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1. Introduction

This paper establishes abstract convergence bounds for an Algebraic Multi-
grid Method (AMG) based on smoothed aggregation. The bounds are ob-
tained by invoking the general convergence theory of [6]. Our main result is
a bound on the condition number that grows only as a power of the number
of levels, and requires only a weak approximation property for the aggre-
gates, similar to the weak approximation condition in classical AMG in-
vestigations [9, 22,28, 37]. Our weak approximation condition can be easily
verified computationally, and we show that it holds for general unstructured
meshes and under natural assumptions on aggregates used to construct the
coarse levels. The emphasis of this paper is on the treatment of unstructured
meshes. Robustness of our form of the weak approximation condition with
respect to problem coefficients, degenerated meshes, etc, will be studied
elsewhere. Cf., [44] for the case of two-levels and jumps of &aweffi-
cients in elasticity. The results of this paper appear to be the first bound
on the condition number for an Algebraic Multigrid Method, growing only
polynomially with the number of levels. Existing bounds are based on two-
level bounds, cf., e.g., [9,39], which in general result in convergence factors
of the form1 — 2™, wherem is the number of levels [39]. This means
that for known analyses, the corresponding bound on the condition number
grows exponentially with the number of levels.

Unlike classical, geometrical multigrid, where the hierarchy of meshes
and the prolongation operators are defined from finite element spaces, the
AMG approach strives to build the hierarchy of coarse spaces, or, equiva-
lently, the prolongators, from matrix data only, making assumptions about
the underlying differential equation and its discretization [10, 20,36, 37] or
using additional geometrical information [12,13]. AMG methods based on
smoothed aggregation, introduced in [40,41] and further developed in [11,
24,42,43,46,44,45], have proved to be efficient tools for the solution of
symmetric, positive definite linear algebraic systems arising from finite el-
ement discretization of elliptic boundary value problems.

In our AMG method, we build the prolongation operators by first con-
structing atentative prolongatorusing an aggregation approach and the
knowledge of zero energy modes of the principal part of the differential
operator with natural boundary conditions (e.qg., rigid body modes for elas-
ticity), thensmoothingts output by a carefully selected iteration. Our coars-
ening process is determined by the selection of aggregates, as opposed to
the selection of C-points in classical AMG [10, 36, 37]

The use of zero energy modes has become a recognized way to capture
the essence of the geometry, the differential operator, and the discretization,
needed to build an efficient iterative method. Zero energy modes are the
input of other widely used iterative methods [17-19, 25,29, 30,32, 33]. For
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common discretizations of scalar elliptic problems, zero energy modes are
simply constant vectors, that is, multiples of a vector of all ones. In this
case, the use of zero energy modes is an assumption about the problem
rather than the use of geometrical information, and our prolongator becomes
disaggregation followed by smoothing. Prolongation by disaggregation only
(without smoothing) was advocated, e.g., in [3,5].

Our bounds are based on existing general regularity-free estimates for
multigrid methods. Since the first attempts to analyze AMG type methods, it
was clear that the classical multigrid theory, which relies on elliptic regular-
ity [1,21, 31] will not apply, because this theory requires the use of properties
of the underlying finite element spaces on all levels. The approach based on a
strengthened Cauchy inequality [1, 4], or, equivalently, on the weak approx-
imation property [9, 22,23, 28], needs only assumptions that can be verified
computationally, but it gives convergence estimates for two-level methods
only. Itis not guaranteed that the two-level convergence rate can be made ar-
bitrarily small by increasing the number of smoothings steps [9], and simple
recursive estimates result in a convergence bound that approaabesye-
ometrical sequence [27]. This means that the bound on the condition number
increases exponentially with the number of levels. A satisfactory multigrid
theory based on the weak approximation property was made possible by
reinterpreting multigrid as a Schwarz method [38] during the late eighties.
The abstract Schwarz methods have become a recognized framework for
analyzing a large class of iterative techniques in a unified manner. The early
convergence results for additive variants were developed and used for do-
main decomposition [2,14-16, 26], hierarchical bases [47,48] and additive
multilevel preconditioners [8]. Based on an estimate for product methods
[7], the first regularity-free polynomial convergence bounds for variational
multigrid were established in [6], relying on a multilevel version of the weak
approximation condition and on other properties of nested finite element
discretizations. The bounds of the additive variants were then improved to
be independent of the number of levels by new techniques using advanced
approximation theory tools [34, 35].

We use the classical multiplicative scheme of the multigrid method, in-
cluding block Gauss-Seidel smoothers. In in our implementation, paral-
lelism is then achieved by coloring. Cf., [34] for theoretical and [20] for
practical aspects of additive multigrid approaches.

To apply the estimates of [6] to a particular multigrid method in a straight-
forward manner, one needs to establish that the discrete norms in the arti-
ficially constructed coarse spaces are uniformly equivalent to appropriately
scaledL? norms, and establish the weak approximation property in those
norms. We have done this in [42] under additional (though quite reasonable)
assumptions on the supports of the coarse basis functions. Essentially, we
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had to assume that the basis functions in the coarse space hierarchy are asso-
ciated with a division of the domain into subdomains that behave much like
finite elements. Verifying these assumptions is difficult because the process
of building the coarse spaces is recursive and not easily predictable; all we
could say was that our coarsening algorithms were designed so that they
would tend to produce such a coarse space hierarchy, but this could not be
guaranteed.

Our present approach to the theory is to verify the assumptions of the
abstract theory from [6] by algebraic means, without reference td.the
norm and assumptions on the supports of the coarse space shape functions.
We need to assume only a weak approximation property for the tentative
prolongators, rather than to work with the properties of the final prolongator
operators. Thus, the weak approximation property is easy to verify once the
aggregates are constructed. Our analysis requires that the mesh coarsening
ratio be 3 rather than the more usual However, this is inherent in the
smoothed aggregation method, and leads to a method which is very efficient
in practice [43].

The paper is organized as follows. The AMG algorithm is described
in Sect. 2. Section 3 contains our principal theoretical result, a multilevel
convergence proof using only a weak approximation property for aggre-
gations. In Sect. 4, we describe the construction of a tentative prolongator
from zero energy modes by aggregation, and formulate and prove the main
convergence theorem. Finally, Sect. 5 contains an example showing that the
assumptions of the theorem are satisfied for a finite element discretization
of a second order elliptic boundary value problem.

2. Description of the method

We are interested in solving the system of linear algebraic equations
(2.2) Ax = b,

whereA is a symmetric positive definite matrix. The smoothed aggregation
multigrid [43] can be viewed as a standard variational multigrid method
with prolongators of the forns; P/, |, whereP}, | : R™+1 — R™, ny =

ord(A) > ng > ... > ny is the full-ranktentative prolongatoand.; :
R™ — R™ is aprolongator smoothederived from the matrix4;. The

hierarchy of coarse level matrices is defined by
(2.2) Ay = (SIPL) T ASIPLy, A= A

The simplest example of a tentative prolongator will be given at the
end of this section. The construction of a tentative prolongator suitable for
solving general elliptic problems on unstructured meshes will be the subject
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of Sect. 4. Although we will carry out some convergence estimates for
general prolongator smoothe$s: R™ — R™, the form ofS; we use is

4

(2.3) &:I—ﬁyMTML

Here, \M > o(M; ' A)), ¢ denotes the spectral radius, and
(2.4) M, = (PH'P!, pl=p...P7', Pl=1I

The mapping?! : R™ — R™ is calledcomposite tentative prolongator
This particular choice of prolongator smoother will be justified by Re-
mark 3.1 and Lemma 3.4. The parametg3 in (2.3) on levell minimizes

the value ofp(M, .} A41). In Lemma 3.4, we will show that we can take

(2.5) MM = gl=t)

where) is an available upper bound fofA).

One iterationx <— M G(x, b) of the multigrid algorithm is as follows:
Algorithm 2.1 LetR; : R™ — R™ [ =1,...,L — 1 be given smoothers
andv,~y > 0 be a given smoothing and cycle parameter, respectively. Set
MG = MGy, whereMG,(-,-), I =1,...,L— 1is defined by:
Pre-smoothing: Perforn iterations ofx!«(I — R;A;)x' + R;b'.

Coarse grid correction:
— Setb!t! = (SIPIZH)T(b’ — Aixh,
— ifi+1 = L, solved, ;x'*! = bl*+! by adirect method, otherwise set
x*1 = 0 and performy iterations ofx'*1 < MGy, (x!*1, b1,

— correct the solution on levélby x'<—x' + 5P/, | x/*1.

Post-smoothing: Perform iterations ofx!« (I — R A;)x! + R;bl.

Example 2.2.For illustration, consider the simplest tentative prolongator
le+1 for the 1D Laplace equation discretized on a mesh consisting ef

3L=1n; nodes:

(2.6) Pl =
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The columns ofP/, , are0-1 vectors with disjoint nonzero structure. Each
column corresponds to disaggregation of @&fer! variable into thredR™
variables,n; = 3n;y;. So,P}H can be thought of as a discrete piece-
wise constant interpolation. The composite tentative prolongEfOE
Pj...P/~" is similar in structure taP/, ,: each column corresponds to
disaggregation of onR™ variable into3'~! R™ variables. Note that (2.4)
yieldsM; = 3'~11. Since the matrixl; = A is tridiagonal, the choice (2.3)
of the prolongator smoother implies that the coarse level matdges =
2,..., L are tridiagonal as well.

In general,PllH has generalized block diagonal structure similar to (2.6)
with the blocks stretching over at most 6 columns, cf., Fig. 1 below. Then
M; is block diagonal with block size at mo8tx 6, so the application of
M; " is inexpensive.

3. Abstract convergence bounds

Define the smoothed composite prolongatbr R™ — R™ by
(31) Ill == SlPQl...Sl,]_Pll_17 Ill :I’

the hierarchy of coarse spadésC Vi, C ... C V; byV; = Range Ill,
the norm on; induced by th&R™ —norm ||x||gn = (x7x)Y/2,

(3.2) lull; = min{||x||p = I'x},

and the associated inner prodyat v); = (x,y)gmu, u = I}x, v =
I'y, x,y L Ker I} If I} has full rank, we have simplyl}x||; = ||x||gn:.
Note that from (2.2), it follows thatl;, = (I})T A}, and

(3.3) 11}x[[a = [|x]la, VxeR™,
(34)  maxuey (1204)" = masepe (12212)° 2 o)
: ueVi \ al;y x€R™ | xllgm oA

Remark 3.1.The preconditioning b;Ml‘1 in (2.3) guarantees that the pro-
longator smoothes; posesses the following invariance propertyPjf is
replaced byP! D, whereD is a nonsingular matrix, theff becomed} D
andM; ' A; becomesD~'M; ' A; D, henceS; becomesD~1S;D. Conse-
guently, the mapping ir; defined by the action of; via the isomorphism
Il ie., I'x — I'Sx, does not depend on the specific choicef but
only on Range P}

Our estimates are based on an abstract convergence result proved in [6].
Using (3.4), it can be written in our notation as follows:
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Lemma 3.2. ([6], Theorem 1). Assume there are linear mappin@s :
Vi — V;, @1 = I and constants;, c; > 0 such that

1. forallu e V; andeverylevel =1,... L
(3.5) [Quulla < crlul[a.
2. forallue Vyandeverylevel=1,...,L — 1
C
(3.6) (@ = Quiuli < —==]ull.
o(Ay)
Further assume thak; are symmetric positive definite matrices satisfying
1
(3.7) )\min(I - R[Al) >0 and )‘min(RZ) > 5~
CRr Q(Al)

with a constanty > 0 independent of the level.
Then Algorithm 2.1 satisfies

b
Co(L)

wherex is the solution of (2.1), aneh(L) = (1+c; +cacr)?(L—1). More-
over, the preconditioneP defined by the action af/G(0, -) is symmetric
with respect td-, - )gr»1 andcond (A4, P) < ¢o(L).

Ix — MG(x,b)||a < <1— )Hf{—xHA Vx e V1,

The following lemma verifies assumptions (3.5), (3.6), of Lemma 3.2
from the properties of5; and P! rather than/}'. It does not assume the
specific form (2.3) of the prolongator smoother.

Lemma 3.3. Letforeveryl =1,..., L, XZM > Q(Ml_lAl) and

Q:Vi—RYM, Q=1 S :R" 5 R™

be given linear operators. Assume that for sameCs, Cy;, Cs > 0 and
all=1,...,L—1,

~ - C?
B8)P Q= Pl Quinullze < pllully vue i,
l

(3.9) cond(M;) < C3,

(3.10) [Silla, <1,

(3.12) 1S I < Ain (M| B xRy ¥x € R™,
02

3.12 I— 2., < —2_|Ix|3 R™

(3.12) (I = Sp)x|lgn < Q(AI)HXHAZ Vx € R™,

(3.13) o(MISTAS) < C2AM.
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Then, for everyn € V7, the mappings); = I}Ql satisfy
(3.14) [Quufla < ci(Dlfulfla, 1=1,...,L,
with ¢y (1) =1+ CsCi1(I — 1), and

(3.15)|(Q1 — Que)ull < co(Do(A) Y2 |ulla, 1=1,...,L—1
with CQ(Z) = C1Cyp + CQHQZHA <CiCy + CQCl(l).

Proof. First, for anyx € R™,
(3.16) 1S4, < Cs/ A I Bixlmem -
Indeed,

—1/2 1/2
15|14, = 1S, Px )13,
< o (M 2SS ) (100 e

where Q(Ml_1/2SITAlSlMZ_1/2) = g(Ml‘lslTAlSl) is bounded from
(3.13), and|Ml1/2X”]Rnl = HI)ZIXHIR’”’ sinceM; = (f)ll)TPll.
Letu € V;. From the definitions ofll, Q) and the isometry (3.3),

1Qir1ulla = T4 Qusrulla = | ISPl Quiaulla = [|SiPL Quialla,
< 1SU(Q1 — Pl Quer)ulla, + [|SiQuul 4,

Using bound (3.16), assumptions (3.8), (3.10) and isometry (3.3), we get

1Qur1ulla < Csy/AM P! Qra — PP Quirullrm + [|Qrul 4,
< CsChllulla + |Quu 4.
Estimate (3.14) now follows by induction witg; = 1.

To prove (3.15), we use assumptions (3.11), (3.12) and definitions (3.2),
and (3.1),

1(Q1 — Qir1)ul); < H(Ql - SlPll+1Ql+1)uHRnl
= HSZ(QI - Pll+1Ql+1)u +(I- Sl)@luH]R"l
< 1Su(Qi - Pll+1Ql+1)llHan + [|(I = S))Qu|rm
< A2 (M) | P Qra — Py Quiralzm

(3.17) +Ca0(A) 2| Quul| 4,
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Now, using the estimate

TMI—1/QAZMZ—1/2X

0o(A;) = max

xER™ XTMl_IX
—1/2 —1/2
XTMl /AZMZ 15 xTx
(3.18) < max T ©MaX —————
xER™ xTx x€R™ XTM X

< AMo(My) < M Ain(M;) cond (M)

together with isometry (3.3) and assumption (3.8), inequality (3.17) can be
rewritten as

Ca
1(Q1 — Qiy1)ul; < \/)\mm 7y +\/Q(Al)”QlHA ulla

C1y/cond( z+C2HQzHAHuHA

- o(Ar)

< C1Cwm + C2||Q1] a
o(Ar)

[alla,

completing the proof of (3.15).

The key assumption (3.8) of Lemma 3.3 is a weak approximation prop-
erty for disaggregated functions. If one has the weak approximation property
in the more usual form

C?
Va € R™ Ju € R™ o lu— Pluffn < 57 llal
l

Then, with the choic€),; = M, "' (P)", the mapping®;' Q; are orthogonal
projections ontoRange P'. Since Range P, ; C Range P}, we obtain

lu— P Quulin = [[u— PrQuu|ge + |PrQua— Pl Quirulin
(3.19) > ||P'Qua — P Quirulfm

Hence, from the minimization property of the orthogonal projection,

1P Qua — PL Quirullin, < |lu— PYyQuiiulfn
02
<llu—Pwggn < = llullf,
I+

: . : , 5o AM
and it follows that the inequality (3.8) holds wid¥ = C%X#
1+1
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The prolongator smoothers enter the approximation property (3.8) only
through the scaling factdr/A on its right-hand side. The spectral bound
MM can be interpreted as a constant in the inverse inequality; amd
by (2.2), it depends on all prolongator smooth8is k& < [. The role of
the prolongator smoothers is to enforce “smoothness” of the coarse spaces
by making the values ok} small. Obviously, a smallek} allows the
approximation condition (3.8) to be satisfied with a smaller congtant

The columns of a typical tentative prolongaliqijH are orthogonal, as
we observed in Example 2.2. By properly scaling the cqumrBle, we
can obtain}; equal to the identity matrix even in more general cases (see
Algorithm 4.1). In such a case, (3.9) holds with; = 1.

Note that from (3.10), inequality (3.13) always holds with = 1;
for the prolongator smoother (2.3) we will hagg = 1/3, which gives a
better bound. The remaining assumptions of Lemma 3.3 are natural algebraic
requirements on the prolongator smoothgrsvhich are easily satisfied.

The next lemma shows that the prolongator smoother (2.3) satisfies the
assumptions of Lemma 3.3, and justifies the choick/éfin (2.5).

Lemma 3.4. Let S, be given by (2.3) with}/ chosen as in (2.5). Then,
(3.20) AN > o(M7TTA), 1=1,...,L,

inequalities (3.10), (3.11) hold, and (3.13) holds with = 1/3. Further,
assuming (3.9), (3.12) is satisfied with = (4/3)Cy.
Proof. Since M; = I, inequality (3.20) holds fof = 1. Assume (3.20)

holds for I. Using (2.2) and the equationf,;; = (P.,)"P., =

(P1PIZ+1)TP1Pll+1 = (Pz+1) MlPl_H, we obtain
(P!, x)"STAS(P, %)
LA
o(M I+1 1) = Iﬁgﬁl TN
(3.21) — max (Pl x)TSEAS (Pl %)

xeR"+1 (Pl x)T M (P x)
< o(M;'SFALS).
From the definition ofS; in (2.3), it follows that

4 2
—1oT o -1 -1
Hence, by the spectral mapping theorem,

4 \2
o(M;'SFAS) =  max <1 Mt> t
tea(M; 1 A))

< ma
= teloo] ( 3M )
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This proves (3.13) witiCs = 1/3. The statement (3.20) follows from the
last estimate together with (3.21).
From definition (2.3)5; is A;-symmetric, and, from (3.20),

(3.22) o(S) € [-1,1],

which proves (3.10).
To verify (3.11), we estimate fat € R™,

1Sl = (1342028077 M P x e
< o(M; o0} P M) | M P

SinceM,; = (P)T P}, we haveo(M, /%) = A_1/2(M;) and|| M, *x ||z
= [|P!x||g~1. Further, it follows from (3.22) thas(M,"/>5,0,/%) < 1.
Now, (3.11) follows by direct computation. B

It remains to verify (3.12). Sincé — S; = 4/(3\M)M; ' A, (3.12)
holds with

4 HM_lAlXHRM
Co= [ —— ANL/2 W7y AR
: (:»,M ) o0 £
4 1 41/2
N <3_>\ZM> Q(Al)l/QQ(Ml 1Al/ )7
where
M

M_1A1/2 < M—1/2 M—1/2A1/2 < %
Q( l 1 )_Q( l )Q( 1 1 )_ )\min(Ml)

Now, from (3.18),Cy < (4/3)+/cond(M;) < (4/3)C)s, concluding the
proof.

We are now ready to prove the following convergence theorem. Recall
that A is a known upper bound a@f( A) used in (2.5).

Theorem 3.5. Let the prolongator smoothels; be given by (2.3) witlilM
chosen as in (2.5). Assume th@t and C; are such that there are linear
mappings

Q :RM R, [=1,....L, Qi =1,

such that

HPllQlu - Pll+1Ql+1uHJ%£"1
-1
(3.23) gc%gTuqu YueR™, |=1,...,L—1,
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and
(3.24) cond(M)) <C3, 1=1,...,L.

Further assume thak; are symmetric positive definite matrices satisfy-
ing (3.7) with a constantr > 0 independent of the level.
Then,

1

|% — MG(x,b)||a < <1 il

) | —x[|a VxeR™,

whereAx = b, and

4 1 4 2
co(L) = <2 + C1Cyer + §CMCR + §C1 <1 + 3C’MCR> (L — 1))
x(L—1)

In addition, if P : u — MG(0,u), then P is a symmetric matrix and
cond(A, P) < ¢o(L).

Proof. By (2.5) and Lemma 3.49(M; ' 4;) < AM = 91!\, Therefore,
the approximation property (3.8) in Lemma 3.3 holds vithfrom (3.23).
From Lemma 3.2¢o(L) = (1 + c1(L) + c2(L)cg)?(L — 1), where, by
Lemma 3.3C1(L) =1+CqCy (L — 1), CQ(L) = C1Cp + Coeq (L) From
Lemma 3.4Cs = 1/3, Cy = (4/3)C)y, and the proof is completed by a
direct computation.

4. Choice of the tentative prolongator

In this section we reformulate the construction of the tentative prolongators
described in [43] and prove the main convergence theorem.

Our construction is based on the supernodes aggregation concept. On
each level, degrees of freedom are organized in small disjoint clusters called
supernodes. On the finest level, the supernodes have to be specified, e.g., as
the sets of degrees of freedom associated with the finite element nodes. The
coarse level supernodes are then created by our aggregation algorithm.

The input data needed for constructing the tentative prolongators are the
hierarchy of aggregates and the level one mairixf dimensiom; x r ma-
trix B!, wherer is a positive integer. The range Bft specifies which func-
tions (finest level vectors) should be exactly representable on each coarse
level in the sense that

4.1) Range B' ¢ Range P!, 1=1,...,L—1.

Our main convergence result, Theorem 4.2 below, gives a convergence esti-
mate based on assumptions on the finest-level matrjxhe matrixB' and
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the aggregates. The key assumption of Theorem 4.2 is a weak approximation
property (4.4) that is easy to verify computationally [23], thus providing a
guideline for choosing aggregates and the matixneeded for solving a
linear system with given matrix;.

Both the construction of the tentative prolongators and Th. 4.2 are purely
algebraic. We only need the matricésandB', and the decomposition into
aggregates.

Following the considerations in [43], we typically chooBé to be a
generator of zero energy modes. In a finite element context, this means
the kernel of the stiffness matrix obtained from the finite element model
with no essential boundary conditions. Zero energy modes, determined from
geometry and element definition, are available in most of the existing finite
element packages.

For scalar problems, the matri®! of zero energy modes can be of-
ten obtained without any geometric information. For Lagrange elements,
the zero energy modes are simply multiples of the vector of all ones, cf.,
Example 2.2.

For second order systems, such as elasticity, one may apply this approach
componentwise and build the matri' so that its range consists of all
discretized constant vector fields. Such mafixcan be again constructed
without any geometrical information. The verification of the properties in
Sect. 5 can be done for the quadratic fqrm\gl(m in the place ofi(u, u)

and then extended to the fortu, u) by the equivalence of normagu, u) ~
”“H%ﬂ((z)- For elasticity, the lower bound or(u, «) in this equivalence is
Korn’s inequality. The constant in Korn’s inequality is, however, sensitive to
domain shape and boundary conditions, and in practice one indeed observes
worse convergence and loss of robustness compared with the use of zero
energy modes.

The above equivalence argument is avoided for tentative prolongators
constructed using all zero-energy modes, which are rigid body modes for
elasticity, as in [43]. This allows one to prove the weak approximation prop-
erty with a constant independent of some problem data, such as boundary
conditions, shape of the computational domain, and also, under some re-
strictions, jumps in coefficients [23,44].

The objective (4.1) is specified for the composite tentative prolongators
P}. To enforce it during the setup d?., ,, we create simultaneously the

prolongatorP/, ; and then; 1 x r matrix B'** so that
4.2) Pl B"' = B,

where B! has been constructed during the setupr)T1 (or, is given if
[ =1).
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| |
B P

Fig. 1. The tentative prolongatd?/, ,

The proIongatorPfH is constructed from a given system of aggregates

{Aﬁ}fi’l thatforms a disjoint covering of levESupernodes. A simple greedy
algorithm for generating aggregates based on the structure of the magix
givenin [43]. The property (4.2) is enforced aggregate by aggregate; columns
of P, , associated with the aggregaté are formed by orthonormalized
restrictions of the columns d#’ onto the aggregatd.. For each aggregate,
such a construction gives rise talegrees of freedom on the coarse level,
forming a coarse level supernode.

The detailed algorithm follows. For ease of presentation, we assume that
the fine level supernodes are numbered by consecutive numbers within each
aggregate. This assumption can be easily avoided by renumbering.

Algorithm 4.1 For the given system of aggregat{eéﬁ}fy:’1 and then; x r
matrix B! satisfyingP! B! = B!, we create a prolongatoPllH, a matrix
B! satisfying (4.2) and supernodes on level 1 as follows:
1. Letd; denote the number of degrees of freedom associated with aggregate
AL, Partition then; x r matrix B! into blocksB! of sized; x r, i =
1,..., N;, each corresponding to the set of degrees of freedom on an
aggregateA! (see Fig. 1).
2. Decomposé! = Q.R!, where@Q! is and; x r orthogonal matrix, and
Rlis anr x r upper triangular matrix.
3. Create the tentative prolongatéi, | = diag(QY, ..., QY,), cf., Fig. 1,
and set
R
B+l — R}

!
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4. For each aggregatel!, the coarsening gives rise tadegrees of freedom
on the coarse level (the-th block column oﬂ3l’+1). These degrees of
freedom define the-th coarse level supernode.

Before formulating the convergence theorem, we introducedhgos-
ite aggregateand the associated norm. The composite aggreé?te the
aggregateAé, understood as the corresponding set of supernodes on the
finest level. Formally,A. is defined by

(4.3) A=Ay, where A=Al A= |] A"

kAl

and the corresponding discréte-(semi)norm of the vectax € R™ by

1/2

ey = | X 4

dofs k of fli

We are now ready to prove the main convergence theorem.

Theorem 4.2. Let the prolongator smoothes; be given by (2.3) with M
chosen as in (2.5), and the tentative proIongatl.t))‘;g1 be created by Al-
gorithm 4.1 using they; x » matrix B! and the aggregategAﬁ},f\Ql, I =
1,...,L—1.Assumethereis aconstarf > 0suchthatforevery € R™
andevenyi =1,...,L —1,

Ni -1

9
Z . _ ply2 2
@ = i u = Bz 1y < Ca—5—ulla-

Further assume thak; are symmetric positive definite matrices satisfy-
ing (3.7) with a constantr > 0 independent of the level.
Then,

1
X — M b <({1l———)|x—- \% R™
I~ G B < (1 ) I -l v e B

whereAx = b, and

co(L) = (2+ Cacr + (4/3)cr + (1/3)Ca (1 + (4/3)cr) (L — 1))
x(L—1).

Further, if P : u — MG(0,u), then P is symmetric in(-, -)g»1 and
cond(A, P) < ¢o(L).
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Proof. The proof consists of the verification of the assumptions of Theo-
rem 3.5. The tentative prolongataf,, are block diagonal matrices with

orthogonal block)!, hence orthogonal (see Step 2.) Since the product of
orthogonal matrices is an orthogonal matt, is orthogonal and (3.24)
holds withC,; = 1.

Let us show that (3.23) is satisfied witly = C 4. For each supernode
sk on levell, define the space

W) ={P!x|xecR", z;=0Vj¢s}, i=1,...,N_;.
Note that the number of supernodes on léwedjuals the number of aggre-

gatesN;_; on levell — 1. Let dof(fiﬁ‘l) be the set of degrees of freedom

correspondingtothe aggregaiéa‘l. Fromthe nonzero block structure ofthe
tentative proIongatorE,fH and the definition (4.3) of the composite aggre-

gatesAl, it follows that(P'x);, j € dof(A!), depend only omy, k € st.
Hence,

Wl = {x € R™| 3y € Range P} : x; =y, if i € dof(AL™1),

(4.5) 0 otherwise}.

Since the aggregatefté form a disjoint covering of the set of the finest level
supernodes, the spadég form an orthogonal decomposition &fange p}
and the corresponding orthogonal projecti@iis R™ — W}, Tt : R —
Range P/ satisfy

T'=T{+Ty+...+ Tk, .
From here and from (4.5), we get the following estimate for eveeyR"™?,

I(1 = T")ulfgn,
N1

= Z lu— (71 + .. +TNl 1)‘1”12 (A1)

N1
l
= Z ||11 - Tzqui(Aifl)
=1

Ny
= Z min  [ju— WHl2 A

1
i1 we Range P,
Ni—1

(4.6) < Z min fu— B'wl g,
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using (4.1) in the last step.

SetQ; = (PH)T. SinceM; = (PH)TP! = I, the mappingP!Q; =
P'MH(PHT s the orthogonal projectioi’ onto Range P'. Then, us-
ing the equatior”}, ; @, = T'*!, estimates (4.6) and (3.19), and assump-
tion (4.4), we obtain

1P Quu — PL 1 Quirul|fn,
< |I(I = Py Quen)ul [

al 1112 9t
<3 gpinu - B'wlhg, < Ol
1=

proving (3.23) withC; = C4. Now, the proof follows fromCy; = 1,
C1 = Cy4, using Theorem 3.5.

5. Model problem

The goal of this section is to verify the key assumption (4.4) of Theorem 4.2
on a simple example. The weak approximation property for problems of
linear elasticity has been investigated in [44]. For the verification of the
smoothing condition (3.7) for commonly used smoothers we refer to [6].
Note that for the Richardson iteration given By = o(4;)~'I, (3.7) holds
with cr = 1.

Let 2 ¢ R?, d = 2,3 be a bounded domaim, a quasiuniform finite
element mesh of?, andV}, a P1 or Q1 finite element space associated with
7. At some of the boundary vertices, zero Dirichlet boundary condition is
imposed for functions iV;,. We assume the standard scaling of the finite
element basis|y;||z~ = 1 and solve a second order scalar elliptic problem

(5.1) findu € V}, such thata(u,v) = f(v) foreveryv € Vj,,

wheref € H=1(£2) anda(-, ) is a coercive and bounded bilinear form on
H(0).

For solving the resulting linear system (2.1), we use Algorithm 2.1,
where the prolongator smoothers are defined by (2.3) and (2.5) and the
tentative prolongators are created by Algorithm 4.1. In order to do so, we
need to specify the supernodes on the finest level, the supernode aggregates
{Aﬁ}fﬁl on each level < L, and the matrix3!.

On level 1, each supernode consists of the degree of freedom associated
with one finite element vertex with no essential boundary condition imposed.

We assume that on every levek L, for each aggregatd! there is a
ball U} ¢ R? such that
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1. all finite element vertices of the corresponding compaosite aggrezijate
are located withir},

2. diam (U}) < C3'h, whereh is the characteristic meshsizemgfandC
is a positive constant independent of the level,

3. there is an integer constait independent of the level such that every
pointx € {2 belongs to at mosW balls Uz-l. (Overlaps of the balls are
bounded.)

The heuristic greedy algorithm described in [43] tends to generate aggregates
satisfying the above assumption.

In order to satisfy assumption (4.4), we need to chaBseso that on
each aggregat&inycg- |u — Blw| is small compared to the energy norm
of u. Therefore, with the Poincarinequality in mind, we choosB! to be
the discrete representation of the unit function, the vector of ones.

Letu = (uy,...,un,)" be a given vector and = ujp; + ... +
un, ¢n, the corresponding finite element function. In what followsis a
generic constant independent@fu, the meshsizé and the level. We
introduce a domait2’ C {2 consisting of all elements of the mesfy that
are not adjacentto afinite element vertex with prescribed Dirichlet boundary
condition. Thengo1+ +¢; = 1ong and, asall active degrees of freedom
are located in2’, the equivalence of discrete and continudifs-norms
gives
W fu=Bpl% iy < Clu=pl2aingy) < ClEu=pl2an, pER.

(5.2)
Here,E : H'(£2) = H'(R?)/R' = {v : |v| g1 (gay < o0} is the extension
operator satisfyingru = u on 2 and|Eu| g1 (gey < Clu|g1 ()

To verify (4.4), we need to estimate the minimum of the expression on
the left-hand side of (5.2) with respectgioc R!. This can be done using
the scaled Poincéarinequality applied to the right-hand side of (5.2): for
each ballU’, there is a numbeyi = pl(Ew) such that| Eu — p§||L2(UZ;) <

C diam (U})|Eu|H1(U;). Here,C is a Poincaé constant on the unit ball.
Hence, for all balld/} it holds that

1 2
by = Hu_B Hp(j\é)

: 1
min lu — B'pjI7, (it

(5.3) < Ch~* diam (U})*|EBul?, oY

From the assumption thatiam (U}) < C3'h, the property Eul g1 gay <
Clul (), estimate (5.3), the bounded overlaps of the tlaiflsthe well-
known estimate(A) < Ch?=2, and theH ' —equivalence ofi(-, -) we get

al gl—1 -1
9
( );vgé%llllu Iy < s 1Bl ey < Oy Il
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completing the verification of (4.4).

Note the very weak dependence of our estimate on the actual shape of the

aggregates; the constaiin the estimate above depends on the shape of the
aggregates only through the intersection param¥teklso, the estimate is
independent of the essential boundary conditions.

AcknowledgementsThe authors would like to thank Caroline Heberton for reading this
paper and many useful comments.
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