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Abstract

Due to published statistical analyses of operational risk data, methodological ap-

proaches to the AMA modeling of operational risk can be discussed more in detail. In

this paper we raise some issues concerning correlation (or diversification) effects, the use

of extreme value theory and the overall quantitative risk management consequences of

extremely heavy-tailed data. We especially highlight issues around infinite mean models.

Besides methodological examples and simulation studies, the paper contains indications

for further research.

Keywords: AMA, coherence, diversification, extremes, infinite mean models, LDA, opera-

tional risk, Pareto, subadditivity.

1 Introduction

The Advanced Measurement Approach (AMA) to the Pillar I modeling of Operational Risk,

as defined in the Basel II proposals, raises some fundamental methodological issues. The

common denominator of our comments concerns models for extremes and correlation. We

do not strive for a full review of the underlying problems; several other publications have

contributed to this. We rather make the operational risk modeler aware of issues which need

a careful discussion. The reason for writing this paper grew out of numerous discussions

we had with practitioners and academics alike, and this mainly because of the increasing

availability of operational risk data. The topics presented are very much driven by our own

research agenda; current developments on the operational risk scene have however accentuated

their importance.

Recently, a practitioner made a comment to us that “It seems that the use of Extreme Value

Theory (EVT) leads to counterintuitive results concerning the operational risk capital charge

in the presence of diversification.” Mainly due to analyses like Moscadelli (2004), de Font-

nouvelle et al. (2004) and de Fontnouvelle (2005), considerable insight in the more detailed

properties of operational risk data has been gained. One important consequence of these quan-

titative impact studies is the current interest in very heavy-tailed loss distributions. As EVT

is increasingly been used by the insurance and finance industry in the realm of Quantitative

Risk Management (QRM), it is more than ever necessary to recall some of the fundamental
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issues underlying any EVT analysis; this we do in Section 2, mainly based on several sim-

ulation examples. Section 3 recalls some examples touched upon in earlier work, especially

in Embrechts et al. (2002), and stresses consequences for the correlation discussion and risk

capital reduction in the light of portfolio diversification. Complementary to our discussions on

EVT in Section 2 and correlation and diversification in Section 3, in Section 4 we recall some

of the results from actuarial risk theory centered around the so-called “one claim causes ruin”

phenomenon. Section 5 summarizes our findings and yields guidance for further research.

After the euphoria of a quantitative modeling (VaR-based) approach to market and credit

risk, it was expected by some that a similar success could be achieved for operational risk.

Whereas this eventually may prove to be true, at the moment there are serious arguments

which need to be settled first. We want to bring some of these arguments into the open and

avoid that the industry awakens to a statement like Mr Darcy in Jane Austen’s Pride and

Prejudice: “I see your design, Bingley, you dislike an argument, and want to silence this.”

Besides EVT, research related to coherent risk measures and the modeling of dependence

beyond correlation will be relevant for our discussion. The following publications play an

essential role in the current debate on possibilities and limitations of QRM. First of all, Em-

brechts et al. (1997) early on promoted EVT as a useful set of techniques for the quantitative

risk manager. Secondly, there is the work by Artzner et al. (1999) on the axiomatic theory of

risk measures, and finally Embrechts et al. (2002) wrote a well received paper on properties

and pitfalls of the use of correlation as a measure of dependence. The latter paper, first avail-

able as a RiskLab, ETH Zurich report in early 1999, was highly influential in starting risk

managers to think beyond linear correlation, and stood at the cradle of the current copula-

revival. A textbook reference where all these issues are summarized, put into a historical

perspective and brought to bear on QRM is McNeil et al. (2005); the latter publication also

contains an extensive bibliography from which hints for further reading can be obtained.

2 EVT and high-quantile estimation

In its most stylized form, the AMA for operational risk concerns the calculation of a risk

measure ργ at a confidence level γ for a loss random variable (rv) L. The latter corresponds

to the aggregate losses over a given period ∆. Under the Basel II guidelines for operational

risk, γ = 99.9%, ργ = VaRγ , the Value-at-Risk at level γ, and ∆ equals one year. The loss rv
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typically has the form

L =

d∑

k=1

Lk (1)

where L1, . . . , Ld correspond to the loss rvs for given business lines and/or risk types as defined

in the Basel II Accord. For the purpose of this section, the precise stochastic structure of the

Lk’s is less important; see however Section 4. It turns out to be essential that, as reported in

detail in Moscadelli (2004) and to some extent in de Fontnouvelle et al. (2004), the tails of

the loss distribution functions (dfs) are in first approximation heavy-tailed Pareto-type, i.e.

P(Lk > x) = x−αkhk(x), k = 1, . . . , d, (2)

where αk > 0 is the tail-index parameter and hk is a slowly varying function; see Embrechts

et al. (1997), p. 564. For an intuitive understanding of the meaning of (2), it helps to know

that for ε > 0, E(Lαk−ε
k ) <∞ and E(Lαk+ε

k ) = ∞, so that whenever 0 < αk < 1, E(Lk) = ∞
and for 1 < αk < 2, E(Lk) < ∞ but var(Lk) = ∞. When analysed across the d = 8 business

lines, the quantitative impact study data, as reported by Moscadelli (2004), bolster up (2)

with 6 out of 8 business lines yielding estimates 0 < α̂k < 1, i.e. infinite mean models. For

three business lines, the results are statistically significant at the 95% level: corporate finance

(1/α̂ = 1.19), trading & sales (1/α̂ = 1.17) and payment & settlement (1/α̂ = 1.23). These

findings are somewhat put in perspective in de Fontnouvelle et al. (2004) where it is argued

that at the level of individual banks, a slightly less (but still) heavy-tailed regime results. An

operational risk capital charge is then based on the calculation of VaRγ(L) with γ = 99.9%.

A crucial problem in need of a solution is therefore a high-quantile (VaR99.9%, say) estimation

for heavy-tailed data; EVT provides a natural statistical toolkit for tackling this problem.

It is not our aim to recall the methodology underlying the EVT-based approach to high-

quantile estimation, we rather expect the reader to be familiar with the basics. Numerous

monographs and papers have been written on the application of EVT to problems in financial

and insurance risk management; we refer the interested reader to Embrechts et al. (1997),

McNeil et al. (2005), Chavez-Demoulin et al. (2006) and the references therein for details and

further reading. In what follows, we rather give examples on some issues regarding extremely

heavy tails which recently came up in discussions on applications of EVT to operational risk

modeling. The examples given provide as much an agenda for future research in EVT as

some practical guidelines/warnings for the application of EVT methodology to operational

risk data.
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Figure 1: Value-at-Risk as a function of the tail-index parameter for an exact Pareto loss

random variable.

A consequence of our findings will be that EVT should not be used blindly. As we will see

in the next section, infinite mean models cause serious problems regarding diversification. A

first issue we want to bring to the risk modeler’s attention is that Value-at-Risk is sensitive

to the values of α, especially for α small. In Figure 1, we plotted VaR99.9% of an exact Pareto

loss rv L, i.e. P(L > x) = x−α, x ≥ 1, as a function of the tail-index parameter α. In

this case, VaR99.9% is given by 0.001−1/α, i.e. the Value-at-Risk grows with the tail-index

parameter at an exponential rate. A similar result holds if the exact Pareto assumption is

replaced by (2), say. This means that VaR may lead to ridiculously high capital charges in

the infinite mean case (α < 1). One could even argue that infinite mean models ought be

banned from the operational risk modelers toolkit! The previous sentence we deliberately

wrote in a rather provocative way. It is not sufficient to say that “Of course such models

cannot occur since total capital existing is finite.” The financial and economic literature is

full of power-law models; see for instance Mandelbrot (1997), Mandelbrot and Hudson (2004)

and Rachev and Mittnik (2000). All power-law (i.e. Pareto-type) models have some infinite

moments, and yet they are used frequently. The transition from infinite second and finite first

moment, say, to infinite first moment (the mean) is however a very serious one and should be

handled very carefully. As a lighthouse warning against dangerous shoals, careful statistical
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analysis combined with judgement can help in pointing at the possibility of such a transition

in the data. Theoretically, VaRγ can be calculated in the infinite mean case, but “stop and

pause” when this happens, reflect on what is going on and definitely do not continue with a

push-of-the-button risk management attitude.

At this point, we would like to stress once again that as soon as questions are addressed that

concern regions far in the tail of the loss distribution, EVT inevitably has to enter the modeling

in one way or the other. In the words of Richard Smith, “What EVT is doing is making the

best use of whatever data you have about extreme phenomena.” Furthermore, quoting from

Coles (2001), “Notwithstanding objections to the general principle of extrapolation, there

are no serious competitor models to those provided by extreme value theory.” Consequently,

no other methodology which would yield an alternative and suitable framework for high

quantile estimation exists. Statistical inference for EVT models and the model choice itself is

another matter, however. As we will see with the examples below, an inappropriate statistical

analysis can indeed have quite misleading outcomes. In the light of what has been said above,

especially situations where the tail-index parameter estimates take values in (0, 1) at least

call for judgment. Therefore, we first take a step back and consider some possible reasons for

such results.

• The loss distribution is indeed extremely heavy-tailed, i.e. with infinite mean. We believe

that in this situation it is more than ever true that mathematics is only one part of the

puzzle. A good understanding of the data generating process is crucial, and we can only

voice a warning against any method that by means of magical or mathematical tricks

manicures the tail behavior of the loss distribution. Below, we present some examples,

which we believe may prove useful in the quest for a better understanding of such data.

• Incorrect statistical inference. Mistakes of this kind may be due to several reasons. It

has been pointed out by numerous authors, that the Achilles heel of almost any EVT-

based data analysis is the choice of the “right” threshold, which is both not too low to

cause significant bias and not too high to lead to significant variance. It is not our aim to

discuss this complex issue in further detail. We merely illustrate in Example 2.1 below,

how a bad threshold choice can lead to under-/overestimation of VaR. A further issue

is for instance the choice of the estimator of the tail-index parameter α. In Figure 2 we
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Figure 2: Hill (dotted line) vs. MLE (full line) estimators for iid data following the exact

Pareto distribution with α = 2/3 (left plot) and the generalized Pareto distribution with

α = 2/3 and β = 1 (right plot).

compare the behavior of the Hill and MLE(-GPD) estimators. Even for well-behaved

data sets for which both estimators can be justified asymptotically, the difference can

be quite substantial (if one uses the same threshold). Compounded with the findings in

Figure 1, this can lead to considerable differences in reported risk capital.

• EVT assumptions are not satisfied. The basic EVT models require (close to) iid data, an

assumption which is often too restrictive for practical applications. Therefore, extensions

have been developed that allow for non-stationarity and/or clustering effects. Note that

the use of such extensions in operational risk typically requires knowledge not only about

the loss amount, but also about the exact loss occurence time. The latter may however

not always be available in practice.

We now turn to some of the estimation issues in the for risk management “infinite mean”

danger zone, viewed from an EVT perspective. The examples provided should be regarded

as statistical warning lights when dealing with extremely heavy-tailed data.
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In our opinion, a major cause of concern is data contamination! By the latter we mean

that there are observations within the sample, which do not follow the same distribution as

the rest of the data. Situations of this type have been considered in several mathematical

fields: for instance cluster analysis and robust statistics to mention the most relevant ones.

We do not intend to discuss either in further detail here; we refer the interested reader for

instance to Hampel et al. (1986), Huber (1981) and McLachlan and Basford (1988). As the

word “contamination” appears in numerous (mathematical as well as other) contexts in the

literature, we would like to spare the reader any confusion by stressing that in our case, the

use of this word does not go beyond the above meaning. Besides, the terminology is not meant

to indicate that the contaminated data are a mere nuisance which should be prevented from

taking influence upon the risk capital charge. We simply point out that special attention is

called for when contamination is suspected. In the examples below, we consider two tailor-

made models which we find relevant for operational risk. For instance, the event type which

incorporates law suits may typically contain the largest losses. If all event types were thrown

together, contamination as discussed in our first example would be expected in this case.

Example 2.1. Contamination above a very high threshold. First, we discuss a sit-

uation where the k largest values in the sample follow a different distribution as the re-

maining data. More specifically, we consider an iid sample X1, . . . ,Xn with order statistics

X1,n ≥ · · · ≥ Xk,n ≥ · · · ≥ Xn,n drawn from a distribution of the form

FX(x) =






1 −
(
1 + x

α1β1

)−α1

if x ≤ v,

1 −
(
1 + x−v∗

α2β2

)−α2

if x > v,

(3)

where v is a fixed (typically unknown) constant and v∗ a quantity given by

v∗ = v − β2α2

(
p−1/α2 − 1

)
, p = P(X > v) =

(
1 +

v

α1β1

)−α1

.

We furthermore assume that 0 < α2 < α1 and βi > 0, i = 1, 2. As FX(x) coincides with a

generalized Pareto distribution (GPD) with tail-index α2 as soon as x ≥ v, we have that FX

satisfies (2) with αk = α2. This means that even if v is very high and α1 greater than 1, one

enters the dangerous infinite-mean zone as soon as α2 < 1. VaR corresponding to FX can be

calculated explicitly,

VaRγ(X) =






α1β1

(
(1 − γ)−1/α1 − 1

)
if γ ≤ 1 − p,

v∗ + α2β2

(
(1 − γ)−1/α2 − 1

)
if γ > 1 − p.

(4)
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Figure 3: VaRγ calculated via (5) with u = 0, β2(u) = 1 and α2 = 2/3 (full line) and VaRγ

calculated via (4) with p = 0.1, β1 = 1 and α1 = 1.4 (dashed line).

Implications of (4) are twofold. For one, any estimator of the tail-index parameter of FX

which is less than α2 leads to an underestimation of VaRγ for γ > (1 − p). This can easily

happen if the threshold chosen for the (classical) EVT-based statistical inference is far below

v. On the other hand however, at levels γ below (1− p), VaRγ calculated via the POT-based

approximate formula

VaRγ ≈ u+ β2(u)α2

(
(1 − γ)−1/α2 − 1

)
(5)

for some scale parameter β2(u) and threshold u, may lead to a vast overestimation. In Figure

3, we compare VaRγ calculated via (5) and (4). The difference gets even more pronounced

for large v’s (or, equivalently, large values of (1− p)). A large v also implies that the levels γ

which are of interest to the operational risk modeler possibly lie below (1 − p).

Mixture models of the above type can however turn out to be difficult to detect if one does not

look for them. For small thresholds v, samples drawn from FX are likely to exhibit sufficiently

many points above v and the change of behavior can be detected by the mean excess plot,

for instance. Large values of v however typically lead to cases where there are only very few

excesses above v in the sample (10, say). Consequently, the mean excess plot may not reveal
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(a) (b)

(c) (d)

Figure 4: Classical POT model in the presence of contamination above a high threshold: mean

excess plot (a) and shape plots (b-d) for 20 simulated samples with 100 contaminated data

points (b) and 10 contaminated data points (c-d). The straight lines in plots (b-d) denote

1/α1 and 1/α2, respectively.
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anything suspicious (see Figure 4 (a), further described below) and yet the points lying above

v can have substantial influence on the outcomes of the statistical inference. In particular,

estimates of the tail-index parameter well below 1 may result, even if α1 is significantly

larger than 1 and v is high. In Figure 4 (a-c), we simulate from the above model (3) with

α1 = 1.42, α2 = 0.83. In plots (a) and (c), we take p = 0.99 and simulate samples with

exactly 10 contaminated data points; in (b) we choose p = 0.9 leading to samples with 100

contaminations. Apart from the mean excess plot for one simulated sample, the figure displays

the so-called shape plot (estimates of 1/α̂ over a range of thresholds) for 10 simulated samples

with p = 0.99 (c) and p = 0.9 (b). For a higher number of simulations, the pictures stay

very much the same except that they become less transparent and hence less suitable for our

illustrative purpose.

Finally, Figure 4 shows that the model (3) can furthermore be used as an exemplar on the

misuse of EVT. Even for α2 > 1, excesses above high thresholds have finite mean and yet,

if we choose α2 = 1.42, α1 = 10 and p = 0.99 leading to ca. 10 contaminated data points,

the shape plot displayed in Figure 4 (d) behaves very much like that in (c). In other words,

there exist threshold choices still well in the data which produce estimates of the tail index

well below 1.

Although FX is extremely heavy tailed if α2 < 1, it is still “less dangerous” in terms of VaR

than an exact Pareto distribution with parameter α2, say. This example once again points out

that it is crucial to gain the best possible knowledge of the data generating mechanism and not

to use EVT without careful considerations. This task involves not only mathematical tools but

also background information on the (especially large) data points. Mathematical tools that

can help are comparisons between the classical POT model and a likelihood-based inference

derived from the above model (3). Note that if α1 = α2, X follows a GPD distribution. This

means that the classical POT model can be viewed as a special case and likelihood ratio tests

can be performed for comparison. �

In the above example, contaminated data appeared solely above some high threshold v. In

practice, this would mean that in a sample of n points, only the k largest observations are

contaminated whereas the remaining n − k are not. In the next example, we generalize this

idea in that we consider a model where there are k out of n data points contaminated.
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γ VaRγ(FX) VaRγ(Pareto(α2)) α∗

0.9 6.39 46.42 1.24

0.95 12.06 147.36 1.2

0.99 71.48 2154.43 1.08

0.999 2222.77 105 0.89

0.9999 105 4.64 · 106 0.79

0.99999 4.64 · 106 2.15 · 108 0.75

Table 1: Value-at-Risk for mixture models.

Example 2.2. Mixture models. The model given by (3) can be viewed as a special mixture,

i.e. one can show that

FX = (1 − p)F1 + pF2, (6)

where F2 is a (shifted) GPD distribution with parameters α2 and β2 and F1 is a GPD dis-

tribution with parameters α1 and β1 truncated at v. In this example, we consider general

mixtures, i.e. loss distributions of the form (6). Such models would typically arise when the

losses are caused by one of two independent effects, each happening with a certain probability.

Another example are distributions of aggregated losses, where the underlying loss process is

a sum of two independent and homogeneous compound Poisson processes, a situation which

we discuss more in detail in the following section.

For an illustration, consider a mixture distribution (6) with Fi exact Pareto with parameter

αi, i = 1, 2, i.e. Fi(x) = 1− x−αi for x ≥ 1. We furthermore assume that 0 < α2 < α1. As in

the preceding Example 2.1, it follows that

1 − FX(x) = x−α2h(x)

for h slowly varying. In other words, regardless α1 and p, very high losses are driven essentially

by F2. The question how high very high is, is however crucial: depending on p and α1, the

asymptotics may become significant at levels which are far beyond those of interest in practice

and often beyond the range of the available data. The Value-at-Risk corresponding to (6) is

in general no longer given by a simple formula as in Example 2.1, but has to be calculated

numerically. One can however at least gain some insight into the role of the parameters p, α1
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Figure 5: Classical POT model in the presence of contamination: mean excess plot (left),

shape plot (middle) and shape plot for 20 simulated samples (right).

and α2 by showing that VaRγ(FX) = VaRγ1
(F1) = VaRγ2

(F2), where γ1 is the solution of

(1 − γ1)
−1/α1 =

(
1 − γ − (1 − p)γ1

p

)−1/α2

and γ2 = (γ − (1 − p)γ1)/p. Note that this in particular implies γ1 ≥ γ and γ2 ≤ γ. Hence

VaRγ equals the Value-at-Risk corresponding to F2, but at a level which is lower than γ. In

Table 1, we report the values of VaRγ corresponding to FX given by

FX(x) = 0.9(1 − x−1.4) + 0.1(1 − x−0.6)

and compare them with VaRγ of an exact Pareto distribution with tail-index α2 = 0.6.

The difference is striking. At first glance, one may still hope that there exists an α∗, such

that VaRγ(FX) would be consistent with VaRγ of a Pareto distribution with tail-index α∗.

Unfortunately, the fourth column of Table 1 shows that such hopes are dead-end. Also note

that VaRγ of a Pareto distribution with α1 would lead to considerable underestimation, in

particular at high levels γ. Worse, Table 1 also implies that, in general, the use of the

classical EVT-POT model cannot give correct estimations of high quantiles. Worse still,

general mixtures are far more difficult to detect than models considered in Example 2.1.

Especially for small values of p and small data sets, it is fairly likely that only few points

in the sample would actually come from the more dangerous distribution F2 and one can be

easily seduced by the relatively good fit of the classical POT model. Even for a comparatively

high proportion of contaminated data, the fit can be reasonable however. In Figure 5 we

simulate a sample of n = 1000 points from the above mixture model (6) with p = 0.33 and Fi

generalized Pareto with α1 = 1.42, α2 = 0.83 and β1 = β2 = 1. Neither the mean excess plot
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nor the shape plot look odd. However, the plot in Figure 5 (right) reveals how misleading the

classical POT model can be. Here we display shape plots of 10 simulated samples with the

above parameters (as in Example 2.1, we use 10 samples merely for a better visibility). In

most cases, the shape plot looks fairly straight which in the classical POT model indicates a

good fit. However, the resulting estimate of α (around 1 in this case) typically lies between

α1 and α2 which leads to overestimation of VaR at lower levels and underestimation at high

levels; see the right column of Table 1. Finally, note that even if α2 is small, the largest

observations are not necessarily all contaminated. As in the preceding example, one can come

up with extensions of the classical POT model which allow for this type of contamination.

This would enable MLE estimation of α1, α2 and p as well as testing against the classical

(non-contaminated) model. �

So far, we gave examples which merely highlight potential shortcomings of the classical POT

model in the presence of contamination. Further work on statistical inference for mixture

models is necessary before extensions of classical EVT can be discussed in greater detail and

applied to real and/or simulated operational risk data samples. Only further analyses of

operational risk data will reveal whether the issue of contamination is relevant. From an

understanding of some of the data, we very much believe it is. But even if the results would

indeed point in this direction, the question how to determine an appropriate risk capital for

very heavy-tailed risks however still stands. So far we can only say that more statistical work

on these issues is badly needed. In the next section, we turn to the issue of correlation and

diversification and its implications for the capital charge calculation.

3 The AMA capital charge revisited

The estimation of VaRγ(L) needs a joint model for the loss random vector (L1, . . . , Ld), i.e.

concrete assumptions on the interdependence between the Lk’s have to be made complemen-

tary to (2), say. Because of a lack of specific distributional models for the vector (L1, . . . , Ld),

the Basel II AMA guidelines leading to the Loss Distribution Approach (LDA) suggest to use
∑d

k=1 VaR99.9%(Lk) for a capital charge and allow for a diversification reduction of the latter

under appropriate correlation assumptions. These assumptions have to be made explicit as

well as plausible to the local regulator.
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This is exactly the point where we want to voice a warning. If we accept the results of the

extensive and careful statistical analysis in Moscadelli (2004), then the dfs of L1, . . . , Ld satisfy

(2) with αk’s less than 2 and several less than 1, hence not only are correlation coefficients

not defined, but the loss dfs are extremely heavy-tailed. This may have serious consequences

as we will see below. Basing a capital charge reduction on the notion of correlation may

be meaningless, to say the least. The situation however gets worse in the face of extreme

heavy-tailedness. To start with, one should ask whether

VaRγ(L) = VaRγ

(
d∑

k=1

Lk

)
≤

d∑

k=1

VaRγ(Lk); (7)

this is referred to as subadditivity of Value-at-Risk and is one of the crucial properties of the

notion of coherence as discussed in Artzner et al. (1999). First note that equality in (7), i.e.

VaRγ

(
d∑

k=1

Lk

)
=

d∑

k=1

VaRγ(Lk) (8)

is obtained under the assumption of comonotonicity of the vector (L1, . . . , Ld). This means

that there exists a rv Z and increasing deterministic functions f1, . . . , fd so that for k =

1, . . . , d, Lk = fk(Z). For ease of notation, take d = 2. Then whenever L1 and L2 have finite

second moments, (8) holds if the correlation coefficient %(L1, L2) is maximal; this situation is

referred to as perfect dependence (or perfect correlation). The value of this maximal correlation

%max is possibly – even typically – less than 1. As an example, Embrechts et al. (2002) calculate

%max in the case of two lognormal risks. They also show in that example that %max can be made

as close to zero as one likes keeping comonotonicity. In the following example, we examine

%max and %min for Pareto risks as in (2).

Example 3.1. Bounds on correlation for Pareto risks. Consider L1 and L2 exact Pareto

with parameter α and β respectively, i.e. take P(L1 > x) = x−α and P(L2 > x) = x−β for

x ≥ 1. Recall that the correlation between L1 and L2 is defined if and only if both α and

β are strictly greater than 2. Given that assumption, %(L1, L2) is maximal if L1 and L2 are

comonotonic. Similarly, %(L1, L2) attains its smallest value for L1 and L2 countermonotonic,

i.e. if there exists an increasing function f1, a decreasing function f2 and a rv Z so that

Li = fi(Z), i = 1, 2. The maximum and minimum possible correlation can be calculated
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Figure 6: Maximum (dashed line) and minimum (full line) attainable correlation as a function

of β for L1 ∼ Pareto(2.5) (left picture), L1 ∼ Pareto(2.05) (right picture) and L2 ∼ Pareto(β).

explicitly and one obtains that

%max(L1, L2) =

√
αβ(α− 2)(β − 2)

αβ − α− β
, (9)

%min(L1, L2) =

√
(α− 2)(β − 2)

(
(α− 1)(β − 1)B

(
1 − 1

α , 1 − 1
β

)
− αβ

)

√
αβ

, (10)

where B(x, y) is the Beta function given by B(x, y) =
∫ 1
0 u

x−1(1−u)y−1du. It is clear from (9)

and (10) that the bounds on % are not equal to 1 and −1 except asymptotically or in special

cases. First, note that %max = 1 if and only if α = β. Moreover, %min > −1 as can easily be

checked numerically; it follows immediately from a more general result stated in Proposition

5.2.7 of Denuit et al. (2005). For β fixed, we further have that lim
α→∞

%max =
√
β(β − 2)/(β−1)

and lim
α→∞

%min =
√
β(β − 2)(−ψ0(1)+ψ0(2−1/β)−1) where ψ0 denotes the digamma function,

which further implies lim
(α,β)→(∞,∞)

%max = 1 and lim
(α,β)→(∞,∞)

%min = 1−π2/6
.
= −0.645. On the

other hand, both %max and %min tend to zero as soon as one of the parameters converges to

2 (i.e. if either L1 or L2 becomes increasingly heavy-tailed), as illustrated in Figure 6. This

means that heavy-tailed Pareto risks with tail indexes close to 2 will typically exhibit only

very small correlation. �

We next give a historical example, which shows that (8) is not restricted to comonotonicity

only. In some of the examples below, we use two-sided distributions in order to keep the
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historical character; this will however not affect our practical conclusions.

Example 3.2. The Cauchy distribution. Consider L1 and L2 independent standard

Cauchy, i.e. the density functions are

fLk
(x) =

1

π(1 + x2)
, x ∈ R, k = 1, 2.

For L1, L2 independent, we have that (L1 + L2)/2 is again standard Cauchy. Hence,

P(L1 + L2 > 2x) = P(X1 > x)

so that, for any given γ,

VaRγ(L1 + L2) = 2VaRγ(L1) = VaRγ(L1) + VaRγ(L2)

as in the comonotonic case (8), but this time under the assumption of independence. As

communicated to us by Professor Benoit Mandelbrot, Cauchy realized the “diversification

fallacy” underlying this property. Note that for the Cauchy case, E(|Lk|) = ∞. There are

several, for our paper relevant, quotes on Augustin-Louis Cauchy to be found in Mandelbrot

and Hudson (2004). For instance, on p. 39:

“The difference between the extremes of Gauss and Cauchy could not be greater.

They amount to two different ways of seeing the world: one in which big changes

are the result of many small ones, or another in which major events loom dispro-

portionately large. ‘Mild’ and ‘wild’ chance are my generalizations from Gauss

and Cauchy.”

On p. 37, the same authors introduce the Cauchy distribution as a model of the blindfolded

archer’s score in which case “the largest shot will be nearly as large as the sum of all the

others. One miss by a mile completely swamps 100 shots within a few yards of the target.”

We come back to this issue in Section 4, using the notion of subexponentiality. �

In the next example we look at the extremely heavy-tailed case more in detail.

Example 3.3. Infinite mean Pareto models. This example is taken from Embrechts

et al. (2002) (see Examples 6 and 7) and has important consequences concerning the notion

of diversification in economics as discussed in Ibragimov (2005). Take L1 and L2 independent
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and identically distributed with P(L1 > x) = P(L2 > x) = x−1/2, x ≥ 1, i.e. L1 and L2 are

extremely heavy-tailed with infinite mean. In this case, one shows that

P(L1 + L2 ≤ x) = 1 − 2
√
x− 1

x
< P(2L1 ≤ x)

for x > 2. It follows that

VaRγ(L1 + L2) > VaRγ(2L1) = VaRγ(L1) + VaRγ(L2)

so that from the point of view of VaRγ , independence is worse than perfect dependence (to

be interpreted as comonotonicity). There is nothing special about the choice 1/2 as power

exponent in the df of L1 and L2, the same result holds whenever

P(Lk > x) = x−α, x ≥ 1, (11)

for 0 < α < 1. Klüppelberg and Rootzén (1999) arrive at the same conclusion that “big is not

always beautiful” using an asymptotic approximation for VaRγ(L1+L2). The case α = 1 (like

the Cauchy case) is also discussed in Denuit and Charpentier (2004), p. 236. In the words

of Ibragimov (2005), “Many economic models are robust to heavy-tailedness assumptions

as long as the distributions entering these assumptions are not extremely heavy-tailed (i.e.

α > 1). But the implications of these models are reversed for distributions with extremely

heavy tails (i.e. 0 < α ≤ 1).” As reported in Example 7 of Embrechts et al. (2002), whenever

α > 1 in (11), and even more generally in (2), and γ is large enough, VaRγ is subadditive (i.e

diversification holds) for iid risks. �

The reader may ask why the transition from finite to infinite mean causes the problem. One

fundamental reason is the Strong Law of Large Numbers (SLLN) for which the existence of

the first moment is a necessary (as well as sufficient) condition. To shed more light on this

issue, we first restate the following result from Embrechts et al. (1997), Theorem 2.1.5.

Theorem 1. Marcinkiewicz-Zygmund SLLN. Suppose that X1,X2, . . . are iid random

variables and denote Sn =
∑n

k=1Xk. For p ∈ (0, 2), the SLLN

n−1/p(Sn − an) → 0 a.s. (12)

holds for some real constant a if and only if E(|X|p) <∞. If (Xn) obeys the SLLN (12), then

we can choose

a =






0 if p < 1,

µ = E(X1) if p ∈ [1, 2).
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Moreover, if E(|X|p) = ∞ for some p ∈ (0, 2), then for every real a,

lim sup
n→∞

n−1/p|Sn − an| = ∞ a.s. (13)

From (12) it follows that for a portfolio of iid risks with finite mean µ, VaRγ(Sn) (not com-

pensated for the expected losses) grows like µn. Since for all reasonable risk distributions

and sufficiently high confidence levels γ, VaRγ(X1) > µ, we obtain (asymptotic) subaddi-

tivity. Diversification works, and this is also the main reason that the classical SLLN (12)

(with µ <∞) forms the methodological backbone of premium calculations in insurance. The

situation however becomes very different whenever µ = ∞, i.e. we fall into the (13) regime.

Take for instance X1 ≥ 0 so that P(X1 > x) = x−αh(x) for some slowly varying function h

and 0 < α < 1. Then for some ε > 0, p = α + ε < 1 and E(Xp
1 ) = ∞ so that (13) holds

for that value of p. As a consequence, VaRγ(Sn) grows at least like n1/p > n leading to the

violation of subadditivity (asymptotically). In other words, diversification no longer holds.

There is much more to be said on the interplay between the (S)LLN and diversification; see

for instance Samuelson (1963), Malinvaud (1972) and Haubrich (1998). �

In the next example, we combine the above findings generalizing the Cauchy case discussed

in Example 3.2. Once more, the fundamental split between µ <∞ (i.e. diversification holds)

and µ = ∞ (i.e. the non-diversification situation) will follow clearly.

Example 3.4. α-Stability. Recall the class of α-stable distributions; see Embrechts et al.

(1997), Section 2.2 and in particular p. 78. If L1, . . . , Ld are independent symmetric α-stable,

then

d−1/α(L1 + · · · + Ld)
D
= L1, (14)

where
D
= means equal in distribution. The Cauchy case in Example 3.2 corresponds to α = 1

and d = 2. An immediate consequence of (14) is that for all γ,

VaRγ

(
d∑

k=1

Lk

)

= d1/α VaRγ(L1) = d1/α−1

(
d∑

k=1

VaRγ(Lk)

)

with

d1/α−1






> 1 if α < 1,

= 1 if α = 1,

< 1 if α > 1.
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In this example, it is clearly seen how the change from a finite mean model (α > 1) with

subadditivity for VaR moves to superadditivity in the infinite mean case (α < 1). The

example can be further detailed restricting the Lk’s to be positive and replacing “symmetric

α-stability” by “being in the domain of attraction of an α-stable law” which leads to models

like (2); see Embrechts et al. (1997), Definition 2.2.7 and Theorem 2.2.8. A similar example

is also considered in Klüppelberg and Rootzén (1999); they give a nice discussion on the

inability of VaR to risk manage catastrophic events. For an early discussion of this example

in the economic literature, see also Fama and Miller (1972), p. 271. �

The basic implication of the previous examples is that for extremely heavy-tailed loss dfs, i.e.

(2) with 0 < αk < 1, and independent Lk’s,

VaRγ(L1 + · · · + Ld) >

d∑

k=1

VaRγ(Lk),

at least for γ sufficiently large. This raises the issue how to justify capital reduction due

to “diversification”. The quotes are included to hint at the need for a definition of the

concept of diversification in this case; see for instance Tasche (2005) for a relevant discussion

and Embrechts et al. (2002), Remark 2. To what extent this is merely a theoretical issue

needs settling; operational risk managers however have to be aware of the fact that in the

presence of extremely heavy-tailed loss distributions, standard economic thinking may have

to be reconsidered. Only more extensive data analyses will reveal the extent to which the

above is relevant. For now we have to accept that a VaR-based risk capital calculation for

operational risk is not yet fully understood.

A natural question one might ask in the light of the problems encountered with VaR in the

presence of extremely heavy-tailed distributions (α < 1), is whether or not a different risk

measure exists that would be coherent (i.e. subadditive) and hence for which the diversification

argument would still hold. The natural candidate, the expected shortfall

ES99.9% = E(Lk|Lk > VaR99.9%) ,

is not defined for αk < 1; indeed in this case E(Lk) = ∞. Moreover, it follows from Delbaen

(2002), Theorem 13, that any coherent risk measure ρ which only depends on the distribution

function of the risks and for which ρ ≥ VaRγ holds has to satisfy ρ ≥ ESγ . The expected

shortfall is therefore the smallest such coherent risk measure larger than VaR. Formulated
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differently: there exists no distribution invariant coherent risk measure larger than VaR which

yields finite risk capital for infinite mean Pareto distributions. This leaves little hope for

finding an easy solution for the capital charge problem for portfolios with extremely heavy

tails. This hope is further shattered by a result from functional analysis; see Rudin (1973),

Section 1.47. In the spaces L
p = {X rv : E |X|p < ∞} with 0 < p < 1 (corresponding

to our 0 < α < 1 case) there exist no convex open sets other than the empty set and L
p

itself. As a consequence, 0 is the only continuous linear functional on L
p1. Translated into

our terminology: any systematic and reasonable handling of infinite mean risks will be very

challenging indeed.

We finally want to bring the interesting papers Wüthrich (2003) and Alink et al. (2004)

to the operational risk modeler’s attention. In these papers, the authors show that “for

d identically and continuously distributed dependent risks L1, . . . , Ld, the probability of a

large aggregate loss of
∑d

k=1 Lk scales like the probability of a large individual loss of L1,

times a proportionality factor qd.” They show that the value of qd, and hence the resulting

(non)-subadditivity of VaR, depends on the interplay between the interdependence properties

of L1, . . . , Ld and the heavy-tailedness of the Lk’s. Further papers containing results for

dependent risks are Ibragimov (2005), Section 17, and Dańıelsson et al. (2005).

4 The one loss causes ruin problem

In this section we present some further tools and results, mainly from the world of insurance

mathematics, which in the light of the previous discussions may be useful in understanding

the observed properties of operational risk data.

We first make some comments about loss portfolios where the (iid, say) losses follow a Pareto-

type distribution as in (2) with tail-index α. Based on the concept of Lorenz curve in economics

as discussed in Embrechts et al. (1997), Section 8.2, a large claim index is introduced explaining

what percentage of the individual losses constitutes a certain percentage of the total portfolio

loss. For instance, the famous 20 – 80 rule corresponds to α = 1.4. This means that, in an

iid Pareto portfolio with tail-index 1.4, 20% of the individual losses produce 80% of the total

portfolio loss. In the light-tailed exponential case, we roughly have a 50 – 80 rule. In contrast,

α = 1.01 (a model with still finite mean, but only just) leads to a 0.1 – 95 rule, i.e. 0.1% of

1Rudin states, “This is, of course, in violent contrast to the familiar case p ≥ 1.”
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the losses is responsible for 95% of the total loss amount; compare this with the comments by

Mandelbrot and Hudson quoted in Example 3.2. In such models (and definitely for α < 1)

we enter the “one loss causes ruin” regime as discussed in Asmussen (2000), p. 264, as the

“one large claim” heuristics. See also Figure 1.3.7 in Embrechts et al. (1997) for a simulated

illustration of this phenomenon in a ruin model context. A discussion of this figure and its

consequences is also to be found in Mandelbrot and Hudson (2004), p. 232.

There are various ways in which the “one loss causes ruin” paradigm manifests itself. In

the context of operational risk, the route via subexponentiality is a very natural one; see

Embrechts et al. (1997), Section A 3.2. Take X1, . . . ,Xn positive iid random variables with

common distribution function FX , denote Sn =
∑n

k=1Xk and Mn = max(X1, . . . ,Xn). The

distribution function FX is called subexponential (denoted by FX ∈ S) for some (and then for

all) n ≥ 2 if

lim
x→∞

P(Sn > x)

P(Mn > x)
= 1, (15)

i.e. a large value of Sn is mainly determined by a single large individual value Mn; see again

the final comment in Example 3.2. Examples of distributions satisfying (15) are Pareto-type

distributions like in (2), the lognormal and the loggamma distributions for instance. Restated

in the case of L in (15) this yields that for iid business line and/or risk type rvs L1, . . . , Ld

with FLi
∈ S one has that for x large,

P(L > x) ∼ P(max(L1, . . . , Ld) > x).

Equivalently one can write P(L > x) ∼ dP(L1 > x) for x large.

A further interesting property of subexponential distributions, relevant for operational risk,

reveals itself when we reconsider Lk in its frequency-severity decomposition, i.e. if we assume

that for each k = 1, . . . , d,

Lk =

Nk∑

i=1

Xi(k) (16)

for iid loss severity rvs Xi(k), i ≥ 1, independent of the loss frequency rv Nk, k = 1, . . . , d.

In this case, the rvs Lk in (16) are referred to as compound rvs. We assume that the Xi(k)’s

have distribution function FX(k), k = 1, . . . , d. Several useful results now hold; see Embrechts

et al. (1997) for details. First of all, if for some ε > 0,
∑

∞

n=1(1+ ε)nP(Nk = n) <∞ (satisfied

for instance in the important binomial, Poisson and negative binomial cases) and FX(k) ∈ S,
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then

lim
x→∞

P(Lk > x)

1 − FX(k)(x)
= E(Nk). (17)

This implies that for large x, the tail of the aggregate loss distribution, P(Lk > x), is mainly

determined by the tail of one individual loss. Hence P(Lk > x) ∼ E(Nk)P(Xi(k) > x) for

x large. In particular, if P(Xi(k) > x) = x−αkhk(x) with hk slowly varying, then P(Lk >

x) ∼ E(Nk)x
−αkhk(x) for x → ∞. It is interesting to note that the converse also holds, i.e.

if P(Lk > x) has power-tail behavior, then so does the individual loss df P(Xi(k) > x). The

property P(Lk > x) ∼ E(Nk)P(Xi(k) > x) for x→ ∞ holds if and only if FX(k) ∈ S; a proof of

this important result in the compound Poisson case is to be found in Embrechts et al. (1997),

Theorem A.3.19. We want to stress that asymptotic formulas like (17) are of methodological

rather than numerical importance. For instance, a methodological consequence of (17) is that

the so-called maximum domain of attraction conditions for the use of EVT are equivalently

satisfied (or not) by the individual loss dfs FX(k) and the aggregated loss dfs P(Lk ≤ x).

The fact that estimates based on (17) may lead to unsatisfactory numerical results is well

documented; see for instance Rolski et al. (1998), p. 176, and De Vylder and Goovaerts

(1984).

For the total sum L =
∑d

k=1 Lk, results similar to (17) hold under extra conditions. One

such example is the compound Poisson case. Suppose that the frequency rvs Nk in (16) are

independent and Poisson(λk) distributed for k = 1, . . . , d and further that the severity rvs

Xi(k) are independent for k = 1, . . . , d. Hence L1, . . . , Ld are independent and one easily

shows that L =
∑d

k=1 Lk is compound Poisson as well, with intensity λ =
∑d

k=1 λk and

loss severity df F =
∑d

k=1
λk

λ FX(k). Note that F is a mixture distribution as discussed in

Example 2.2. The “one loss causes ruin” paradigm in this case translates into the fact that

the individual loss df FX(k), k = 1, . . . , d, with the heaviest tail determines the tail of the

distribution of the total loss L. Suppose that the individual loss dfs FX(k), k = 1, . . . , d,

satisfy

P(X(k) > x) = x−αkhk(x),

with α1 < α2 < · · · < αd, then in the above compound Poisson case,

lim
x→∞

P(L > x)

P(X(1) > x)
= λ1, (18)

so that a very high loss for the total sum L =
∑d

k=1 Lk is essentially due to a very high value

for an individual loss in the most heavy-tailed business line (say). Practitioners are well aware
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of this phenomenon: it is the very few largest losses that cause the main concern. This is of

particular importance in the context of operational risk. The above results hopefully give some

methodological support for this practical awareness. The results stated can also be formulated

for subexponential dfs and more general counting random variables Nk, k = 1, . . . , d. For

details, see Embrechts et al. (1997), McNeil et al. (2005) and the references therein.

5 Conclusion

In this paper, we have presented some issues underlying the AMA-LDA modeling of opera-

tional risk. The key message addressed the need for a very careful handling of quantitative

risk measurement of extremely heavy-tailed loss data. The transition from finite to infinite

mean models marks a risk management step into a methodological danger zone. The extent to

which operational risk data really exhibit such heavy-tailed behavior needs further analysis.

It is therefore to be hoped that industry will share (some of) its data with academia. In the

mean time, we can just warn aginst a possibly too naive optimism concerning the calculation

of an operational risk, AMA based capital charge.

The issue is perhaps less one of finite versus infinite mean, but more one of “Do we really

understand the loss-generating mechanism underlying operational risk data flowing into bank

internal data warehouses or into quantitative impact studies in the hands of the regulators

worldwide?” That the very large losses really drive the capital charge calculation was obvious

from the start. In our paper, we aimed at clarifying some of the issues underlying this “one

huge loss causes havoc” paradigm. When handled correctly, EVT based analysis offers a

perfect tool for pointing at data which are about to enter this paradigm; when this happens,

judgment has to be added to statistical analysis. In Section 2, we presented some models

which allow to help such judgment calls: we strongly believe that data contamination is a

core issue in need for further research. Even a small amount of contamination can completely

destroy the good statistical properties of estimators used. Robust statistics is a framework

which allows to analyze these issues in detail; see for instance Dell’Aquila and Ronchetti

(2006) and Reiss and Thomas (2001). A key word to look for is robust EVT; Dell’Aquila and

Embrechts (2006) contains a brief discussion on some of these issues.

Other fields of interesting research concern the definition of risk measures and/or risk mea-

surement procedures to be used in the presence of very heavy-tailed data. One way toward
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the calculation of high quantiles (VaRγ with γ close to 1) could be the use of finite upper limit

EVT, where the upper limit is for instance set at an accounting value marking insolvency of

the company. It would certainly be interesting to compare EVT estimates for the risk capital

both in a finite as well as an infinite support model. A further issue which needs investigation

is whether a VaR estimate at a lower confidence level, 90% say, combined with a scaling to

99.9%, could be useful in the context of operational risk. This method has been used success-

fully in the analysis of market risk; see for instance Kaufmann (2004) for a comprehensive

discussion and some VaR-based examples in Embrechts and Hoeing (2006).

Whatever road of investigation one follows, the presence of extremely heavy-tailed data will

no doubt make the work both interesting as well as challenging.
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