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Abstract

We consider the problem of determining the shape of an object immersed in an
acoustic medium from measurements obtained at a distance from the object.
We recast this problem as a shape optimization problem where we search for the
domain that minimizes a cost function that quantifies the difference between
the measured and expected signals. The measured and expected signals are
assumed to satisfy a boundary-value problem given by the Helmholtz equation
with the Sommerfeld condition imposed at infinity. Gradient-based algorithms
are used to solve this optimization problem. At every step of the algorithm
the derivative of the cost function with respect to the parameters that describe
the shape of the object is calculated. We develop an efficient method based on
the adjoint equations to calculate the derivative and show how this method is
implemented in a finite element setting. The predominant cost of each step of the
algorithm is equal to one forward solution and one adjoint solution and therefore
is independent of the number of parameters used to describe the shape of the
object. Numerical examples showing the efficacy of the proposed methodology
are presented.
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1. Introduction

Several problems in science and engineering can be posed as optimization problems with
constraints given by variational equations or, equivalently, boundary-value problems. One
such example is finding the shape of an object immersed in an unbounded acoustic medium
given scattering information at certain locations and frequencies in the resonance region.
In this inverse acoustic scattering problem the cost functional is the mismatch between the
scattering pattern obtained from a trial solution and the measured one. The scattering pattern
corresponding to the trial solution satisfies the wave equation with the Sommerfeld radiation
condition imposed at infinity and appropriate boundary conditions imposed on the surface of
the scatterer. This exterior acoustic boundary-value problem is a constraint imposed on the
admissible scattering patterns. The ‘variable’ to be optimized is the shape of the scatterer, or
equivalently, the domain where the boundary-value problem is posed.

On the other hand, the area of mathematical programming, or the solution of nonlinear
constrained optimization problems in several variables, is very well developed, and there are
several robust algorithms that can be used to treat different classes of problems. In this work, we
pose the inverse acoustic scattering problem as anonlinear constrained optimization problem in
several variables and therefore, assuming that the functional and constraints are differentiable,
we use these algorithms to efficiently find the optimum of the mathematical program which in
turn gives the shape of the scatterer.

1.1. Algorithms used in the solution of the inverse acoustic scattering problem

The solution of inverse acoustic scattering problems for frequencies in the resonance region
is a relatively new field in applied mathematics that has seen considerable growth in recent
years. There are several algorithms that attempt to solve this problem. These algorithms, in
general, fall into three classes.

The algorithms of the first class are linear and based on inverting a Fourier transform.
The algorithms presented in [3] and [4] belong to this class. Methods of this type solve the
inverse problem, which is intrinsically nonlinear, using a linear approximation (usually the
Born approximation).

Another class of algorithms is given by the so-called ‘linear sampling methods’ based
on the method of Colton and Kirsch [9]. This method has been analysed and extended
in [6-8, 10, 11, 22, 23]. As observed by Brandfass [4], the methods of Colton and Kirsch
are fundamentally single-frequency methods. There is no available procedure that allows the
inclusion of information from illumination by plane waves of different frequencies.

The third category of algorithms used to solve the inverse acoustic scattering problem
is given by gradient-based methods which are generally considered accurate but slow. In
these algorithms, the inverse problem is formulated as an equation of the type L(dQ2g) = urt
where L is the operator that assigns to every suitable boundary 02p the acoustic pattern ur
of the corresponding scattered wave. This equation is then solved by a Newton-type method
and therefore requires the computation of the derivative of the operator L with respect to the
domain Qp. In [21] Kirsch calculated this domain derivative. His method requires multiple
solutions of the Helmholtz equation (one for each parameter used to describe the surface of
the scatterer) in order to compute the domain derivative. In the numerical examples shown in
that work, the boundary 025 C R? is assumed to be of star-like form. The shape of domains
that can be represented using these curves is limited and therefore this algorithm is not able to
represent accurately many types of scatterers.

Other authors [25, 30] also studied this third class of inverse scattering algorithms but in
all those studies the domains being considered were of star-like form, the domain derivative
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was calculated using an approach that requires the solution of a system of linear equations
with a number of right-hand sides equal to the number of parameters used in the curve’s
representation, and the acoustic problem was solved using integral methods.

Still within the spirit of the methods of the third category, Santosa [33] developed an
algorithm to solve inverse problems involving obstacles using a level-set approach. In his
method, the obstacles are bounded by the zero value of an implicit function. Starting from
an initial guess, the values of this function throughout the domain are updated by solving
a Hamilton—Jacobi-type system. Upon convergence, obstacles are recovered as parts of the
domain where the function attains negative values. Extensions of this methodology to other
reconstruction problems were considered in [12, 26, 32]. In particular, in [26] and [32] the
deformation of the level sets was related to a common operation in shape optimization, called
the shape transformation. Methods using level sets are very general since the topology of the
domain or the number of inclusions does not need to be known a priori. Nevertheless, these
algorithms can be shown to use a steepest-descent direction to update the level set and solve
the optimization problem. As a consequence, they require a greater number of iterations than
methods that use Newton or quasi-Newton updates.

In [13] we proposed a method to solve inverse acoustic problems that falls in the third
category of algorithms described above. In our method, we view the inverse problem as a shape
optimization problem where the shape of the object that minimizes a functional that measures
the error between the computed and measured acoustic patterns is sought. These acoustic
patterns are assumed to be solutions of exterior acoustic problems which can then be viewed
as constraints on the admissible values of the acoustic patterns. The solution of this constrained
optimization problem is then accomplished using a quasi-Newton-type optimization algorithm
that requires the computation of the shape derivative and satisfaction of the constraints. An
auxiliary problem, called the adjoint problem, is solved in order to calculate the shape derivative
efficiently. The acoustic and adjoint problems are solved using efficient finite element methods
and iterative solvers. In this method, the number of scatterers has to be known in advance,
nevertheless the shapes are represented by B-spline curves and therefore no other restricting
assumptions on the geometry need be considered (star-shaped domains, for example).

The previous work was mainly limited to pure radiation conditions. Also, the proposed
formulation was not computationally efficient for the case where the measured data was
obtained many wavelengths away from the scatterer. In particular, it was not possible to
consider the limiting case of measurements obtained in the far field. In this work we extend
our previous method to treat these important cases. The proposed algorithm searches for the
shape that minimizes a functional of the form

5@ = s@) =4 [ - urfas
Is
where u is the scattering pattern corresponding to an exterior acoustic problem posed on €2 and
I's is the surface where scattering information is obtained. ut is the measured scattering pattern.
As in our previous work, the acoustic problem is interpreted as a constraint in the admissible
values of the scattering pattern us, and the shape of the scatterer is represented by a B-spline
curve. The positions of the control points of the curve are the parameters of the constrained
optimization problem which is solved using a quasi-Newton-based optimization algorithm.
This iterative algorithm requires at each step the computation of the derivative of the cost
function with respect to the parameters of the optimization problem. In the following sections
we show that this derivative is the discretized form of the shape derivative, i.e. the derivative of
the cost function with respect to the domain 2. The constraint posed by the scattering problem
is removed by solving an adjoint system and an expression for the derivative is obtained in
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Figure 1. The domain of definition of the exterior acoustic problem.

terms of the solutions of these two problems. The adjoint problem is solved in an efficient
manner by recognizing that it is composed of two fields, one which is obtained analytically, and
another which is obtained numerically. The difficulties associated with far-field measurements
are dealt with by investigating the behaviour of the analytical field. At each iteration, the main
cost of the derivative calculation is independent of the number of parameters used to represent
the scatterer since it is equal to the solution of two acoustic problems, a forward and an
adjoint problem. The algorithm is implemented in a finite element framework and an efficient
iterative method is used to solve the corresponding linear systems. Within each iteration of
the optimization algorithm, a new search direction is calculated using a quasi-Newton update.
The geometry of the scatterer is updated at each iteration using the new search direction.

An outline of the paper is as follows. In section 2 the strong and variational forms
of the exterior acoustic problem are presented. Then in section 3 the concept of shape
differentiation is introduced and used to calculate the shape derivative of a generic cost
functional with the acoustic problem posed as a constraint. A closed form expression for
the shape derivative is given next. To calculate the shape derivative an adjoint equation is
solved using a decomposition technique that is described in section 4. Section 5 describes
the discretization procedure used to calculate the components of the shape derivative vector.
Finally, in section 6, the overall algorithm for the solution of the inverse problem is described.
The algorithm uses a gradient-based optimization method to construct a sequence of control
points that converge to the shape of the scatterer that minimizes the cost function. The gradient
is computed using the approach described in the previous sections. Numerical results using
synthetic noiseless data, data containing different levels of noise and data available at limited
apertures are shown next. Finally, concluding remarks are given in section 7.

2. The exterior acoustic problem

Small perturbations of density and pressure in a homogeneous and quiescent ideal fluid are
modelled by the wave equation. The time-harmonic solutions of the wave equation satisfy the
Helmholtz equation. Further, in the case of an unbounded medium, it is required that all waves
be outgoing at infinity. This constraint is called Sommerfeld’s radiation condition [35] and
mathematically ensures the uniqueness of the solution of the corresponding initial or boundary-
value problem. The boundary-value problem corresponding to the exterior Helmholtz problem
in d dimensions posed on the unbounded domain Qs = Qext U R C R? (see figure 1) is given
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as follows: find the total acoustic field u = ug + u; such that

—Viu—IkPu=f in Qq, (D)
u =g on I, 2)
Vu-n=nh onI, 3)
9
lim F@-2( 2 ) =o, @)
r—00 or

where u is the scattered field and u; is the incident field which in our case will be given by
ui(x) = exp(ikx - d), 5)

dis the direction of the incident plane wave and kis the wavenumber. In (1)—(3) f is a prescribed
external force, g is a prescribed Dirichlet boundary condition and 4 is a prescribed Neumann
boundary condition. Equation (4) is the Sommerfeld boundary condition and » = |x|.

Instead of working with the problem given by equations (1)—(4), we introduce a separable
surface ['r which encloses the scatterer or radiator (here represented by the domain Qp with
surface 0Q2g = I'y U I';,) and any sources (i.e., outside I'r, f is identically zero) and impose
the Dirichlet-to-Neumann (DtN) map [20] on I'r. In this work, this surface is either a circle
for d = 2 or a sphere for d = 3. The corresponding boundary-value problem is given by: find
u = ug + u; such that

—Vu—IkPu=f in Q, 6)
u=g on I, (7
Vu-n=~nh on [, (8)
Vus-n = M(us) on I'g, 9)

where (9) is the non-reflecting boundary condition imposed at I'r. The operator M (u) can be
represented as follows [20]:

00 J(d)
M@y = " > zpulk, Ry (@) / Y (@o)u (o) dT, (10)
n=N(d) j=—J(d) Ik

where an asterisk denotes the complex conjugate of a quantity and

“=10 ifd = 3, (11
T(d) = 0 ifd =2, N
@D=1n  ita=3 (12)
@) 2R SXPn0) itd =2, »
nj(T) = .
@n+ D= 1D, | o
\/ 4T R2(n +1j)! P, (cos 0) exp(ij¢) ifd =3,

P,‘lj lis the associated Legendre function of degree n and order | j|, dI" is the differential element
corresponding to I'r. The impedance coefficients z|,(k, R) are given by the following:

kH)," (kR) _
— ifd =2,
H\\(kR)
quk R =1 (14)
kh\n| (kR) .
- ifd =3,

WY kR)

In|
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where H \511|) is the Hankel function of the first kind of order |n| and hl(;‘) is the spherical Hankel
function of the first kind of order |n|. H, " and D" denote the derivatives of H (1)(5 ) and

n] In| In|
h‘(,ll) (&) with respect to the argument £ € R, respectively. The boundary-value problem (6)—(9)
is equivalent to (1)—(4).
The weak form associated with the boundary-value problem (6)—(9) is given by: find
u = uj +us € S(2) such that

a(2; w, u) = £(2; w) Yw € V(2), (15)
where

a(2; w,u) = (Vw, Vu)g — kz(w, w)o — (w, M(u))ry, (16)

L2 w) = (w, o+ (w, M, +(w, Dry, (17

(w, Dry = (W, Vuj - n — M(u;))ry. (18)

The inner products in (16) and (17) are defined by

(w, w)g = / wu A, (19)
Q

(w, W)y =/ w*udl, (20)
I'r

(w, wr, =/ wudr, 1)
Ty

where w* denotes the complex conjugate of w. The set S(€2) and the linear space V(2) are
given by
S(Q) = {u € H'(Q); u(@) = g(x), m € Ty}, (22)
V(Q)=1{ueH (Q);ux)=0zecl,)}. (23)

From now on, we will call (15) the primal problem (also called the forward problem).

Remarks.

(1) In the case of a rigid scatterer, also called a sound-hard scatterer, I'y = ¥ and i = 0. This
is the case we are mostly interested in.

(2) The variational form of the acoustic scattering problem presented here differs from the
usual one. Note that problem (15) contains the total acoustic field . Since the incident
field u; is known, it is common to formulate the problem such that we solve for the scattered
field u, only. Since the incident field u; satisfies (6) with f = 0, the variational problem
for ug is given by: find u such that

(Vw, Vug)g — K (w, ug)g — (w, M(us))r, = (w, flo+ (w, h)r, Yw € V(£2),
(24)
where h = h — Vu; - n. Note that, for the case of a rigid scatterer, h # 0. The reason

behind using (15) instead of (24) is to obtain an expression for the shape derivative that is
easier to implement numerically for the case of a rigid scatterer as we will see later.
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3. Calculation of the shape derivative

To solve the inverse acoustic scattering problem we need to construct a functional that measures
the difference between a trial solution and the measured scattered field corresponding to the
target. In this work, we consider the case where this information is known on a ball of radius
Rs, here denoted I's, that encloses the object Q2 and any sources. We then consider the
following functional:

J() =T ) =73 ; |us — ur|*dl's (25
S
where ug satisfies the primal problem given by (15) and ur is the measured scattered field on
I's. Even though we are limiting our presentation to this kind of functional, the procedure
shown in this work can be readily applied to other types of functionals. In two dimensions,
for example, we could know the scattered field at a number of points over the entire aperture.
If the number of points is sufficiently large, and they are equispaced, we could interpolate the
values to construct the function ut and use (25) as the functional.
We are particularly interested in the limiting case as Rs goes to infinity, in which case the
functional is given by

J@ = lim j(@) =3 / s — drl d, (26)
Nnd By

where B, is the unit ball in R? and & = x/|x|. s (or fit) denotes the far-field pattern
corresponding to the scattered field u, (or ut) and satisfies the following relation:

uy(@) = %(ﬁs(i)+0<%)>. @7)
Note that functionals (25) and (26) depend implicitly on the shape of the domain €2 through
u, the solution of the primal problem (15).

In this work we solve the inverse acoustic scattering problem by solving a shape
optimization problem where the shape that minimizes the functional (25) or (26) subject to
the constraint given by the primal problem (15) is the shape of the scatterer. Since we will
use gradient-based optimization techniques to solve this constrained optimization problem, we
need to develop an efficient procedure to calculate the shape derivative, i.e. the derivative with
respect to the domain 2.

To calculate the shape derivative, we use a methodology that is widely known in shape
optimization [34]. First, we introduce a uniparametric family of mappings ¢, = ¢.(V'), such
that every « € Q2 is mapped to ¢.(x) = x., where

z, = ¢ (V)(x) =z +eV(x), (28)

e € R, and V is a given smooth vector field in R? that represents the direction of change of
the domain. Note that by using the mapping (28), the domain €2 is mapped to the domain €2,
given by

Q. = . (Q) ={x: |z =x+V (), x € Q}. (29)

We assume the mapping (28) tends to the identity mapping fast enough away from I'y U I'j,.
With this requirement we guarantee ¢, (I's) = I's and ¢, (I'r) = I'r since I's and I'y are given
fixed surfaces. We then define the shape derivative of any functional j (£2) in the V -direction,
and denote it Dj(€2) - V', using the following expression:

d
Dj(€) -V = d_j(Qs) . (30)
& =0
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At this point, we could simply differentiate the expression (25) or (26) and obtain the
shape derivative as follows:

Dj(2) -V = Dy, J(u($)) - 1, (€29

where D, J is the derivative of the functional J with respect to its argument u, the dot in
D, J(u(S2)) - u represents the appropriate duality product and

0= iu (2) (32)
de £=0
is obtained by differentiating the variational form (15) in the V' -direction and then solving the
corresponding problems for . There will be one such problem for each direction of change of
the domain 2. Upon numerical discretization, the number of problems that need to be solved
equals the number of parameters that are used to characterize the domain. An approach similar
to this was used in [21].

In the following, we present an alternative method to compute the shape derivative (30)
by solving an auxiliary equation, called the adjoint equation. It will be shown that using this
adjoint method 1 does not need to be computed and as a consequence the cost of computing the
shape derivative is independent of the number of parameters used to describe €2, and therefore
the shape of the scatterer.

We start by introducing the Lagrangian

L(2; A, ue) = J(ue) +Re[a(Qe; A, ug) — €(2¢5 1)] (33)

where Re[b] denotes the real part of a complex quantity » and the subscript ¢ denotes that
the corresponding field or domain has been deformed using mapping (28). A € V(€2,) is a
Lagrange multiplier. The objective of this construction is to create a new function that assumes
the same values as the original cost function if the constraint given by the primal problem is
satisfied. Since the cost function is real-valued, we need to cast the extra terms (which can
yield complex values) in (33) to real values. The operator Re[-] is an obvious choice for this
procedure. (The result obtained in the following derivation would not change if the imaginary
part operator was used instead.) The field u, is the solution of the primal problem (15) posed
in the ‘deformed’ configuration €2,:

a(Qg; w, uy) = £(2; w) Yw € V(). (34)

Under this mapping, the sesquilinear form a(S2.; w, u,) and the linear form £(£2.; w)
correspond to

a(§2e; w, ue) = / (g, w)* - (B, 1) — KPw*ue) Qe — / w* M (u,)dT, (35)
Q. I'r

U2 w) = (w, fe, + W, Mr,, + (W, Dry, (36)

where I'y,, = ¢.(I'y).
With the definitions above, we note that

J(ug) = L(Q; A, ug) VA € V(R2). 37)

As a consequence, the shape derivative can be computed as follows:

d
Dj(€) -V = —J(ue) (by definition (30)),
de o0
d (38)
= —L(2; A, ue) (using (37)).
de o0
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Note that u( corresponds to the solution of (34) at ¢ = 0 which is the primal problem (15). In
the following, we choose the Lagrange multiplier A such that # does not need to be computed
in order to evaluate the shape derivative.

First note that, for a function f : R — C, the following holds:

d d
—Re[f(e)] =Re| —f(e) |, (39)
de de

since ¢ € R. With this observation, and the linearity of the form a(2; w, u) on u, we get
=Re[Dja(2; A, u) -V — D £(2; 1) - V]

e=0
+ Re[a(2; A, )]+ D, J(u) - u, (40)

where D; denotes the derivative with respect to the first argument holding all other arguments
fixed. For example

d
‘c QE;)"a &
Pl Ug)

d
Dia(2; A, u) -V = —a(Qe; A, u) . 41)
de e—0
The idea behind writing the shape derivative using (38) and (40) is to realize that the term
i does not need to be computed if A is selected such that it is the solution of the following
variational problem:

Re[a* (2 w, \)] + Dy J () - w = 0 Y, (42)

where a*(2; w, A) = a(2; A, w) Yw, A is the adjoint of the sesquilinear form. Equation (42)
is the so-called adjoint equation (the explicit form of the adjoint equation will be derived in the
next subsection). Because of (42), the second line in (40) vanishes since # lives in the same
space as w. Then, the expression for the shape derivative simplifies to

Dj(Q) -V =Re[Dya(Q A, u) - V — DiL(Q 1) - V1. (43)

Note that the calculation of the shape derivative using expression (43) involves the solution
of only two problems: the primal problem (15) and the adjoint problem (42). Once the primal
field u and the Lagrange multiplier A, which from now on we refer to as the adjoint field, are
determined, we use expression (43) to calculate the shape derivative for any given direction V'
of change of the domain.

In the following, we explicitly calculate the terms in (42) and (43).

3.1. Explicit forms of the adjoint equation and shape derivative

We now calculate each of the terms that appear in the adjoint equation (42) and in the expression
for the shape derivative given by (43). The basic idea is to transform all quantities that appear
in these expressions back to the ‘original configuration’ 2. Then the differentiation process is
very similar to the differentiation of motions in continuum mechanics [18].

First, we define a tensor called the deformation gradient as follows:

F.=V¢.=1+eVV. (44)
With this definition, it is possible to show that gradients, volume elements and surface elements

in the deformed configuration €2, are related to the corresponding quantities defined in the
original configuration €2 as follows

dp,u = F."Vu, (45)
dQ. = det F, dQ, (46)
dl. = det F.||F, "n| dT. (47)
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Then it is straightforward to show the following results (for the derivation see [19]):

d
—F, =VV, (48)
de |,
d T
—(0gu)| =-VV'Vu, (49)
de ™ Tl
d .
—(dS2,) =divV dS, (50)
de e=0
d .
—(drly) =divp V dT, (&2))
de o0

where
divp V=divV —n .- (VV)n (52)

is the tangential divergence of the vector field V.
Using these results we obtain

d
Dia(Q2;h,u)-V = —[/ (0 A"+ Ogut — K2 u) dQ, — / A M (u) dF]
de Q. I'r e=0

= / (VA* - Vu — k2% u) divV dQ — / VA* - (VV + vV Vi dQ.
Q Q
(53)

Likewise,

Dlz(sz;)\)-v:f)\*fdidesz+/A*Vf-Vdsz+/ A*hdierdF+/ A*hdT,
Q Q y I

(54)
where
. d

h = g/’l(ﬂg; Te)

In writing (55) we allow the Neumann boundary condition to explicitly depend on the shape
of the domain. This is the case when /£ is of the form

h(z) = v(z) - n(z) (56)

(55)

e=0

where v(x) is a known vector field and n is the normal to ', at .
The term D, J (1) - w is given by

D,J(u) -w= Re[ (us — urt)*w dF:|. (57)

I's

To calculate the term a*(€2; w, 1) in (42) we make use of (f, g)o = (g, f)§ to obtain

a*(Qw, A) = (Vw, VA, — K (w, Vg — (w, M*Q)f, . (58)
Therefore, the explicit form of the adjoint equation (42) is given by
(Vw, Vg — k> (w, Mg — (w, M*(W)r, = —(w, us — ur)r, Yw € V(), (59)
where the operator M* is given by
o J@
M= > > zhy ks R) Y@ f (o) M (o) dT. (60)
n=N(d) j=—J(d) I'r
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Before we continue, we note that the DtN operator satisfies
(M*(A)* = M), (61)

This result is easily obtained by conjugating all the terms in the right side of (60) and by noting
that the summation in (60) is symmetric about n = 0 (for the case d = 2) or j = 0 (for the
case d = 3).

It may appear that the variational form (59) is of a different type to the primal problem (15).
Nevertheless, if we substitute w* for w in (59), conjugate all terms and use the identity (61),
we obtain the following equivalent form for the adjoint equation: find A* € V(2) such that

(Vw, VAo — K (w, 1")g — (w, M), = —(w, (s — ut)*)ry Yw e V(). (62)

Now, the adjoint equation (62) is of the same form as the primal problem (15).
Finally, we use (53) and (54) to obtain the expression of the shape derivative (43) in terms
of domain integrals:

Dj(Q)-V =G, 1, V)

= Re{/(w* - Vu — k) div vV dQ —/ VA* - (VV + YV Vi dQ
Q Q

_ /A*fdideQ—/A*Vf—VdQ—/ A*hdierdF—/
Q Q Ty

I

A*hdDl }
(63)

Remarks.

(1) In the method described above, we only need to solve two variational problems, (15) and
(62), to calculate the functional derivative using (63). We also note that the primal and
adjoint variational problems do not depend on the direction V' of change of the domain.
As a result, the cost of calculating the discrete approximation of the derivative does not
depend on the number of parameters used to represent the domain, which is the main
advantage of the adjoint approach over other methods.

(2) The primal and adjoint problems are of the same type. That structure can be exploited
numerically: if the LU factors of the matrix corresponding to the discretized form of the
variational equation are available, the solution of the adjoint problem amounts to an extra
back-solve; if one uses an iterative solver, the matrix does not need to be reformed to solve
the adjoint problem.

(3) Note that the numerical implementation of this method is not restricted to the DtN boundary
condition. Other boundary conditions, such as the BGT [2], infinite elements [5] and the
modified DN map [17] can also be used. This is because in the development carried
out so far, we have calculated an expression for the derivative that is independent of
the discretization. We can use any type of numerical method to solve the primal and
adjoint variational problems (15) and (62). In particular, we can use approximations to
the Sommerfeld boundary condition instead of the DtN boundary condition in (15) and
(62).

(4) As mentioned earlier, we will be particularly interested in the case of a scattering problem
where I'y = and i = 0. In this case, the expression for the shape derivative simplifies
to

Dj(Q)-V = Re{/ (VA* - Vu — k25 u) divv dQ — f VA (VV + VV Vi dQ
Q Q

- /A*fdideQ—/A*Vf-VdQ}. (64)
Q Q
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Note that in this case it is not necessary to calculate the surface gradients divp V' and hto
compute the shape derivative. This is why we pose the acoustic problem in the form (15)
instead of the more usual form (24).

(5) It can be shown [34] that the derivative of any shape functional does not depend on the
value of the vector field V' inside 2. It can also be shown that only the normal component
v, = V -n of the field V is relevant in the calculation. As a consequence, it is possible to
write an expression for the shape derivative that contains only surface integrals. We will
derive this expression for our particular case.
Starting with the expression (63), we integrate by parts the terms contained in the first,
second and third lines so that we obtain expressions where V' appears undifferentiated.
For example, the first term in (63) is written as follows:

/VA*-VudideQ: (VA* - Vi) (V - n)dl’
Q I

_/ )L*l.ju,iV]'dQ—/)\,*}u,,‘jdeQ. (65)
ore ; Q"

Proceeding in the same manner for the remaining terms in (63), and using the fact that
only the normal component of V' on the boundary has a non-zero contribution in the shape
derivative calculation, we arrive at the following expression:

Dj(Q)-V = Re{ (VA* - Vu — E*X*u — A* f)v, dT
Q2

-2 (VA* +n)(Vu - n)v, dI’
IQ

+ /(VA-V) (Vu+Ku+ f)dQ
Q

+/ (Vu - V) (VA + k1) dQ
Q\Tg

+/ A*hdivnvndf‘+/ )»*hdr‘}. (66)
I I

Finally, using the Euler-Lagrange equations corresponding to the primal problem (15)
and the adjoint problem (62) we conclude that the integrands in the third and fourth line
of (66) are identically zero. Using V' = 0 on I'r (since the DtN boundary is fixed) we
rewrite the final expression for the shape derivative as follows:

Dj(Q)'VZg(M,)\,,Un)

= Re{/ (VA* - Vu — k*A*u — A f)v, dT
Ul

—2/ (VA* - n)(Vu - n)v, dF+/ A hdivno, dF+/
r,ur, Ty

A*hdl’ }
Iy
(67)
As we pointed out, the shape derivative can be calculated using either an expression that
involves domain integrals given by (63) or using (67). In the numerical examples shown
in this work we have opted for the first approach, because for most discretization methods,
gradients in the boundary are calculated with lower precision than inside the domain. As a

consequence, (63) is better suited for the numerical approximation of the shape derivative.
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4. Solving the adjoint problem

We now turn our attention to the solution of the adjoint variational problem (62). At first
sight this problem can be solved using any numerical method. Nevertheless, it would be
computationally inefficient to do so if the sampling boundary I's is far away from the scatterer:
since the DtN boundary has to contain any inhomogeneities, and that includes the right side term
in (62), we would have to consider a domain that contains the boundary I's and the discretization
of this domain would introduce a large number of variables. Further, in the limiting case of
functional (26), it is not clear how we would solve the corresponding variational problem.

We overcome these problems by constructing an additive decomposition of the adjoint
field A*:

A= A+ As, (68)

where A is the analytical solution of a problem that contains the problematic source term and
As is the solution of an acoustic problem where the source term is not present. The advantages
in solving the problem in this way instead of by the ‘straightforward’ solution of variational
problem (62) are:

(1) since the problem for Ag does not contain a source term, we can use a DtN surface closer
to the scatterer, which in turn means that we have a smaller domain to discretize, and

(2) the limiting case is very easy to analyse since it will involve taking the limit Rg — oo in
the expression for A;.

We start the derivation of the equations for A; and Ag by substituting (68) into (62) and
writing the resulting terms as follows (see figure 1):
(Vw, VAN g, — k*(w, ) g, — (w, M(A))ry — (Vw, VADg, + k2 (w, g, + (Vw, VAs)e
— KW, ks)e — (W, MOs)r, = —(w, (us —ur)Iry  Yw € V(Q),
(69)

where Br = QU Qp is the ball of radius R. We now impose Ap as the solution of the following
variational equation:

(Vw, VA g, — k2w, M) g — (W, M)y = —(w, (s — ur)*)ry Yw. (70)

It is important at this point to derive the Euler-Lagrange equations corresponding to (70).
Integrating by parts the terms in (70) gives
— (w, V2AD gprs + (W, VAT -1 + (w, VAT - n¥)rg + (w, VAL - 1)1y

— K w, A, — (W, MGy, = =W, (s —ur)Iry Y, (1)
where n* and n~ are defined in figure 1. V)\Ii indicates that quantities are evaluated at

r = Rs &+ & with § — 0*, where r is the radial coordinate in a cylindrical or spherical system.
Therefore, A; satisfies

Vi =k =0 in Bg\Ts, (72)
[Vir-nl = —(@s — ur)* on I's, (73)
Viien = M(Ap) on 'R, (74)

where [VA; - n]] = VA] - n* + VA - n~. Problem (72)—(74) with the requirement that A; be
continuous and bounded can be solved analytically. We consider separately the solutions for
the cases d = 2 and 3 and study the limiting case when Rg — 00.
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We start with the two-dimensional case. In the cylindrical coordinate system the solution
of problem (72)—(74) is given by the following series:

Z A ndinj(kr) exp(inf), for 0 < r < Rs,
Mr,0)=1"_% 75)
Z H\Eu)(k”) exp(inf), for Ry < r < +00,
n=—o00
where
TTRS 1)
A, = —1—2 H|n\ (kRs)a,, (76)
. Rs
B, = —1—2 Jin|(kRs)ay, a7

and a,, are the Fourier coefficients of (us — urt)*, i.e

exp(—ind)(us — ut)*(Rs, 0) db. (78)

a, =

7

We can now easily investigate the limiting case corresponding to functional (26). First, we
investigate the behaviour of the function (us — ut)* for Rg — +00. Since ug and ut separately
satisfy the exterior acoustic problem for some domain, this function is such that

(1, — un)*(Rs, 0) = %((u - fn)*(@)+0<%s>>, (79)
where (i1s — ut)*(0) is the far-field pattern corresponding to (us — ut)*(r, 6). Therefore,

exp(—ikRs) .
VR

where a, are the Fourier coefficients of (&, — a1)*(0). We also know Hankel’s asymptotic
expansion for HV (&) for fixed v (v € R) and § — +00 (see [1, chapter 9]):

(M 2 i
HP@) ~ |~ explix). 1)

where x =& — (%v + i)n. Therefore, from (76), (79) and (81) we have

R ) E 1 1 A

and the final expression for A for the case corresponding to functional (26) is given by

a, ~ as Ry — 400, (80)

hm M(r,0) = F Z A Jin|(kr) exp(inf), 0<r <+o00. (83)

n=—00

The three-dimensional case is treated similarly. In the spherical coordinate system, the
solution of problem (72)—(74) with continuity and boundedness requirements for A is

M 0,¢) =" " by(kr)Y,; 0, ¢), (84)
n=0 j=—n

where Y,,; (0, ¢) are the spherical harmonics

2n+ D(n—1jD!
Y6, ¢) = \/( "4;(’1)(;1”')'{') P/ (cos 0) exp(ijp). (85)
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The radial functions b,;(kr) are similar to the two-dimensional case, but now they involve
spherical Bessel functions

Cn'jn(kr)s for 0 < r < RS:
byi(kr) = /
i (kr) { D,;h'V (kr), for Ry < r < +00, (86)
where
Cnj = —ikR3h" (kRs)ay;, (87)
Dyj = —ikRg ju (kRs)ay;, (88)
and a,; are the Fourier coefficients of (us — ut)*:
2 b4
= f f Y26, $)(us — ur)*(Rs, 6. ¢) sin6 6 dg. (89)
0o Jo
For the limiting case Rs — +00 we have
—ikR
~ M& ) as Ry — +00, (90)

nj RS nj»
where a,; are the Fourier coefficients of (iis—iiT)*(0, ¢). Since the spherical Bessel’s functions
are related to the Bessel’s functions of fractional order by

Jn(§) =\/§Jn+1/2($), 91)

W) = ;—éHﬁ)]/z(é), 92)

and using (81), (87) and (90)—(92), we can write the expression for A for the case Ry — +00

as follows:
+00 +n

. B A nvrjp(kr)
Rslggmxl(r,e,@—;;n Coy = Yy 0.9). (93)

where

Coj = —i, | = i(Ln+2)x|a (94)
n = =i 5 exp| —i{ 5n+ 5 ) |an.

We have derived an expression for A for both the two- and three-dimensional cases and
investigated the behaviour of the solution when Rs — +o00. This is a part of the adjoint field
A*. We will now derive an equation for the remaining part, Ag.

Given that A; satisfies (70), from (69) we conclude that Ag has to satisfy the following
variational problem:

(Vw, Vis)a = k2w, As)a — (w, M(s))ry, = (Yo, ViD)g, — K> (w, Mg,
Yw € V(Q). 95)
We can simplify the expression above by integrating by parts the first term on the right side

and using (72) to eliminate the volume integral. Then, the final variational equation for Ag is
given by: find As € S(£2) such that

(Vw, Vis)g — k*(w, As)a — (w, M(As))r, = —(w, VA - n)r, Yw € V(Q), (96)
where the set S() is
S(Q) ={ueH(Q); u=—ionl,}. 97)

The set S‘(Q) is defined as shown above because A € V(£2) which implies .* = A+ A5 =0
on I',.
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As mentioned in the beginning of this section, we are able to devise a scheme to calculate
the adjoint field efficiently. That requires the evaluation of the field A; using (75) or (84)
(or (83), (93) in the limiting case Rs — +00) and the solution of an acoustic problem, given
by (96), with non-homogeneous Neumann data and without a distributed source term.

We now have all the ingredients necessary to calculate the shape derivative. Algorithm 4.1
summarizes the steps for calculating the shape derivative of functional (25) while algorithm 4.2
summarizes the steps for calculating the shape derivative of (26).

Algorithm 4.1. Shape derivative calculation for functional (25).

(1) Solve the acoustic problem (15) to evaluate u.

(2) Calculate the incident part A; of the adjoint field using (75) if d = 2 or (84) if d = 3.
(3) Solve problem (96) to calculate the scattered part Ag of the adjoint field.

(4) Calculate the adjoint field: A* = A; + As.

(5) Calculate the shape derivative using (63) or (67).

Algorithm 4.2. Shape derivative calculation for functional (26).

(1) Solve the acoustic problem (15) to evaluate u.

(2) Calculate the incident part A; of the adjoint field using (83) if d = 2 or (93) if d = 3.
(3) Solve problem (96) to calculate the scattered part Ag of the adjoint field.

(4) Calculate the adjoint field: 1* = A; + As.

(5) Calculate the shape derivative using (63) or (67).

Remarks.

(1) The procedure described in this section is not limited to functionals (25) or (26). In

particular, any functional where the sampling surface I's is a spheroid (prolate or
oblate) may be treated in exactly the same form. The incident part A; of the adjoint
field A* is obtained analytically using spheroidal angular and radial wavefunctions
(see [1, chapter 21]). The adjoint field is then computed by summing A1 with the solution
of problem (96) where the natural boundary condition, given by the term —(w, VA -n)r,,
is changed accordingly. Obviously, the limiting case corresponding to the far-field pattern
will reduce to the expressions previously derived.
We can also easily modify the results in this section to include the case where the sampling
surface I's is not closed. For example, we could consider having only limited aperture
information, say, from angle 6; to angle 6, in functional (26) so that the new functional is
given by

Or
j@=1 / i — dr|*do. (98)
0;

We can now rewrite this expression in the following form:

2T
j@=1 / i — ar|*8, do, (99)
0

where §, : [0,27] — {0, 1} is the indicator function for the set x = [6;, 6], i.e., it
assumes the value 1 in x and the value O in [0, 2]\ x. The shape derivative calculation
follows the same steps as for the functional (26). In particular, the incident part A; of the
adjoint field is given by expressions (82) and (83) where the Fourier coefficients a, are
now given by

A

An

2
= J% /0 GXp(—ing)(ﬁs - LAlT)*(Q)(SX (9) de. (100)
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(2) We can use the methodology developed above to treat problems where information is
available only at a finite number of sampling points and from multiple incident waves.
For example, in three dimensions, we can consider the functional

Msp  Riw
J@) =1 luita)) — ul, (101)
j=1 i=1
where ngp, is the number of sampling points, i.e., the number of points in the domain
where acoustic information is available, and n;y, is the number of incident plane waves at
different directions of illumination. The superscripti indicates solutions or measurements
corresponding to the ith incident direction and the subscript j indicates that these are
obtained at the jth sampling point. For a single incident plane wave, the incident part of
the adjoint field is simple to calculate and is given by

ngp

Ai(x) = — Z(us(wj) —ur;)) ®(x, x)) (102)
j=1

where, in three dimensions, ® is the radiating fundamental solution of the Helmholtz
equation given by

1 eik\w—w,»\

Pz, xj) = , T F#x;. (103)

4 |z — x|
With this result, we calculate the scattered part of the adjoint field using (96) and A*
is then calculated by summing these two contributions. For nj, > 1 we need to
calculate one adjoint field for each incident plane wave. If we define «' to be the primal
solution corresponding to the ith incident wave and A’ the corresponding adjoint solution,
calculated as shown above, the shape derivative of functional (101) becomes

Dj(Q)-V =) Gu' N, V)= g 1 v, (104)

i=1 i=1

where the expressions for G(u’, A", V) and g(u’, A, v,) are given by (63) and (67),
respectively. Note that, even though we need to calculate one adjoint field A’ and one primal
field u; for each incident direction, these fields are the solutions of variational problem (96)
with different right side terms. We can exploit this observation in the numerical solution.
For example, a block version of an iterative Krylov subspace algorithm can be used to
solve the corresponding linear system with multiple right-hand sides.

5. Numerical approximation of the shape derivative

Algorithms 4.1 and 4.2 enumerate the steps in the calculation of the shape derivative using the
adjoint formulation developed in the previous sections. In this section, we discuss its numerical
approximation and implementation in a finite element framework. For this development,
we need to address each of the ingredients necessary to calculate the shape derivative: the
numerical approximation of the primal and adjoint fields; the discretization of the boundary
corresponding to the scatterer d2g and the definition of the corresponding vector field V'; and
the calculation of the shape derivative using either (63) or (67).

The finite element method is used to solve the variational problem (15) for the numerical
approximation u” of the primal field u. Likewise, the same discretization is used to solve (96)
for Ag which is the numerical approximation of As. The linear systems corresponding to the
finite element discretization of the primal and adjoint variational problems are solved using an
efficient method developed by Oberai et al [28, 29].
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The incident part of the conjugate of the adjoint field, given by Af’, is calculated using
a truncated form of expressions (75) or (83) in the two-dimensional case, or (84) or (93) in
the three-dimensional case. This field is calculated at each nodal point of the finite element
mesh used in the solution of the primal and adjoint problems and interpolated using the same
interpolation functions. Then, the numerical approximation of the adjoint field, given by A",
is obtained by conjugating the sum of the contributions A7 and Ag.

The boundary d2g of the domain where the primal and adjoint problems are posed is
constructed by patching together a set of geometrical primitives in a CAD modeller. For
example, in the two-dimensional case we can use lines, arcs, B-splines or NURBS curves to
represent the boundary. Correspondingly, in the three-dimensional case, we can use planes,
ellipsoidal patches and B-spline, Bézier or NURBS surfaces. In the two-dimensional examples
shown in this work, 923 is discretized using quadratic closed B-splines, i.e. the boundary is
parametrized using the following form (see [27, chapter 5]):

z(s) = Niz(s)z; (105)
i=0

where x () is the position of a pointin d 2g, n+1 is the number of control points of the quadratic
B-spline, N; 3 is the shape function (using the notation introduced in [27]) corresponding to
the ith control point x;, and s is a real number such that 0 < s < n — 1. From the expression
above, we conclude that the boundary 02 is uniquely characterized by 2 x (n + 1) parameters
given by each component of the n + 1 control points of the curve.

With this definition for the shape of the boundary, and from (28), we define the numerical
approximation V" of the vector field V on 9 as

n 2
Vi@(s) =) Y (Nis(s)ex) Vix

i=0 k=1
n 2
=2 oule)Vi (106)
i=0 k=1
where ey is the kth unit vector in the Cartesian coordinate system. This defines a linear space
for the set of admissible vector fields V", where the basis is given by {¢; ()i =0, ..., n; k =

1, 2}, with ¢, (s) = N;3(s)er. While such an expression is appropriate for the computation
of the shape derivative using (67), it is not appropriate for a computation that involves domain
integrals such as (63) since V' (x) in not defined in the interior of 2. As we mentioned earlier, it
can be shown that the value of the derivative in (63) is insensitive to the extension of V' to the in-
terior of the domain 2. We use this result to arbitrarily choose an extension for the elements ¢;;
and therefore define the value of V'in 2. In this work we choose this extension as the solution of
an auxiliary elasticity-type boundary-value problem posed on a subset of €2, which we denote
QgL (see figure 2). The problem is given by: find vy (x),i =0, ...,n, k = 1,2, such that

divT =0 in Qpr, (107)

vir = Nisex on 02, (108)

v =0 on dQpL\02p, (109)
where

T =2ue + reji (110)

€ = (Vo + V), (111)
and the parameters p and A are given by

E
H (112)

T 2(1+v)’
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QBL

Q\QBL

g

Figure 2. Qpp is chosen as a small part of the domain 2. It is constructed by choosing a small
number of layers of finite elements surrounding 92g.

vE

The solution to problem (107)—(109) is a smooth vector field that decays to zero away from
0Q2p. Weuse E = 1.0 and v = 0.3 in all the numerical examples shown in the next section.
Then, each element of the basis is given by

vik(:c) ifx e QBL»

Pinl@) = !0 if 2 € Q\QpL. (114

The finite element method is used to solve the 2 x (n + 1) boundary-value problems (107)—
(109). The same mesh that is used in the solution of the primal and adjoint problems is used
in the solution of the extension problem, but the subdomain Qg is such that it contains only a
small number of layers of finite elements in the vicinity of d2g. In our calculations we found
that ten layers of elements were enough to obtain accurate results. We should also mention that
the extension problem does not need to be solved accurately, since in the continuous limit any
extension yields the same value for the shape derivative. Therefore, in our calculations, (107)—
(109) were not solved to full precision (we required a relative tolerance of only 1073 in the
iterative solution of the extension problem). For all these reasons, the numerical solution of all
the extension problems is insignificant when compared to the time required to solve a single
primal or adjoint problem.

Finally, the discrete form or approximate form of the shape derivative is constructed by
inserting ", A" and V" into (63) or (67). The linearity of these forms with respect to the
vector field V' yields

n 2
Dj (" V" =33 GuVa
i=0 k=1

n

2
> G A i) Vi, (115)
0 k=1

=
[

Y g A"y ) Vi (116)
i=0 k=1
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The quantities G;x = Gu”, M, ;) or gix = g(u, A", ¢, - n) are the components of the
shape derivative vector. As will be seen in the next section, this vector is supplied to an
optimization algorithm which is used in the solution of the inverse problem.

It can be shown that the straightforward implementation of (115) provides a better
approximation for the shape derivative than (116) if the gradients in the boundary are calculated
by simply differentiating the finite element solutions. For this reason, we use expression (115)
to calculate the components of the shape derivative in the numerical examples shown in the
next section.

6. Inverse acoustic scattering problem

6.1. Problem description and solution algorithms

We consider the problem of identifying the shape of a rigid object from the knowledge of its
far-field scattering pattern obtained in response to plane waves incident at a specified angle and
at certain frequencies. This problem is somewhat different to what is commonly considered
in the literature [4, 9, 24], where plane waves with different incident directions and of a single
frequency are used to illuminate the body. As discussed in remark 2 of section 4 this case can
also be treated with our technique and will be considered at a later date.

The body is assumed to be a rigid scatterer, so I', = @. The direction of the incident plane
wave is d = —(1/+/2)(1, 1). No other sources are present in the problem; thus f = 0. The
far-field patterns corresponding to incident plane waves with wavenumbers k = 0.5, 1.0, 1.5,
2.0 and 2.5 are known over the entire aperture (in some of the numerical examples only a part of
this information is utilized). These far-field patterns are generated numerically by solving an
exterior acoustic problem for a given scatterer, called the farget. Polar plots of absolute values
of the far-field patterns corresponding to each of these wavenumbers are shown in figure 3.
The first 81 Fourier modes of the scattering pattern are used in the computation of Ay; i.e. the
series (83) is truncated at n = +40.

Given this far-field information and the direction of the incident wave, the algorithm
attempts to find the shape of the scattering object.

The solution of this inverse problem is accomplished in five ‘stages’. At each stage, an
optimization algorithm is used to find the shape of the scatterer that minimizes the functional

2T
J(Qk) = %/ |65(0; k) — air(0; k)|* dO (117)
0

where 1i5(-; k) is the far-field pattern corresponding to the scattered part of the solution of the
acoustic problem (15) and déit(-; k) is the given (or measured) scattering pattern. The initial
guess in each stage is given by the shape of the scatterer obtained in the previous stage. Every
subsequent stage uses information at a higher wavenumber. The idea behind this heuristic is
to allow the algorithm to progressively recover finer details of the geometry of the scatterer.

For the first stage in the algorithm, the initial guess is given by a closed quadratic B-spline
curve obtained by equally spacing 16 control points on a square of unit dimensions centred at
the origin of the coordinate system. The target is a closed quadratic B-spline curve with 17
control points. Figure 4 shows the position of the control points for the curves representing
the initial guess and the target object.

The solution of the optimization problem posed at each stage is accomplished by the
NPSOL optimization program [15] which implements a method based on sequential quadratic
programming (SQP) [14, 16, 31]. The basic structure of an SQP method involves two types of
iteration: major and minor iterations. In the major iterations a sequence designed to converge to
apoint that satisfies the first-order optimality conditions is constructed. The construction of this
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Figure 3. Far-field scattering patterns corresponding to illumination of the target object with plane
waves of different wavenumbers k and incident direction d = —(1/ V2)(1, 1.

-1.5F —— Target 7
—— Initial guess

Figure 4. Control points of the curves representing the initial guess and the target object.

sequence involves finding a search direction that is the solution of a quadratic subproblem (QP)
(which is a quadratic approximation of the nonlinear problem). The solution of the QP is
achieved in an iterative fashion: these are the minor iterations in the algorithm. Once the
search direction is found, the major iteration looks for a step length that produces a sufficient
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decrease in a so-called merit function that measures how much closer the point is to the
optimum.

In our case, within both major and minor iterations of the NPSOL program, the cost
function (117) and its derivatives with respect to each of the control points have to be supplied.
These derivatives are the components G;; of the shape derivative vector which is computed
using (115).

Every step in the optimization algorithm requires movement of the control points of
the curve corresponding to the scatterer’s surface and therefore the construction of a new
finite element mesh. A mesh generation program using a Delaunay triangulation scheme [36]
was constructed to automize this procedure. At each stage in the algorithm the mesh size
was selected such that the number kh, which is related to the average number of elements
per wavelength, was kept constant at k2 = 0.2 (=30 elements per wavelength). In order
to accommodate large deformations of the surface corresponding to the scattering object, a
scheme was devised such that two consecutive supporting segments of the B-spline were not
allowed to have very disparate sizes. In this scheme, whenever a segment was found to be
larger than three times the size of one of its neighbours, a new control point was inserted at
the mid-point of that segment. This technique ensured a homogeneous distribution of control
points along the curve. It also caused the number of control points used to represent the
scatterer’s surface to grow during the solution of the inverse problem. For instance, in the
first example presented below, the surface initially had 16 control points, while the surface
corresponding to the converged solution is composed of 24 control points. The increase in
the number of control points has no effect in the cost of the computation since the cost of
calculating the shape derivative using the adjoint method is independent of this number.

An important parameter in the NPSOL program is the relative function precision eg
(see [15]), which is the relative precision of the functional value calculation. This parameter
tells the optimization program that it should not attempt to distinguish between functional
values that differ by less than the error inherent in the calculation. er clearly depends on the
accuracy of the finite element computation and in the following numerical examples we used
er = 10™*. This means that the first four significant digits in the functional calculation are
correct. By adjusting this parameter it is possible to ‘mimic’ a discrepancy principle and to
use the same algorithm to solve problems with noisy measurements, as shown in section 6.5.

6.2. Full aperture problem

In this example, the scattering information shown in figure 3 is available over the entire aperture;
i.e. i1 (0) is known for 0 € [0, 2].

Figure 5 shows the behaviour of the functional values at each stage of the algorithm. A total
of 112 iterations were required to solve this inverse problem. The numbers of steps required to
solve the minimization problem posed at each stage were 15, 10, 22, 36 and 29. It is important
to note that most of the computational effort is spent in the final stages of the algorithm where,
due to larger values of the wavenumber, the mesh is finer. For example, while the mesh
corresponding to the initial step contained only 751 nodes, the mesh corresponding to the last
step had 10585 nodes. This means that, for the purpose of computing the total cost of the
algorithm, one can disregard the cost associated with the initial stages (lower wavenumbers).
Nevertheless, the information contained at lower wavenumbers is crucial for the reconstruction
algorithm as it provides a good initial point for the algorithm at higher wavenumbers.

Figure 6 shows the initial guess for the shape of the scattering object and the converged
shapes at each stage of the algorithm. Figures 6(a)—(f) show the absolute value of the adjoint
field on the computational domain. The colour map is kept constant across all the figures with
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Figure 5. Evolution of the functional value at each step in the solution of the inverse problem.
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Figure 6. The series of steps taken by the algorithm in the full aperture case.
An AVI movie of this figure is available from stacks.iop.org/IP/20/199.

warmer colours (red) representing higher values and colder colours (blue) representing lower
values’. A figure where colder colours predominate indicates lower values of the adjoint

3 Note to the reader. Please refer to the online version of this article for the correct colour scheme in the figures. In
the printed version of the article the colours are mapped to grey tones.
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field and that the corresponding solution is closer to the optimal one. Figures 6(g) and (h)
show the total acoustic field corresponding to the final solution and the target calculated at the
highest wavenumber. The similarity of the acoustic fields in these figures is another measure
of convergence of the algorithm.

It should be noted that the algorithm was able to recover the correct size and width of
the scattering object. In addition, the two features present in the object were successfully
recovered. Their relative placement and generic dimensions agree very well with the target. It
is also remarkable that the feature in the shadow zone was accurately recovered. Figures 6(a)—
(d) show that at lower wavenumbers the main dimensions of the object were reconstructed very
well with figure 6(d) already indicating some recovery of the remaining features. Steps 84
and 112, which correspond to the converged solutions at wavenumbers k = 2.0 and 2.5, show
that information from higher wavenumbers is used to recover further details from the target
object. It should also be noted that even at the highest wavenumber, the wavelength of the
incident field is several times that of a representative length associated with the features in the
target. At k = 2.5 this ratio is approximately 6. One would expect that the reconstruction
scheme would not be able to accurately capture geometric details that are much smaller than
the wavelength. Nevertheless, as seen in figures 6(g) and (h), the algorithm was still able to
reconstruct the object and its features accurately.

A word about the cost of the overall calculation using this adjoint-based method: the total
number of problems solved up to convergence is 224 (one primal and one adjoint problem
for each step). As was previously said, the cost of the algorithm is independent of the
number of control points used to represent the surface of the scatterer. By comparison, if
a central finite difference scheme was used to calculate the derivatives, a total of 7581 acoustic
calculations would be needed to solve this inverse problem (the break-up of this calculation
involves multiplying the total number of control points used to represent the scatterer at each
step by three and summing these quantities).

The total time required to solve this inverse problem using the adjoint-based method
developed in this work is about 25 min using a single 1.9 GHz Pentium 4 processor.

6.3. Partial aperture problem

The inverse problem of the previous section is considered with scattering information available
only over partial apertures. All other data in the problem are kept the same. For this case, the
functional to be minimized at each stage of the algorithm is

A
j@ik) = %/ |i(0: k) — i (0; )| do. (118)
0

The target object is the same as in the previous example; therefore the far-field patterns shown
in figure 3 are valid. Two cases are considered here: A = 7 and /2.

6.3.1. Case A = . This case corresponds to having the scattering information shown in
figure 3 available in the range 0 < 6 < 7. Figure 7 shows the corresponding solution. As in
the previous example, the same colour map was used when plotting the absolute value of the
adjoint field in figures 7(a)—(f). This shows how the surface of the scatterer evolves towards
the final solution. Figures 7(g) and (h) show the final shape obtained by the algorithm and
the target object as well as the corresponding acoustic fields. Note that the size and width of
the scattering surface are in good agreement with those of the target object. It should also
be noted that the general dimensions, and position relative to the object, of the protrusion in
its upper part are recovered with quality comparable to the full aperture case. The protrusion
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Figure 7. The sequence of steps in the calculation involving scattering information over a limited
aperture (A = ).

on the lower part of the object is not recovered which is not a surprise given that scattering
information from the lower hemisphere is not available.

6.3.2. Case A = m/2. Only scattering information from the first quadrant is available in
this example. The solution for this case is presented in figure 8. The same colour map was
used when plotting the absolute value of the adjoint field in figures 8(a)—(f). From figures 8(g)
and (h), it can be seen that the algorithm was again able to recover the size and width of the
target object quite well and only a small part of the protrusion on the upper part of the scatterer.

6.4. Effect of the direction of the incident plane wave

In the previous examples, the incident direction of the plane waves was kept constant. For the
same target, and using the entire aperture, the effect of the incident direction on the solution
of the inverse problem is investigated in this example.

Figure 9 shows the final shape obtained by the algorithm and the total acoustic field
around the scatterer for different choices of the angle of illumination 6;. Given the
direction d = (d;, d») of the incident plane waves, the angle of illumination 6; is defined
by 6, = arctan(dy/d,). 6; = S5m/4 corresponds to the case considered in section 6.2.
With the exception of the reconstructions corresponding to 6; = 7 /2 and 37 /2 the results
of the other reconstructions are somewhat similar in that the general dimensions of the target
object and the two protrusions are recovered. The cases 6; = 37 /4 and 77 /4 show features
with sharp corners close to the protrusion on the lower part of the body. The corners appear
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Figure 8. The sequence of steps in the calculation involving scattering information over a limited
aperture (A = 7/2).

because, during the iterative process, some of the control points became very close to each
other and the optimization algorithm is not able to separate them. This may be avoided by
constraining the maximum change in curvature at each point during the optimization process.

The cases corresponding to 6; = 7 /2 and 37 /2 show a degradation in the quality of the
reconstructions when compared to other directions. While the final shapes have approximately
the same size and width as the target, the protrusions are barely present in the reconstructed
shape. The reason for this behaviour is partially related to the fact that only far-field information
is used to solve the inverse problem, so the additional signal produced by a protrusion aligned
with the direction of illumination is very weak.

6.5. Behaviour of the algorithm with noisy data

In this example, the method is tested for stability with respect to random noise added to the
data. Like in [24], a random number in the interval [—y, y] is added to the real and imaginary
parts of the Fourier coefficients of the far-field scattering pattern &p. The noise level € is
defined as
27 9
e = M. (119)
f() |ﬁT|2 do

In [24], Kress and Rundell used a convergence criteria in the optimization algorithm that
mimicked a discrepancy principle by terminating the iterations when a normalized value of
the cost function achieves 0.6e. While this scheme can also be used here, a different strategy
was selected to solve this problem.
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Figure 9. Scattering objects obtained for different angles (6;) of the incident plane waves.

Our strategy is based on selecting the appropriate value of the function precision, €g, in the
optimization solver, based on the level of noise in the data. As explained before (see section 6),
er reflects the relative precision of the cost function calculation. In the case of noiseless data,
the value eg = 10~* was used. This means that, for the level of accuracy used to solve these
problems (which, among other parameters, depends on the number k%) the cost function is
calculated with four digits of accuracy. The optimization algorithm does not distinguish two
scatterers with cost functions that differ by less than the error inherent in the calculation. This
provides a practical scheme for stopping the iterative process.

In the case of noise present in the data, the value of eg also depends on the level of noise.
Assuming that multiple realizations of the measurements satisfy a Gaussian distribution, this
value is calculated by measuring the L?-norm of the scattering pattern for each measurement
and by computing the mean, X, and standard deviation, o, for several realizations. The value
30/ is then chosen as the relative function precision due only to noise. (The ‘3’ is used so
that the algorithm does not distinguish the mean from approximately 99% of the realizations.)
Then this value is summed to the error inherent in the discretization to define €g.

The example shown in section 6.2 is revisited (the plane waves have an incident angle
6; = 5m/4 and scattering information is available over the entire aperture) and three noise
levels are considered: € = 1%, 3% and 5%. The values for €g used in the reconstructions are
shown in table 1. The final results are shown in figure 10 where the solution corresponding to
noiseless data and the target shape are also displayed. It is easy to discern the degradation of
the quality of the reconstruction with increased level of noise; nevertheless, even at 5% noise,
the algorithm recovers with good precision the length and width of the object and the features
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Figure 10. Final solutions corresponding to different noise levels (¢) in the measurements.

Table 1. Values used for eg based on the level of noise, €, in the data.

€e(%) 0 1 3 5

€r Ix107% 3x107% 1x102 2x102

present in the upper and lower part. The number of iterations necessary to solve these problems
changes with the level of noise. While 112 iterations are required to solve the problem for the
case € = 0%, the algorithm takes 75 iterations in the case € = 1%, 60 iterations for € = 3%
and 60 iterations for € = 5%.

7. Conclusions

We have developed and implemented an efficient algorithm to solve inverse acoustic scattering
problems. In this work the inverse problem is posed in the general framework of a constrained
optimization problem with a cost functional that measures the difference between a trial solution
and measured scattering information and a constraint given by the exterior acoustic boundary-
value problem (or equivalently, its variational equation). The domain that minimizes the
functional under this constraint is the solution of the inverse problem.

To solve the optimization problem efficiently, functional derivatives are required. These
derivatives are calculated using the adjoint approach developed in this work. The cost of the
computation is independent of the number of parameters used to represent the shape of the
scatterer (in this case the parameters are control points of a B-spline curve that describes the
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shape of the scattering object) and the cost is equivalent to the computation of an extra exterior
acoustic problem, the adjoint problem.

The reconstructions presented in this work show the effectiveness of this method in treating
several types of inverse acoustic scattering problems. The algorithm was tested in several
situations: first, far-field scattering information was made available over the entire aperture,
then limited aperture problems were considered; in a third example the object was illuminated
by plane waves of different incident directions, and finally the algorithm was tested using noisy
data. In all cases the proposed method was able to recover the shape of the scattering object.
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