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INTRODUCTION

For copula applications to financial risk management, it “all” started with the
RiskLab report:

P. Embrechts, A.J. McNeil and D. Straumann (1997(1), 1999(2),
2000(3)) Correlation and dependency in risk management: Properties and
pitfalls.

and the RiskMetrics report:

D.X. Li (1998, 2000) On default correlation: A copula function approach.
Working paper 99-07, RiskMetrics Group.

(1) First version as RiskLab report

(2) Abridged version published in RISK Magazine, May 1999, 69-71

(3) Full length published in: Risk Management: Value at Risk and Beyond, ed.
M.A.H. Dempster, Cambridge University Press, Cambridge (2000), 176-223
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POTENTIAL COPULA APPLICATIONS

• Insurance:

– Life (multi-life products)
– Non-life (multi-line covers)
– Integrated risk management (Solvency 2)
– Dynamic financial analysis (ALM)

• Finance:

– Stress testing (Credit)
– Risk aggregation
– Pricing/Hedging basket derivatives
– Risk measure estimation under incomplete information

• Other fields:

– Reliability, Survival analysis
– Environmental science, Genetics
– ...
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FROM THE WORLD OF FINANCE

• “Extreme, synchronized rises and falls in financial markets occur infrequently
but they do occur. The problem with the models is that they did not assign
a high enough chance of occurrence to the scenario in which many things
go wrong at the same time - the “perfect storm” scenario”

(Business Week, September 1998)

• Consulting for a large bank, topics to be discussed were:

– general introduction to the topic of EVT
– common pitfalls and its application to financial risk management
– the application of EVT to the quantification of operational risk
– general introduction to the topic of copulae and their possible use in

financial risk management
– sources of information to look at if we want to find out more

(London, March 2004)
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THE REGULATORY ENVIRONMENT

• Basel Accord for Banking Supervision (1988)

– Cooke ratio, “haircut” principle, too coarse

• Amendment to the Accord (1996)

– VaR for Market Risk, Internal models, Derivatives, Netting

• Basel II (1998 – 2007)

– Three Pillar approach

– Increased granularity for Credit Risk

– Operational Risk
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THE REGULATORY ENVIRONMENT

• Solvency 1 (1997)

– Solvency margin as % of premium (non-life), of technical provisions (life)

• Solvency 2 (2000–2004)

– Principle-based (not rule-based)

– Mark-to-market (/model) for assets and liabilities (ALM)

– Target capital versus solvency capital

– Explicit modelling of dependencies and stress scenarios

• Integrated Risk Management
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THE FUNDAMENTAL THEOREMS OF QUANTITATIVE

RISK MANAGEMENT (QRM)

• (FTQRM - 1) For elliptically distributed risk vectors, classical Risk

Management tools like VaR, Markowitz portfolio approach, ... work fine:

Recall:

– Y in R
d is spherical if Y

d
= UY for all orthogonal matrices U

– X = AY + b, A ∈ R
d×d, b ∈ R

d is called elliptical

– Let Z ∼ Nd(0,Σ), W ≥ 0, independent of Z, then

X = µ +WZ

is elliptical (multivariate Normal variance-mixtures)

– If one takes

W =
√

ν/V , V ∼ χ2
ν, then X is multivariate tν

W normal inverse Gaussian, then X is generalized hyperbolic
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THE FUNDAMENTAL THEOREMS OF QUANTITATIVE

RISK MANAGEMENT (QRM)

• (FTQRM - 2) Much more important!

For non-elliptically distributed risk vectors, classical RM tools break down:

- VaR is typically non-subadditive

- risk capital allocation is non-consistent

- portfolio optimization is risk-measure dependent

- correlation based methods are insufficient

• A(n early) stylized fact:

In practice, portfolio risk factors typically are non-elliptical

Questions: - are these deviations relevant, important

- what are tractable, non-elliptical models

- how to go from static (one-period) to dynamic (multi-period) RM
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SOME COMMON RISK MANAGEMENT FALLACIES

• Fallacy 1: marginal distributions and their correlation matrix uniquely

determine the joint distribution

True for elliptical families, wrong in general

• Fallacy 2: given two one-period risks X1, X2, VaR(X1 +X2) is maximal for

the case where the correlation ρ(X1, X2) is maximal

True for elliptical families, wrong in general (non-coherence of

VaR)

• Fallacy 3: small correlation ρ(X1, X2) implies that X1 and X2 are close to

being independent
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AND THEIR SOLUTION

• Fallacy 1: standard copula construction (Sklar)

• Fallacy 2: many related (copula-) publications

Reference: P. Embrechts and G. Puccetti (2004). Bounds on Value-At-Risk,

preprint ETH Zürich, www.math.ethz.ch/~embrechts

• Fallacy 3: many copula related examples

An economically relevant example: Two country risks X1, X2

– Z ∼ N(0, 1) independent of scenario generator U ∼ UNIF({−1,+1})
– X1 = Z, X2 = UZ ∼ N(0, 1)

– ρ(X1, X2) = 0

– X1, X2 are strongly dependent

– X1 +X2 = Z(1 + U) is not normally distributed
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FOR THE QUANTITATIVE RISK MANAGER

WHY ARE COPULAE USEFUL

• pedagogical: “Thinking beyond linear correlation”

• stress testing dependence: joint extremes, spillover, contagion, ...

• worst case analysis under incomplete information:

given: Xi ∼ Fi, i = 1, . . . , d, marginal 1-period risks

Ψ(X): a financial position

∆: a 1-period risk or pricing measure

task: find min ∆(Ψ(X)) and max ∆(Ψ(X)) under the above constraints

• eventually: finding better fitting dynamic models
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THE BASIC MESSAGE FOR (STATIC) COPULA

APPLICATIONS TO QRM

X = (X1, . . . , Xd)
′ one-period risks

FX(x) = P (X1 ≤ x1, . . . , Xd ≤ xd)

Fi(xi) = P (Xi ≤ xi), i = 1, 2, . . . , d

FX ⇐⇒ (F1, . . . , Fd;C)

with copula C (via Sklar’s Theorem)

“⇒” : finding useful copula models

“⇐” : stress testing
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PE’s DESERT-ISLAND COPULA

CLAIM: For applications in QRM, the most useful copula is the t-copula, Ct
ν,Σ

in dimension d ≥ 2 (McNeil, 1997)

Its derived copulae include:

• skewed or non-exchangeable t-copula

• grouped t-copula

• conditional excess or t-tail-copula

Reference: S. Demarta and A.J. McNeil (2004). The t copula and related

copulas, preprint ETH Zürich, www.math.ethz.ch/~mcneil
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THE MULTIVARIATE SKEWED t DISTRIBUTION

The random vector X is said to have a multivariate skewed t distribution if

X
d
= µ +Wγ +

√
WZ

where µ,γ ∈ R
d

Z ∼ Nd(0,Σ)

W has an inverse gamma distribution depending on ν

W and Z are independent

Density:

f(x) = c
Kν+d

2

“√
(ν+Q(x))γ′Σ−1γ

”

exp((x−µ)′Σ−1γ)
“√

(ν+Q(x))γ′Σ−1γ
”−ν+d

2
“

1+
Q(x)

ν

”

ν+d
2

where Q(x) = (x − µ)′Σ−1(x − µ), c = 21−(ν+d)/2

Γ(ν
2)(πν)d/2|Σ|1/2

and Kλ denotes a modified Bessel function of the third kind
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THE GROUPED t-COPULA

The grouped t-copula is closely related to a t-copula where different subvectors
of the vector X have different levels of tail dependence

If
• Z ∼ Nd(0,Σ)

• Gν denotes the df of a univariate inverse gamma, Ig
(

ν
2 ,

ν
2

)

distribution

• U ∼ UNIF(0, 1) is a uniform variate independente of Z

• P is a partition of {1, . . . , d} into m sets of sizes {sk : k = 1, . . . ,m}

• νk is the degrees of freedom parameter associated with set of size sk

• Wk = G−1
νk

(U)
then

X =
(

√

W1Z1, . . . ,
√

W1Zs1, . . . . . . ,
√

WmZd−sm+1, . . . ,
√

WmZd

)′

has a grouped t copula (similarly, grouped elliptical copula)
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THE TAIL LIMIT COPULA

Lower Tail Limit Copula Convergence Theorem: Let C be an exchangeable

copula such that C(v, v) > 0 for all v > 0. Assume that there is a strictly

increasing continuous function K : [0,∞) → [0,∞) such that

lim
v→0

C(vx, v)

C(v, v)
= K(x), x ∈ [0,∞).

Then there is η > 0 such that K(x) = xηK(1/x) for all (0,∞). Moreover, for

all (u1, u2) ∈ (0, 1]2

Clo
0 (u1, u2) = G(K−1(u1), K

−1(u2)),

where G(x1, x2) := xη
2K(x1/x2) for (x1, x2) ∈ (0, 1]2, G := 0 on [0, 1]2\(0, 1]2

and Clo
0 denotes the lower tail limit copula

Observation: The function K(x) fully determines the tail limit copula
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THE t LOWER TAIL LIMIT COPULA

For the bivariate t-copula Ct
ν,ρ with tail dependence coefficient λ we have for

the t-LTL copula that

K(x) =

xtν+1

(

−(x1/ν−ρ)√
1−ρ2

√
ν + 1

)

+ tν+1

(

−(x−1/ν−ρ)√
1−ρ2

√
ν + 1

)

λ

with x ∈ [0, 1], whereas for the Clayton-LTL copula, with parameter θ,

K(x) =
(

(x−θ + 1)/2
)−1/θ

Important for pratice: “for any pair of parameter values ν and ρ the

K-function of the t-LTL copula may be very closely approximated by the K-

function of the Clayton copula for some value of θ” (S. Demarta and A.J.

McNeil (2004))
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EXAMPLE 1: the Merton model for corporate default (firm value model,
latent variable model)

• portfolio {(Xi, ki) : i = 1, . . . , d} firms, obligors

• obligor i defaults by end of year if Xi ≤ ki

(firm value is less than value of debt, properly defined)

• modelling joint default: P (X1 ≤ k1, . . . , Xd ≤ kd)

– classical Merton model: X ∼ Nd(µ,Σ)
– KMV: calibrate ki via “distance to default” data
– CreditMetrics: calibrate ki using average default probabilities for different

rating classes
– Li model: Xi’s as survival times are assumed exponential and use Gaussian

copula

• hence standard industry models use Gaussian copula

• improvement using t-copula
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• standardised equicorrelation (ρi = ρ = 0.038) matrix Σ calibrated so that for
i = 1, . . . , d, P (Xi ≤ ki) = 0.005 (medium credit quality in
KMV/CreditMetrics)

• set ν = 10 in t-model and perform 100 000 simulations on d = 10 000
companies to find the loss distribution

• use VaR concept to compare risks

Results:

min 25% med mean 75% 90% 95% max
Gaussian 1 28 43 49.8 64 90 109 131

t 0 1 9 49.9 42 132 235 3 238

• more realistic t-model: block-t-copula (Lindskog, McNeil)

• has been used for banking and (re)insurance portfolios
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Example 2: High-Frequency FX data

tick-by-tick FX data

deseasonalised data

static copula fitting marginal GARCH type filtering

time-invariant copula fitting

time-varying copula fitting

copula change-point analysis
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FX DATA SERIES

USD/DEM

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

1.
4

1.
8

2.
2

USD/JPY

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

90
13

0
17

0

Olsen data set: Bivariate 5 minutes logarithmic middle prices

p̄t = 1
2 (log pt,bid + log pt,ask)
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ASYMPTOTIC CLUSTERING OF BIVARIATE EXCESSES

• Extreme tail dependence copula relative to a threshold t:

Ct(u, v) = P (U ≤ F−1
t (u), V ≤ F−1

t (v)|U ≤ t, V ≤ t)

with conditional distribution function

Ft(u) := P (U ≤ u|U ≤ t, V ≤ t), 0 ≤ u ≤ 1

• Archimedean copulae: there exists a continuous, strictly decreasing function
ψ : [0, 1] 7→ [0,∞] with ψ(1) = 0, such that

C(u, v) = ψ[−1](ψ(u) + ψ(v))

• For “sufficiently regular” Archimedean copulae (Juri and Wüthrich (2002)):

lim
t→0+

Ct(u, v) = CClayton
α (u, v)

Juri, A. and M. Wüthrich (2002). Copula convergence theorems for tail events.
Insurance: Math. & Econom., 30: 405–420
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ASYMPTOTIC CLUSTERING OF BIVARIATE EXCESSES
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Estimated t-copula conditional correlation of daily returns
on the FX USD/DEM and USD/JPY spot rates

Conditional cross−correlation of daily returns

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 Change−point model

Time varying correlation
Constant correlation
95% CI for const. correl.

A. Dias and P. Embrechts (2004). Dynamic copula models and change-point
analysis for multivariate high-frequency data in finance, preprint ETH Zürich
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HINTS* FOR FURTHER READING

(* There exists an already long and fast growing literature)

Books combining copula modelling with applications to finance:

• Bluhm, C., Overbeck, L. and Wagner, C. An Introduction to Credit Risk

Modeling. Chapman & Hall/CRC, New York, 2002

• Cherubini, U., E. Luciano and W. Vecchiato (2004). Copula Methods in

Finance, Wiley, To appear

• McNeil, A.J., R. Frey and P. Embrechts (2004). Quantitative Risk

Management: Concepts, Techniques and Tools. Book manuscript, To
appear

• Schönbucher, P.J. Credit Derivatives Pricing Models, Wiley Finance, 2003

(and there are more)
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HINTS FOR FURTHER READING

Some papers for further reading:

• Cherubini, U. and E. Luciano, Bivariate option pricing with copulas, Applied
Mathematical Finance 9, 69–85 (2002)

• Dias, A. and P. Embrechts (2003). Dynamic copula models for multivariate
high-frequency data in finance. Preprint, ETH Zürich

• Fortin, I. and C. Kuzmics (2002). Tail-dependence in stock-return pairs:
Towards testing ellipticity. Working paper, IAS Vienna

• Patton, A.J. (2002). Modelling time-varying exchange rate dependence
using the conditional copula. Working paper, UCSD

• Rosenberg, J., Nonparametric pricing of multivariate contingent claims,
NYU, Stern School of Business (2001), working paper

• van den Goorbergh, C. Genest and B.J.M. Werker, Multivariate option
pricing using dynamic copula models, Tilburg University (2003), discussion
paper No. 2003-122

(and there are many, many more)
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CONCLUSION

• Copulae are here to stay as a risk management tool

• Dynamic models

• Calibration / fitting

• High dimensions (d ≥ 100, say)

• Most likely application: credit risk

• Limit theorems

• Link to multivariate extreme value theory
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