QUANTITATIVE RISK MANAGEMENT: CONCEPTS, TECHNIQUES AND TOOLS*

Paul Embrechts

Department of Mathematics ETH Zurich

www.math.ethz.ch/~embrechts

QUANTITATIVE RISK MANAGEMENT: CONCEPTS, TECHNIQUES AND TOOLS

OUTLINE OF THE TALK

- Introduction
- The Fundamental Theorems of Quantitative Risk Management
- PE's Desert-Island Copula
- Example 1: Credit Risk
- Example 2: A Copula Model for FX-data
- Some Further References
- Conclusion

INTRODUCTION

For copula applications to financial risk management, it "all" started with the **RiskLab** report:

P. Embrechts, **A.J. McNeil** and **D. Straumann** (1997⁽¹⁾, 1999⁽²⁾, 2000⁽³⁾) Correlation and dependency in risk management: Properties and pitfalls.

and the **RiskMetrics** report:

D.X. Li (1998, 2000) On default correlation: A copula function approach. Working paper 99-07, RiskMetrics Group.

- ⁽¹⁾ First version as RiskLab report
- ⁽²⁾ Abridged version published in RISK Magazine, May 1999, 69-71
- ⁽³⁾ Full length published in: Risk Management: Value at Risk and Beyond, ed.
 M.A.H. Dempster, Cambridge University Press, Cambridge (2000), 176-223

POTENTIAL COPULA APPLICATIONS

• Insurance:

- Life (multi-life products)
- Non-life (multi-line covers)
- Integrated risk management (Solvency 2)
- Dynamic financial analysis (ALM)

• Finance:

- Stress testing (Credit)
- Risk aggregation
- Pricing/Hedging basket derivatives
- Risk measure estimation under incomplete information
- Other fields:
 - Reliability, Survival analysis
 - Environmental science, Genetics

- ...

FROM THE WORLD OF FINANCE

 "Extreme, synchronized rises and falls in financial markets occur infrequently but they do occur. The problem with the models is that they did not assign a high enough chance of occurrence to the scenario in which many things go wrong at the same time - the "perfect storm" scenario"

(Business Week, September 1998)

- Consulting for a large bank, topics to be discussed were:
 - general introduction to the topic of $\ensuremath{\mathsf{EVT}}$
 - common pitfalls and its application to financial risk management
 - the application of EVT to the quantification of operational risk
 - general introduction to the topic of copulae and their possible use in financial risk management
 - sources of information to look at if we want to find out more

(London, March 2004)

THE REGULATORY ENVIRONMENT

- Basel Accord for Banking Supervision (1988)
 - Cooke ratio, "haircut" principle, too coarse
- Amendment to the Accord (1996)
 - VaR for Market Risk, Internal models, Derivatives, Netting
- **Basel II** (1998 2007)
 - Three Pillar approach
 - Increased granularity for Credit Risk
 - Operational Risk

THE REGULATORY ENVIRONMENT

- Solvency 1 (1997)
 - Solvency margin as % of premium (non-life), of technical provisions (life)
- Solvency 2 (2000–2004)
 - Principle-based (not rule-based)
 - Mark-to-market (/model) for assets and liabilities (ALM)
 - Target capital versus solvency capital
 - Explicit modelling of dependencies and stress scenarios

• Integrated Risk Management

THE FUNDAMENTAL THEOREMS OF QUANTITATIVE RISK MANAGEMENT (QRM)

• (FTQRM - 1) For elliptically distributed risk vectors, classical Risk Management tools like VaR, Markowitz portfolio approach, ... work fine:

Recall:

- **Y** in \mathbb{R}^d is spherical if $\mathbf{Y} \stackrel{d}{=} U\mathbf{Y}$ for all orthogonal matrices U
- $\mathbf{X} = A\mathbf{Y} + \mathbf{b}$, $A \in \mathbb{R}^{d \times d}$, $\mathbf{b} \in \mathbb{R}^d$ is called elliptical
- Let $\mathbf{Z} \sim \mathsf{N}_d(\mathbf{0}, \mathbf{\Sigma})$, $W \ge 0$, independent of \mathbf{Z} , then

$$\mathbf{X} = \boldsymbol{\mu} + W \mathbf{Z}$$

is elliptical (multivariate Normal variance-mixtures)

- If one takes

 $W = \sqrt{\nu/V}$, $V \sim \chi^2_{\nu}$, then **X** is multivariate t_{ν}

W normal inverse Gaussian, then ${\bf X}$ is generalized hyperbolic

THE FUNDAMENTAL THEOREMS OF QUANTITATIVE RISK MANAGEMENT (QRM)

• (FTQRM - 2) Much more important!

For non-elliptically distributed risk vectors, classical RM tools break down:

- VaR is typically non-subadditive
- risk capital allocation is non-consistent
- portfolio optimization is risk-measure dependent
- correlation based methods are insufficient
- A(n early) stylized fact:

In practice, portfolio risk factors typically are non-elliptical

Questions: - are these deviations relevant, important

- what are tractable, non-elliptical models
- how to go from static (one-period) to dynamic (multi-period) RM

SOME COMMON RISK MANAGEMENT FALLACIES

• Fallacy 1: marginal distributions and their correlation matrix uniquely determine the joint distribution

True for elliptical families, wrong in general

 Fallacy 2: given two one-period risks X₁, X₂, VaR(X₁ + X₂) is maximal for the case where the correlation ρ(X₁, X₂) is maximal

True for elliptical families, **wrong** in general (non-coherence of VaR)

• Fallacy 3: small correlation $\rho(X_1, X_2)$ implies that X_1 and X_2 are close to being independent

AND THEIR SOLUTION

- Fallacy 1: standard copula construction (Sklar)
- Fallacy 2: many related (copula-) publications
 Reference: P. Embrechts and G. Puccetti (2004). Bounds on Value-At-Risk,
 preprint ETH Zürich, www.math.ethz.ch/~embrechts
- Fallacy 3: many copula related examples An economically relevant example: Two country risks X_1, X_2
 - $Z \sim N(0,1)$ independent of scenario generator $U \sim \text{UNIF}(\{-1,+1\})$

-
$$X_1 = Z$$
, $X_2 = UZ \sim \mathsf{N}(0, 1)$

- $\ \rho(X_1, X_2) = 0$
- X_1, X_2 are strongly dependent
- $X_1 + X_2 = Z(1 + U)$ is **not** normally distributed

FOR THE QUANTITATIVE RISK MANAGER

WHY ARE COPULAE USEFUL

- pedagogical: "Thinking beyond linear correlation"
- stress testing dependence: joint extremes, spillover, contagion, ...
- worst case analysis under incomplete information:

given: $X_i \sim F_i$, i = 1, ..., d, marginal 1-period risks $\Psi(\mathbf{X})$: a financial position Δ : a 1-period risk or pricing measure

task: find $\min \Delta(\Psi(\mathbf{X}))$ and $\max \Delta(\Psi(\mathbf{X}))$ under the above constraints

• eventually: finding better fitting dynamic models

THE BASIC MESSAGE FOR (STATIC) COPULA APPLICATIONS TO QRM

 $oldsymbol{X} = (X_1, \ldots, X_d)'$ one-period risks

 $F_{\boldsymbol{X}}(\boldsymbol{x}) = P(X_1 \leq x_1, \dots, X_d \leq x_d)$

 $F_i(x_i) = P(X_i \le x_i), \ i = 1, 2, \dots, d$

$$F_{\boldsymbol{X}} \iff (F_1, \dots, F_d; C)$$

with copula C (via Sklar's Theorem)

"⇒" : finding useful copula models "⇐" : stress testing

PE's DESERT-ISLAND COPULA

CLAIM: For applications in QRM, the most useful copula is the *t*-copula, $C_{\nu,\Sigma}^t$ in dimension $d \ge 2$ (McNeil, 1997)

Its derived copulae include:

- skewed or non-exchangeable *t*-copula
- grouped *t*-copula
- conditional excess or *t*-tail-copula

Reference: S. Demarta and A.J. McNeil (2004). The *t* copula and related copulas, preprint ETH Zürich, www.math.ethz.ch/~mcneil

THE MULTIVARIATE SKEWED t DISTRIBUTION

The random vector \boldsymbol{X} is said to have a multivariate skewed t distribution if

$$oldsymbol{X} \stackrel{d}{=} oldsymbol{\mu} + Woldsymbol{\gamma} + \sqrt{W}oldsymbol{Z}$$

where $oldsymbol{\mu},oldsymbol{\gamma}\in\mathbb{R}^{d}$

 $oldsymbol{Z} \sim \mathsf{N}_d(\mathbf{0}, \Sigma)$

W has an inverse gamma distribution depending on ν W and \pmb{Z} are independent

Density:

$$f(\boldsymbol{x}) = c \frac{K_{\frac{\nu+d}{2}} \left(\sqrt{(\nu+Q(\boldsymbol{x}))\gamma'\Sigma^{-1}\gamma} \right) \exp\left((\boldsymbol{x}-\boldsymbol{\mu})'\Sigma^{-1}\gamma\right)}{\left(\sqrt{(\nu+Q(\boldsymbol{x}))\gamma'\Sigma^{-1}\gamma}\right)^{-\frac{\nu+d}{2}} \left(1+\frac{Q(\boldsymbol{x})}{\nu}\right)^{\frac{\nu+d}{2}}}$$

where $Q(\boldsymbol{x}) = (\boldsymbol{x}-\boldsymbol{\mu})'\Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu}), \qquad c = \frac{2^{1-(\nu+d)/2}}{\Gamma\left(\frac{\nu}{2}\right)(\pi\nu)^{d/2}|\Sigma|^{1/2}}$

and K_{λ} denotes a modified Bessel function of the third kind

THE GROUPED t-COPULA

The grouped t-copula is closely related to a t-copula where different subvectors of the vector $oldsymbol{X}$ have different levels of tail dependence

lf

- $\boldsymbol{Z} \sim \mathsf{N}_d(\boldsymbol{0}, \boldsymbol{\Sigma})$
- G_{ν} denotes the df of a univariate inverse gamma, $\lg\left(\frac{\nu}{2}, \frac{\nu}{2}\right)$ distribution
- $U \sim \mathsf{UNIF}(0,1)$ is a uniform variate independente of \pmb{Z}
- \mathcal{P} is a partition of $\{1, \ldots, d\}$ into m sets of sizes $\{s_k : k = 1, \ldots, m\}$
- ν_k is the degrees of freedom parameter associated with set of size s_k

•
$$W_k = G_{\nu_k}^{-1}(U)$$

then

$$oldsymbol{X} = \left(\sqrt{W_1}Z_1, \ldots, \sqrt{W_1}Z_{s_1}, \ldots, \sqrt{W_m}Z_{d-s_m+1}, \ldots, \sqrt{W_m}Z_d
ight)'$$

has a grouped t copula (similarly, grouped elliptical copula)

THE TAIL LIMIT COPULA

Lower Tail Limit Copula Convergence Theorem: Let C be an exchangeable copula such that C(v, v) > 0 for all v > 0. Assume that there is a strictly increasing continuous function $K : [0, \infty) \to [0, \infty)$ such that

$$\lim_{v \to 0} \frac{C(vx, v)}{C(v, v)} = K(x), \qquad x \in [0, \infty).$$

Then there is $\eta > 0$ such that $K(x) = x^{\eta}K(1/x)$ for all $(0, \infty)$. Moreover, for all $(u_1, u_2) \in (0, 1]^2$

$$C_0^{lo}(u_1, u_2) = G(K^{-1}(u_1), K^{-1}(u_2)),$$

where $G(x_1, x_2) := x_2^{\eta} K(x_1/x_2)$ for $(x_1, x_2) \in (0, 1]^2$, G := 0 on $[0, 1]^2 \setminus (0, 1]^2$ and C_0^{lo} denotes the lower tail limit copula

Observation: The function K(x) fully determines the tail limit copula

THE t LOWER TAIL LIMIT COPULA

For the bivariate *t*-copula $C_{\nu,\rho}^t$ with tail dependence coefficient λ we have for the *t*-LTL copula that

$$K(x) = \frac{xt_{\nu+1}\left(\frac{-(x^{1/\nu}-\rho)}{\sqrt{1-\rho^2}}\sqrt{\nu+1}\right) + t_{\nu+1}\left(\frac{-(x^{-1/\nu}-\rho)}{\sqrt{1-\rho^2}}\sqrt{\nu+1}\right)}{\lambda}$$

with $x \in [0, 1]$, whereas for the Clayton-LTL copula, with parameter θ ,

$$K(x) = \left((x^{-\theta} + 1)/2 \right)^{-1/\theta}$$

Important for pratice: "for any pair of parameter values ν and ρ the K-function of the t-LTL copula may be very closely approximated by the K-function of the Clayton copula for some value of θ " (S. Demarta and A.J. McNeil (2004))

EXAMPLE 1: the Merton model for corporate default (firm value model, latent variable model)

- portfolio $\{(X_i, k_i) : i = 1, \dots, d\}$ firms, obligors
- obligor i defaults by end of year if $X_i \leq k_i$

(firm value is less than value of debt, properly defined)

- modelling joint default: $P(X_1 \leq k_1, \dots, X_d \leq k_d)$
 - classical Merton model: $oldsymbol{X} \sim N_d(oldsymbol{\mu}, \Sigma)$
 - KMV: calibrate k_i via "distance to default" data
 - CreditMetrics: calibrate k_i using average default probabilities for different rating classes
 - Li model: X_i 's as survival times are assumed exponential and use Gaussian copula
- hence standard industry models use Gaussian copula
- improvement using t-copula

- standardised equicorrelation ($\rho_i = \rho = 0.038$) matrix Σ calibrated so that for $i = 1, \ldots, d$, $P(X_i \leq k_i) = 0.005$ (medium credit quality in KMV/CreditMetrics)
- set $\nu=10$ in t-model and perform $100\,000$ simulations on $d=10\,000$ companies to find the loss distribution
- use VaR concept to compare risks

Results:

	min	25%	med	mean	75%	90%	95%	max
Gaussian	1	28	43	49.8	64	90	109	131
t	0	1	9	49.9	42	132	235	3 2 3 8

- more realistic t-model: **block-t-copula** (Lindskog, McNeil)
- has been used for banking and (re)insurance portfolios

Example 2: High-Frequency FX data

FX DATA SERIES

 $\bar{p}_t = \frac{1}{2} \left(\log p_{t,bid} + \log p_{t,ask} \right)$

ASYMPTOTIC CLUSTERING OF BIVARIATE EXCESSES

• Extreme tail dependence copula relative to a threshold *t*:

$$C_t(u, v) = P(U \le F_t^{-1}(u), V \le F_t^{-1}(v) | U \le t, V \le t)$$

with conditional distribution function

$$F_t(u) := P(U \le u | U \le t, V \le t), \ 0 \le u \le 1$$

• Archimedean copulae: there exists a continuous, strictly decreasing function $\psi: [0,1] \mapsto [0,\infty]$ with $\psi(1) = 0$, such that

$$C(u,v) = \psi^{[-1]}(\psi(u) + \psi(v))$$

• For "sufficiently regular" Archimedean copulae (Juri and Wüthrich (2002)):

$$\lim_{t \to 0^+} C_t(u, v) = C_{\alpha}^{\text{Clayton}}(u, v)$$

Juri, A. and M. Wüthrich (2002). Copula convergence theorems for tail events. Insurance: Math. & Econom., 30: 405–420

ASYMPTOTIC CLUSTERING OF BIVARIATE EXCESSES

Threshold

Estimated t-copula conditional correlation of daily returns on the FX USD/DEM and USD/JPY spot rates

A. Dias and P. Embrechts (2004). Dynamic copula models and change-point analysis for multivariate high-frequency data in finance, preprint ETH Zürich

HINTS* FOR FURTHER READING

(* There exists an already long and fast growing literature)

Books combining copula modelling with applications to finance:

- Bluhm, C., Overbeck, L. and Wagner, C. An Introduction to Credit Risk Modeling. Chapman & Hall/CRC, New York, 2002
- Cherubini, U., E. Luciano and W. Vecchiato (2004). *Copula Methods in Finance*, Wiley, To appear
- McNeil, A.J., R. Frey and P. Embrechts (2004). *Quantitative Risk Management: Concepts, Techniques and Tools.* Book manuscript, To appear
- Schönbucher, P.J. Credit Derivatives Pricing Models, Wiley Finance, 2003

(and there are more)

©2004 (A. Dias and P. Embrechts)

HINTS FOR FURTHER READING

Some papers for further reading:

- Cherubini, U. and E. Luciano, Bivariate option pricing with copulas, *Applied Mathematical Finance* **9**, 69–85 (2002)
- Dias, A. and P. Embrechts (2003). Dynamic copula models for multivariate high-frequency data in finance. Preprint, ETH Zürich
- Fortin, I. and C. Kuzmics (2002). Tail-dependence in stock-return pairs: Towards testing ellipticity. Working paper, IAS Vienna
- Patton, A.J. (2002). Modelling time-varying exchange rate dependence using the conditional copula. Working paper, UCSD
- Rosenberg, J., Nonparametric pricing of multivariate contingent claims, NYU, Stern School of Business (2001), working paper
- van den Goorbergh, C. Genest and B.J.M. Werker, Multivariate option pricing using dynamic copula models, Tilburg University (2003), discussion paper No. 2003-122

(and there are many, many more)

CONCLUSION

- Copulae are here to stay as a risk management tool
- Dynamic models
- Calibration / fitting
- High dimensions ($d \ge 100$, say)
- Most likely application: credit risk
- Limit theorems
- Link to multivariate extreme value theory