . . . sp−2(x) = qirp−1 = 0 in Zq[x]/(f(x)). We claim that our choice of q ∈ Q×,
q prime is such that f(x) is irreducible in Zq[x], and that hence we have completed the
proof of the Claim and hence of the Lemma. In fact, if f(x) is irreducible in Zq[x], since
Zq[x]/(x

p−1 + · · · + x + 1) is a field, one of the sj(x)’s, 0 ≤ j ≤ p − 2 must be zero in
Zq[x]/(x

p−1 + · · ·+x+1), that is must be a multiple of xp−1 + · · ·+x+1, which is impossible
since the sj(x)’s have degree p− 2 < p− 1.

It remains to sow that f(x) is irreducible over Zq[x]. If not, there would exist g(x) and
h(x), with g(x) irreducible and deg g = r < p − 1 such that f(x) = g(x)h(x). Then g(x)
would have a root α in the finite field F×

qr . It is easy to see that p = ord(α) and that hence
p|qr − 1 or, equivalently, that qr ≡ 1 (mod p). QED

For example if p = 7, one can choose any prime m such that m ≡ 3 (mod 7) or m ≡ 5
(mod 7), and thus obtain an example of a cocompact lattice in SL(3,C).

Corollary 4.5. Let Q < SL(n,C) be the stabilizer of a C-line Cv ⊂ Cn. If Γ < SL(n,C) is
any lattice defined in (1), then g−1Γg ∩Q is abelian for all g ∈ SL(n,C).

Proof: For g ∈ SL(n,C), let Γg := g−1ΓG ∩ Q. If v ∈ Cn is the vector which spans a
C-line left invariant by Q, the map f : Γg → Cn defined by f(γ) := χ(γ)v defines a homo-
morphism χ : Γg → C×. Since C× is abelian, either Γg is abelian and we are done, or χ must
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be trivial, in which case it is not just the C-line Cv which is fixed by Q, but the vector v
itself. So far we have used only the fact that Γg ⊂ Q: now bringing into the discussion the
definition of Γ in (1), we have that if γ ∈ g−1ρ(R)g ∩Q, we must have that all a ∈ R such
that v = γv = (g−1ρ(a)g)(v) = g−1ρ(a)gv, are such that (a− 1)(gv) = 0, which implies that
a = 1, since Lm[σ] has no zero divisors. Hence Γg is trivial and the proof is completed. QED

Example 4.6. Let p ≥ 7 be a prime such that p ≡ 3 (mod 4), and let Q < SL( p−1
2
,C) be the

stabilizer of the vector e1 = (1, 0, . . . , 0) ∈ C(p−1)/2. Then i(SL(p−3
2
,C)) < Q, SL(p−1

2
,C)/Q

is compact, and Q is not amenable. Hence the foliated bundle (Y ×(SL( p−1
2
,C)/Q))/Γ is not

amenable, although the leaves have abelian fundamental group. Since R-rank(SL( p−1
2
,C)) =

p−3
2

, the necessity of the amenability of the foliation is reflected by the fact that for all p−1
2

≤
j ≤ 2p−1

2
−3 = p−4 and j odd, Corollary 4.3 implies that H j((Y ×(SL(p−1

2
,C)/Q))/Γ,F) 6=

0.
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