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ALGEBRAIC HULLS AND THE FOLNER PROPERTY

A. Tozzi AND A. NEVO

1. Introduction

Let G be a connected semisimple Lie group with finite center and no non-
trivial compact factors, and let I' be an irreducible lattice in G. The Borel
density theorem then asserts that I' is Zariski dense in G' ([B1], [Fu2]).
This result has proven valuable in a variety of different contexts and sev-
eral authors have extended it to more general situations (see [D1,2], [Msk],
[MosMsk], [S1,2], [W], for example). An immediate consequence of the
Borel density theorem is the following: if 7 is any rational homomorphism
of G and I is an irreducible lattice in G, then the Zariski closure of =(T")
coincides with 7(G). A natural problem that arises here is to extend this
result to other ‘large’ subgroups of GG, not necessarily of finite co-volume.

In the study of automorphism groups of geometric structures an impor-
tant notion is that of a cocycle of a group action on a manifold (see §2 for the
definition), which can be viewed as a generalization of the familiar notion
of a group homomorphism. There is a corresponding generalization of the
notion of Zariski closure. This point of view, proposed by G. Mackey [M2],
was systematically developed by R.J. Zimmer and lead to his superrigidity
theorem for cocycles [Z3], an extension of the superrigidity theorem due to
G.A. Margulis [Ma]. The Borel density theorem plays a fundamental role
in both proofs.

To explain how cocycles appear as generalizations of homomorphisms,
note that a cocycle for an action on a point is a homomorphism and, a less
obvious case, that to (the cohomology class of) a cocycle for a transitive
action on G /Gy corresponds uniquely (the conjugacy class of) a homomor-
phism of Gj.

It is natural, in view of the previous remarks, to try to find extensions
of the Borel density theorem that will apply to cocycles. The notion cor-
responding to the Zariski closure of the image of the homomorphism is the
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algebraic hull of a cocycle [Z4] (see §2): given a cocycle from an ergodic ac-
tion into an algebraic group, the algebraic hull of the cocycle is the (unique
conjugacy class of the) smallest algebraic subgroup in which a cohomolo-
gous cocycle takes values. In the case of a transitive action for example, the
algebraic hull of a cocycle on G/Gy coincides with the Zariski closure of the
image of Gy under the corresponding homomorphism.

The first result in this direction appeared in [[1]. There it is proven
that if I' is an irreducible lattice in a real semisimple group G without non-
trivial compact factors acting ergodically on a space S with quasi-invariant
measure, then the algebraic hull of the G-action and of the I'-action are the
same, provided that S is not isomorphic to G/Gq, with Go compact. This
result has numerous applications both to ergodic theory and to differential
geometry (see [I1,2 and 3]).

We will extend this conclusion (under some additional assumptions) to
subgroups A C G, which will be shown to be Zariski dense in G, but may
have infinite co-volume. The subgroups are termed co-Fglner subgroups
of G, and are defined as follows. If G is a locally compact group, we say
that the action of G on a space S with a G-invariant measure v has the
Fglner property if S admits an asymptotically G-invariant sequence of sets
of positive finite measure. If S = G /A has a G-invariant measure and G acts
on G /A with the Fglner property, we say that A is co-Fglner in G (see §3).

Before proceeding with the statements of our results, we introduce one
more definition. Let k£ denote the field R, C or any local field of characteristic
zero. We will consider cocycles taking values in an algebraic group Hy,
consisting of the k-points of an algebraically connected semi-simple group

defined over k.

DEFINITION 1.1. (a) A cocyclea: S x G — Hj, is k-unbounded if, given
any proper normal k-subgroup N of Hy,, the cocycle poa: S x G — H, =
H}. /Ny is not equivalent to a cocycle taking values in a compact subgroup
of Hy.

(b) In particular, if S is a point, a homomorphism © : G — Hj, is k-
unbounded if, given any proper normal k-subgroup Ny of Hj, the image
of m(G) in H;, = Hy /Ny Is not contained in a compact subgroup.

If o is a cocycle for a G-action on S, let us denote by ay the restriction
of a to the A-action on S, ap = a|sxa. We prove the following:

Theorem 5.4. Let G be a locally compact second countable group, S a
G-space with a quasi-invariant measure and A a co-Fglner subgroup of G
acting ergodically on S. Let Hj denote the k-points of an algebraically
connected semisimple algebraic group defined over k. If « : S x G — Hjy
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is a k-unbounded measurable cocycle which has algebraic hull Hj, then
ap S X A — Hy has algebraic hull Hy, as well.

The simplest example of a co-Fglner subgroup is a lattice in G. Hence
this theorem implies the result mentioned above on algebraic hulls [I1] when
the algebraic hull of the cocycle is semisimple and k-unbounded.

In view of the condition of semi-simplicity imposed on Hj, we should
note that the conclusion of Theorem 5.4 fails when the algebraic hull Hy
of o has a non-trivial solvable radical, even if Hj is reductive with (non-
trivial) compact center (see the example in §6). Hence the assumption of
semi-simplicity of the algebraic hull of o is necessary. It is quite a natural
assumption in this context, and appears for example in the cocycle super-
rigidity theorem due to R.J. Zimmer. The assumption of k-unboundedness
implies that Hj has no non-trivial compact factors, which is a necessary
assumption in the Borel density theorem.

We now consider a simple corollary of Theorem 5.4, in the case where
there exists a finite G-invariant measure on S. Before formulating the next
result we make the following

DEFINITION 1.2. A locally compact second countable group G is said to
have the Howe-Moore property if for every unitary representation m of
G on a Hilbert space 'H, which does not contain G-invariant vectors, the
functions g — (7(g)v,w) (v,w € H,) converge to 0 as g leaves compact sets

in G.

For example, simple non-compact algebraic groups over local fields are
Howe-Moore groups. For other examples of Howe-Moore groups we refer to
[LMoz]. We can now state

COROLLARY 5.6. Let G be a locally compact second countable group with
the Howe-Moore property, A a closed non-compact co-Fglner subgroup, and
S be an ergodic G-space with quasi-invariant measure. Let Hj denote
k-points of an algebraically connected semisimple algebraic group defined
over k. Let a: S X G — Hj, denote a k-unbounded measurable cocycle with

algebraic hull Hy,. Then the algebraic hull of ap is Hy as well.

Proof. If G is a Howe-Moore group, and A is non-compact, then A is er-
godic (in fact, mixing) on any ergodic G-space with finite invariant measure.
Hence the result follows from Theorem 5.4. D

REMARK: The same conclusions apply to co-Fglner subgroups of semi-
simple Lie groups with finite center and no non-trivial compact factors
(or more generally S-arithmetic groups without non-trivial compact fac-
tors [Z4]), provided we assume that the action is irreducible, i.e. that every
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nontrivial normal subgroup of G acts ergodically on S. Clearly, in such
an action, every non-compact subgroup acts ergodically, and if a co-Fglner
subgroup of G is compact, then G must be amenable (see Corollary 3.6

below).

For the case k = R, we prove

Theorem 5.7. Let G be a locally compact second countable group, S a
G-space with a quasi-invariant measure and A a co-Fglner subgroup of G
acting ergodically on S. Let Hg denote the R-points of an algebraically
connected semisimple algebraic group defined over R, with no non-trivial
compact factors. If o« : S x G — Hg is a measurable cocycle which has

algebraic hull Hg, then ap : S X A — Hpg has algebraic hull Hg as well.

We remark that the assumption of the absence of non-trivial compact
factors in Theorem 5.7 is clearly necessary. Indeed, if A C G is a co-
Fglner subgroup, then of course it is also a co-Fglner sugroup of G x K, for
any compact group K. If G and K are real algebraic groups, then clearly
A C G is not Zariski dense in G x K. Hence the conclusion fails when S
is a one point space, H = G x K, A is a lattice of G and « is the identity
homomorphism.

As shown in §6 the semi-simplicity of Hg is also necessary. Theorem 5.7
shows that restricting a real valued cocycle to a co-Fglner subgroup will
result in no loss of information regarding the simple non-compact factors of
the algebraic hull of the cocycle. By the foregoing remarks, this is the best
possible conclusion that can be obtained.

Theorems 5.4, 5.7 and Corollary 5.6 have more general formulations
that apply to pull-backs of cocycles, rather than their restrictions. These
generalization will be formulated and proved in §5.

The results above rely upon a lemma due to Furstenberg [Ful] (see also
[Z4] and [D1]), which is the main tool in Furstenberg’s proof of the Borel
density theorem. It is here that the assumption that the cocycle o is k-
unbounded becomes crucial, and is used to compensate for the fact that A is
not necessarily a lattice. In this regard, see the remark after Proposition 5.5
in §5.

In §3 we give examples of co-Fglner subgroups. In particular, subgroups
A C G such that G/A has subexponential growth (as a Riemannian mani-
fold, see §3) are co-Fglner subgroups. It is shown in [S2] that such subgroups
are Zariski dense; in fact the same proof shows that if A is a co-Fglner sub-
group and G is semisimple with finite center and no compact factors, then
A is Zariski dense. It should be pointed out that if G is a semi-simple group
possessing a non-compact factor group with property 7', and A is co-Fglner
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subgroup which projects densely to each factor group of G of lower dimen-
sion, then A must necessarily have co-finite volume in G. Hence examples of
co-Fglner subgroups interesting in our context arise only from simple groups
of R-rank equal to 1 or semisimple groups all of whose factors have R-rank
one (and do not have property T').

As an application of the results above, we note the following homomor-
phism theorems, generalizing the Borel density Theorem:

Theorem 6.1. Let G be any locally compact second countable group, A
a closed co-Fglner subgroup and let m : G — Hj be any representation
into the k-points of an algebraically connected semisimple algebraic group

defined over k. If n(G) is Zariski dense and  is k-unbounded, then m(A) is

Zariski dense as well.

Theorem 6.2. Let G be a locally compact second countable group. Let
A denote a closed non-compact co-Fglner subgroup, and # : G — Hpg a
measurable homomorphism of G into the R-points Hg of an algebraically
connected semi-simple algebraic group defined over R, with no non-trivial
compact factors. Then, if 7(G) is Zariski dense, the same holds for w(A).

Another application is the identification of algebraic hulls, as follows:

Theorem 6.3. Let L C G be a closed subgroup of a locally compact second
countable group G and let 7 : G — H} be any representation into the k-
points of an algebraic group defined over k, such that «|y is k-unbounded.
Let a : G/A x G — Hj, be the cocycle corresponding to the (restriction to
A of the) representation w. If the Zariski closure of w(L) is semisimple and

L is ergodic on G/A, then the algebraic hull of ap is the Zariski closure
of m(L).

Acknowledgments. We want to thank Kevin Corlette, Eli Glasner,
Shahar Mozes, Jonathan Poritz and Garrett Stuck for useful discussions
and suggestions during the preparation of this paper. Our thanks go also
to the referee for a careful reading and many constructive comments.

2. Preliminaries

Given a G-space S with a quasi-invariant Borel measure u, we say that p is
ergodic if any measurable G-invariant subset A C S is either null or conull.
Whenever this does not happen, we can decompose S into subsets on which
the above holds true for suitable measures. In fact, there exist a measurable
metrizable space (ES, ji), that is the space of G-ergodic components of S,
and a measurable map o : S — EY with the properties that, for almost



Vol.6, 1996 ALGEBRAIC HULLS AND THE FOLNER PROPERTY 671

every e € ES, the space (071(e), o) is an ergodic probability G-space,
where the measures p. arise from the decomposition u(A) = feeEg pe(AN

o~ 1(e))dji(e), for any measurable A C S, (see [V] for u a finite G-invariant
measure and [E], [R] for the general case).

Let « : § x G — H be a measurable cocycle, that is a measurable
function satisfying the relation a(s, g1g2) = a(s, g1)a(sg1, g2) for a.e. s € S
and for all g;,9» € G. We say that two cocycles a,3 : § X G — H are
equivalent, or cohomologous, and we write o ~ 3, if there exists a Borel
map 0 : S — H such that, for all g € G, a(s,g) = 0(s)5(s,9)0(sg)~ ", for
a.e. s € 5.

In the case in which the G-action on S is transitive, namely S ~ G /G,
we mentioned already that there is a bijective correspondence between
equivalence classes of cocycles from G /Gy x G into H and conjugacy classes
of homomorphisms of Gy into H [Z4, Prop. 4.2.13]. If v : G/Gy — G is a
measurable section satisfying 7([Go]) = e then a cocycle a, : G/GoxG — H
corresponding to the homomorphism 7 : Gy — H is defined, for every
v € G/Gy and all g € G, by ar(z,g) = 7(y(x)gy(zg)~1). It is easy to see
that the equivalence class of a; is independent of the choice of v. Moreover,

we have o (G/Gy x G) = 7(Gyp).

Given a locally compact group Gy, let (T, m) be a left Gy-space with a
quasi-invariant Borel measure m and let o : S X G — G be a measurable
cocycle. Then we can define the skew product G-space (S X, T, pu x m)
where the right action is given by (s,t)g = (sg, (s, g)~'t). It is easy to see
that equivalent cocycles give isomorphic G-spaces. Moreover when G = Gy,
S X T is equivalent to S x T (with the product action of G) if and only if
« is equivalent to the identity cocycle (s,¢g) — g.

A particularly important example of a skew product G-space arises when
S = G/Gy and the cocycle o corresponds to the identity homomorphism
Go — Gy, in which case the space G/G( X, T is called the G-space induced
from the Gy-space T'. In this case one can give an alternative description
as follows: the action of Gy on G x T given by (g.t)go = (990,95 't) and
the action of G on G x T given by (g,t)h = (h™1g,t) commute and it is
easy to show that (G x T)/Gy and G/Gy X, T are isomorphic G-spaces.
One more particular case that will be of interest to us is when T'= Go /G,
where G1 C Gy C G are all closed subgroups; it is once again easy to see
that as measurable G-spaces G/G1, (G x Go/G1)/Gy and G/Gy x4 Go/G1
are all isomorphic.

If S is an ergodic G-space and H is an algebraic group, a construction

due to R.J. Zimmer assigns to each cocycle a a conjugacy class of algebraic
subgroups. The conjugacy class is an invariant of the cohomology class of
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«, and it is given by the following:

PROPOSITION 2.1 [Z4, Prop. 9.2.1]. Let (S, p) be an ergodic G-space, H be
a k-algebraic group with k-points Hy, and o : S X G — H}, be a measurable
cocycle. Then there exists a unique (up to conjugacy) k-algebraic subgroup
L C H such that « is cohomologous to a cocycle taking values in Lj. but not
equivalent to a cocycle taking values in the k-points of a proper k-algebraic
subgroup of L. Ly is called the algebraic hull of «.

For cocycles taking values in compact groups a notion of a compact hull
was introduced by R.J. Zimmer in [Z1].

PROPOSITION 2.2 [Z1]. Given a cocycle 3 : SxG — C, where C' is compact,
there exists a unique (up to conjugacy) smallest compact subgroup C' C
C such that 3 is equivalent to a cocycle taking values in C’, but is not

equivalent to a cocycle taking values in a proper closed subgroup. C' is
called the compact hull of (3.

REMARK: It is well known that compact real groups are real algebraic and
that, however, this property does not hold over C or any local field. For
example, SU(2,C) is Zariski dense in SL(2,C), and SL(2,Z,) is Zariski
dense in SL(2,Q,).

Suppose now a cocycle a taking values in a non-compact algebraic group
is equivalent to a cocycle taking values in a compact subgroup. As a con-
sequence of the foregoing remarks, when k = R, a cannot be Zariski dense.
For k # R, o may be both Zariski dense and equivalent to a cocycle tak-
ing values in a compact subgroup. This fact implies that the application
of Furstenberg’s Lemma yields a weaker conclusion in this case, and ac-
counts for the assumption of k-unboundedness of the cocycle that appears

in Theorems 5.4, 5.8 and 6.1.

3. Fglner Actions and Co-Fdglner Subgroups

DEFINITION 3.1. Let G be a locally compact second countable acting on a
space X with G-invariant measure v. We say that the G-action on (X, v)
has the Fglner property if for every € > 0 and for every compact set K C G
there exists a measurable set A C X of positive finite measure, such that

v(gAA A)

oA ¢

for every g € K.
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REMARK: It is easy to see that the above definition is equivalent to the
following. The G-action on (X, v) has the Fglner property if there exists a
sequence {A,} C X of measurable sets of positive finite measure, such that

lim V(gA,? A Ay)
n— o0 v(Ap)

— 0

uniformly on compact subsets of G. Such a sequence is usually called an
asymptotically invariant sequence, or a Folner sequence. We should also
point out that such actions were first introduced by F. Greenleaf (under the
name of amenable actions) in [G], where it is proven that the existence of
a Folner sequence is implied by the existence of a topological left invariant
mean on L°>°(X,v). For further discussion of such actions we refer to [Ey],
[Z6].

The two simplest examples of actions with the Fglner property, which
motivate the definition above, are the action of an amenable group G on
itself, and the action of a group on a space with finite invariant measure.
To better illustrate other examples, we recall the following characterization
of the Fglner property in terms of representation theory.

Recall that if 7 is a unitary representation of G on a Hilbert space H,
an n X n submatrix of 7 is a function f : G — M"*"(C) (the space of n xn
complex matrices), defined by f(g)ij = (7(g)vi,v;), where {vy,...,v,} is
an orthonormal set in H,. The following definition is due to Fell, [F1,2].

DEFINITION 3.2. Let w,0 be unitary representations of G on H, H, re-
spectively. We say that o is weakly contained in 7, and we write ¢ < T
if for any compact set K C G, any € > 0 and any n X n submatrix f, of
o, there exists an n X n submatrix f, of w, which approximates f, on K,
namely such that ||f:(g) — fo(9)|| < € for any g € K.

The following theorem is well known, and generalizes the fact that if
the regular representation of G weakly contains the identity representation
then the action of G on itself by translations has the Fglner property, or, in
other words, G is amenable (see [Ey] or [L], for instance). Since this result
is a main source of examples of actions with the Fglner property (as will be
seen below), we reproduce its proof here for completeness.

Let 7 : G — U(L*(X,v)) denote the unitary representation which, for
any f € L*(X,v) is defined by (7(g)f)(z) = f(g~ z).

Theorem 3.3 ([G],[Ey]). The action of any locally compact second count-
able G on (X,v) has the Folner property if and only if the representation
7:G — U(L? (X ,v)) weakly contains the one-dimensional trivial represen-
tation.
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Proof. It is straightforward to check that © weakly contains the one-dimen-
sional identity representation if and only if for every € > 0 and any compact
set K C G, there exists f € L*(X,v) with ||f||o = 1, such that ||7(g)f —
fll2 < €, for every g € K.

With this in mind, assume now that the G-action on X has the Fglner
property; then, if € > 0 and K C G is a compact set, let Ny > 0 such that,

if n > Ny and g € K, then % < €, where {A,} C X is a Fglner
XAnp

sequence. Then, if we define f = AT

that ||7(g)f — fl5 = % <e, for g€ K.

To prove the converse, let A denote the left Haar measure on the group G.
Consider the following:

it is straightforward to check

Claim. For any compact set K C G of positive measure, any € > 0 and
any 6 > 0, there exists a measurable set A C X of positive finite measure

such that % < e for every g € N, where N C K satisfies A\(K\ V) < é6.

Proving the claim will suffice, and to see why, fix € > 0 and a compact
set K C G, of positive measure. Define another compact set K’ by K’ =
K U KK. Then, by the above claim, for any é > 0, there exist measurable
sets A C X and N C K’ with A\(K’'\ N) < 6 such that % < g, for
any g € N. Moreover, if g1, go € N, it is easy to see that

v(g1gs AN A) < v(gi AN A+ v(gaANA) < ev(A)

and we shall have proven our theorem (assuming the claim) if we can show
that K C NN~'. To this purpose, let us choose 6 = zA(K'). Then, using
the left invariance of the Haar measure, we have that for any k£ € K

46 = MNK) = MEK) < MEK'NK") < AX(ENNN)+ 26 ,

that is A(KN N N) > 0; this implies that K ¢ NN ™!, as stated.
To prove the claim, note that by hypothesis, given a compact set K C G

of positive measure, any 6 > 0 and € > 0, if we set ¢y = there exists

f € L*(X,v) such that ||f]||o = 1 and ||7(g)f — f||]2 < €0, for g € K. We
can assume (passing to the real or imaginary part of f if necessary) that
f is real, and define F' = f2, so that [|F||; = 1. By an easy computation
using the Cauchy-Schwartz inequality, ||7(g)F — F||1 < 2y/€g, for g € K.

Forany t € R, ¢t > 0,let A, = {x € X : F(x) > t}; then clearly 1 = ||F||; =
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[ 7 v(Ay)dt and ||x(g)F — F||1 = [, v(gA: A Ay)dt. But then

//l/(gAt A Ay)dNdt = //l/(gAt A Ay)dt d\ :/||7r(g)F— F||1dX <
0 K K 0 K

< 2/ A\ (K) = 66/1/ /661/ Ay)dt
0 0
which implies that for some t € R

/ V(g A A A)dN < eSu(Ay) .

K

Hence the A-measure of the k € K such that % > ¢ has to be less
than 6, completing the proof. D

DEFINITION 3.4. Let G be a locally compact group and A be a closed
subgroup. We say that A is a co-Fglner subgroup of G if the action of G on
G /A has a G-invariant measure and satisfies the Fglner property.

PROPOSITION 3.5. Let A C T' C G be locally compact groups such that A
is co-Folner in I" and I is co-Folner in G. Then A is co-Folner in G.

Proof. Because of Theorem 3.3, the trivial one-dimensional representation
of T is weakly contained in the representation of I' on L*(T'/A) by trans-
lations. Inducing both representations up to G and recalling that weak
containment is preserved by this operation [F2], we obtain that the rep-
resentation of G on L?(G/T') is weakly contained in the representation in-
duced to G from the representation of I on L?(T'/A). But the former weakly
contains the trivial representation of GG, and latter is equivalent to the rep-
resentation of G on L?(G/A) by induction in stages [M1]. By transitivity of
weak containment and Theorem 3.3 again, we conclude that A is a co-Fglner

of GG. =

COROLLARY 3.6. If G is a non-amenable locally compact second count-
able group and A is a co-Folner subgroup, then A is not amenable (so, in
particular, A is not compact).

DEFINITION 3.7. Let G be a locally compact, compactly generated, topo-
logical group, A a closed subgroup of G and p : G — G/A the canonical
projection. We say that G/A has subexponential growth if G/A has a G-
invariant measure v and for every relatively compact neighborhood of the
identity e € V C G,

lim inf — logz/(p(V”)) =0.

n—oo 1
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A first class of examples of co-Fglner subgroups is given by the following:

ProOPOSITION 3.8. Let A be a closed subgroup of a locally compact topo-
logical group G. If G/A has subexponential growth, then A is a co-Fglner
subgroup of G.

Proof. If G/A has subexponential growth there exists a sequence of integers
n; — oo such that

. V(A1) —v(4y))
lim

j—00 I/(Anj)

=0

where A, = p(V") C G/A. We claim that {4, } is a Fglner sequence.
Let K C G be any compact set and let N be large enough that K C V'V,
Fix € > 0 and let jo be such that if 7 > j

V(A an A AL)  v(Angn) —v(Ag)

v(An;) B v(Ay;)

DNO| ™

where the equality holds since A,, C A, n. Moreover, it is easy to see
that, since K C V" and because of the G-invariance of v, we have that

2v(Apan AA,) > v(gA,; AA,,). Hence

v(gAn,, AA,;)
v(An;)

<€

if 7 > jo and g € K, so that G acts with the Fglner property on G/A. D

EXAMPLE 3.9: Let I" be a cocompact torsion-free lattice in PSL(2,R) = G
and K a maximal compact subgroup, so that M = K\G/T is a closed
orientable surface of genus ¢ > 2. Let 0 = A - I' — Z — 0 be an exact
sequence. Then G/A has linear growth, being the unit tangent bundle of
an infinite cyclic cover of M. Using Proposition 3.8, it follows that the
action of G on G/A has the Fglner property. Similar examples exist for
lattices T € SO(1,n)g or T' C SU(1,n), such that H'(T',R) = Hom(T, R) is
not trivial (see for example [S2]). By the normal subgroup theorem due to
G.A. Margulis (see [Z4, Ch 8]), the first cohomology group is always trivial
for irreducible lattices in higher rank semi-simple groups.

ExaMPLE 3.10: A large class of examples which do not arise from the
situation in which G/A has subexponential growth are given as follows.
Consider the free group on two generators F» = I' embedded as a lattice in
SL(2,R) = G. Fix a surjective homomorphism ¢ : I' — S onto a solvable (or
more generally, amenable) group S with exponential growth (see e.g. [Ro])
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and let A = Kery. Since S is amenable, the regular representation of S
weakly contains the one-dimensional identity representation of S; it follows
that the one-dimensional identity representation of I' is weakly contained in
the representation of T' on L?(T'/A) by translations. Proposition 3.5 shows
that A is co-Fglner in G.

ExaMPLE 3.11: When a co-Fglner subgroup A is a normal subgroup of
a lattice in a simple non-compact algebraic group G (as are the examples
above), it is obviously Zariski dense, since the lattice, and hence G, nor-
malize its Zariski closure. Note however, that if S is any finitely generated
amenable group and Sy C S any subgroup, then Sy is co-Fglner in .S, since
there is an invariant mean on L°°(S/Sy), and therefore also a Fglner se-
quence [G]. Hence, if ¢ : F,. — S is a presentation, ¢~ '(Sy) is a co-Fglner
subgroup of F,., which is normal if and only if Sy is normal in S. In fact,
it is possible to construct a subgroup A C F, which does not contain any
non-trivial normal subgroup of F, and such that the Cayley graph of F,./A
has polynomial growth. We thank S. Mozes for bringing this fact to our
attention.

4. Invariant Maps and Limits of Measures

Recall the following definitions:

(1) If (S,p) is a G-space, T is an H-space, and o : S X G — H is a
measurable cocycle, we say that a map ¢ is a-invariant if ¢(sg) =
a(s,g)p(s) for every g € G and almost every s € S.

(2) If p: S — S is a G-equivariant map between two G-spaces (S', u')
and (S, p) satisfying p,p’ = p, and a : S x G — H is a cocycle, the
pull-back of « is the cocycle a* : 8" x G — H given by a*(s',¢g) =
a(p(s'), 9)-

The proof of the theorems in the next section will make essential use of
the following result, a particular case of which, namely S consisting of one
point, was proven in [S2]. In that case, it asserts that if a G-equivariant
map exists from a Fglner G-space to a compact G-space, then the compact
space admits a G-invariant measure.

PrROPOSITION 4.1. Let G, I' and H be locally compact second countable
groups, (S, u) a G-space with a quasi-invariant measure, Y a compact metric
H-space, and o : S x G — H a cocycle. Let (X,v) be a Folner action of T,
B:5xG —1T acocycleand S xg X the skew product action of G. If there
i1s an o*-invariant map ¢ : S xg X — Y, where o* denotes the pull-back
of the cocycle a from S to S xg X, then there exists an a-invariant map
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® : S — M(Y), where M(Y) denotes the space of probability measures
onY.

Proof. According to the remark after Definition 3.1, let {4,,} be a Fglner
sequence for the I'-action on X. Define a sequence of probability mea-
sures v, on X by v,(h) = ﬁ fAn hdv, where h € L'(X,v). The map
¢ : S xgX — Y gives rise to a family of maps ¢5 : X — Y, with the
property that, for a.e. (s,2) € S x5 X and every g € G, ¢s,(8(s,9)"'2) =
a*(s,x,9)ps(x) = als, g)ps(x), where g (z) = @(s,z). We use this fam-
ily of maps ¢, to define, for almost every s € S, a sequence of measures

v € M(Y), by
1
= d(@s) ety = 0 g )dv
Jo e =555 [, ow
where f € C(Y).

Let us first observe the following invariance property of the sequence v,
which follows from the Fglner property of the I'-action on X. For almost
every s € S, and any continuous function f € C(Y)

lim (v, 7(f) = vy (als, g) - i3l
1
= /(fo‘f%g)(x)d’/(x) - / (s, g) - f) o ps)(x)dv(x)

~ lim —> /fgosg ))dv(x /f als,g)ps(x))dv(x)

nmoo (A,

= lim — /f psg(x))dv(x /f psg(B(s,9)" " x))dv(x)

nmbo v(A,)

= 1
n—no v(A,)

[ tuai@ - [ fe@)a

An\B(s,9)An B(s,9) An\An

1 flloe v (B(5,9)An A Ay) =0

< lim
< Jim o

Suppose we could find a subsequence nj, with the property that for
almost all s € S, the measures \; = n+-1 > h—o Vs, converge in the w*-
topology in M(Y') to a measure v°. This would certainly imply the desired
result since, in that case, the measurable map ® : S — M(Y) defined by
®(s) = v*® would be a-invariant, namely the measures v* would satisfy the
relation v°9 = a(s, g)v°. Indeed |v*9(f)—v*(a(s,g) - f)| = lim, — o |ASI(f)—
AS(a(s,g) - )| = 0. Hence we need only establish the following:
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PROPOSITION 4.2. Let (S, ) be a standard Lebesgue probability space and
let Y be a compact metric space. Assume s — v; € M(Y) is a sequence
of measurable functions from S to M(Y), where measurability in M(Y)
is determined by the Borel o-algebra generated by the w*-topology. Then
there exist a subsequence ny, independent of s, and measures v° € M(Y)
such that for almost every s € S the uniform averages \) = n+-1 ko Vs,
converge to v° in the w*-topology.

Proposition 4.2 is based on the following result due to J. Komlés [K]:

Theorem 4.3 [K]|. Let S be a standard Lebesgue probability space, and
un,(s) a sequence of L'-functions satisfying ||u,|| < C, ¥n > 0. Then there
exist a subsequence v, of u,, and an L'-function u, with the property that for
every subsequence w,, of v, , the uniform averages n%—l > o Wk(s) converge
to u(s) for almost every s € S.

Proof of Proposition 4.2. Let {fi} € C(Y) be a sequence of functions which

is dense in C(Y) in the uniform norm. Let us define a sequence u! (s) =

vs (f1) which is certainly bounded and in L' so that we can apply Komlds’
theorem to obtain a subsequence u' ,; of ul and a function u; € L'(S)
my

such that uniform averages of any subsequence of u' ,, converge almost
m
k

everywhere to u;. Clearly uy is bounded (in fact by the same constant) and
we can now iterate the process. After the (j—1)-th step, having selected the
(j=1)
k

(7 —1)-th subsequence m , apply again Komlés’ theorem to the sequence

of functions given by ujngf_l) (s) = 1/;53_1) (fj), so as to obtain a subsequence
uﬁngj) of ujngf_l) and u; € L'(S), once again with the property that uniform
averages of any subsequence of uin ;) converge almost everywhere to u;.
Now let us consider the diagonkal sequence of measures given by l/;(j).
By construction, the sequence ufnm = V;(}j)(fi) is a subsequence of uigj)

J J
as soon as j > ¢. Hence it has the property that, if AJ is the probability
measure defined by A\ = n+-1 Z?:o y;(‘j), then
J

n

s 1 s 1 7
A (fi) = n+ 1 ;Vmgj)(fi) T < Umga)(s) — u;(s)

J=0

3

almost everywhere. Hence, for almost every s € S, we have a functional
v®, defined so far only on the dense sequence {f;} C C(Y) by v*(f;) =
u;(s) = lim, — o A2 (fi). Now, given f € C(Y'), choose a subsequence of the
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fi’s converging to f. Fix € > 0, and assume that ||f; — fj||c < € when
i,7 > N(€). Then estimate as follows:

ve(fi) = A (fi) |+

v ()= (f)] <

A ()= ()| +

Xo(fi)—v*(f)| < e

if n large enough. Therefore v*(f;) is a Cauchy sequence, and we can define
v*(f) = lim;— oo v*(f;). It is straightforward to check that v* € M(Y) and
this completes the proof. D

REMARK: We note that the family of probability measures v can be viewed
as a norm-bounded sequence of elements belonging to the Banach space
L>(S,M(Y)) = L'(S,C(Y))*. By Alaoglu’s theorem, the sequence has a
subsequence which converges (to an element F', say) in the w*-topology.
The limit function F' does indeed satisfy that F'(s) is a probability measure
for almost all s € S, provided F,(s) are probability measures for every
n and almost every s € S. This argument can be used in the proof of
Proposition 4.1, instead of Proposition 4.2. The point of Proposition 4.2 is
to show the stronger statement that, for such a sequence F),, it is possible
to choose a subsequence whose uniform averages converge pointwise almost
everywhere for s € S, in the w*-topology on M(Y').

5. Algebraic Hulls

Let k be non-discrete, locally compact topological fields of characteristic
zero. Given a G-space S and a group H, let us denote by H'(S x G, H) the
set of equivalence classes of measurable cocycles from S x G into H. We
will use the following :

PROPOSITION 5.1 ([Z2], [I1]). If L is a closed subgroup of a locally compact
second countable group G and S is any L-space with an ergodic quasi-
invariant measure, then there is a bijection

U:HY(SxL;H) — H' (S x (G/L)x G;H) ,

which has the following properties:

(1) If a cocycle « € H'(S x L; H) is the restriction to L of a cocycle oy
of a G-action on S, then the cocycle o* € HY(S x (G/L) x G; H),
defined by a*(s, x,g) = a1 (s, g), is cohomologous to ¥(«). Moreover,
the cocycle o is cohomologous to a cocycle taking values in a closed
subgroup Hy C H if and only if there is an «*-invariant function

®:5x(G/L)— H/H,.
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(2) If H = Hy, is an algebraic group, the correspondence preserves the
algebraic hulls.

Recall now that if Y is a topological space, Y is defined to be tame if it
is Ty and has a countable base for its topology; if Y carries an action of a
locally compact second countable topological group L we define the action
to be tame if both Y and Y/L are tame.

Examples of tame actions which will be of interest to us arise in the fol-
lowing way. Given any connected k-algebraic group H and any k-subgroup
M C H, it was proven by C. Chevalley that there exist a k-rational rep-
resentation 7 : Hp — GL(d 4+ 1,k) and a point € P?(k), such that
M. is the stabilizer of x in Hj (see [B2] for a proof). This allows us to
identify Hj /M) with an Hp-orbit in the projective space, via the injection
i » Hy/M;, — PUk). If M(P9(k)) is the space of probability measures
on P4(k) and M(H/Mj,) the space of probability measures on Hy /M, we
have an injection i, : M (Hj, /M) — M(P4(k)), given by i, (u)(f) = u(foi),
where f € C(P4(k)). It should be noted that the image of M (Hy/Mj) in
M (P?(k)) will not necessarily be closed. If we let Hy act on P(k) via the
representation 7, then the action of Hy on M(PY(k)) is tame by [Z4].

Furthermore, if # : H — SL(d 4+ 1,K) is a k-rational representation
and the action of Hy, on k%t! is irreducible and faithful, then the stabilizer
of a measure in M(P?(k)) will either be compact or will be contained in
the k-points of a k-algebraic subgroup of strictly smaller dimension, ([Ful],
24)).

The following result will be used in the proofs of both Theorem 5.4 and
Theorem 5.7.

PROPOSITION 5.2. Let o : S xG — Hj. be a cocycle with algebraic hull Hy,
N C H a normal k-subgroup and p : H — H/N the canonical projection.
Then the algebraic hull of p o « is the Zariski closure p(H )y of p(Hy), in
which p(Hy) is of finite index.

Proof. General facts about algebraic groups (see [Z4, §3.1]) reduce the
proposition to the following standard result :

LEMMA 5.3. Let o : S x G — H be a measurable cocycle and, if N is
a normal subgroup of H, let o/ = poa : S xG — H/N = H', where
p: H — H/N = H' is the canonical projection. If p o « is equivalent to
a cocycle into a subgroup H] C H' then « is equivalent to a cocycle into
p~ (Hi)-

Proof. By hypothesis there exist a measurable map ¢ : S — H' and a
cocycle 3" :+ S x G — H' such that /(S x G) C Hj and ('(s,g9) =
o(s)a (s, 9)p(sg)~t, for g € G and a.e. s € S. Now let § : H — H be
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a measurable section of the projection p. Then the cocycle 3: S x G — H
defined by 8(s,g) = (0 o 9)(s)a(s,g)(8 o ©)(sg)~" is equivalent to a and
takes values in p~1(H]) C H. =

We are now ready to prove the first of the results on algebraic hulls
stated in §1.

Theorem 5.4. Let G be a locally compact second countable group, S a
G-space with a quasi-invariant measure and A a co-Fglner subgroup of G
acting ergodically on S. Let Hj denote the k-points of an algebraically
connected semisimple algebraic group defined over k. If « : S x G — Hjy
is a cocycle which is k-unbounded and has Hj, as its algebraic hull, then
ap S X A — Hy has Hy as its algebraic hull as well.

Proof. By assumption A, and hence G, act ergodically on S. Let us denote
the algebraic hull of arp by (Hy)r € Hg. We assume that (Hy)r # Hy, and
argue for a contradiction.

Choose a proper maximal algebraic subgroup M}, of Hy, containing (H1 ).
Let mg : H — SL(n, k) be a Chevalley representation such that M is the
stability group in Hy of a line Ly. We can assume, without loss of generality,
that m is irreducible. Indeed, since Hj is semisimple, we can decompose
the representation space into irreducible components. Then the projection
of the line Ly to each of the components has a stability group containing
M., and since M} is maximal, we can choose some irreducible component
which contains a line L whose stability group is exactly Mj.. We restrict our
attention to this representation n of H; and note that Hj acts irreducibly
in the corresponding projective space P(k). In order to pass to a faithful
representation, let N, C Hj be the kernel of the irreducible representation
7 Hp — SL(d+ 1,k). Since by definition of M} we have N C M, and
since Ny, is normal in Hy, if we define H; = H}/N;, and M| = M}, /Ny, we
see that 7’ : H; — SL(d+ 1, k) is a faithful representation of H; and gives
us an embedding i : Hy /My, ~ H} /M, — P(k).

Now consider a* : S x G/A x G — Hj, given by a*(s, hA, g) = a(s, g).
By Proposition 5.1, (Hy)g is also the algebraic hull of o* and there exists
an o*-invariant measurable map ¢ : S X G/A — Hj./M}. which, because
of the above embedding, can be thought of as an 7’ o a*-invariant map
©:SxG/A — PUk). Since G/A = X is a Fglner action of G, we can apply
Proposition 4.1, where we take I' = G, the identity cocycle given by (s, g) =
g, and the corresponding product action of G on S x3 X =5 x X. We thus
obtain an a-invariant map ® : S — M (P?(k)). Because the action of G on
S is ergodic and the action of Hj, on M(P4(k)) is tame, we conclude by the
cocycle reduction lemma [Z4, Lemma 5.2.11] that there exists a measure
w € M(P%(k)) such that the map ® takes values in the H|-orbit of w. In
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other words, if o/ is the cocycle o : S x G — Hj — H}, ® can be viewed
as an o'-invariant map ® : S — H}/(H}). or equivalently the cocycle o/
is cohomologous to a cocycle into (H},).,. Note that, by Proposition 5.2, o/
is Zariski dense in H}, and hence (H},),, is Zariski dense, and in particular,
non-trivial. Since, as we observed before, H; acts irreducibly and faithfully,
by Furstenberg’s lemma ([Ful] or [Z4, 3.2.15]) either (H} ). is compact, or
it is contained in the k-points of a k-algebraic group strictly contained in
Hj . The first possibility is ruled out by assumption, and the second since
(H}). is Zariski dense in H;. We have arrived at a contradiction and the
proof is complete. D

Let us note that the assumption that S has a finite G-invariant measure
allows us to determine easily the compact hull of the restriction of a cocycle,
when the cocycle takes values in a compact group. Indeed, in that case, if
G is a non-compact group with the Howe-Moore property, then (see e.g.
[Mo]) the restriction to A of an ergodic G-action on a space with finite
G-invariant measure is still ergodic, provided A is any closed non-compact
subgroup. We therefore have the following:

PROPOSITION 5.5 [I1]. Let G be a locally compact second countable group
with the Howe-Moore property, A C G a closed non-compact subgroup and
(S, 1) a G-space with finite G-invariant measure. Let 6 : S x G — K be a
cocycle taking values in a compact group K. Then the compact hulls of 6
and 65 1n K are the same.

Proof. We sketch here the proof for the sake of completeness; the reader is
referred to [I1, §4] for further details.

We may as well assume that the compact hull of 6 is K and this is
equivalent to the ergodicity of the action of G on S xs K, which is a G-
space with finite invariant measure. The non-compactness of A and the
Howe-Moore property imply that the restriction to A of the action on S x s/
is still ergodic and this implies that the compact hull of 6, is K. D

REMARK: It is shown in [I1] that Proposition 5.5 holds also in the case of
a quasi-invariant measure if A is a lattice in a semisimple group G. This is
not true anymore for a general co-Fglner subgroup. In fact, even assuming
that A acts ergodically on S (a condition that does not follow now from the
ergodicity of G), the ergodicity of the G-action on S x5 K does not imply
the ergodicity of A on S x5 K, when G/A does not carry a finite G-invariant
measure.

We now consider the case k£ = R, and prove:

Theorem 5.7. Let G be a locally compact second countable group, S a
G-space with a quasi-invariant measure and A a co-Fglner subgroup of G
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acting ergodically on S. Let Hg denote the R-points of an algebraically
connected semisimple algebraic group defined over R, with no non-trivial
compact factors. If o« : S x G — Hg is a measurable cocycle which has
algebraic hull Hg, then ap : S X A — Hpg has algebraic hull Hg as well.

Proof. We follow the method and notation used in the proof of Theorem 5.4,
taking k = R. Applying the arguments used in the proof of Theorem 5.4,
we conclude as before that o' is equivalent to a cocycle taking values in
the stability group of a measure, denoted (Hg).,. Again Lemma 5.2 implies
that (Hg)., is Zariski dense in Hg, and by [Z4, 3.2.15] (Hg). must also be
compact. Since compact real groups are real algebraic, we conclude that
(Hg)w = Hg. Hence Hg has a non-trivial compact factor, contrary to our
assumption. This contradiction completes the proof. D

We now consider the pullback of a cocycle rather than its restriction.

Theorem 5.8. Let G be a locally compact second countable group and
(S, ) be an ergodic G-space, with quasi-invariant measure. Let o : S X
G — Hj be a k-unbounded cocycle into the k-points Hy, of an algebraically
connected semisimple algebraic group defined over k, which has Hj as its
algebraic hull. Let I' be a locally compact second countable group, (3 :
SxG — I' acocycleand let X be a Fglner action of I'. Let a* : SXg X xXG —
Hj, be the pull-back of the cocycle o to the skew product action S xg X. If
the skew product action is ergodic under G, then the cocycle o* has Hj as
its algebraic hull as well.

Proof. If the algebraic hull of o* is strictly contained in Hj, we assume it
is contained in a maximal proper algebraic subgroup Mj. Using again the
same argument as in the proof of Theorem 5.4, we pass to a quotient group
Hj, of Hy that acts irreducibly and faithfully on P¢(k), via a representation
n' + H, — SL(d + 1,k), in which M] is the stability group of a line. As
before, we embed H /M] in P%(k) and deduce that there exists a 7' o a*-
invariant map ¢ : S xg X — P?(k). By Proposition 4.1, there is an o'-
invariant map ® : S — M(P4(k)), where o/ : S x G — H, — H|. By
the cocycle reduction lemma and Furstenberg’s lemma (as in the proof of
Theorem 5.4), either o' is equivalent to a cocycle taking values in a Zariski
dense (see Lemma 5.2) compact subgroup of Hj, or it is equivalent to a
cocycle taking values in a proper algebraic subgroup. Both cases are ruled
out by the assumptions, and so it follows that the algebraic hull of a* is
equal to Hy. D

REMARK: (1) The assumption of the ergodicity of the skew product action
in Theorem 5.8 is required to insure the existence of the algebraic hull of a*.
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(2) We can obtain Theorem 5.4 from Theorem 5.8 setting I' = G, X =
G /A and (s, g) = g and using Proposition 5.1,

Theorem 5.9. Let G be a locally compact second countable group, and
(S, p) an ergodic G-action with quasi-invariant measure. Let o : S X G —
Hg be a cocycle into the R-points Hg of an algebraically connected semisim-
ple algebraic group defined over R, with no non-trivial compact factors. As-
sume the algebraic hull of o equals Hg. Let I' be a locally compact second
countable group, 3 : S X G — I' a cocycle and let X be a Fglner action
of I'. Let o* : S x3 X x G — Hg be the pull-back of the cocycle o to the
skew product action S xg X. If the skew product action is ergodic under
G, then the cocycle o has algebraic hull Hg as well.

Proof. Combine the arguments in the proof of Theorem 5.8 with those of
Theorem 5.7. D

6. Applications

The results in this section will be generalizations of the Borel density theo-
rem, and are simple consequences of those in §5. We prove:

Theorem 6.1. Let G be any locally compact second countable group, A a
closed co-Fdlner subgroup and let 7 : G — Hj. be any representation into the
k-points of an algebraically connected semisimple algebraic group defined
over k. If m(G) is Zariski dense, and the homomorphism 7 is k-unbounded,
then w(A) is Zariski dense as well.

Proof. Apply Theorem 5.4, taking S to be a one point space. The homomor-
phism 7 is a cocycle of the action, which is k-unbounded, by assumption.
Hence the restriction of m to A has Hj as its algebraic hull, and w(A) is
Zariski dense. O

Theorem 6.2. Let G be a locally compact second countable group, A
a closed co-Fglner subgroup. Let Hgr the R points of an algebraically con-
nected semi-simple algebraic group defined over R, without non-trivial com-
pact factors. Let m : G — Hg be a representation of G, such that ©(G) is
Zariski dense. Then w(A) is Zariski dense as well.

Proof. As in the proof of Theorem 6.2, take S to be a one point space, and
then apply Theorem 5.7. D

EXAMPLE: It is easy to give examples of cocycles with non-semisimple
algebraic hull, which do not satisfy the above Theorems.

First, let I' = F5 and let A : ' — R be a homomorphism with dense
image. Define A = Ker(h), so that A is a co-Fglner subgroup of I'. In order
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to have a target group which is not just unipotent, embed ¢ : ' = Fy —

SL(2,R) as a lattice and define the homomorphism 7 : I' — SL(2,R) x R,
7(7) = (i(7), h(7)). Then 7(T) = SL(2,R) x R, but 7(A) = SL(2,R). The
same construction can be repeated with a homomorphism h’' : T' — R/Z or
any other compact group.

Now regard I' = F, as a lattice in G = SL(2,R), and consider the
cocycles a that the homomorphisms h, i’ and 7 determine in H'(G/T x
G, H), where H is one of the target groups above. The algebraic hull of the
cocycles is in each case the Zariski closure of the image of I', which equals
H, but the algebraic hull of oy is a proper algebraic subgroup.

Such examples show similarly that the assumption of semisimple alge-

braic hull cannot be deleted in Theorems 5.4, 5.7, 5.8 as well.

REMARK: Taking G = Hy in Theorems 6.1, A to be a subgroup with sub-
exponential co-growth in Hy, and 7 to be the identity, we recover several of
the results of [S2], pertaining to Zariski density of such subgroups.

Theorem 6.3. Let L C G be a closed subgroup of a locally compact second
countable group G and let 7 : G — H}, be any representation into the k-
points of an algebraic group defined over k, such that «|y is k-unbounded.
Let o : G/A x G — Hy, be the cocycle coming from the (restriction to A of
the) representation . If the Zariski closure of w(L) is semisimple and L is
ergodic on G /A, then the algebraic hull of vy, is the Zariski closure of w(L).

Proof. We sketch here the proof, which uses the same techique as in [I3,
Theorem 3.1], where we now use our results for co-Fglner subgroups. By
Proposition 5.1 there are bijections H'(G/A x L; H) « H'(G/A x G/L x
G:; Hy) and H'(G/L x A; Hy) «— HY(G/L x G/A x G; H}), which, together
with the identification H'(G/AXxG/Lx G; Hy) ~ HY(G/LxG/AxG; Hy,),
imply that there is a bijection in cohomology between cocycles for the action
of L on G/A and of A on G/L, such that if a cocycle o : G/A x L — Hj,
comes from the restriction to A of a homomorphism 7 : G — Hy, then
the same is true for the corresponding cocycle for the action of A on G/L
(see [I3, Lemma 3.3]). Hence the algebraic hull of aj coincides with the
algebraic hull of the cocycle 8y : G/L x A — Hj, which is the restriction
to A of the cocycle over a transitive space coming from the restriction of 7
to A. By Theorem 5.4 the algebraic hull of 3, is the same as the algebraic
hull of §: G/L x G — Hy, which is in turn the Zariski closure of 7(L). ©

References

[B1] A. BoreL, Density properties for certain subgroups of semisimple Lie
groups without compact factors, Annals of Math. 72 (1960), 179-188.



Vol.6, 1996

[B2]
[D1]

[D2]
[E]
[Ey]
[F1]
[F2]
[Ful]
[Fu2
[G]
[11]
[12]
[13]
K]
[L]
[LMoz]

[M1]

[M2]

[Ma]

[Mo]
[MosMsk]
[Msk]
[Mst]

[R]

[Ro]

[S1]

ALGEBRAIC HULLS AND THE FOLNER PROPERTY 687

A. BorEeL, Linear Algebraic Groups, Springer-Verlag, New York, (1991).

S.G. Dani, A simple proof of Borel’s Density Theorem, Math. Z. 174
(1980), 81-94.

S.G. Dan1, On ergodic quasi-invariant measures of group automorphism,
Israel J. Math. 43 (1982), 62-74.

E. EFrros, Global structure in Von Neumann algebras, Trans. Am. Math.
Soc. 121 (1966), 434-454.

7. EymarRD Moyennes invariantes et représentations unitaires Springer
Lecture Notes in Mathematics 300, 1972.

J.M.G. FELL, The dual spaces of C'* algebras, Trans. Am. Math. Soc. 94
(1960), 365-403.

J.M.G. FELL, Weak containment and induced representations of groups,
Canadian J. Math. 14 (1962), 237-268.

H. FURSTENBERG, A Poisson formula for semisimple Lie groups, Annals
of Math. 77 (1963), 335-383.

H. FURSTENBERG, A note on Borel’s density theorem, Proc. A.M.S. 55
(1976), 209-212.

F.P. GREENLEAF, Amenable actions of locally compact groups, J. Func.
An. 4 (1969), 295-315.

A. Tozzi, Invariant geometric structures: A non-linear extension of the
Borel density theorem, Amer. J. Math. 114 (1992), 627-648.

A. Tozzi, Algebraic hulls and smooth orbit equivalence, Trans. Am. Math.
Soc. 326 (1991), 371-384.

A. Iozzi, Equivariant maps and purely atomic spectrum, J. Func. An.
124:2 (1994), 211-227.

J. KoML6s, A generalization of a problem of Steinhaus, Acta. Math. Hung.
18 (1967), 217-229.

A. LuBoTzKY, Discrete Groups, Expanding Graphs and Invariant Mea-
sures, Birkhauser Progress in Mathematics VOL. NO.?777, 1994.

A. LUBOTZKY, S. MozES, Asymptotic properties of unitary representations
of tree automorphisms, in “Harmonic Analysis and Discrete Potential
Theory” (M.A. Picardello, ed.), Plenum Press, New York (1992), 289-
298.

G.W. MAckEY, Induced representations of locally compact groups, I, An-
nals of Math. 55 (1952), 101-139.

G.W. Mackey, Ergodic theory and virtual groups, Math. Ann. 166
(1966), 187-207.

G.A. MaraguLis, Discrete groups of motions of manifolds of non-positive
curvature, Amer. Math. Soc. Translations 109 (1977), 33-45.

C.C. MooreE, Ergodicity of flows on homogeneous spaces, Amer. J. Math.
88 (1966), 154-178.

R. Mosak, M. MoskowiTz, Zariski density in Lie groups, Israel J. Math.
52 (1985), 1-14.

M. MoskoviTz, On the density theorem of Borel and Furstenberg, Ark.
Math. 16 (1978), 11-27.

G.D. MosTow, On maximal subgroups of real Lie groups, Annals of Math.
74 (1961), 503-517.

A. RamsEY, Boolean duals of virtual groups, J. Fune. An. 15 (1974),
56-101.

J.M. ROSENBLATT, Invariant measures and growth conditions, Trans. Am.
Math. Soc. 193 (1974), 33-53.

G. Stuck, A topological analogue of the Borel density theorem, Topology
34-1 (1995), 231-241.



688 A.I0ZZI AND A. NEVO GAFA

[S2] G. Stuck, Growth of homogeneous spaces, density of discrete subgroups
and Kazhdan’s property (T), Invent. Math. 109 (1992), 505-517.

[V] V.S. VARADARAJAN, Geometry of Quantum Theory, 1I, Van Nostrand,
Princeton, NJ, 1970.

[W] S.P. WaNG, On density properties of S subgroups of locally compact
groups, Annals of Math. 94 (1971), 325-329.

[Z1] R.J. ZimMER, Extensions of ergodic group actions, Illinois J. Math. 20
(1976), 373-409.

[Z2] R.J. ZiMMER, On the cohomology of ergodic group actions, Israel J. Math.
35 (1980), 289-300.

[Z3] R.J. ZIMMER, Strong rigidity for ergodic actions of semisimple Lie groups,
Annals of Math. 112 (1980), 511-529.

[Z4] R.J. ZimMER, Ergodic Theory and Semisimple Groups, Birkhauser, Boston,
1984.

[Z5] R.J. ZiIMMER, Ergodic theory and the automorphism group of a G-structure,

in “Group Representations, Ergodic Theory, Operator Algebras, and
Mathematical Physics” (C.C. Moore, ed.), Springer-Verlag, New York,

1987.

[Z6] R.J. ZIMMER, Amenable pairs of groups and ergodic actions and the as-
sociated von-Neumann algebras, Trans. Amer. Math. Soc. 243 (1978),
271-286.

[Z7] R.J. ZiIMMER, On the algebraic hull of an automorphism group of a prin-

cipal bundle, Comment. Math. Helvetici 65 (1990), 375-387.

Alessandra lozzi Amos Nevo

Department of Mathematics  Department of Mathematics
University of Maryland Technion

College Park, MD 20742 32000 Haifa

USA Israel

e-mail: iozzi@math.umd.edu e-mail: anevo@tx.technion.ac.il
Submitted: February 1995



