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Abstract. We show that the isomorphism induced by the inclusion of pairs
(X, ∅) ⊂ (X,Y ) between the relative bounded cohomology of (X,Y ) and the
bounded cohomology of X is isometric in degree at least 2 if the fundamental
group of each connected component of Y is amenable.

1. Introduction

In the mid seventies, Gromov introduced the bounded cohomology of a space
and showed that it vanishes in all degrees n ≥ 1 for simply connected CW-
complexes [9]. Brooks pointed out that this implies that the bounded cohomology
of a space is isomorphic to the one of its fundamental group [1]. In his note he
also made the first step towards the relative homological algebra approach of
the bounded cohomology of groups. Ivanov then developed this approach (with
trivial coefficients) [10], incorporating the seminorm into the theory. This lead to
the final form of Gromov’s theorem, namely that for a countable CW-complex the
bounded cohomology is isometrically isomorphic to the bounded cohomology of
its fundamental group. We emphasize that, here and in the sequel, the coefficients
are the trivial module R.

Bounded cohomology can be defined for pairs (X, Y ) of spaces, that is Y is a
subspace of the space X , and there is an exact sequence

. . . //Hn−1
b (Y )

δn
//Hn

b(X, Y )
jn

//Hn
b(X)

in
//Hn

b(Y ) // . . . ,

where jn is induced by the inclusion of the corresponding cochain complexes, in
is induced by the restriction map and δn is the connecting homomorphism.

A striking consequence of this long exact sequence arises when we assume that
each connected component of Y has amenable fundamental group. Indeed, as
observed by Trauber in the 70’s, one of the characteristic features of bounded
group cohomology is that it vanishes for amenable groups in degree n ≥ 1. This
implies that jn is an isomorphism of vector spaces for n ≥ 2. In low degree, the
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isomorphism does not hold. Instead, it follows from H1
b(X) = 0 that we have an

exact sequence

H0
b(X, Y ) �

� j0
//H0

b(X)
i0

//H0
b(Y )

δ1
// //H1

b(X, Y ) .

If X is path connected then H0
b(X, Y ) = 0 and H0

b(X) = R, while H0
b(Y ) =

ℓ∞(π0(Y )). Here and in the sequel, ℓ∞(S) is the Banach space of all bounded
real valued functions on the set S.

A sore point in this theory has been the question whether, under the above
hypotheses, jn is isometric. Our goal is to prove the following:

Theorem 1. Let X ⊃ Y be a pair of countable CW-complexes. Assume that

each connected component of Y has amenable fundamental group. Then the

morphism obtained from the inclusion

jn : Hn
b(X, Y ) //Hn

b(X)

is an isometric isomorphism for every n ≥ 2.

We briefly illustrate the use of this result to obtain Milnor–Wood type in-
equalities. Let M be a compact oriented manifold with boundary ∂M , and
G a topological group with a given continuous bounded class κb ∈ Hn

cb(G,R),
where n = dimM ; assume that every connected component of ∂M has amenable
fundamental group. Using Gromov’s isomorphism, for every homomorphism
ρ : π1(M) → G we obtain by pullback a class

ρ∗(κb) ∈ Hn
b(π1(M)) ∼= Hn

b(M)

in the bounded cohomology of M and, if n ≥ 2, a bounded relative class

j−1
n (ρ∗(κb)) ∈ Hn

b(M, ∂M) ,

whose evaluation on the relative fundamental class gives an invariant

T(ρ,M) := 〈j−1
n (ρ∗(κb)), [M, ∂M ]〉 ,

which generalizes the Toledo invariant for surfaces introduced in [4], as well as the
volume of a representation defined in [2]. The following is an immediate corollary
of Theorem 1 and the fact that the pullback is norm decreasing:

Corollary 2. There is the inequality

|T(ρ,M)| ≤ ‖κb‖ ‖[M, ∂M ]‖1 ,

where ‖[M, ∂M ]‖1 denotes the norm of the relative fundamental class in ℓ1-
homology and ‖κb‖ is the canonical norm of the bounded continuous class κb

in Hn
cb(G,R).

This inequality is particularly useful if one knows the values of both norms
occurring on the right hand side. This happens for example in the two following
notable cases.
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In the case of degree 2, if G is a connected semisimple Lie group of non-compact
type and with finite center, whose associated symmetric spaces G/K is Hermitian
and κb ∈ H2

cb(G,R) is the bounded Kähler class (defined in [3]). The canonical
norm of κb has been computed in [6, 5] and is given by

‖κb‖ =
rank(G)

2

and, since M is a compact surface possibly without boundary, the equality

‖[M, ∂M ]‖1 = 2|χ(M)|

is easily established.
In the real hyperbolic case G = SO(n, 1)◦, the volume form on real hyperbolic

space Hn
R
gives rise to a bounded continuous class κb ∈ Hn

cb(G,R). Moreover if
M is the compact core of a finite volume quotient N of Hn

R
, then

‖[M, ∂M ]‖1 =
Vol(N)

vn
and ‖κb‖ = vn ,

where vn is the volume of the ideal regular simplex in Hn
R
. The norm of the

volume class is computed in [9, 13]. In the latter reference, Thurston gives, in
the 3-dimensional real hyperbolic case, a proof of the proportionality between
the relative simplicial volume and the volume for the norm coming from measure
homology, but it is only much later [7] that this norm is indeed shown to be
equal to the relative simplicial volume. In the meantime, a direct proof valid
in all dimensions of the proportionality principle for hyperbolic manifolds in the
relative case has been given in [8].

2. Resolutions in bounded cohomology

LetX be a space, where here and in the sequel by a space we will always mean a
countable CW-complex. We denote by Cn

b(X) the complex of bounded real valued
n-cochains on X and, if Y ⊂ X is a subspace, by Cn

b(X, Y ) the subcomplex of
those bounded cochains that vanish on simplices with image contained in Y . All
these spaces of cochains are endowed with the ℓ∞-norm and the corresponding
cohomology groups are equipped with the corresponding quotient seminorm1.

For our purposes, it is important to observe that the universal covering map

p : X̃ → X induces an isometric identification of the complex Cn
b(X) with the

complex Cn
b(X̃)Γ of Γ := π1(X)-invariant bounded cochains on X̃ . Similarly, if

Y ′ := p−1(Y ), we obtain an isometric identification of the complex Cn
b(X, Y ) with

the complex Cn
b(X̃, Y ′)Γ of Γ-invariants of Cn

b(X̃, Y ′).

1This definition of seminorm is the one introduced by Gromov [9, Section 4.1]. The seminorm
defined by Park [12] was shown to be different from Gromov’s by Frigerio and Pagliantini [7].
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The main ingredient in the proof of Theorem 1, which is also essential in the
proof of Gromov’s theorem, is the result of Ivanov [10] that the complex of Γ-
invariants of

R // C0
b(X̃) // C1

b(X̃) // . . .

computes the bounded cohomology of Γ. In fact, we will use the more precise
statement that the latter complex is a strong resolution of R by relatively injective
Γ-Banach modules (see [10] for the definitions of strong resolutions and relatively
injective modules).

By standard homological algebra techniques [10], it follows from the fact that

Cn
b(X̃) is a strong resolution by Γ-modules and ℓ∞(Γ•+1) is a cochain complex

(even a strong resolution) by relatively injective Γ-modules that there exists a
Γ-morphism of complexes

(♦) gn : Cn
b(X̃) //ℓ∞(Γn+1)

extending the identity, and such that gn is contracting, i.e. ‖gn‖ ≤ 1, for n ≥ 0.
This map induces Ivanov’s isometric isomorphism H•

b(X) → H•
b(Γ).

The second result we need lies at the basis of the fact that the bounded coho-
mology of Γ can be computed isometrically from the complex of bounded func-
tions on any amenable Γ-space. We will need only a particular case of the iso-
morphism, which is the existence of a contracting map between the complexes
ℓ∞(Γn+1) and the space of alternating bounded functions ℓ∞alt(S

n+1) when S is
a discrete amenable Γ-space. This is a very special case of [11], for which we
present a direct proof.

Proposition 3 ([11, Theorem 7.2.1]). Assume that Γ is a group acting on a set

S such that all stabilizers are amenable subgroups of Γ. Then for n ≥ 0 there is

a Γ-morphism of complexes

µn : ℓ∞(Γn+1) // ℓ∞alt(S
n+1)

extending IdR : R → R that is contracting.

Proof. Alternation gives a contracting Γ-morphism of complexes

ℓ∞(Sn+1) // ℓ∞alt(S
n+1) ,

so that it suffices to construct a contracting Γ-morphism of complexes

µn : ℓ∞(Γn+1) // ℓ∞(Sn+1) .

We first construct µ0 and then inductively µn, for n ≥ 1. Identify S with
a disjoint union ⊔i∈IΓ/Γi of right cosets, where Γi < Γ is amenable and let
λi ∈ ℓ∞(Γi)

∗ be a left Γi-invariant mean, for every i ∈ I. We define µ0 : ℓ
∞(Γ) →

ℓ∞(S) for f ∈ ℓ∞(Γ) by setting µ0(f)(γΓi) to be the Γi-invariant mean λi of the
bounded function Γi → R defined by η 7→ f(γη). Clearly µ0(11Γ) = 11S, so that
µ0 extends IdR : R → R and ‖µ0‖ ≤ 1.
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Assume now that we have defined µn−1 : ℓ∞(Γn) → ℓ∞(Sn). Then we define
µn as the composition of the following maps:

ℓ∞(Γn+1)
=

//

µn

��
�

�

�

�

�

�

�

�

�

�

�

�

ℓ∞(Γ× Γn)
∼=

// ℓ∞(Γ, ℓ∞(Γn))

��

ℓ∞(Γ, ℓ∞(Sn))

∼=
��

ℓ∞(Sn, ℓ∞(Γ))

��

ℓ∞(Sn+1) ℓ∞(S × Sn)
=

oo ℓ∞(Sn, ℓ∞(S)) ,oo

where ∼= denotes a Banach space isomorphism, while the first vertical arrow is
induced by µn−1 : ℓ

∞(Γn) → ℓ∞(Sn) and the third by µ0 : ℓ
∞(Γ) → ℓ∞(S). Since

all morphisms involved are contracting and equivariant for suitable Γ-actions, the
same holds for µn. Finally one verifies that (µn)n≥0 is a morphism of complexes.

�

3. Proof of Theorem 1

Let, as above, p : X̃ → X be the universal covering map, Γ := π1(X) and
Y = ⊔i∈ICi the decomposition of Y into a union of connected components. If Či

is a choice of a connected component of p−1(Ci) and Γi denotes the stabilizer of
Či in Γ then

p−1(Ci) =
⊔

γ∈Γ/Γi

γČi .

Let F ⊂ X̃ r Y ′ be a fundamental domain for the Γ-action on X̃ r Y ′, where
Y ′ = p−1(Y ) as before. Define the Γ-equivariant map

r : X̃ → S := Γ ⊔
⊔

i∈I

Γ/Γi

as follows:

r(γx) :=

{
γ ∈ Γ if x ∈ F ,

γΓi ∈ Γ/Γi if x ∈ Či .

For every n ≥ 0 define

rn : ℓ∞alt(S
n+1) //Cn

b(X̃)

by

rn(c)(σ) = c(r(σ0), . . . , r(σn)) ,
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where c ∈ ℓ∞alt(S
n+1) and σ0, ..., σn ∈ X̃ are the vertices of a singular simplex

σ : ∆n → X̃. Clearly (rn)n≥0 is a Γ-morphism of complexes extending the
identity on R and ‖rn‖ ≤ 1 for all n ≥ 0.

Observe that if n ≥ 1 and σ(∆n) ⊂ Y ′, then there are i ∈ I and γ ∈ Γ such
that σ(∆n) ⊂ γČi. Thus

r(σ0) = · · · = r(σn) = γΓi

and thus

rn(c)(σ) = c(γΓi, . . . , γΓi) = 0 ,

since c is alternating. This implies that the image of rn is in Cn
b(X̃, Y ′). Thus

we can write rn = jn ◦ r′n, where jn : Cn
b(X̃, Y ′) →֒ Cn

b(X̃) is the inclusion and

r′n : ℓ∞alt(S
n+1) → Cn

b(X̃, Y ′) is a norm decreasing Γ-morphism that induces a
norm non-increasing map2 in cohomology

H(r′n) : H
n(ℓ∞alt(S

•+1)Γ) //Hn
b(X, Y ) ,

for n ≥ 1.
Using the map gn defined in (♦) and the map µn provided by Proposition 3

since, for all i, the group Γi is a quotient of π1(Ci), and hence amenable, we have
the following diagram

Cn
b(X̃)

extends IdR
,,Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

gn
// ℓ∞(Γn+1)

µn
// ℓ∞alt(S

n+1)

rn

&&M

M

M

M

M

M

M

M

M

M

M

r′n

for n≥1
// Cn

b(X̃, Y ′)

jn
��

Cn
b(X̃),

where the dotted map is the composition rn ◦ µn ◦ gn which is a Γ-morphism
of strong resolutions by relatively injective modules extending the identity, and

hence induces the identity on Hn
b(X) = Hn(C•

b(X̃)Γ).
We proceed now to show that, for n ≥ 2, the map

H(jn) : H
n
b(X, Y ) //Hn

b(X)

induced by jn is an isometric embedding in cohomology. In view of the long exact
sequence for pairs in bounded cohomology and the fact that H•

b(Y ) = 0 in degree
greater than 1, we already know that H(jn) is an isomorphism. From the above
it follows that

H(jn)H(r
′
n ◦ µn ◦ gn) = IdHn

b
(X) .

Let y ∈ Hn
b(X, Y ) and set x = H(jn)(y). Then H(jn)(H(r

′
n ◦µn ◦ gn)(x)) = x and,

as H(jn) is injective, we get

y = H(r′n ◦ µn ◦ gn)(x) .

2To avoid confusion, we use here a different notation for the cochain map and the induced
cohomology map. This is contrary to our notation in the introduction.
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Since the maps H(jn) and H(r′n ◦ µn ◦ gn) are norm nonincreasing it follows that

‖x‖ = ‖H(jn)(y)‖ ≤ ‖y‖ and ‖y‖ = ‖H(r′n ◦ µn ◦ gn)(x)‖ ≤ ‖x‖

so that ‖H(jn)(y)‖ = ‖x‖ = ‖y‖ and hence H(jn) is norm preserving.
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