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Abstract. We characterize representations of finitely generated
discrete groups into (the connected component of) the isometry
group of a complex hyperbolic space via the pullback of the bounded
Kähler class.

To Dan

1. Introduction

In this paper we continue our investigation of the properties of ac-
tions of discrete groups on Hermitian symmetric spaces via an invariant
called the bounded Kähler class of the action.
Among the (irreducible) symmetric spaces, the Hermitian ones are

those who admit an invariant complex structure, whose existence gives
immediately an invariant differential two-form ω, which is hence closed
[12], called the Kähler form. The easiest such example is the symmetric
space associated to PU(1, 1), whose bounded domain realization is the
Poincaré disk with the usual invariant volume form, or more generally
the symmetric space associated to PU(p, q), whose bounded domain
realization consists of complex q× p matrices Z such that ZZ∗ − Id is
strictly negative definite.
If X is Hermitian symmetric and G := Iso(X)◦, the second bounded

cohomology H2
cb(G,R) is one-dimensional, with generator κb admitting

the representative

(g0, g1, g2) 7−→

∫

∆(g0,g1,g2)

ω ,

where ∆(g0, g1, g2) is any C1-simplex in X with geodesic sides and
with vertices g0x, g1x, g2x, x being a base point [13]. We shall refer
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to κb ∈ H2
cb(G,R) as to the bounded Kähler class. If ρ : Γ → G is a

representation, the object of our interest is then the bounded Kähler
class of the action ρ∗(κb) ∈ H2

b(Γ,R).
A Hermitian symmetric space that admits also a holomorphic real-

ization corresponding to the upper half plane in the case of PU(1, 1)
is called of tube type and, among the above examples, the symmetric
space associated to PU(p, q) is of tube type if and only if p = q. Sym-
metric spaces of tube type and not of tube type behave very differently
in many aspects and these differences are reflected in our investigation
via the bounded Kähler class [3, 7, 8, 9, 6, 4, 5].
For example we proved in [3, 7] that if X is a Hermitian symmetric

space which is not of tube type, then the bounded Kähler class of a rep-
resentation with Zariski dense image does not vanish and determines
the representation up to conjugacy. If on the other hand X is of tube
type, this characterization fails: for example to any two hyperboliza-
tions of a compact topological surface correspond the same invariant,
[14].
In all cases however, tube type or not tube type, the problem of

determining properties of the representation with vanishing bounded
Kähler class remains wide open. In this paper we establish relations
between its vanishing and properties of the representation ρ in the
case in which the Hermitian symmetric space is of rank one, that is a
complex hyperbolic space.
The content of the next theorem is to pin down exactly that the class

ρ∗(κb) does vanish only when the image of ρ is “small” in the following
sense. Recall that a totally real subspace of Hn

C is a subset isometric to
Hk

R, for some k ≤ n, with curvature −1 (if Hn
C is normalized as to have

sectional curvature between −4 and −1), see § 2.

Theorem 1.1. Let Γ be a finitely generated group, ρ : Γ → PU(n, 1) a
homomorphism and κb

n ∈ H2
cb

(

PU(n, 1),R
)

the bounded Kähler class.

Then the following are equivalent:

(1) ρ∗(κb
n) ∈ H2

b(Γ,R) vanishes;
(2) either ρ(Γ) fixes a point in the boundary ∂Hn

C of complex hyper-

bolic space or it leaves a totally real subspace invariant.

The above result, together with the following complementary struc-
ture theorem, gives the complete description of a representation of a
general discrete group into PU(n, 1) in terms of its bounded Kähler
class.

Theorem 1.2. Let ρ : Γ → PU(n, 1) be a representation of a finitely

generated discrete group and assume that ρ∗(κb
n) 6= 0. Let L := ρ(Γ)

Z
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be the Zariski closure of the image of ρ and set L := L(R)◦ to be the

connected component of the real points of L.

Then L is an almost direct product L = K ·M , where K is compact

and M is locally isomorphic to SU(m, 1), for 1 ≤ m ≤ n. Moreover

the symmetric space associated to L is a copy of Hm
C isometrically and

holomorphically embedded in Hn
C.

The proof relies upon the above mentioned characterization in [3]
of representations with Zariski dense image into PU(p, q), p 6= q, with
methods borrowed from [9, Proof of Theorem 5].
To give a geometric interpretation of this result it is convenient to

have the following

Definition 1.3. We say that a representation ρ : Γ → PU(n, 1) is
elementary in the complex sense if either

• ρ(Γ) fixes a point in Hn
C , or

• it leaves invariant a totally real subspace Hk
R ⊂ Hn

C, or
• it leaves invariant a complex geodesic.

If ρ : Γ → PU(n, 1) is a representation of a finitely generated group,
we denote by c(Lρ(Γ)) the convex hull of the limit set Lρ(Γ) ⊂ ∂Hn

C of
ρ(Γ).

Corollary 1.4. Let ρ1, ρ2 : Γ → PU(n, 1) be representations of a

finitely generated discrete group and assume that ρ1 and ρ2 are not

elementary in the complex sense. If ρ∗1(κ
b) = ρ∗2(κ

b), then, up to con-

jugation by an element of SU(n, 1), we have that

c(Lρ1(Γ)) = c(Lρ2(Γ)) =: C

and the actions of Γ on C via ρ1 and ρ2 coincide.

We turn now to a geometric counterpart of Theorem 1.1. To this end,
let M be a quotient of Hn

C, and ωM the induced Kähler form. Given
any C1-simplex σ : ∆2 → M , let σ∗ be a C1-simplex with geodesic
sides, homotopic to σ via a homotopy fixing the vertices. Then

κM(σ) :=

∫

σ∗

ωM

defines a bounded singular cohomology class κM ∈ H2
s,b(M). We shall

see that for compact arithmetic quotients M , the presence of a compact
submanifold V ⊂ M such that the restriction κM |V ∈ H2

s,b(V ) vanishes,
forces the existence of a totally real compact submanifold R ⊂ M (that
is a submanifold which is the compact quotient in M of a totally real
subspace of Hn

C). We shall see moreover that V can be homotoped into
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R; it hence follows that if V is not homotopic to a point or a circle,
then dimR ≥ 2. More generally:

Corollary 1.5. Let M = Λ\Hn
C be a compact arithmetic manifold, let

V be a compact manifold and f : V → M a continuous map. Then

f ∗(κM) ∈ H2
s,b(V ) vanishes if and only if there exists a compact, totally

real immersed submanifold R ⊂ M such that f is homotopic to a map

with image in R.

2. Complex hyperbolic space

We recall here the main points of complex hyperbolic geometry that
we shall need and refer to [1, Chapter II.10] and [15] for details.
Let

〈z, w〉 =
n

∑

k=1

zkwk − zn+1wn+1

be the Hermitian form of signature (n, 1) on Cn+1; recall that the com-
plex hyperbolic n-space Hn

C is the set of points [x] ∈ Pn(C) in complex
projective n-space with 〈x, x〉 < 0, equipped with the distance

cosh2 d([x], [y]) =
〈x, y〉〈y, x〉

〈x, x〉〈y, y〉
.

This distance, which comes from a Kähler metric, turns Hn
C into a

CAT(-1) space with sectional curvature −4 ≤ K ≤ −1. The same
construction over the field of the real numbers gives rise to the real
hyperbolic n-space Hn

R, whose sectional curvature is constant and equal
to −1.
A real vector subspace V ⊂ Cn+1 is totally real if 〈z, w〉 ∈ R for

all z, w ∈ V . A totally real subspace of Hn
C of dimension k is then

the image in Hn
C of a totally real subspace of Cn+1 of real dimension

k + 1, provided the latter contains a negative vector. The totally real
subspaces of dimension k in Hn

C are precisely those subsets of Hn
C which

are isometric to a real hyperbolic space Hk
R with curvature −1.

Obviously any 1-dimensional real subspace of Cn+1 is totally real.
Also, given any two vectors v1, v2 ∈ Cn+1 it is easy to see that the
subspace Rv1⊕R〈v2, v1〉v2 is totally real. However, given three vectors,
it is not always the case that some complex multiple of them spans a
totally real subspace. To detect whether this is the case the Hermitian
triple product is a useful tool. Recall that if z1, z2, z3 ∈ Cn+1, their
Hermitian triple product is defined as

〈z1, z2, z3〉 = 〈z1, z2〉〈z2, z3〉〈z3, z1〉 .
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Observe that, by definition, if α, β, γ ∈ C, then

〈αz1, βz2, γz3〉 = |α|2|β|2|γ|2〈z1, z2, z3〉

so that, in particular, 〈z1, z2, z3〉 ∈ R if and only if 〈αz1, βz2, γz3〉 ∈ R,
provided α, β, γ ∈ C∗.
For any set F , we use the notation F (n) to denote the set of n-tuples

of distinct points in F .

Lemma 2.1. Let F ⊂ Cn+1 be a subset such that 〈x, y, z〉 6= 0 for all

(x, y, z) ∈ F (3). Then 〈x, y, z〉 ∈ R for every (x, y, z) ∈ F (3) if and

only if there exist a totally real subspace V of Cn+1 and a function

λ : F → C∗ such that the R-linear span of {λzz : z ∈ F} is contained

in V .

Proof. (⇐) If λxx, λyy, λzz ∈ Cn+1 are contained into a totally real
subspace then all the pairwise Hermitian products are real, and hence
their triple scalar product is real as well.
(⇒) To see the converse, let us first associate to every finite subset

S ⊂ F a totally real subspace VS that is the real span of the set
{λzz : z ∈ S}, where λ : S → C∗ is a function to be determined.
The construction goes as follows. Let S = {z1, . . . , z|S|} be any listing

of the elements of S. For |S| = 3, it is easy to check that if one chooses
λ1 = 1, λ2 = 〈z1, z2〉 and λ3 = 〈z1, z3〉, then the condition 〈z1, z2, z3〉 ∈
R implies that the subspace V3 spanned by {λ1z1, λ2z2, λ3z3} is totally
real. Notice that λ1, λ2, λ3 ∈ C∗ because 〈λ2z2, λ3z3〉 = 〈z1, z2, z3〉 and,
by hypothesis, we know that 〈z1, z2, z3〉 6= 0.
We proceed now by induction. Let us assume that if 〈zi, zj , zk〉 ∈ R

for all 1 ≤ i, j, k ≤ ℓ ≤ |S|−1 with i 6= j 6= k 6= i, then {λ1z1, . . . , λℓzℓ}
span a totally real subspace Vℓ, with λ1 = 1 and λj = 〈z1, zj〉 ∈ C∗.
Notice that by construction V3 ⊆ · · · ⊆ Vℓ−1 ⊆ Vℓ.
Define now λℓ+1 = 〈z1, zℓ+1〉. As before, λℓ+1 ∈ C∗. Moreover, by

definition,

〈λ1z1, λℓ+1zℓ+1〉 = |〈z1, zℓ+1〉|
2 ∈ R

and, by inductive hypothesis, if j > 1

〈λjzj , λℓ+1zℓ+1〉 =〈z1, zj〉〈z1, zℓ+1〉〈zj, zℓ+1〉

=〈z1, zj , zℓ+1〉 ∈ R,

which shows that the real subspace Vℓ+1 generated by λ1z1, . . . , λℓzℓ,
λℓ+1zℓ+1 is totally real and Vℓ ⊆ Vℓ+1.
Let now S be a fixed finite subset of F such that dimR VS is maximal.

We need to show that every f ∈ F can be multiplied by a nonzero
complex number λf so that λff ∈ VS. In fact, if for every λ ∈ C∗ λf /∈
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VS, then it is easy to see that dimR VS∪{f} > dimR VS, contradicting
maximality. �

3. The Cartan invariant as a bounded cohomology class

Let ∂Hn
C be the sphere at infinity of the CAT(-1) space Hn

C, which
can be identified with the image of the null cone C0 = {z ∈ Cn+1 \{0} :
〈z, z〉 = 0} under the projection p : Cn+1 r {0} → Pn(C).
Since the diagonal action of PU(n, 1) is not transitive on the set

(∂Hn
C)

(3), one can associate to distinct triples of points in ∂Hn
C an in-

variant which plays the role of the crossratio for quadruples of points in
the boundary of real hyperbolic space. This is the “invariant angulaire”
or Cartan invariant, defined by

(3.1) cn(ξ1, ξ2, ξ3) =
2

π
Arg

(

− 〈z1, z2, z3〉
)

,

where p(zi) = ξi, with zi ∈ C0 for i = 1, 2, 3.
It follows from the fact that the Hermitian form has signature (n, 1),

that the Hermitian triple product has negative real part. If we take
the convention (3.1) that Arg(z) ∈ [−π/2, π/2] for Re z ≥ 0, it follows
that cn takes values in [−1, 1].
Moreover, the Cartan invariant has the following important proper-

ties (see [15]):

(i) cn(ξ1, ξ2, ξ3) = cn(η1, η2, η3) if and only (ξ1, ξ2, ξ3) and (η1, η2, η3)
are in the same PU(n, 1)-orbit in (∂Hn

C)
(3);

(ii) cn is an alternating function on (∂Hn
C)

(3), that is, for all σ ∈ S3,
we have that cn(ξσ(1), ξσ(2), ξσ(3)) = sign(σ)cn(ξ1, ξ2, ξ3);

(iii) cn is continuous on (∂Hn
C)

(3);
(iv) Extending cn to the whole of (∂Hn

C)
3 by setting cn(ξ1, ξ2, ξ3) =

0 if the triple is not distinct, we have the cocycle relation
cn(ξ2, ξ3, ξ4)− cn(ξ1, ξ3, ξ4) + cn(ξ1, ξ2, ξ4)− cn(ξ1, ξ2, ξ3) = 0 for
any quadruple (ξ1, ξ2, ξ3, ξ4) ∈ (∂Hn

C)
4;

(v) Furthermore, |cn(ξ1, ξ2, ξ3)| = 1 if and only if (ξ1, ξ2, ξ3) lie on a
chain, that is on the boundary of a complex geodesic.

Actually we shall never use property (v) in this paper, however we
chose to point it out here to illustrate, together with next corollary,
what kind of geometric information can be obtained from the maxi-
mality or minimality of the (absolute value of the) Cartan invariant.

Corollary 3.1. Let L ⊂ ∂Hn
C be any subset. Then cn(ξ1, ξ2, ξ3) = 0

for all (ξ1, ξ2, ξ3) ∈ (L)(3) if and only if L is contained in the boundary

of a totally real subspace of Hn
C.
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Proof. By definition, there exists a subset F ⊂ C0 ⊂ Cn+1 \ {0} such
that L = p(F ). The corollary is then a restatement of Lemma 2.1 after
observing that, again since the Hermitian form has signature (n, 1), we
have 〈z1, z2, z3〉 6= 0 for all (z1, z2, z3) ∈ F (3). �

The extension of cn defined in (iv) defines a bounded measurable
alternating function on (∂Hn

C)
3, and we want to describe the other

essential property that it enjoys, namely how it defines a bounded
cohomology class in H2

cb(PU(n, 1),R) coinciding with 1
π
κb
n. To this end,

recall that if H is a locally compact group, the continuous bounded
cohomology of H can be defined as the cohomology of the complex of
H-invariants of

0 //Cb(H,R)
d

//Cb(H
2,R)

d
// . . .

where Cb(H
j,R) is the space of real-valued continuous bounded func-

tion on the cartesian product of j copies ofH ([18]) and the coboundary
operator is given by

df(h0, . . . , hk) =
k

∑

i=0

(−1)if(h0, . . . , ĥi, . . . , hk) .

In order to see how cn defines a cohomology class, we need how-
ever some more definitions that will also be used later in the proof of
Proposition 4.2. If H is a locally compact group, a continuous Ba-

nach H-module is a Banach space on which H acts continuously by
isometric automorphisms, and H-morphisms are linear continuous H-
equivariant maps between continuous Banach H-modules. Then a con-
tinuous Banach H-module E is relatively injective if for every injective
H-morphism ı : A →֒ B of continuous Banach H-modules A,B which
admits a left inverse of norm bounded by 1 and every H-morphism
α : A → E, there is a H-morphism β : B → E which extends α and
such that ‖β‖ ≤ ‖α‖

A
�

� ı
//

α
��

@

@

@

@

@

@

@

B

β

��

E

The following theorem is a characterization of amenable actions that
provides an essential tool to compute continuous bounded cohomology.
Before stating it, recall that X is a standard Borel space if it is a set
endowed with a Borel σ-algebra that is Borel isomorphic to the interval
[0, 1]. A regular H-space is a pair (X, ν), where X is a standard Borel
space on which H acts measurably and ν is a quasi-invariant measure
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such that the corresponding H-action on L1(X, ν) is continuous, [18,
Definition 2.1.1].

Theorem 3.2 ([10]). Let H be a locally compact group, and (B, ν)
a regular H-space. The H-action on B is amenable if and only if

L∞(B,R) is a relatively injective H-module. Moreover, the cohomology

of the complex

0 //L∞(B,R)H //L∞(B2,R)H // . . .

is canonically isomorphic to H∗
cb(H,R).

We do not recall here the definition of amenable action for which
we refer to [21, Chapter 4], and we limit ourselves to recall that the
actions of PU(n, 1) on ∂Hn

C and of the free group Fn in r generators on
the Poisson boundary of the regular infinite tree Tr of valence r (see
the proof of Proposition 4.2) are both amenable.
As a particularly important consequence of Theorem 3.2, we record

the following fact. If H and B are as in Theorem 3.2 and if in addition
H acts doubly ergodically on B (that is ergodically on B ×B with re-
spect to the product measure1), then there is an isometric isomorphism

(3.2) H2
cb(H,R) ∼= ZL∞

alt(B
3,R)H ,

that is, H2
cb(H,R) is identified with the Banach space of bounded, alter-

nating, H-invariant cocycles on B3 with values in the trivial H-module
R, [10].
Taking H = PU(n, 1) and B = ∂Hn

C the boundary of hyperbolic
n-space, we see that the Cartan cocycle, defined in (3.1) on B(3) and
then extended to B3, defines via (3.2) a bounded cohomology class
in H2

cb

(

PU(n, 1),R
)

, which equals 1
π
κb by [3, Lemma 6.2]; the explicit

relation between the Kähler form and the Cartan invariant is given by
the formula

cn(ξ1, ξ2, ξ3) =

∫

∆(ξ1,ξ2,ξ3)

ω ,

where ∆(ξ1, ξ2, ξ3) is an ideal simplex with geodesic sides and vertices
ξ1, ξ2, xi3 at infinity.

1In classical ergodic theory this is equivalent to the concept of mixing. The
way this condition is used here is to infer that any H-invariant measurable maps
B×B → R is essentially constant. However a slightly different conclusion is needed
when one considers bounded cohomology with coefficients, from which the need of
a different terminology.
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4. Functoriality and Boundaries

Given two locally compact groups H1 and H2, and a continuous ho-
momorphism ρ : H1 → H2, it is obvious on the appropriate resolutions
by bounded continuous cochains that ρ induces a morphism

ρ∗ : H∗
cb(H2) → H∗

cb(H1) .

While on the one hand it is much more convenient to compute these
cohomology groups using resolutions by L∞ functions on amenable Hi-
regular spaces, on the other, doing so, it is much less clear how the
map ρ∗ looks in these resolutions. However, the following proposition
makes an essential point, obtained using fully the homological algebra
approach to bounded cohomology. We refer to [2] for a more detailed
discussion.

Proposition 4.1 ([2]). Let ρ : H1 → H2 be a continuous homomor-

phism of locally compact groups. Let (Y1, ν1) be a regular amenable

H1-space, Y2 a compact metric separable H2-space on which H2 acts by

homeomorphisms and let ϕ : Y1 → M(Y2) be a ρ-equivariant measur-

able map.

Then to any strict bounded Borel cocycle c : Y n+1
2 → R one can

canonically associate a bounded class [c] ∈ Hn
cb(H2,R) and ρ∗([c]) can

be represented by the cocycle in L∞(Y n+1
1 ) defined by

(y1, . . . , yn+1) → ϕ(y1)⊗ · · · ⊗ ϕ(yn+1)(c)

Once we know that any finitely generated group Γ admits amenable,
doubly ergodic standard Γ-spaces, we shall be able to put to use Propo-
sition 4.1 and Theorem 3.2.
To this purpose, we recall the following proposition which is a par-

ticular case of a theorem in [10, §1], (see also [17] for the most general
setting). Since in our setting the proof is very transparent, we present
it here.

Proposition 4.2 ([10, Theorem 0.2]). Let Γ be a finitely generated

group. Then there exists a Γ-space B with a quasi-invariant measure

µ, such that the Γ-action on (B, µ) is both amenable and doubly ergodic.

Proof. Let S be a finite generating set for Γ of cardinality r, and let
Fr be the free group in r generators, so that we have a surjective
homomorphism ρ : Fr → Γ with kernel N . Let Tr be the regular
infinite tree of valence r with automorphism group Aut(Tr), so that
Fr ⊂ Aut(Tr).
Let ∂Tr be the natural Poisson boundary of Tr (consisting of reduced

words of infinite length) and let µ̃ be the natural quasi-invariant prob-
ability measure defined by µ̃

(

E(x)
)

= (2r(2r−1)n−1)−1, where |x| = n
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and E(x) ⊂ ∂Tr consists of the infinite reduced words starting with
x (so that {E(x) : x ∈ Tr} is a basis for the topology of ∂Tr). The
space (B, µ) will then be realized as the point realization of the al-
gebra of N -invariant L∞ functions on (∂Tr, µ̃) (see [20, Theorem 3.3]
for details). Namely, let BN and B be the measure algebras gener-

ated respectively by L∞
(

∂Tr, µ̃)
)N

and L∞
(

∂Tr, µ̃)
)

. Since BN ⊂ B,
corresponding to BN there exists a factor (B, µ) of (∂Tr, µ̃), namely a
measure space (B, µ) with a probability measure µ and a measurable
map p : (∂Tr, µ̃) → (B, µ) such that µ = p∗(µ̃) (where, if A ⊂ B is a
measurable set, p∗(µ̃) is defined by p∗(µ̃)(A) = µ̃(p−1(A)). The space
(B, µ) carries a Γ-action (since it carries an action of Fr which factors
through the action of N), with respect to which the projection map is
Fr-equivariant.
Now that the space (B, µ) has been constructed, we need to show

the properties of its Γ-action. Observe first of all that the action of
Aut(Tr) on ∂Tr is doubly ergodic, and so is the action of Fr on ∂Tr

([10, Proposition 1.5 and Proposition 1.6]). Since p is Fr-equivariant,
it follows that the action of Γ on (B, µ) is doubly ergodic as well.
To prove that the Γ-action on (B, µ) is amenable, we shall use the

characterization of amenable actions given in Theorem 3.2, that is we
shall prove that the Banach Γ-module L∞(B, µ) is relatively injec-
tive. Let A,B two continuous Banach Γ-modules with an injective
Γ-morphism ı : A →֒ B, and let α : A → L∞(B, µ) a Γ-morphism. If
j is the inclusion j : L∞(B, µ) = L∞(∂Tr, µ̃)

N →֒ L∞(∂Tr, µ̃) and if
we think of A and B as continuous Banach Fr-modules (with a trivial
N -action), then we have an Fr-morphism α′ = j ◦α : A → L∞(∂Tr, µ̃).

A
�

� ı
//

α
$$I

I

I

I

I

I

I

I

I

I

B′

β

��

β

''

L∞(B, µ) �

� j
// L∞(∂Tr, µ̃)

Since the Fr-action is amenable on (∂Tr, µ̃), by Theorem 3.2 there
exists an Fr-morphism β ′ : B → L∞(∂Tr, µ̃) which extends α′ and such
that ‖β ′‖ ≤ ‖α′‖. Since the N -action on A and B was trivial, the
image of β ′ lies in L∞(∂Tr, µ̃)

N , hence defining the desired extension
β : B → L∞(∂Tr, µ̃)

N = L∞(B, µ) with ‖β‖ ≤ ‖α‖. �

5. Proofs

Proof of Theorem 1.1. (⇐) It is immediate since the restriction of the
Kähler form to a totally real subspace vanishes identically.
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(⇒) We may assume that ρ(Γ) is not elementary. In fact, if this is
not the case the conclusion is immediate since either ρ(Γ) fixes a point
in ∂Hn

C or a point in Hn
C or a geodesic.

Let (B, µ) be the amenable doubly ergodic Γ-space in Proposition 4.2

and let Lρ(Γ) = ρ(Γ) · x ∩ ∂Hn
C be the limit set of ρ(Γ) (which is inde-

pendent of x ∈ Hn
C). Then, since ρ(Γ) is not elementary, there exists

a Γ-equivariant measurable map ϕ : B → Lρ(Γ), [11, Corollary 3.2].
By Proposition 4.1 with H1 = Γ, H2 = PU(n, 1), (Y1, µ) = (B, ν),
Y2 = ∂Hn

C, and where we think of Lρ(Γ) as embedded in M(∂Hn
C) as

Dirac masses, the cocycle

cρ : B×B × B

(b1,b2, b3)

→

7→

[−1, 1]

cn
(

ϕ(b1),ϕ(b2), ϕ(b3)
)

is a representative of ρ∗(κb) ∈ H2
b(Γ,R). Since Γ acts ergodically on

B × B, cρ is an alternating 2-cocycle and ρ∗(κb) = 0, it follows from
(3.2) and from the properties of the Cartan invariant, that cρ = 0
almost everywhere, that is that cn

(

ϕ(b1), ϕ(b2), ϕ(b3)
)

= 0 for almost
every (b1, b2, b3) ∈ B × B × B with respect to the product measure.
The rest of the argument will consist of showing that, in fact,

Claim 5.1. cn is identically zero on (Lρ(Γ))
(3).

Then, Corollary 3.1, with L = Lρ(Γ), shows that Lρ(Γ) is contained
in the boundary of a totally real subspace of Hn

C. The intersection of
all totally real subspaces of Hn

C containing Lρ(Γ) is then a totally real
subspace left invariant by Γ.
To prove the claim, let λ = ϕ∗µ be the measure on Lρ(Γ). Since ϕ is

Γ-equivariant and µ is quasi-invariant, supp λ is a closed ρ(Γ)-invariant
subset of Lρ(Γ). Since ρ(Γ) is not elementary, it acts minimally on Lρ(Γ),
which implies that suppλ = Lρ(Γ). Now let ν = λ×λ×λ be the product
measure on (Lρ(Γ))

3. Then we have so far that cn(x1, x2, x3) = 0 for all
triples of points (x1, x2, x3) ∈ supp(ν) = (supp λ)3 = (Lρ(Γ))

3. Now let

(a, b, c) ∈ (Lρ(Γ))
(3), and let Ua, Ub, Uc be small neighborhoods in Lρ(Γ)

of a, b, c respectively which are pairwise disjoint. Since suppλ = Lρ(Γ),
the measure λ of an open non-void set is positive. Hence supp(ν) ∩
(Ua ×Ub ×Uc) 6= ∅ so that for (a′, b′, c′) ∈ supp(ν)∩ (Ua ×Ub ×Uc) we
have cn(a

′, b′, c′) = 0. Then, by continuity of cn, cn(a, b, c) = 0 as well,
hence completing the proof. �

Proof of Theorem 1.2. Let L := ρ(Γ)
Z
and L := L(R)◦; since ρ∗(κb

n) 6=
0, we have in particular that κb

n|L 6= 0 and thus L is not amenable. Since
PU(n, 1) has real rank one, this implies that L is reductive. Since L is
not amenable, its semisimple part has positive rank, and the rank must
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necessarily be one. Thus L is the almost direct product L = K ·M of
a compact connected subgroup K with a connected simple Lie group
M of real rank one2. Since K is compact and κb

n|L 6= 0, we have that
κb
n|M 6= 0. In particular H2

cb(M,R) ∼= H2
c(M,R) 6= 0, which implies

that M is of Hermitian type. Since M is of rank one, it is isomorphic
to SU(m, 1), for 1 ≤ m ≤ n. We can then choose a local isomorphism
π : SU(m, 1) → M such that π∗(κb

n) = λκb
m, where λ > 0. If m ≥ 2,

then π : SU(m, 1) → PU(n, 1) corresponds necessarily to a totally
geodesic embedding of Hm

C which is holomorphic since λ > 0; if on
the other hand m = 1, then looking at the root space decomposition
of PU(n, 1) coming from a maximal split torus in SU(1, 1) via π, one
concludes that either π

(

SU(1, 1)
)

is totally real, and hence π∗(κb
n) = 0

which is a contradiction, or π corresponds to a complex geodesic, and
then λ = 1. �

Proof of Corollary 1.4. Let Li := ρi(Γ)Z and Li := Li(R)
◦. Then it

follows from Theorem 1.1 that ρ∗1(κ
b
n) = ρ∗2(κ

b
n) 6= 0 and from Theo-

rem 1.2 that L1 = Ki ·Mi, with Ki compact and Mi locally isomorphic
to SU(ni, 1) with 2 ≤ ni ≤ n. From [3, Theorem 1.3] we deduce that
n1 = n2 and that if pi : Li → Ad(Mi) is the projection to the adjoint
group of Mi, then p1 ◦ ρ1 : Γ → PU(n1, 1) and p2 ◦ ρ2 : Γ → PU(n2, 1)
are conjugated via a holomorphic isometry Hn1

C → Hn2

C , which implies
the corollary. �

Proof of Corollary 1.5. (⇒) Let Λ = ρ1(V ), Γ = ρ1(M), ρ : Λ → Γ
the homomorphism induced by f , and f ∗ : H∗

s,b(M) → H∗
s,b(V ) the

map in singular bounded cohomology induced by f . According to
Gromov [16], there is a natural isomorphism H∗

b

(

ρ1(X),R
)

≃ H∗
s,b(X),

for any countable CW-complex X . In particular, in our case we have
that this isomorphism sends the class kM to the class κb, so that the
commutativity of the square,

H∗
s,b(M)

f∗

b
//

≀

��

H∗
s,b(V )

≀

��

H∗
b(Γ)

ρ∗
// H∗

b(Λ)

together with the hypothesis f ∗(kM) = 0, implies that ρ∗(κb) ∈ H2
b(Λ)

vanishes.
The main point is now to show that there is a totally real subspace

T ⊂ Hn
C such that:

2Namely, L = K ·M , where K ∩M is finite and K and M commute.
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(1) ρ(Λ) ⊂ StabΓ(T );
(2) StabΓ(T ) acts cocompactly on T .

Indeed, setting R = pr(T ), where pr : Hn
C → M is the canonical

projection, we have that R = T/StabΓ(T ) is a compact immersed sub-
manifold. Let pT : Hn

C → T be the orthogonal projection, and for every
pair x, y ∈ Hn

C of points, let gx,y : [0, 1] → Hn
C be the constant speed

geodesic connecting x to y. Define

f̃t(x) = gf̃(x),pT (f̃(x))(t).

Clearly f̃t is Λ-equivariant and thus descends to a homotopy t → ft
between f0 = f and f1 which has image in R.
Thus we turn to the construction of T . Because of our opening

remarks, we know that ρ∗(κb) = 0 and we are hence in the position of
applying Theorem 1.1.
There are two cases. First, assume that ρ(Λ) is elementary. Since Γ

is torsion free and cocompact, this implies that either ρ(Λ) = {e}, in
which case we take T = {pt}, or ρ(Λ) is infinite cyclic, in which case
we take as T the axis of a generator of ρ(Λ). In both cases, T satisfies
the properties (1) and (2) and we are done.
Assume now that ρ(Λ) := ∆ is non-elementary. Let L∆ be its

limit set and T the minimal totally real subspace of Hn
C such that

∂T contains L∆. From Theorem 1.1 we know that T is ∆-invariant
and what remains to show is that StabΓ(T ) acts cocompactly on T .
Here we bring in the hypothesis that Γ is arithmetic. Namely, let G

be a connected, semisimple adjoint group defined over Q such that
G(R) = PU(n, 1) × K, where K is compact and Γ′ = pr1

(

G(Z)
)

is
commensurable with Γ. Define H to be the connected component of
the Zariski closure of

{γ ∈ G(Z) : pr1(γ) leaves T invariant}.

Then H is a Q-subgroup of G; let H = pr1(H(R)), which is closed and
with a finite number of connected components. We have H ⊃ ∆ ∩ Γ′,
where the latter is of finite index in ∆ and non-elementary; hence

LH ⊃ L∆∩Γ′ = L∆.

Since H is non-elementary as well, LH = LH◦, so that finally

∂T ⊃ LH◦ ⊃ L∆.

Observe that if S is the image of H◦ in Iso(T ) under the restriction
map, then

LH◦ = LS.
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We claim now that S is reductive with compact center. Indeed, let R
be the (connected) radical of S. Then the fixed point set of R in LS

is non-void, S-invariant, and hence equal to LS. Since |LS| ≥ 3, R
is compact and hence central. Now we use a theorem of Mostow [19]
which guarantees the existence of a point t ∈ T such that the orbit S ·
t ⊂ T is totally geodesic, and hence coincides with the symmetric space
associated to S; but then T ′ = S · t is totally real, with T ′ ⊃ LS which
by minimality of T implies that T ′ = T and hence S acts transitively on
T . Since H(R)◦ is a compact extension of S, we conclude firstly that H
has no Q-rational characters, and hence H(Z) is a (cocompact) lattice
in H(R); secondly, that, T being the symmetric space associated to
H(R), pr1

(

H(Z)
)

acts cocompactly on T . Thus StabΓ′(T ), and hence
StabΓ(T ), act cocompactly on T . �
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