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Abstract

We study a compactification of the Drinfeld period domain over a finite field which
arises naturally in the context of Drinfeld moduli spaces. This compactification is
in some sense dual to the compactification by projective space. It is normal but
singular at the boundary. We construct a desingularization and obtain a smooth
modular compactification of the Drinfeld period domain with a natural stratification,
simple functorial description, and the boundary a divisor with normal crossings in
the strongest sense.
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1 Introduction

Let d ≥ 1 be an integer and let V be a d-dimensional vector space over a finite field Fq
with q elements. Denote by SV the symmetric algebra on V over Fq and by Frac(SV ) its
field of fractions. Thus SV is non-canonically isomorphic to the polynomial ring over Fq
in d variables, but refraining from the choice of a basis for V will make the constructions
and statements of the article more lucid and canonical.

Let RV and RSV be the Fq-subalgebras of Frac(SV ) defined as follows:

RV := Fq
[
1

v

∣∣∣∣ v ∈ V r {0}
]

RSV := Fq
[
v,

1

v

∣∣∣∣ v ∈ V r {0}
]

We make SV and RSV into graded rings by defining degSV
(v) = degRSV

(v) := 1 and
degRSV

(
1
v

)
:= −1. We make RV into a graded ring by defining degRV

(
1
v

)
:= 1. This

definition will turn out to be more convenient for the remainder of the article.

Associated to these rings we define the following schemes over Fq:

PV := Proj (SV )

QV := Proj (RV )

ΩV := Spec ((RSV )0)

Thus PV is non-canonically isomorphic to projective space Pd−1
Fq

. The scheme ΩV is equal
to the open affine complement of the union of all Fq-rational hyperplanes in PV , as well
as the open affine subscheme of QV obtained by inverting all homogeneous elements of
degree 1 in RV . It is an important example of a period domain over a finite field - the
Drinfeld period domain. See for example Rapoport [8], Orlik [9] and Orlik-Rapoport [10].

The scheme ΩV is an analogue over Fq of Drinfeld’s period domain over a nonarchimedean
local field F . The latter is defined as the complement in projective (d − 1)-space of the
union of all F -rational hyperplanes, and makes sense only as a rigid analytic space, not as
an algebraic variety. When F has equal positive characteristic, this period domain plays
a central role in the analytic description of the moduli space of Drinfeld modules. See for
example Deligne-Husemoller [11] and Drinfeld [12]. The special case of Drinfeld modules of
rank d with respect to the ring Fq[t] and with a level structure of level (t) leads naturally to
the scheme ΩV defined above. The natural (Satake, or Baily-Borel) compactification of this
Drinfeld moduli space turns out to be essentially QV , and not PV . As QV is singular (see
section 4) we are thus led to the natural problem of constructing a good desingularization
of QV , which is the main goal of this article.
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The details of the relation of ΩV , QV and its desingularization with Drinfeld moduli spaces
will not be discussed.

We now describe the main results of the article. The study of the projective coordinate
ring RV of QV is carried out in sections 2 and 3. We determine a presentation of RV with
generators and relations (Corollary 2.5), prove that RV is integrally closed (Proposition
2.12), and determine its Hilbert polynomial (Propositions 2.6, 2.9, 2.10). Although RV is
neither regular nor factorial (Proposition 2.11), we show that up to a Frobenius power, the
ring RV is isomorphic to the symmetric algebra SV ∗ on the dual vector space V ∗ over Fq
(see Theorem 3.1 for a precise statement). From this we again deduce that RV is integrally
closed.

In section 4 we study the projective variety QV = Proj(RV ). Applying the ring-theoretic
results of sections 2 and 3, we deduce that QV is a normal scheme, and compute its degree
(Corollary 4.1). We construct a natural and well-behaved stratification of QV where the
strata are indexed by nonzero subspaces of the vector space V (Theorem 4.6, Remark 4.7).
This stratification is in some sense dual to the usual stratification of projective space PV
(Proposition 4.2), where the strata are indexed by nonzero quotients of V . We discuss the
birational equivalence of QV and PV (Propositions 4.8, 4.9). Finally we prove that the
singular locus of QV is equal to the union of all strata of codimension at least 2 (Theorem
4.10).

Before turning our attention to the construction of a good desingularization of QV in
arbitrary dimension, we study the special cases where d = 2 and d = 3 in section 5.
If d = 2, the schemes QV and PV are isomorphic smooth projective curves, and in fact
QV = Proj(RV ) is the q-uple embedding of the projective line PV ∗ (Proposition 5.1). If
d = 3, the schemes QV and PV are non-isomorphic surfaces. We prove that PV and
QV become isomorphic after blowing up both surfaces in every zero-dimensional stratum
(Theorem 5.2).

Section 6 forms the heart of the article. Here we construct a desingularization BV of QV in
arbitrary dimension. Throughout the section we work exclusively with functors of points.
Thus we begin by determining the functors represented by PV , QV and ΩV (Corollaries 6.3,
6.4). We define BV functorially and show that it is indeed representable by a projective
variety over Fq (Proposition 6.5, Corollary 6.14). We then construct a stratification for
BV where the strata are indexed by filtrations of the vector space V (Theorem 6.9). The
stratum corresponding to the trivial filtration is open and dense in BV and isomorphic
to ΩV (Proposition 6.7). The stratification enjoys several natural and beautiful geometric
properties (Proposition 6.6, Corollary 6.8, Remark 6.11, Corollary 6.15). We prove that BV

is smooth (Proposition 6.13, Corollary 6.14) and that the boundary BV r ΩV is a divisor
with normal crossings in the strongest sense (Proposition 6.16). Finally, we construct
projective morphisms to PV and QV which are isomorphisms on ΩV . Therefore BV is a
desingularization of QV (Corollary 6.17).
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2 Structure of RV

In this section we study the rings RV and RSV defined in the introduction. Our first
goals are to find Fq-bases for RV and RSV , and a presentation of RV with generators
and relations. Not surprisingly, it is convenient to treat these questions simultaneously.
Having found an Fq-basis for RV , we deduce formulas for the Hilbert function and Hilbert
polynomial of RV . At the end of the section we give an ad-hoc proof of the fact that RV

is integrally closed.

Let AV := Fq [Xv | 0 6= v ∈ V ] denote the polynomial ring over Fq in the indeterminates
Xv for all nonzero vectors v in V . Denote by κV the degree-preserving surjection of graded
rings

κV : AV � RV

Xv 7→
1

v
.

Let JV ⊂ AV be the homogeneous ideal generated by all homogeneous elements of the form

Xv − αXαv

for all 0 6= v ∈ V and α ∈ F×q , and

XvXv′ +Xv′Xv′′ +XvXv′′

for all v, v′, v′′ ∈ V r {0} such that v + v′ + v′′ = 0.

It is easy to see that the ideal JV is contained in the kernel of κV . In Corollary 2.5 we will
see that JV is actually equal to the kernel of κV . Thus we will obtain a presentation of RV

with generators and relations as RV
∼= AV /JV .

For the entire section, we choose an Fq-basis e1, . . . , ed of V . We call a monomial in AV
reduced with respect to this basis if it is of the special form

d∏
i=1

(
Xei+

∑i−1
j=1 αijej

)ri
for some ri ∈ Z≥0 and αij ∈ Fq. Let KV denote the Fq-linear subspace of AV generated by
all reduced monomials.

Proposition 2.1 The Fq-vector space AV is the sum of the linear subspaces JV and KV .

Proof. We have to show that every monomial in AV lies in the sum JV + KV . By the
definition of JV , we have the following two relations in the quotient AV /JV :
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(1) Xαv = 1
α
Xv for some α ∈ Fq and 0 6= v ∈ V

(2) XvXv′ = Xv′Xv−v′ −XvXv−v′ for some v 6= v′ ∈ V r {0}

We will show that every monomial in AV can be transformed into an element of KV by
using these relations finitely many times.

For any nonzero vector v =
∑d

i=1 αiei in V we define

width(v) := max{i ∈ {1, . . . , d} | αi 6= 0}.

For any monomial f =
∏n

i=1Xvi
in AV we define

width(f) :=
n∑
i=1

width(vi).

We carry out the proof by induction on the width w of the monomial f , starting with
w = 0. By the usual convention that the empty sum is equal to 0 and the empty product
is equal to 1, the case w = 0 implies f = 1 and thus f ∈ KV .

Now assume that the statement is true for all monomials of width less than w, and let
f =

∏n
i=1Xvi

have width w. Using relation (1), it suffices to consider the case where every

vi =
∑d

j=1 αijej is “monic” in the sense that αij = 1 for j = width(vi). If f is not already
reduced, there exist indices j and k such that vj 6= vk, but width(vj) = width(vk). Since
vj and vk are “monic”, this implies that width(vj − vk) < width(vj). Using relation (2) we
can replace the factor Xvj

Xvk
by Xvk

Xvj−vk
−Xvj

Xvj−vk
, so that

f =

(∏
i6=j,k

Xvi

)
Xvk

Xvj−vk
−

(∏
i6=j,k

Xvi

)
Xvj

Xvj−vk
.

By construction, both summands have width less than w. Thus the induction hypothesis
implies that both summands lie in JV +KV , hence also f . q.e.d.

Proposition 2.2 The system (S) of all elements of RSV of the following form is an Fq-
basis of RSV :

d∏
i=1

(
ei +

i−1∑
j=1

αijej

)ri

for some ri ∈ Z, αij ∈ Fq, and αij = 0 for all j if ri ≥ 0.

For the second part of the proof of Proposition 2.2 we will need the following well-known
lemma, whose proof we include for lack of a suitable reference.
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Lemma 2.3 Let L be a field and let L(T ) denote the field of rational functions in one
indeterminate over L. Then the system of elements(

(T − a)n | a ∈ L, n ∈ Z, and a = 0 if n ≥ 0
)

of L(T ) is linearly independent over L.

Proof. Assume there exists a non-trivial linear combination∑
a,n

α(a,n)(T − a)n = 0.

Since the subsystem (T n | n ≥ 0) of the system under consideration is already L-linearly
independent, there must exist an element b ∈ L and an integer n < 0 such that α(b,n) 6= 0.
Fix such an element b and let m denote the minimum of all integers n < 0 with α(b,n) 6= 0.

We multiply the above linear combination with the least common multiple of all the denom-
inators. Then every summand is divisible by (T−b) except for the summand corresponding
to the index (b,m). Thus we obtain an equation of the form

(T − b) · f(T ) + α(b,m)g(T ) = 0,

where f and g are nonzero polynomials in L[T ] and g(b) 6= 0. Substituting b for T yields
the desired contradiction. q.e.d.

Proof of Proposition 2.2. First we show that the system (S) generates RSV over Fq.
Set

V (i) :=
i∑

j=1

Fqej.

Since the ideal JV is contained in the kernel of κV and since κV is surjective, Proposition
2.1 implies that κV (KV ) = RV . Unfolding the definitions, we see that the composition of
κV with the inclusion RV ↪→ RSV maps the system of all reduced monomials of AV onto
the subsystem of (S) consisting of all elements

d∏
i=1

(
ei +

i−1∑
j=1

αijej

)ri

with ri ≤ 0 for all i.

Therefore, every element of RSV can be written as a linear combination of elements x of
the form

x =

∏d
i=1 e

`i
i∏d

i=1(ei + vi)ri

for some vi ∈ V (i− 1), ri ≥ 0, `i ≥ 0.
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After cancelling we can assume that whenever vi = 0, either ri = 0 or `i = 0. If x is not
already an element of the system (S), there exists an index i such that ri > 0 and `i > 0.
Denote by n the largest such index i. We will now show that x can be written as a linear
combination of elements of the same form, but with smaller value of n for each summand.
Once this is shown, one can apply the same procedure to each of the summands. By
performing at most d iteration steps, x can be written as a linear combination of elements
of the above form with the additional property that for every index i, either ri = 0 or
`i = 0, i.e., as a linear combination of elements of the system (S).

In order to find the desired linear combination of x, note that

e`nn
(en + vn)rn

=
(en + vn − vn)`n

(en + vn)rn
=

`n∑
k=0

(
`n
k

)
(en + vn)

`n−rn−kvkn.

Now since vn ∈ V (n − 1), the k-th power vkn on the right hand side can be written as a
linear combination of products of basis vectors ei with 1 ≤ i ≤ n − 1. Thus multiplying
this equation by the missing factors ∏

i6=n e
`i
i∏

i6=n (ei + vi)
ri

and subsequent cancelling yields the desired linear combination of x. Thus we have shown
that the system (S) generates RSV over Fq.

Now we come to the linear independence of the system (S). We proceed by induction on d.
The case d = 1 is an immediate consequence of Lemma 2.3. We now assume that the
statement holds for (d− 1) indeterminates. Let T be a finite indexing set and assume that∑

t∈T

γtbt = 0,

where γt ∈ Fq and where

bt :=
d∏
i=1

(
ei +

i−1∑
j=1

αijtej

)rit

is an element of the system (S) under consideration. To simplify notation, denote vit :=∑i−1
j=1 αijtej.

In order to apply the induction hypothesis, we wish to arrange the summands of the finite
sum

∑
t∈T γtbt in a convenient way. As the index t runs over the indexing set T , the pair

(rdt, vdt) takes values in the set Z× Fq(e1, . . . , ed−1). More formally, we consider the map

T −→ Z× Fq(e1, . . . , ed−1)

t 7−→ (rdt, vdt) .
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We partition T into the non-empty fibers of this map: For n ∈ Z and f ∈ Fq(e1, . . . , ed−1)
define T(n,f) := {t ∈ T | (rdt, vdt) = (n, f)}. Note that for n ≥ 0, the set T(n,0) is the only
potentially non-empty set among the T(n,f). For notational purposes, define

C(n,f) :=
∑

t∈T(n,f)

γt ·

(
d−1∏
i=1

(ei + vit)
rit

)
.

We calculate

0 =
∑
t∈T

γtbt

=
∑
(n,f)

∑
t∈T(n,f)

γt · (ed + f)n ·

(
d−1∏
i=1

(ei + vit)
rit

)
=

∑
(n,f)

C(n,f) · (ed + f)n .

Since C(n,f) lies in Fq(e1, . . . , ed−1) for all pairs (n, f), we can apply Lemma 2.3 with ground
field L = Fq(e1, . . . , ed−1) and coefficients C(n,f). We conclude that C(n,f) = 0 for all (n, f).

Note that every element C(n,f) ∈ Fq(e1, . . . , ed−1) has precisely the form of an element of
the system (S) under consideration, only in one indeterminate less. Thus we can apply the
induction hypothesis to each C(n,f) and conclude that γt = 0 for all t ∈ T . This finishes
the proof of the linear independence of the system (S). q.e.d.

Corollary 2.4 The system consisting of all elements of RV of the following form is an
Fq-basis of RV :

d∏
i=1

(
ei +

i−1∑
j=1

αijej

)ri

for some ri ∈ Z≤0, αij ∈ Fq, and αij = 0 for all j if ri = 0.

Proof. We have already seen that JV ⊂ ker(κV ). Since κV : AV � RV is surjective,
Proposition 2.1 implies that RV = κV (KV ). Since κV maps the system of all reduced
monomials in AV to precisely the system under consideration, this shows that the system
generates RV as an Fq-vector space. The linear independence follows readily from Propo-
sition 2.2. q.e.d.

Corollary 2.5 The kernel of κV is equal to the ideal JV . Thus we have found a presenta-
tion of RV by generators and relations as

RV
∼= AV /JV .

Our choice of grading for RV in the introduction implies that this isomorphism is actually
a degree-preserving isomorphism of graded Fq-algebras.
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Proof. It follows from Corollary 2.4 that the restriction κV |KV
: KV → RV is an isomorph-

ism of Fq-vector spaces, and that the Fq-vector space AV decomposes as AV = JV ⊕KV .
Thus ker(κV ) ⊂ JV . The converse inclusion JV ⊂ ker(κV ) has already been observed at
the beginning of the section. q.e.d.

Using the basis for RV of Corollary 2.4 we will now study the Hilbert function and the
Hilbert polynomial of RV . We refer the reader to Matsumura [1], section 13, and Bruns-
Herzog [2], chapter 4, for background material.

Recall from the introduction that we define degRV
( 1
v
) := 1, so that RV becomes a Z≥0-

graded ring. We denote the Hilbert function of RV by Hd. This notation is well-chosen
since the isomorphism class of RV only depends on the dimension d of the vector space V .
Our first goal is to derive a recursion formula for the Hilbert function.

Proposition 2.6 The value of the Hilbert function Hd at an integer n ∈ Z≥0 can be
computed from the Hilbert function Hd−1 by the formula

Hd(n) = Hd−1(n) + qd−1 ·
n−1∑
k=0

Hd−1(k).

Proof. Set V (d − 1) :=
∑d−1

i=1 Fqei and fix an integer n ∈ Z≥0. Then Hd(n) is precisely
the number of basis elements

d∏
i=1

(
ei +

i−1∑
j=1

αijej

)ri

of degree n, where ri ≤ 0 and αij ∈ Fq as in Corollary 2.4. We count the number of such
basis elements of degree n for fixed values of the exponent rd. Then the sum of these
numbers will be equal to Hd(n).

Any basis element of degree n decomposes uniquely into a product

b ·

(
ed +

d−1∑
j=1

αdjej

)rd

,

where b is a basis element of RV (d−1) of degree n − rd. Thus if rd = 0, the number of
possibilities is equal to Hd−1(n). If rd < 0, the scalars αdj can be chosen arbitrarily in
Fq for all j = 1, . . . , d − 1. Hence there are qd−1 possibilities for the second factor and
Hd−1(n− rd) possibilities for the first factor. Thus

Hd(n) = Hd−1(n) +
n∑

rd=1

qd−1 ·Hd−1(n− rd) = Hd−1(n) + qd−1 ·
n−1∑
k=0

Hd−1(k).

q.e.d.
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Remark 2.7 Using the formula of Proposition 2.6 above, one easily computes the Hilbert
function of RV for small values of d. The following formulas hold for all integers n ∈ Z≥0.

H1(n) = 1

H2(n) = qn+ 1

H3(n) =

(
q3

2

)
n2 +

(
−3

2
q3 + q2 + q

)
n+

(
q3 + 1

)

We now study the Hilbert polynomial of RV . We will need the following well-known lemma.

Lemma 2.8 For integers m ≥ 1 and n ≥ 0 denote by sm(n) the m-th power sum

sm(n) :=
n∑
k=1

km.

Then sm(n) is a polynomial in n of degree (m+ 1) and with leading coefficient 1
m+1

.

Lemma 2.8 can easily be proven directly by standard arguments using the difference func-
tion ∆(n) := sm(n + 1) − sm(n) = nm. Alternatively, see Conway-Guy [7] for an explicit
formula for the coefficients of the polynomial sm(n) in terms of Bernoulli numbers.

We denote by Pd the Hilbert polynomial of RV , i.e., the unique polynomial Pd ∈ Q[n] such
that Pd(n) = Hd(n) for all n � 0. Due to an obstruction in cohomology, one cannot in
general expect that the Hilbert function and the Hilbert polynomial agree for all n ≥ 0.
This is however true for a polynomial ring, and, as we will now see, also for the ring RV .

Proposition 2.9 (i) Pd(n) = Hd(n) for all n ≥ 0.

(ii) The Hilbert polynomial of RV satisfies the same recursion formula as the Hilbert
function, i.e.,

Pd(n) = Pd−1(n) + qd−1 ·
n−1∑
k=0

Pd−1(k)

for all integers n ∈ Z≥0.

Proof. We prove (i) by induction on d. For the case d = 1 see Remark 2.7 above. If the
statement is true for (d− 1), Proposition 2.6 above implies that

Hd(n) = Pd−1(n) + qd−1 ·
n−1∑
k=0

Pd−1(k)

11



for all n ≥ 0. Now since Pd−1(n) is a polynomial in n, Lemma 2.8 implies that the right
hand side of the equation is already a polynomial in n. This polynomial agrees with the
Hilbert polynomial Pd for all n� 0, and therefore even for all n ∈ Z. Thus Hd(n) = Pd(n)
for all n ≥ 0.

The statement of (ii) follows directly from (i) and Proposition 2.6. q.e.d.

Proposition 2.10 The Hilbert polynomial of RV has degree (d− 1), and its leading coef-
ficient is equal to

1

(d− 1)!
q

(d−1)(d−2)
2 .

Proof. We proceed by induction on d. For the case d = 1 we again refer to Remark 2.7
and part (i) of Proposition 2.9 above. Now assume the statement is true for (d− 1), i.e.,

Pd−1(n) =
d−2∑
i=0

ain
i

for some ai ∈ Q and where

ad−2 =
1

(d− 2)!
q

(d−2)(d−3)
2 .

Using (ii) of Proposition 2.9 above, we calculate

Pd(n) =
d−2∑
i=0

ain
i + qd−1

n−1∑
k=0

d−2∑
i=0

aik
i =

=
d−2∑
i=0

ain
i +

d−2∑
i=0

qd−1aisi(n− 1).

Note that the polynomials si(n) and si(n− 1) ∈ Q[n] have the same degree and the same
leading coefficient. Thus from Lemma 2.8 we see that Pd(n) has degree (d − 1) and that
its leading coefficient is equal to

1

d− 1
qd−1ad−2 =

1

(d− 1)!
q(d−1)+

(d−2)(d−3)
2 =

1

(d− 1)!
q

(d−1)(d−2)
2 .

q.e.d.

The following proposition collects some elementary properties of the ring RV .

Proposition 2.11 (i) The Krull dimension of RV is equal to d.

(ii) If d ≥ 2, the ring RV is not factorial.
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(iii) If d ≥ 2, the ring RV is not regular at the augmentation ideal m :=
⊕

i≥1RV,i.

Proof. The ring RV is a finitely generated Fq-algebra and an integral domain. Thus the
Krull dimension of RV is equal to the transcendence degree of its field of fractions Frac(RV )
over Fq. Since Frac(RV ) is isomorphic to a function field over Fq in d indeterminates, the
transcendence degree of Frac(RV ) is equal to d. This proves (i). Alternatively, one could
appeal to Proposition 2.10, where it was proven that the degree of the Hilbert polynomial
of RV equals (d− 1). This again shows that the Krull dimension of RV is equal to d.

We now prove (ii). If d ≥ 2, we can choose pairwise linearly independent vectors v, v′, v′′

in V such that v + v′ + v′′ = 0. The elements 1
v
, 1
v′

, 1
v′′
∈ RV are irreducible since they are

homogeneous of degree 1. The equality

1

v

(
1

v′
+

1

v′′

)
= − 1

v′
1

v′′

shows that 1
v

divides the product 1
v′

1
v′′

, but it does not divide any of the two factors. Thus
1
v

is irreducible but not prime, so RV cannot be factorial.

To prove (iii), we need to show that if d ≥ 2, the local ring RV,m at the maximal ideal
m ⊂ RV is not regular. Since RV is a finitely generated algebra over a field and an
integral domain, every maximal ideal of RV has the same height. Therefore part (i) of
the proposition implies that the Krull dimension of (RV )m is equal to d. Because m is a
maximal ideal, it suffices to show that dimFq m/m2 > d.

The Fq-algebra RV is generated in degree 1 over RV,0 = Fq. Thus

dimFq m/m2 = Hd(1),

where Hd denotes the Hilbert function of RV as in Proposition 2.6 above. From the
recursion formula in Proposition 2.6 we see that

Hd(1) = Hd−1(1) + qd−1.

By iterating and using that H1(1) = 1, we conclude that Hd(1) =
∑d−1

i=0 q
i. If d ≥ 2, this

number is greater than d. q.e.d.

We finish the section with an ad-hoc proof of the fact that the domain RV is integrally
closed. We will give a more conceptual proof in section 3 below.

Proposition 2.12 The integral domain RV is integrally closed.

Proof. It suffices to show that RV is integrally closed in the domain RSV , which is a
localization of the regular ring SV and thus integrally closed in Frac(SV ).
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Given an element b of the basis for RSV defined in Proposition 2.2, we define a pair of
non-negative integers `(b) ∈ Z≥0×Z≥0 as follows. If b is contained in RV , set `(b) := (0, 0).
If b is not contained in RV , there exists an integer i such that ri > 0. Then we set
n := max{i | ri > 0} and define

`(b) := (n, rn) ∈ Z≥0 × Z≥0.

Fix a total order on Z≥0 × Z≥0 by defining

(x, y) > (x′, y′) :⇐⇒ either x > x′ or if x = x′, then y > y′.

For an arbitrary element x =
∑

i βibi ∈ RSV for pairwise distinct basis elements bi ∈ RSV
and scalars βi ∈ F×q , define

`(x) := max
i
`(bi).

Lemma 2.13 (i) Let x, x′ ∈ RSV . Then `(x+ x′) ≤ max(`(x), `(x′)).

(ii) Let x ∈ RSV and a ∈ RV . Then `(ax) ≤ `(x).

(iii) Let x ∈ RSV rRV and n ∈ Z>0. Then `(xn) > `(xn−1).

Proof of Lemma 2.13. Part (i) is clear from how we extended the definition of ` from
the special case of a basis element to an arbitrary element of RSV above.

It follows from the algorithm used in the first part of the proof of Proposition 2.2 that
statement (ii) is true if a and x are basis elements. For arbitrary a =

∑
i αiai and x =∑

j βjbj with basis elements ai, bj and scalars αi, βj ∈ F×q , we calculate

`(ax)
(i)

≤ max
i,j

`(aibj) ≤ max
j
`(bj) = `(x).

The statement of (iii) is clear if x is a basis element. If x =
∑
βibi is arbitrary, fix an

index k such that `(x) = `(bk). Then we conclude that `(xn) = `(bnk) > `(bn−1
k ) = `(xn−1).

q.e.d.

Assume that x ∈ RSV rRV is integral over RV . Fix an equation

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0

for some n > 0 and some ai ∈ RV . Then

` (xn) = `

(
n−1∑
i=0

aix
i

)
(i)

≤ max
i≤n−1

`
(
aix

i
) (ii)

≤ max
i≤n−1

`
(
xi
) (iii)

= `
(
xn−1

) (iii)
< ` (xn) ,

contradiction. q.e.d.
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3 Relating RV and SV ∗

It is the goal of this section to relate the rings RV and SV ∗ , where V ∗ denotes the dual
vector space of V . We will show that RV and SV ∗ are “isomorphic up to Frobenius” in a
sense made precise by Theorem 3.1 below.

The majority of this section is devoted to the proof of Theorem 3.1. As an application,
we will use the theorem to give a more conceptual proof of the fact that RV is integrally
closed.

We begin by fixing some notation. For a linear form w ∈ V ∗ and a vector v ∈ V we define
〈w, v〉 := w(v). Furthermore, we define the Frobenius homomorphisms

FRV
: RV ↪−→ RV , x 7−→ xq

d−1

and
FSV ∗ : SV ∗ ↪−→ SV ∗ , x 7−→ xq

d−1

.

Theorem 3.1 (i) There exists a unique Fq-algebra homomorphism ψ : SV ∗ → RV such
that

w 7−→
∑
v∈V

〈w,v〉=1

1

v
.

(ii) There exists a unique Fq-algebra homomorphism ϕ : RV → SV ∗ such that

1

v
7−→

∏
w∈V ∗
〈w,v〉=1

w .

(iii) ϕ ◦ ψ = FSV ∗

(iv) ψ ◦ ϕ = FRV

Proof of 3.1(i). We need to show that the formula for ψ(w) is Fq-linear as w ranges over
the vector space V ∗. This is immediate once we write ψ(w) in the form

ψ(w) =
∑
v∈V

〈w,v〉=1

1

v
=

∑
v∈(Vr{0})/F×q

〈w, v〉
v

.

q.e.d.
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Proof of 3.1(ii).

We first construct an Fq-algebra homomorphism η : SV → Frac(SV ∗) such that

0 6= v 7−→
∏

w∈V ∗
〈w,v〉=1

1

w
.

In order to show that such a homomorphism η exists, we need to verify that

(a) η(αv) = αη(v)

(b) η(v + v′) = η(v) + η(v′)

for all α ∈ F×q and all 0 6= v, v′ ∈ V .

To prove (a), we calculate

η(αv) =
∏

w∈V ∗
〈w,αv〉=1

1

w
=

∏
w∈V ∗
〈w,v〉=1

α

w
= αq

d−1 ·
∏

w∈V ∗
〈w,v〉=1

1

w
= αη(v).

Equation (b) follows from equation (a) if v and v′ are linearly dependent. If v and v′ are
linearly independent, we have to prove that the formula∏

w∈V ∗
〈w,v+v′〉=1

1

w
=

∏
w∈V ∗
〈w,v〉=1

1

w
+

∏
w∈V ∗

〈w,v′〉=1

1

w

holds in Frac(SV ∗).

After choosing an appropriate basis for V we can identify V with Fdq and v, v′ with the

standard basis elements (1, 0, . . . , 0), (0, 1, 0, . . . , 0) ∈ Fdq . Denote by X1, . . . , Xd ∈
(
Fdq
)∗

the dual basis of the standard basis of Fdq . Then we have to prove that the formula∏
α∈Fd

q
α1+α2=1

1∑d
i=1 αiXi

=
∏
α∈Fd

q
α1=1

1∑d
i=1 αiXi

+
∏
α∈Fd

q
α2=1

1∑d
i=1 αiXi

holds in the field of rational functions Fq(X1, . . . , Xd).

We proceed by induction on the number of indeterminates d. For d = 2 we have to show
that ∏

α∈Fq

1

αX1 + (1− α)X2

=
∏
α∈Fq

1

X1 + αX2

+
∏
α∈Fq

1

αX1 +X2

.

Multiplying this equation by the factor X1 ·
∏

α∈Fq
(X2 − αX1) we obtain the equivalent

equation ∏
α∈Fq
α 6=1

1

1− α

 (X2 −X1) = X1 +

∏
α∈Fq
α 6=0

1

α

X2.
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This equation in turn follows from the observation that∏
α∈Fq
α 6=1

1

1− α
= −1 =

∏
α∈Fq
α 6=0

1

α
.

We now assume that the statement is true for (d− 1) indeterminates T1, . . . , Td−1. We will
deduce the statement for the d indeterminates X1, . . . , Xd by substituting the expressions(
Xq
i −X

q−1
d Xi

)
for Ti for all i = 1, . . . , d− 1.

Let ` be a linear form over Fq in two variables α1, α2. We calculate

∏
α∈Fd−1

q
`(α1,α2)=1

1∑d−1
i=1 αiTi

=
∏

α∈Fd−1
q

`(α1,α2)=1

1∑d−1
i=1 αi

(
Xq
i −X

q−1
d Xi

)
=

∏
α∈Fd−1

q
`(α1,α2)=1

1(∑d−1
i=1 αiXi

)q
−Xq−1

d

(∑d−1
i=1 αiXi

)
=

∏
α∈Fd−1

q
`(α1,α2)=1

∏
β∈Fq

1∑d−1
i=1 αiXi + βXd

=
∏
α∈Fd

q
`(α1,α2)=1

1∑d
i=1 αiXi

.

By using this calculation for each of the three linear forms

`′ : (α1, α2) 7−→ α1 + α2 ,

`′′ : (α1, α2) 7−→ α1 ,

`′′′ : (α1, α2) 7−→ α2 ,

we deduce the statement for the d variables X1, . . . , Xd from the statement in the (d− 1)
variables T1, . . . , Td−1. This finishes the proof of part (b) above.

We have therefore shown that the Fq-algebra homomorphism η : SV → Frac(SV ∗) is well-
defined. Since η(v) 6= 0 for all 0 6= v ∈ V , the map η extends uniquely from SV to RSV .
By restricting this extension from RSV to its subring RV we obtain the desired map ϕ.

q.e.d.

Proof of 3.1(iii). We have to show that for any 0 6= w0 ∈ V ∗ the equation∑
v∈V

〈w0,v〉=1

∏
w∈V ∗
〈w,v〉=1

w = wq
d−1

0

17



holds in SV ∗ .

We choose a basis X1, . . . , Xd for V ∗ such that Xd = w0. By fixing the corresponding dual
basis for V , we can identify V with Fdq and the dual basis of X1, . . . , Xd with the standard
basis of Fdq . Then we need to show that the equation

∑
α∈Fd

q
αd=1

∏
β∈Fd

q
〈α,β〉=1

(
d∑
i=1

βiXi

)
= Xqd−1

d

holds in the field of rational functions Fq(X1, . . . , Xd). Equivalently, we have to prove the
equation

(E)
∑

α∈Fd−1
q

∏
β∈Fd−1

q

(
Xd +

d−1∑
i=1

βi (Xi − αiXd)

)
= Xqd−1

d .

We proceed by induction on the number of variables d. The case d = 1 is clear. Since
we will use the statement for two indeterminates in the induction step below, we treat the
case d = 2 next. We calculate∑

α∈Fq

∏
β∈Fq

(X2 + β (X1 + αX2)) =
∑
α∈Fq

(
Xq

2 − (X1 − αX2)
q−1 ·X2

)
=

∑
α∈Fq

Xq
2 −X2 ·

∑
α∈Fq

Xq
1 − αqX

q
2

X1 − αX2

= qXq
2 −X2 ·

∑
α∈Fq

q−1∑
i=0

Xq−i−1
1 · (−αX2)

i

= −X2 ·
q−1∑
i=0

Xq−i−1
1 ·X i

2 ·
∑
α∈Fq

αi


= Xq

2 ,

where for the last equality we used that∑
α∈Fq

αi =

{
0 if i 6= q − 1.

−1 if i = q − 1.

Here we define 00 := 1, in accordance to our calculation above.

We now assume that equation (E) holds for the (d− 1) variables T1, . . . , Td−1, i.e.

∑
α∈Fd−2

q

∏
β∈Fd−2

q

(
Td−1 +

d−2∑
i=1

βi (Ti − αiTd−1)

)
= T q

d−2

d−1 .

18



Given a scalar αd−1 ∈ Fq, we substitute the expression

Xq
d −Xd · (Xd−1 − αd−1Xd)

q−1

for Td−1, and the expression

Xq
i −Xi · (Xd−1 − αd−1Xd)

q−1

for Ti for i = 1, . . . , d− 2.

Thus for each scalar αd−1 ∈ Fq we obtain an equation in the variables X1, . . . , Xd. We
denote by (E ′) the sum of all of these equations.

The right hand side of (E ′) is equal to∑
αd−1∈Fq

(
Xq
d −Xd · (Xd−1 − αd−1Xd)

q−1
)qd−2

.

By the calculation for the case d = 2 above, this expression is equal to (Xq
d)
qd−2

= Xqd−1

d .

The left hand side of (E ′) is equal to

∑
α∈Fd−1

q

∏
β∈Fd−2

q

((
Xq
d −Xd · (Xd−1 − αd−1Xd)

q−1
)

+
d−2∑
i=1

βi

(
Xq
i − αiX

q
d −Xi · (Xd−1 − αd−1Xd)

q−1 + αiXd · (Xd−1 − αd−1Xd)
q−1
))

=
∑

α∈Fd−1
q

∏
β∈Fd−2

q

((
Xd +

d−2∑
i=1

βi (Xi − αiXd)
)q

−
(
Xd +

d−2∑
i=1

βi (Xi − αiXd)
)
· (Xd−1 − αd−1Xd)

q−1

)

=
∑

α∈Fd−1
q

∏
β∈Fd−1

q

(
Xd +

d−1∑
i=1

βi (Xi − αiXd)

)
.

Thus we have deduced the desired formula in the d variables X1, . . . , Xd. q.e.d.

Proof of 3.1(iv).

Using (iii) we see that

ϕ ◦
(
(ψ ◦ ϕ)− FRV

)
= (FSV ∗ ◦ ϕ)− (ϕ ◦ FRV

) = 0.
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Thus once we show that ϕ is injective, the assertion of (iv) will follow from (iii).

To prove the injectivity of ϕ we first fix appropriate SV ∗-algebra structures on the rings
of interest for the proof. Consider RV and Frac(RV ) as SV ∗-algebras via the map ψ :
SV ∗ ↪→ RV . Consider Frac(SV ∗) as an SV ∗-algebra via the inclusion SV ∗ ↪→ Frac(SV ∗).
Finally, denote by SFV ∗ the ring SV ∗ endowed with the SV ∗-algebra structure induced by
the Frobenius map FSV ∗ .

The following diagram of SV ∗-algebras commutes because of the above choices of SV ∗-
algebra structures.

RV
ϕ //

� _

��

SFV ∗

��
FracSV ∗

� � //
s�

Fracψ

&&MMMMMMMMMMMMMMMMMMMMMMM
RV ⊗SV ∗ FracSV ∗

j //
� _

i

��

SFV ∗ ⊗SV ∗ FracSV ∗

FracRV

Here we denote by Frac(ψ) the field homomorphism induced by ψ : SV ∗ ↪→ RV . The map
j is induced by ϕ : RV ↪→ SFV ∗ and by the identity map of Frac(SV ∗). The map i is induced
by the inclusion RV ↪→ Frac(RV ) and by Frac(ψ). Since the diagram commutes, it suffices
to show that j is injective.

The fields Frac(RV ) and Frac(SV ∗) have the same transcendence degree d over Fq, so that
Frac(RV ) is algebraic over Frac(SV ∗) via the map Frac(ψ). Therefore Frac(RV ) is integral
over the domain RV ⊗SV ∗ Frac(SV ∗) via the injection i. Thus the domain RV ⊗SV ∗ Frac(SV ∗)
has to be a field as well, and j must be injective. q.e.d.

Using Theorem 3.1 and the basis for RSV from Proposition 2.2, we will now give a more
transparent proof of the fact that RV is integrally closed.

Proof of Proposition 2.12.

Let x ∈ Frac(RV ) be integral over RV . As in the proof given in section 2 we conclude
that x ∈ RSV . Being injective, the maps ϕ and ψ of Proposition 3.1 extend to the fields
of fractions of RV and SV ∗ . By abuse of notation we refer to these extensions as ϕ and ψ
again. Since x is integral over RV , its image ϕ(x) ∈ Frac(SV ∗) is integral over the integrally
closed domain SV ∗ . Thus ϕ(x) already lies in SV ∗ and its image ψ(ϕ(x)) = xq

d−1
is an

element of RV .
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Thus it suffices to show that an element y ∈ RSV lies in the subring RV if and only if the
Frobenius power yq

d−1
lies in RV . If y is an element of the basis for RSV constructed in

Proposition 2.2, the Frobenius power yq
d−1

is again a basis element, and the statement about
y follows directly from the shape of the basis under consideration. Since the Frobenius
map is a homomorphism, we can reduce the general case to the case of a basis element by
considering arbitrary linear combinations. q.e.d.
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4 Structure of QV

We now study the projective variety QV = Proj(RV ). We begin with some basic properties
of QV which follow directly from the results of section 2. We then construct stratifications
for QV and for the projective space PV = Proj(SV ) which are “dual” in a sense made
precise by Proposition 4.2 and Proposition 4.6 below. Finally, we determine the singular
locus of QV and discuss the birational equivalence QV ⊃ ΩV ⊂ PV .

Corollary 4.1 (i) The dimension of QV is (d− 1).

(ii) QV is projectively normal.

(iii) The degree of QV is equal to q
(d−1)(d−2)

2 .

Proof. Part (i) follows directly from Proposition 2.11, (i). Part (ii) is merely a repetition
of Proposition 2.12. Part (iii) follows from part (i) together with Proposition 2.10. q.e.d.

We now construct the aforementioned stratifications, beginning with the more familiar case
of PV .

A surjection of Fq-vector spaces σ : V � V ′′ 6= 0 induces a degree-preserving surjection of
graded Fq-algebras SV � SV ′′ with kernel (v | v ∈ ker(σ)) ⊂ SV . Thus we see that for any
proper subspace V ′ ( V , the scheme PV/V ′ is the closed subscheme of PV corresponding to
the homogeneous ideal (v | v ∈ V ′) ⊂ SV . The scheme ΩV/V ′ is the locally closed subscheme
of PV obtained by intersecting the closed subscheme PV/V ′ with the open subscheme of PV
on which the homogeneous element

∏
v∈VrV ′ v of SV does not vanish.

Theorem 4.2 (Stratification of PV ) The underlying set of the scheme PV is the disjoint
union

PV =
•⋃

V ′(V

ΩV/V ′ .

Proof. The disjointness is clear from the description of the strata ΩV/V ′ as locally closed
subschemes of PV . In order to see that every point of PV lies in one of the ΩV/V ′ , let x ∈ PV
and observe that the set Vx := {v ∈ V | v(x) = 0} is a linear subspace of V . Then x lies
in ΩV/Vx ⊂ PV by definition of Vx. q.e.d.

Remark 4.3 The closure of a stratum ΩV/V ′ ⊂ PV is again a union of strata:

ΩV/V ′ = PV/V ′ =
•⋃

V ′⊂W(V

ΩV/W ⊂ PV
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We now proceed in a similar fashion to construct a stratification for the scheme QV .

Lemma 4.4 Let 0 6= V ′ ⊂ V be a nonzero linear subspace of V . Then there exists a
degree-preserving surjection of graded Fq-algebras ρ : RV � RV ′ such that

1

v
7−→

{
1
v

if v ∈ V ′ r {0}.
0 if v ∈ V r V ′.

Furthermore, the kernel of ρ is equal to the ideal
(

1
v
| v ∈ V r V ′).

Proof. We claim that the surjection

π : AV := Fq [Xv | 0 6= v ∈ V ] −→→ RV ′

Xv 7−→

{
1
v

if v ∈ V ′ r {0}.
0 if v ∈ V r V ′.

has the kernel a := JV + (Xv | v ∈ V r V ′). This suffices to prove the lemma because of
the presentation RV = AV /JV of Proposition 2.5.

The inclusion ker(π) ⊂ a is immediate from the presentation RV ′ = AV ′/JV ′ . We now
prove the converse inclusion. It is easy to see that all elements Xv of a for some v ∈ V rV ′

and all elements of a of the form Xv −αXαv for some 0 6= v ∈ V and some α ∈ F×q already
lie in the kernel of π. Thus we only need to show that for three nonzero vectors v, v′, v′′ ∈ V
with v+ v′ + v′′ = 0, the element f := XvXv′ +Xv′Xv′′ +XvXv′′ ∈ a lies in the kernel of π
as well. This is clear if at least two of the three vectors lie in V r V ′. If not, then all three
vectors must lie in V ′, so that f ∈ JV ′ and therefore π(f) = 0 as well. q.e.d.

Corollary 4.5 Let 0 6= V ′ ⊂ V be a nonzero linear subspace of V . Then the scheme QV ′

is the closed subscheme of QV corresponding to the homogeneous ideal
(

1
v
| v ∈ V r V ′) ⊂

RV . The scheme ΩV ′ is the locally closed subscheme of QV obtained by intersecting the
closed subscheme QV ′ with the open subscheme of QV on which the homogeneous element∏

0 6=v∈V ′
1
v

of RV does not vanish.

For any three nonzero Fq-vector spaces 0 6= V ′′ ⊂ V ′ ⊂ V , the induced triangle of closed
immersions

QV ′′
� � //
� q

""EE
EE

EE
EE

QV ′
N n

}}zz
zz

zz
zz

QV

commutes.
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Proof. The statements about QV ′ and ΩV ′ are immediate from Lemma 4.4 above. The
last statement follows from the commutativity of the triangle

RV ′′ RV ′oooo

RV

<< <<zzzzzzzz

bbbbEEEEEEEE

q.e.d.

Theorem 4.6 (Stratification of QV ) The underlying set of the scheme QV is the dis-
joint union

QV =
•⋃

0 6=V ′⊂V

ΩV ′ .

Proof. As in the proof of Proposition 4.2 above, the disjointness is a direct consequence of
the description of the strata ΩV ′ as locally closed subschemes ofQV . To show that any point
x of QV lies in one of the strata ΩV ′ , we define the set Vx := {v ∈ V r{0} | 1

v
(x) 6= 0}∪{0}.

We claim that Vx is a nonzero linear subspace of V . To see this, we need to show that if
1
v
(x) 6= 0 and 1

w
(x) 6= 0 for some v, w ∈ V , then also 1

v+w
(x) 6= 0. This is immediate from

the equality
1

v
· 1

w
=

1

v + w
·
(

1

v
+

1

w

)
.

Thus x lies in the stratum ΩVx ⊂ QV by definition of the subspace Vx. q.e.d.

Remark 4.7 The closure of a stratum ΩV ′ ⊂ QV is again a union of strata:

ΩV ′ = QV ′ =
•⋃

0 6=W⊂V ′

ΩW ⊂ QV

Comparing the two stratifications 4.2 and 4.6 of PV and QV , respectively, we observe that
the sets of isomorphism classes of strata occurring in the two stratifications are identical.
The disparity of the schemes PV and QV is reflected in the functoriality of the indexing
sets: The strata of PV are indexed by nonzero quotients of V , whereas the strata of QV are
indexed by nonzero subspaces of V . Since PV and QV both contain the non-empty open
stratum ΩV , they are birationally equivalent.

Before studying this birational equivalence we introduce convenient open affine covers of
PV and QV . More precisely, for each stratum of PV and of QV we construct the smallest
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open affine neighborhood which is itself a union of strata. We denote the structure sheaves
of PV and QV by OPV

and by OQV
, respectively.

We begin with the projective space PV . For a proper subspace V ′ ( V , define

UV/V ′ :=
•⋃

W⊂V ′

ΩV/W ⊂ PV .

We call UV/V ′ the strata neighborhood of ΩV ′ in PV . Note that UV/V ′ is indeed the open
affine subscheme of PV on which the homogeneous element

∏
v∈VrV ′ v of SV does not

vanish. Therefore the affine coordinate ring of UV/V ′ is equal to

OPV

(
UV/V ′

)
= Fq

[ v
w

∣∣∣ v ∈ V,w ∈ V r V ′
]
.

We proceed analogously for the scheme QV . For a nonzero subspace 0 6= V ′ ⊂ V , define

VV ′ :=
•⋃

V ′⊂W

ΩW ⊂ QV .

We call VV ′ the strata neighborhood of ΩV ′ in QV . It is indeed the open affine subscheme of
QV on which the homogeneous element

∏
0 6=v∈V ′

1
v

of RV does not vanish. Thus the affine
coordinate ring of VV ′ is equal to

OQV
(VV ′) = Fq

[ v
w

∣∣∣ v ∈ V ′, w ∈ V r {0}
]
.

Proposition 4.8 The morphism PV ⊃ ΩV → QV identifying the open stratum ΩV in PV
with the open stratum ΩV in QV can be extended uniquely to the union of all strata of PV
of codimension ≤ 1. This extension map collapses each 1-codimensional stratum ΩV/V ′ of
PV to the corresponding 0-dimensional closed stratum ΩV ′ of QV .

Proof. Let V ′ ( V be a 1-dimensional proper subspace of V . Recall that

OPV

(
UV/V ′

)
= Fq

[ v
w

∣∣∣ v ∈ V,w ∈ V r V ′
]

OQV
(VV ′) = Fq

[ v
w

∣∣∣ v ∈ V ′, w ∈ V r {0}
]

(RSV )0 = OQV
(ΩV ) = OPV

(ΩV ) = Fq
[ v
w

∣∣∣ v ∈ V,w ∈ V r {0}
]

We prove the existence of an extension to the strata neighborhood UV/V ′ ⊂ PV by providing
a dotted arrow which makes the following diagram of affine coordinate rings commute:
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OPV

(
UV/V ′

)
t�

&NNNNNNNNNNN
OQV

(VV ′)oo
kK

xrrrrrrrrrr

(RSV )0

Since the dimension of V ′ is equal to 1, the quotient v
w

lies in Fq for any two non-zero
vectors v, w ∈ V ′. Thus

OQV
(VV ′) = Fq

[ v
w

∣∣∣ v ∈ V ′, w ∈ V r V ′
]
.

Hence we can define the desired dotted arrow to be the inclusion

t : OQV
(VV ′) ↪→ OPV

(
UV/V ′

)
.

We now show that the 1-codimensional stratum ΩV/V ′ of PV is mapped onto the 0-
dimensional closed stratum ΩV ′ of QV under the corresponding map of affine schemes.
The ideal I of the closed subscheme ΩV/V ′ ↪→ UV/V ′ is equal to

I =
( v
w

∣∣∣ v ∈ V ′, w ∈ V r V ′
)
⊂ OPV

(
UV/V ′

)
.

Therefore, its inverse image

t−1(I) =
( v
w

∣∣∣ v ∈ V ′, w ∈ V r V ′
)
⊂ OQV

(VV ′)

is precisely the ideal of the closed subscheme ΩV ′ ↪→ VV ′ , as desired.

Since QV is separated and PV is reduced, any extension of the morphism PV ⊃ ΩV → QV

to an open subset containing ΩV ⊂ PV is unique. Thus all the extensions obtained by
varying the 1-dimensional proper subspace V ′ ( V can be glued together. q.e.d.

The following proposition can be proved in exactly the same fashion:

Proposition 4.9 The morphism QV ⊃ ΩV → PV identifying the open stratum ΩV in QV

with the open stratum ΩV in PV can be extended uniquely to the union of all strata of QV

of codimension ≤ 1. This extension map collapses each 1-codimensional stratum ΩV ′ of
QV to the corresponding 0-dimensional closed stratum ΩV/V ′ of PV .

Theorem 4.10 The singular locus of QV consists of all strata of codimension at least 2:

Qsing
V =

•⋃
dim(V/V ′≥2)

ΩV ′ .
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Proof. Let 0 6= V ′ ⊂ V be a non-zero linear subspace of V . Choose a linear subspace
V ′′ ⊂ V such that V = V ′ ⊕ V ′′. Our goal is to construct a morphism of schemes over Fq

θ : VV ′ −→ ΩV ′ × SpecRV ′′

which restricts to an isomorphism of a neighborhood of the closed subscheme ΩV ′ in VV ′

onto a neighborhood of the closed subscheme ΩV ′×{0} in ΩV ′×SpecRV ′′ . Here we denote
by {0} the vertex of the affine cone SpecRV ′′ . This will link the problem of determining
whether the points of ΩV ′ are singular in QV to the singularity of the ring RV ′′ , which has
already been treated in Proposition 2.11.

We now construct the morphism θ. Fix a nonzero vector v′0 ∈ V ′. From the presentation of
RV ′′ in Proposition 2.5 it is easy to see that there exists a unique Fq-algebra homomorphism

RV ′′ = Fq
[

1

v′′

∣∣∣∣ v′′ ∈ V ′′ r {0}
]
−→ Fq

[ v
w

∣∣∣ v ∈ V ′, w ∈ V r {0}
]

= OQV
(VV ′)

such that
1

v′′
7→ v′0

v′′
.

It is clear that this map is injective. Furthermore, there exists a natural inclusion

(RSV ′)0 = Fq
[ v
w

∣∣∣ v, w ∈ V ′ r {0}
]
↪−→ OQV

(VV ′) .

After identifying the rings (RSV ′)0 and RV ′′ with their images in OQV
(VV ′) under these

injections, we observe that their intersection is trivial in the sense that (RSV ′)0 ∩ RV ′′ =
Fq ⊂ OQV

(VV ′). Thus the induced Fq-algebra homomorphism

ε : (RSV ′)0 ⊗Fq RV ′′ ↪−→ OQV
(VV ′)

is injective as well. To simplify notation we identify the ring (RSV ′)0 ⊗Fq RV ′′ with its
image

Fq
[ v
w

∣∣∣ v, w ∈ V ′ r {0}
] [v′0
v′′

∣∣∣∣ v′′ ∈ V ′′ r {0}
]

in OQV
(VV ′). The homomorphism ε induces the desired map of affine schemes

θ : VV ′ −→ ΩV ′ × SpecRV ′′ .

We now show that θ satisfies the property stated at the beginning of the proof. The closed
subscheme ΩV ′ ↪→ VV ′ corresponds to the ideal

I :=
( v
w

∣∣∣ v ∈ V ′, w ∈ V r V ′
)
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in OQV
(VV ′). The inverse image

ε−1 (I) =
( v
w

∣∣∣ v ∈ V ′, w ∈ V ′′ r {0}
)

in the ring

(RSV ′)0 ⊗Fq RV ′′ = Fq
[ v
w

∣∣∣ v, w ∈ V ′ r {0}
] [v′0
v′′

∣∣∣∣ v′′ ∈ V ′′ r {0}
]

is precisely the ideal corresponding to the closed subscheme ΩV ′ ×{0} ↪→ ΩV ′ × SpecRV ′′ .
Therefore θ restricts to an isomorphism of the closed subscheme ΩV ′ ↪→ VV ′ onto the closed
subscheme ΩV ′ × {0} ↪→ ΩV ′ × SpecRV ′′ .

We claim that the injective Fq-algebra homomorphism

εs :
(
(RSV ′)0 ⊗Fq RV ′′

)
s
↪−→ (OQV

(VV ′))s

obtained by localizing ε with respect to the homogeneous element

s :=
∏

0 6=v′∈V ′
0 6=v′′∈V ′′

(
v′0
v′

+
v′0
v′′

)
∈ (RSV ′)0 ⊗Fq RV ′′

is surjective and thus an isomorphism. To see this, we have to show that for nonzero vectors
u, u′ ∈ V ′ and u′′ ∈ V ′′, the element u

u′+u′′
of (OQV

(VV ′))s already lies in the localization(
(RSV ′)0 ⊗Fq RV ′′

)
s
. This follows from the equality

u

u′ + u′′
·
(
v′0
u′

+
v′0
u′′

)
=
u

u′
· v

′
0

u′′

since the element
(
v′0
u′

+
v′0
u′′

)
is invertible in the localization

(
(RSV ′)0 ⊗Fq RV ′′

)
s
.

Since θ : VV ′ → ΩV ′ × SpecRV ′′ is the map of affine schemes corresponding to the ring
homomorphism ε : (RSV ′)0⊗Fq RV ′′ ↪→ OQV

(VV ′), the fact that the localized homomorph-
ism εs is an isomorphism implies that θ is an isomorphism away from the zero-loci of s in
VV ′ and ΩV ′ × SpecRV ′′ . Therefore, our next goal is to show that the zero-locus of s in
VV ′ is disjoint from ΩV ′ , and that the zero-locus of s in ΩV ′ × SpecRV ′′ is disjoint from
ΩV ′ ×{0}. We need to show that given nonzero vectors v′ ∈ V ′ and v′′ ∈ V ′′, the homoge-

neous element
(
v′0
v′

+
v′0
v′′

)
vanishes nowhere on ΩV ′ ⊂ VV ′ and ΩV ′×{0} ⊂ ΩV ′×SpecRV ′′ .

For a point x ∈ ΩV ′ ⊂ VV ′ or x ∈ ΩV ′ × {0} ⊂ ΩV ′ × SpecRV ′′ , we calculate(
v′0
v′

+
v′0
v′′

)
(x) =

v′0
v′

(x) + 0 6= 0

by the definition of ΩV ′ , as desired.

28



We have now shown that the map θ induces an isomorphism of a neighborhood of ΩV ′ in
VV ′ with a neighborhood of ΩV ′ ×{0} in ΩV ′ × SpecRV ′′ , and that this isomorphism is an
extension of the isomorphism ΩV ′ ∼= ΩV ′ × {0}. This implies that θ yields a bijection(

Qsing
V ∩ ΩV ′

)
∼= (ΩV ′ × SpecRV ′′)sing ∩ (ΩV ′ × {0}) .

Since ΩV ′ is smooth, we note that

(ΩV ′ × SpecRV ′′)sing = ΩV ′ × (SpecRV ′′)sing .

It was already shown in Proposition 2.11 that the vertex {0} of SpecRV ′′ is a singular
point if and only if dimV ′′ ≥ 2. Thus the subset ΩV ′ ⊂ QV consists of only non-singular
points if dimV/V ′ ≤ 1, and of only singular points if dimV/V ′ ≥ 2. q.e.d.
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5 Low-dimensional examples

In this section we study the special cases d = 2 and d = 3. If d = 2, the varieties PV and
QV are isomorphic curves. If d = 3, they are non-isomorphic surfaces. In this case, we will
prove that the blow-up of PV in every closed stratum is isomorphic to the blow-up of QV

in every closed stratum. In particular, the blow-up of QV (or of PV ) is a desingularization
of QV in this special case.

We first assume that d = 2. Then the curve QV is non-singular according to Theorem 4.10.
In fact, Propositions 4.8 and 4.9 imply that the curves QV and PV are even isomorphic in
this case. Knowing that QV is a smooth curve, this of course also follows from the general
fact that up to isomorphism there is a unique smooth projective curve in every birational
equivalence class.

In a similar vein, we now show that the map ϕ of Theorem 3.1 yields an isomorphism of
QV with the q-uple embedding of PV ∗ .

Proposition 5.1 Let d = 2. Then the map ϕ : RV → SV ∗ of Theorem 3.1 induces an
isomorphism of graded Fq-algebras

RV

∼=−→ S
(q)
V ∗ :=

⊕
i≥0

SV ∗, qi .

Thus the projective curve QV = Proj(RV ) is the q-uple embedding of the projective line
PV ∗ = Proj(SV ∗).

Proof. The degree of the homogeneous element ϕ( 1
v
) ∈ SV ∗ is equal to q for any nonzero

vector v ∈ V . Thus ϕ factors through a degree-preserving map RV → S
(q)
V ∗ . From Theorem

3.1 we already know that this map is injective. We now prove that it is also surjective.
Since the map is degree-preserving, Fq-linear and injective, it suffices to show that the

graded Fq-algebras RV and S
(q)
V ∗ have the same Hilbert function. The Hilbert function H2

of RV was determined to be H2(n) = qn+1 in Remark 2.7 above. Since dim(V ∗) = d = 2,

this is precisely the Hilbert function of S
(q)
V ∗ . q.e.d.

For the remainder of the section let d = 3. Thus PV and QV are surfaces. According
to Theorem 4.10 the singular locus of QV is the union of all 0-dimensional strata. A
0-dimensional stratum of QV or PV consists of precisely one closed point.

In this situation, Propositions 4.8 states that the morphism PV ⊃ ΩV → QV can be ex-
tended to the union of all strata of PV of codimension ≤ 1 by collapsing each 1-dimensional
stratum of PV to the corresponding 0-dimensional stratum of QV . Proposition 4.9 provides
the analogous statement for the morphism QV ⊃ ΩV → PV . We will now show that by
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blowing up both surfaces in all 0-dimensional strata one obtains isomorphic objects. For
background material on blowing up we refer the reader to Hartshorne [5], II.7, Eisenbud
[3], 5.2., and Eisenbud-Harris [4], IV.2.

Denote by P̃V → PV and by Q̃V → QV the blow-ups of PV and of QV , respectively, in
all the 0-dimensional strata. Thus the open stratum PV ⊃ ΩV ⊂ QV is also a dense open
subset of P̃V and Q̃V .

Theorem 5.2 Let d = 3. Then the identity morphism PV ⊃ ΩV = ΩV ⊂ QV extends
uniquely to an isomorphism of the blow-ups P̃V ∼= Q̃V . In particular, Q̃V is a desingular-
ization of QV .

Proof. Let 0 ( V1 ( V2 ( V be a complete flag of V . We will construct open affine
subschemes AV1,V2 of P̃V and BV1,V2 of Q̃V which contain ΩV and are isomorphic via a
map extending the identity on ΩV . We will show that if 0 ( V1 ( V2 ( V ranges over
all complete flags of V , the open sets AV1,V2 cover P̃V and the open sets BV1,V2 cover Q̃V .

Since the blow-ups P̃V and Q̃V are separable and reduced, this implies that the identity
map PV ⊃ ΩV = ΩV ⊂ QV extends uniquely to an isomorphism P̃V ∼= Q̃V .

We begin with the construction of the affine open subscheme AV1,V2 of P̃V . Denote by ŨV/V2

the inverse image of the strata neighborhood UV/V2 under the projection map P̃V → PV .
Denote by A := Fq

[
v
w

∣∣ v ∈ V,w ∈ V r V2

]
the affine coordinate ring of UV/V2 and by

I :=
(
v
w

∣∣ v ∈ V2, w ∈ V r V2

)
the ideal in A corresponding to the closed point ΩV/V2 of

UV/V2 . Thus

ŨV/V2 = Proj (BlI A) ,

where BlI A := A⊕ I ⊕ I2 ⊕ . . . denotes the blow-up algebra of A with respect to I.

Inverting the homogeneous element

f :=
∏

v∈V2rV1
w∈V rV2

v

w
∈ Ik ⊂ BlI A

of degree k := #(V2 r V1) · #(V r V2) in BlI A yields the desired open affine subscheme

AV1,V2 of P̃V , with affine coordinate ring equal to (BlI A)
[

1
f

]
0
. This affine coordinate ring

is equal to

Fq
[ v
w

∣∣∣ v ∈ V, w ∈ V r V2

] [ v
w
· w

′

v′

∣∣∣∣ v ∈ V2, v
′ ∈ V2 r V1, w, w

′ ∈ V r V2

]
= Fq

[ v
w

∣∣∣ v ∈ V2, w ∈ V r V1

]
,

where the last equality is a consequence of the fact that dimV2 = 2:
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The second ring is clearly contained in the first ring. For the converse inclusion, one sees
easily that it suffices to show that for given vectors v ∈ V and w ∈ V r V2, the quotient
v
w

is an element of the second ring. To see this, note that the vector space V decomposes
as V = V2 ⊕ Fqw since dimV2 = 2 = dimV − 1. Hence there exist elements v2 ∈ V2 and
α ∈ Fq such that v = v2 + αw. Thus v

w
= v2

w
+ α is indeed an element of the second ring.

We now proceed analogously with the construction of the affine open subscheme BV1,V2 of

Q̃V . Denote by ṼV1 the inverse image of the strata neighborhood VV1 under the projection

map Q̃V → QV . Denote by B := Fq
[
v
w

∣∣ v ∈ V1, w ∈ V r {0}
]

the affine coordinate ring
of VV1 and by J :=

(
v
w

∣∣ v ∈ V1, w ∈ V r V1

)
the ideal in B corresponding to the closed

point ΩV1 of VV1 . Thus

ṼV1 = Proj (BlJ B) .

Inverting the homogeneous element

g :=
∏

v∈V1r{0}
w∈V2rV1

v

w
∈ J ` ⊂ BlJ B

of degree ` := #(V1 r {0}) ·#(V2 r V1) in BlJ B yields the desired open affine subscheme

BV1,V2 of Q̃V , with affine coordinate ring equal to (BlJ B)
[

1
g

]
0
. Using that any two nonzero

vectors of the 1-dimensional vector space V1 only differ by multiplication with a scalar in
F×q , we see that this affine coordinate ring is equal to

Fq
[ v
w

∣∣∣ v ∈ V1, w ∈ V r {0}
] [ v
w
· w

′

v′

∣∣∣∣ v, v′ ∈ V1 r {0}, w ∈ V r V1, w
′ ∈ V2 r V1

]
= Fq

[ v
w

∣∣∣ v ∈ V1, w ∈ V r V1

] [w′
w

∣∣∣∣ w ∈ V r V1, w
′ ∈ V2 r V1

]
= Fq

[ v
w

∣∣∣ v ∈ V2, w ∈ V r V1

]
.

Thus the open subscheme AV1,V2 ⊂ P̃V is isomorphic to the open subscheme BV1,V2 ⊂ Q̃V

via a map extending the identity on ΩV .

It remains to show that the constructed open subsets of the blow-ups are indeed coverings.
We begin with the blow-up P̃V . For a fixed 2-dimensional subspace V2 of V , we prove that

if V1 ranges over all 1-dimensional subspaces of V2, the open sets AV1,V2 cover ŨV/V2 . Let
p be a homogeneous prime ideal of BlI A such that for every 1-dimensional subspace V1 of
V2, the homogeneous element

fV1 :=
∏

v∈V2rV1
w∈V rV2

v

w
∈ Ik ⊂ BlI A
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of degree k = #(V2 r V1) · #(V r V2) lies in p. We have to show that p contains the
augmentation ideal I ⊕ I2 ⊕ . . . of BlI A.

Denote by Vp the set consisting of all vectors v ∈ V2 for which there exists a vector
w ∈ V r V2 such that the homogeneous element v

w
∈ I1 ⊂ BlI A of degree 1 lies in p. The

set Vp is in fact a subspace of V .

We have to show that Vp is equal to V2. Choose a 1-dimensional subspace V1 of V2. Since
fV1 lies in p, there exists a nonzero vector v′ ∈ V2 r V1 such that v′ ∈ Vp. Set V ′

1 := Fqv′.
Then since fV ′

1
lies in p, there exists a nonzero vector v′′ ∈ V2 r V ′

1 such that v′′ ∈ Vp. By
construction, the vectors v′ and v′′ are linearly independent. Thus Vp is equal to V2.

We now prove the analogous result for the blow-up Q̃V . For a fixed 1-dimensional subspace
V1 of V , we prove that if V2 ranges over all 2-dimensional subspaces of V containing V1,
the open sets BV1,V2 cover ṼV1 . Let q be a homogeneous prime ideal of BlJ B such that for
every 2-dimensional subspace V2 of V containing V1, the homogeneous element

gV2 :=
∏

v∈V1r{0}
w∈V2rV1

v

w
∈ I` ⊂ BlJ B

of degree ` = #(V1 r {0}) · #(V2 r V1) lies in q. We have to show that q contains the
augmentation ideal J ⊕ J2 ⊕ . . . of BlJ B.

Choose a generator v1 of V1. Denote by Vq the set consisting of 0 ∈ V and of all nonzero
vectors w ∈ V such that the homogeneous element v1

w
∈ J1 ⊂ BlJ B of degree 1 does not

lie in q. It is easy to see that the set Vq is in fact a subspace of V . Since Vq contains V1,
the dimension of Vq is at least 1. We have to show that the dimension of Vq is in fact equal
to one.

Choose any 2-dimensional subspace V2 of V containing V1. Then since gV2 lies in q, there
exists a nonzero vector w ∈ V2 r V1 which does not lie in Vq. Hence the dimension of Vq is
at most 2. If it was equal to 2, the fact that the homogeneous element gVq lies in q yields
a contradiction to the fact that q is a prime ideal. Thus the dimension of Vq is equal to 1,
as desired. q.e.d.
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6 Desingularization of QV in arbitrary dimension

This section forms the heart of the article. We construct a desingularization BV of QV as
follows. We first define BV as a functor, motivated by a functorial interpretation of blowing
up and by the results of section 5. We then prove that this functor is representable by a
projective variety over Fq which contains ΩV as a dense open subscheme. We exhibit a
natural stratification for BV , show that BV is nonsingular, and prove that the boundary
BV r ΩV is a divisor with normal crossings in the strongest sense. Finally, we construct
morphisms to PV and QV which are isomorphisms on ΩV .

We begin by describing the functors of points of PV , QV and ΩV . For basic results regarding
open and closed subfunctors and representability in algebraic geometry we refer the reader
to Eisenbud-Harris [4], chapter VI, and Grothendieck [6], EGA 0: 8.1, EGA I: 3.4.

For convenience and future reference we first collect some basic open and closed conditions
in the following lemma. We say that a morphism of sheaves or a section of a sheaf vanishes
at a point of a scheme if it vanishes after pulling back to the residue field at that point.

Lemma 6.1 Let X be a scheme. Let F be a locally free coherent sheaf on X and let
f ∈ Γ(X,F) be a global section of F . Furthermore, let ϕ : G → H be a morphism of locally
free coherent sheaves on X.

(i) The set of points of X on which f vanishes is a closed subset of X.

(ii) The set of points of X on which ϕ vanishes is a closed subset of X.

(iii) The set of points of X on which ϕ is an isomorphism is an open subset of X.

Proof. All statements are local, so we can assume that X = Spec(A) is affine and F , G
and H are free of finite rank. Suppose f is given by the coordinates a1, . . . , an ∈ A. Then
the zero locus of f is equal to the zero locus of the ideal generated by the ai in A. This
proves (i). Part (ii) follows from (i) if we set F := HomOX

(H,G), the sheaf of morphisms
from H to G, and f := ϕ ∈ Γ(X,F). To prove (iii), we can assume that G and H have
the same finite rank, so that ϕ is given by a matrix with coefficients in A. Then ϕ is an
isomorphism away from the zero locus of the determinant of this matrix, which by (i) is a
closed subset of X. q.e.d.

We now recall a description of the functor of points of an arbitrary projective scheme over
an affine base, generalizing the well-known characterization of projective n-space as the
functor which to a scheme T associates the set of invertible quotients of O⊕n+1

T .

Given an invertible sheaf L on a scheme T , we call a collection of global sections s1, . . . , sn ∈
Γ (T,L) of L generating if for each t ∈ T the images (s1)t, . . . , (sn)t in the stalk Lt generate
the stalk as an OT,t-module. Of course this is equivalent to requiring that the sections
s1, . . . , sn do not vanish simultaneously at any point of T , or to requiring that the induced
morphism of sheaves O⊕nT → L is a surjection.
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Remark 6.2 Let A be a ring and let f1, . . . , fr be homogeneous polynomials
in A [X0, . . . , Xn]. Define

X := Proj ([X0, . . . , Xn] / (f1, . . . , fr)) .

Then the functor of points of X is isomorphic to the contravariant functor from the category
of A-schemes to the category of sets which to an A-scheme T associates the set of all equiv-
alence classes of the following data: An invertible sheaf L on T , together with generating
global sections s0, . . . , sn ∈ Γ (T,L), such that fi (s0, . . . , sn) = 0 in Γ

(
T,L⊗ deg fi

)
for all i.

Two such pairs of invertible sheaves with global sections (L, s0, . . . , sn), (L′, s′0, . . . , s′n) are
defined to be equivalent if there exists an isomorphism L ∼= L′ which identifies si with s′i
for all i.

The proof is a straightforward adaption of the well-known special case of projective space.
See for example [5], chapter II, Theorem 7.1.

Corollary 6.3 The scheme PV represents the functor which associates to an Fq-scheme T
the set of all equivalence classes of pairs (L, ϕ) consisting of an invertible sheaf L together
with a surjection ϕ : OT ⊗Fq V � L.

The open subscheme ΩV of PV corresponds to the open subfunctor obtained by additionally
requiring that for any nonzero vector 0 6= v ∈ V , the section ϕ(1 ⊗ v) ∈ Γ(T,L) vanishes
nowhere on T .

Corollary 6.4 The scheme QV represents the functor which associates to an Fq-scheme T
the set of all equivalence classes of pairs (G, λ) consisting of an invertible sheaf G together
with a map of sets λ : V r {0} → Γ (T,G) such that

(i) the set of global sections {λ(v) | 0 6= v ∈ V } generates G

(ii) λ(αv) = 1
α
λ(v) for all 0 6= v ∈ V and α ∈ Fq

(iii) λ(v)·λ(v′) = λ(v)·λ(v+v′)+λ(v′)·λ(v+v′) in Γ (T,G⊗2) for all linearly independent
vectors v, v′ ∈ V .

The open subscheme ΩV of QV corresponds to the open subfunctor obtained by additionally
requiring that for any nonzero vector 0 6= v ∈ V , the section λ(v) ∈ Γ(T,G) vanishes
nowhere on T .

Proof. Apply Remark 6.2 above to the presentation of RV in Corollary 2.5. q.e.d.

The birational equivalence of PV and QV takes the following shape on the level of functors.
Given a T -valued point (G, λ) of the open subfunctor of QV in Corollary 6.4, any section
λ(v) trivializes the invertible sheaf G, so we can assume that G = OT . For a nonzero vector

35



0 6= v ∈ V define ϕ(1⊗ v) := 1
λ(v)

. Then the properties (i) and (ii) of λ above imply that
we can extend ϕ to a morphism of sheaves ϕ : OT ⊗Fq V � L := OT as in Corollary 6.3.
This yields a natural transformation from the open subfunctor of QV in Corollary 6.4 to
the open subfunctor of PV in Corollary 6.3, and the inverse map is constructed analogously.

We now come to the definition of the contravariant functor BV from the category of schemes
over Fq to the category of sets. To an Fq-scheme T , we associate the set of all equivalence
classes of the following objects: For every nonzero subspace 0 6= V ′ ⊂ V an invertible sheaf
LV ′ on T , together with a surjection

ϕV ′ : OT ⊗Fq V
′ −→→ LV ′ ,

and for every inclusion of nonzero subspaces 0 6= V ′′ ⊂ V ′ ⊂ V a morphism

ψV
′′

V ′ : LV ′′ −→ LV ′ ,

such that the restriction of ϕV ′ to the subsheaf OT ⊗Fq V
′′ ⊂ OT ⊗Fq V

′ is equal to the
composition ψV

′′

V ′ ◦ ϕV ′′ . In other words, we require the diagram

OT ⊗Fq V
′ ϕV ′ // // LV ′

OT ⊗Fq V
′′

ϕV ′′
// //

?�

OO

LV ′′

ψV ′′
V ′

OO

to commute.

For the sake of readability we denote such an object as a triple (L, ϕ, ψ). Two such objects
(L, ϕ, ψ) and (L̃, ϕ̃, ψ̃) are defined to be equivalent if for every nonzero subspace V ′ ⊂ V
there exists an isomorphism of invertible sheaves LV ′ ∼= L̃V ′ which is compatible with the
surjections ϕV ′ and ϕ̃V ′ .

Since all morphisms ϕ in this definition are surjective, the maps ψ making the corresponding
diagrams commute are unique. In particular, for any chain of nonzero subspaces

0 6= V1 ⊂ V2 ⊂ V3 ⊂ V

the maps ψ automatically satisfy the cocycle condition

ψV1
V2
◦ ψV2

V3
= ψV1

V3
.

Similarly, if two objects (L, ϕ, ψ) and (L̃, ϕ̃, ψ̃) are equivalent, the corresponding isomorph-
isms L ∼= L̃ are automatically compatible with the maps ψ and ψ̃ as well.

We finish the construction of the functor BV by associating to a morphism f : T → T ′

of Fq-schemes the map of sets f ∗ : BV (T ′) → BV (T ) obtained by pulling back all of the
above data along f . We now study this functor in more detail.
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Proposition 6.5 The functor BV is representable by a projective scheme over Fq.

Proof. We show that BV is isomorphic to a closed subfunctor of the functor represented
by the product of projective spaces

∏
0 6=V ′⊂V PV ′ . This implies both the representability

of BV and the projectivity of the representing scheme.

A T -valued point of the product
∏

V ′ PV ′ is given by a collection of invertible quotients(
ϕV ′ : OT ⊗Fq V

′ −→→ LV ′
)
0 6=V ′⊂V .

Fix an inclusion of nonzero subspaces 0 6= V ′′ ⊂ V ′ of V . Then since ϕV ′ is an epimorphism,
there exists at most one dotted arrow ψV

′′

V ′ making the diagram

OT ⊗Fq V
′ ϕV ′ // // LV ′

OT ⊗Fq V
′′

ϕV ′′
// //

?�

OO

LV ′′

ψV ′′
V ′

OO

commute. Thus BV is isomorphic to the subfunctor of
∏

V ′ PV ′ which associates to an

Fq-scheme T the set of all collections of invertible quotients(
ϕV ′ : OT ⊗Fq V

′ −→→ LV ′
)
0 6=V ′⊂V

satisfying the extra condition that for any inclusion of nonzero subspaces 0 6= V ′′ ⊂ V ′ ⊂ V ,
there exists a morphism ψV

′′

V ′ making the above diagram commute.

To finish the proof we have to show that this extra condition is indeed a closed condition.
It suffices to prove this for a single fixed inclusion of nonzero subspaces 0 6= V ′′ ⊂ V ′ ⊂ V .
Denote by iV ′′ the inclusion of the kernel of ϕV ′′ into OT ⊗Fq V

′′. Then the diagram

OT ⊗Fq V
′ ϕV ′ // LV ′ // 0

0 // ker (ϕV ′′)
iV ′′

// OT ⊗Fq V
′′

ϕV ′′
//

?�

OO

LV ′′

ψV ′′
V ′

OO

// 0

shows that the existence of a dotted arrow ψV
′′

V ′ is equivalent to the condition that the

composite morphism ϕV ′ ◦ iV ′′ vanishes. Since the sheaf ker(ϕV ′′) is again locally free, this
is indeed a closed condition by Lemma 6.1, (ii). q.e.d.

By the usual abuse of notation we make no notational distinction between the functor BV

and the scheme representing it.
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Our next goal is to construct the aforementioned natural stratification of BV . Fix a filtra-
tion F = (V = V0 ) . . . ) Vr−1 ) Vr = 0) of V .

We define a subfunctor UF of BV by imposing the following condition on the set of T -valued
points. For every inclusion of nonzero subspaces 0 6= V ′′ ⊂ V ′ of V with the property that
there exists no index i such that V ′′ ⊂ Vi ( V ′, we require the morphism ψV

′′

V ′ to be an
isomorphism. Thus UF is an open subfunctor of BV by Lemma 6.1, (iii), and representable
by an open subscheme of BV , which we denote by UF as well.

Similarly, we define a subfunctor ZF of BV by imposing the following condition: For every
inclusion of nonzero subspaces 0 6= V ′′ ⊂ V ′ of V with the property that there exists an
index i such that V ′′ ⊂ Vi ( V ′, we require the morphism ψV

′′

V ′ to be equal to zero. It
follows from Lemma 6.1, (ii), that ZF is a closed subfunctor, and therefore representable
by a closed subscheme of BV , which we denote by ZF as well.

Finally, we define a subfunctor SF of BV by imposing both conditions simultaneously:
Given an inclusion of nonzero subspaces 0 6= V ′′ ⊂ V ′ of V , we require that ψV

′′

V ′ is equal
to zero if there exists an index i such that V ′′ ⊂ Vi ( V ′, and an isomorphism in all other
cases. Thus SF is a locally closed subfunctor of BV , and set-theoretically the equation

SF(T ) = UF(T ) ∩ ZF(T )

holds for every Fq-scheme T . We denote the corresponding locally closed subscheme by SF
as well.

Proposition 6.6 Let F = (V = V0 ) . . . ) Vr−1 ) Vr = 0) be a filtration of V . Then the
scheme ZF decomposes as a product as follows:

ZF ∼= BV0/V1 ×BV1/V2 × · · · ×BVr−1/Vr

Proof. We construct the isomorphism on the level of functors. Let T be an Fq-scheme
and let (L, ϕ, ψ) be a T -valued point of ZF . For every integer i = 0, . . . , r−1 we construct
a T -valued point (M, ρ, ζ) of BVi/Vi+1

as follows. Let W be a subspace of V such that
Vi+1 ( W ⊂ Vi. Set MW/Vi+1

:= LW . By definition of the subfunctor ZF , the morphism

ψ
Vi+1

W is equal to zero. It follows from the compatibility of the maps ϕ and ψ in the definition
of BV that ϕW vanishes on the subsheaf OT ⊗Fq Vi+1 ⊂ OT ⊗Fq W and thus descends to a
morphism

ρW/Vi+1
: OT ⊗Fq W/Vi+1 −→→MW/Vi+1

.

Finally, for an inclusion of subspaces Vi+1 ( U ⊂ W ⊂ Vi, define ζ
U/Vi+1

W/Vi+1
:= ψUW . This

construction yields a natural transformation of functors µ : ZF → BV0/V1 × · · · ×BVr−1/Vr .

We now define a natural transformation in the converse direction. Assume that for every
integer i = 0, . . . , r − 1 we are given a T -valued point (M(i), ρ(i), ζ(i)) of BVi/Vi+1

. We
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construct a T -valued point (L, ϕ, ψ) of ZF as follows. Let W be a nonzero subspace
of V , and let j be the unique integer such that W ⊂ Vj and W 6⊂ Vj+1. Set LW :=
M(j)(W+Vj+1)/Vj+1

and define ϕW as the composite surjection

ϕW : OT ⊗Fq W −→→ OT ⊗Fq (W + Vj+1)/Vj+1 −→→ M(j)(W+Vj+1)/Vj+1
,

where the second map is given by ρ(j)(W+Vj+1)/Vj+1
.

Given an inclusion of nonzero subspaces U ⊂ W of V , let k denote the unique integer such
that U ⊂ Vk and U 6⊂ Vk+1, and let j denote the unique integer such that W ⊂ Vj and W 6⊂
Vj+1. If k > j, define the morphism ψUW to be zero. If k = j, set ψUW := ζ(j)

(U+Vj+1)/Vj+1

(W+Vj+1)/Vj+1
.

We now check that the triple (L, ϕ, ψ) indeed defines a T -valued point of ZF . Let U,W, k, j
be defined as in the last paragraph. We need to check that the restriction of ϕW to the
subsheaf OT ⊗Fq U ⊂ OT ⊗Fq W is equal to the composition ψUW ◦ϕU . If k = j, this follows
from the corresponding property of the triple (M(j), ρ(j), ζ(j)). If k > j we observe that
U ⊂ Vj+1 ⊂ W . Thus both morphisms are equal to zero.

Therefore the triple (L, ϕ, ψ) defines a T -valued point of BV . By definition of the morph-
isms ψ it is clear that ψV

′′

V ′ is equal to zero whenever there exists an index i such that V ′′ ⊂
Vi ( V ′. Hence the triple (L, ϕ, ψ) indeed defines a T -valued point of the subfunctor ZF of
BV . We have thus constructed a natural transformation ν : BV0/V1 × · · · ×BVr−1/Vr → ZF
in the converse direction.

To complete the proof we need to show that the natural transformations µ and ν are inverse
to each other. It follows directly from the construction that µ ◦ ν = id. We now prove
that ν ◦ µ = id. Let T be an Fq-scheme, let (L, ϕ, ψ) be a T -valued point of ZF , and
denote by (L̃, ϕ̃, ψ̃) its image under the composition ν ◦ µ = id. We show that (L, ϕ, ψ)
and (L̃, ϕ̃, ψ̃) are equivalent triples. Fix a nonzero subspace W of V . We have to prove
that ϕW : OT ⊗Fq W � LW and ϕ̃W : OT ⊗Fq W � L̃W are equivalent quotients.

Let j denote the unique integer such that W ⊂ Vj and W 6⊂ Vj+1. By chasing through the
construction of the natural transformations µ and ν, one verifies that L̃W = LW+Vj+1

and
that ϕ̃W is equal to the composition

ϕ̃W : OT ⊗Fq W ↪−→ OT ⊗Fq (W + Vj+1)
ϕ(W+Vj+1)

−→→ L(W+Vj+1) .

In other words, the following diagram commutes:

OT ⊗Fq (W + Vj+1)
ϕ(W+Vj+1)

// // L(W+Vj+1)

OT ⊗Fq W ϕW

// //
?�

OO

ϕ̃W

33 33ggggggggggggggggggggggg
LW

ψW
W+Vj+1

OO
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The commutativity of the lower triangle implies that ψWW+Vj+1
is surjective and thus an

isomorphism. Therefore the quotients (LW , ϕW ) and (L̃W , ϕ̃W ) are equivalent. This con-
cludes the proof of the proposition. q.e.d.

Proposition 6.7 Let (V ) 0) be the trivial filtration of V . Then U(V)0) = S(V)0) and

S(V)0)
∼= ΩV .

Proof. The first statement is clear. In order to prove that S(V)0)
∼= ΩV , we use the functo-

rial interpretation of ΩV obtained in Proposition 6.3 above. The functor S(V)0) is the open
subfunctor of BV defined by the condition that all morphisms ψ are isomorphisms. Thus
for an Fq-scheme T , any triple (L, ϕ, ψ) in S(V)0)(T ) can be recovered up to equivalence
of triples from the quotient ϕV : OT ⊗Fq V � LV . Every such quotient ϕV satisfies the
condition that for any nonzero vector 0 6= v ∈ V , the section ϕV (1⊗v) ∈ Γ(T,LV ) vanishes
nowhere on T . Conversely, it is clear that every quotient ϕV satisfying this condition can
be extended to a triple (L, ϕ, ψ) in S(V)0)(T ). q.e.d.

Corollary 6.8 Let F = (V = V0 ) . . . ) Vr−1 ) Vr = 0) be a filtration of V . Then the
scheme SF decomposes as a product as follows:

SF ∼= ΩV0/V1 × ΩV1/V2 × · · · × ΩVr−1/Vr

Proof. Under the isomorphism of Proposition 6.6, the open subfunctor SF of ZF corre-
sponds to the open subfunctor S(V0/V1 ) 0) × · · · × S(Vr−1/Vr ) 0) of BV0/V1 × · · · ×BVr−1/Vr .
Then the statement follows from Proposition 6.7. q.e.d.

Theorem 6.9 (Stratification of BV ) The underlying set of the scheme BV is the dis-
joint union

BV =
•⋃
F

SF ,

where the indexing set consists of all filtrations F of the vector space V .

Proof. We need to show that BV (K) is the disjoint union of the subsets SF(K) for every
extension field K of Fq. The disjointness is clear from the definition of the functors SF .
Let (L, ϕ, ψ) be a K-valued point of BV . Since K is a field, we can assume that every
invertible sheaf L of the triple (L, ϕ, ψ) is equal to K. Furthermore, every morphism ψ
is either an isomorphism or equal to zero. We now provide an algorithm to construct a
filtration F such that (L, ϕ, ψ) is an element of SF(K).
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Set V0 := V . If ψV
′

V is an isomorphism for all nonzero subspaces V ′ of V , define V1 := 0.
Thus F is the trivial filtration (V ) 0) in this case. If not all of the ψV

′
V are isomorphisms,

let W be a nonzero subspace of V of maximal dimension such that ψWV = 0. We claim that
W is uniquely determined by this property.

More generally, we show that any nonzero subspace V ′ with the property that ψV
′

V = 0
must already be contained in W : If V ′ is not contained in W , then W is a proper subspace
of W + V ′. Then it follows from the maximality of W that ψWW+V ′ = 0 and ψV

′

W+V ′ = 0.
This in turn implies that ϕW+V ′ = 0, a contradiction. Thus V ′ must have been contained
in W , and W is unique. Set V1 := W .

We can now repeat the above step with V replaced by V1. Iterating this procedure yields
a filtration F = (V = V0 ) V1 ) · · · ) Vr = 0) of V with the property that ψV

′′

V ′ = 0 if
and only if there exists an index i such that V ′′ ⊂ Vi ( V ′. Thus the triple (L, ϕ, ψ) is an
element of SF(K). q.e.d.

In analogy to sections 4 and 5 we call the locally closed subschemes SF strata and their
open neighborhoods UF strata neighborhoods. Theorem 6.9 above shows that the UF form
an open cover of BV .

As a corollary of Proposition 6.6 and Theorem 6.9, we give a description of the set of
K-valued points of BV .

Corollary 6.10 Let K be an extension field of Fq. Then there exists a natural bijection
between the set BV (K) of K-valued points of BV and the set of pairs (F , x) consisting of
a filtration

F = (V = V0 ) V1 ) . . . ) Vr−1 ) Vr = 0)

and an element
x ∈ ΩV0/V1(K)× . . .× ΩVr−1/Vr(K).

Let F and F ′ be filtrations of V . We define F ∩F ′ to be the filtration of V which consists
of precisely those subspaces which occur in both F and F ′. We use the notation F ′ ⊂ F
to indicate that F ′ can be obtained from F by deleting some of the filtration steps. The
following statements follow directly from Theorem 6.9 above.

Remark 6.11

(i) UF =
•⋃

F ′⊂F

SF ′

(ii) ZF =
•⋃

F⊂F ′

SF ′
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(iii) F ′ ⊂ F ⇐⇒ UF ′ ⊂ UF

(iv) UF∩F ′ = UF ∩ UF ′

Our next goal is to show that BV is a smooth projective variety and that the boundary
BV rΩV is a divisor with normal crossings in the sense that it is Zariski-locally isomorphic
to the embedding of a union of coordinate planes into affine space.

Fix a filtration F = (V = V0 ) . . . ) Vr = 0) of V . For every integer i = 1, . . . , r−1 we fix
a subspace Wi ⊂ Vi−1 such that Vi−1 = Vi ⊕Wi, together with a nonzero vector wi in Wi.
In addition we fix a nonzero vector wr in Vr−1.

Lemma 6.12 The functor UF is isomorphic to the functor that associates to an Fq-
scheme T the set of commutative diagrams of the form

OT ⊗Fq V0

ϕV0 // // OT

OT ⊗Fq V1

ϕV1 // //
?�

OO

OT

ψ
V1
V0

OO

OT ⊗Fq V2

ϕV2 // //
?�

OO

OT

ψ
V2
V1

OO

OT ⊗Fq Vr−1

ϕVr−1 // //

OO�
�
�
�
�
�

OT

OO�
�
�
�
�
�

with the following properties:

(i) For every integer i = 0, . . . , r−1 and every vector v ∈ VirVi+1 the section ϕVi
(1⊗v)

in Γ(T,OT ) vanishes nowhere on T .

(ii) For every integer i = 1, . . . , r, the section ϕVi−1
(wi) is equal to 1 in Γ(T,OT ).

Proof. Let T be an Fq-scheme and let (L, ϕ, ψ) be a T -valued point of UF . We first
show that for every i = 0, . . . , r − 1 the invertible sheaf LVi

is trivial. Choose a vector
v ∈ Vi r Vi+1 and let W denote the Fq-span of v. Then since W is one-dimensional, the
corresponding invertible sheaf LW is trivialized by the map ϕW . By the definition of UF ,
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the morphism ψWVi
is an isomorphism. Thus LVi

is trivial as well. By using the equivalence
relation on the set of triples (L, ϕ, ψ) we can assume that LVi

= OT .

It follows directly from the definition of UF that a triple (L, ϕ, ψ) in UF(T ) can be recon-

structed up to equivalence of triples from the subdiagram (ϕVi
, ψ

Vi+1

Vi
) pictured above, and

that every such subdiagram satisfies property (i). Conversely, every diagram (ϕVi
, ψ

Vi+1

Vi
)

satisfying property (i) can be extended to a triple (L, ϕ, ψ) in UF(T ). Thus UF is iso-
morphic to the functor that associates to an Fq-scheme T the set of equivalence classes of

diagrams (ϕVi
, ψ

Vi+1

Vi
) satisfying property (i). Additionally requiring property (ii) above is

then equivalent to the choice of a representative for each equivalence class of diagrams.
q.e.d.

We use the description of UF obtained in Lemma 6.12 in the following definition and in
Proposition 6.13 below.

Define a natural transformation

τ : UF −→ Ar−1
Fq
× ΩW1 × ΩW2 × · · · × ΩWr−1 × ΩVr−1

as follows. Let T be an Fq-scheme and let (ϕVi
, ψ

Vi+1

Vi
) be a T -valued point of UF . Then for

every i = 0, . . . , r−2 the morphism ψ
Vi+1

Vi
: OT → OT yields a T -valued point of A1

Fq
since

HomOT
(OT ,OT ) ∼= Γ(T,OT ) ∼= A1

Fq
(T ).

Furthermore, it follows from property (i) in Lemma 6.12 above that for every i = 0, . . . , r−2
the surjection

ϕVi
|OT⊗FqWi+1

: OT ⊗Fq Wi+1 −→→ OT
yields a T -valued point of ΩWi+1

.

Thus we define the image of (ϕVi
, ψ

Vi+1

Vi
) under τ to be the T -valued point(

ψV1
V0
, . . . , ψ

Vr−1

Vr−2
, ϕV0|OT⊗FqW1 , . . . , ϕVr−2|OT⊗FqWr−2 , ϕVr−1

)
of the product scheme Ar−1

Fq
× ΩW1 × ΩW2 × · · · × ΩWr−1 × ΩVr−1 .

Proposition 6.13 The natural transformation

τ : UF −→ Ar−1
Fq
× ΩW1 × ΩW2 × · · · × ΩWr−1 × ΩVr−1

is injective. Furthermore, the image of τ is an open subfunctor of the product functor
Ar−1

Fq
× ΩW1 × ΩW2 × · · · × ΩWr−1 × ΩVr−1. In particular, the scheme UF is isomorphic to

an open subscheme of affine space Ad−1
Fq

.
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Proof. We first prove that τ is injective. Let T be an Fq-scheme and let (ϕVi
, ψ

Vi+1

Vi
) be a

T -valued point of UF . It suffices to show that every morphisms ϕVj
is uniquely determined

by the image of (ϕVi
, ψ

Vi+1

Vi
) under τ . We proceed by downwards induction on j. The

statement is clear for j = r − 1. For arbitrary j, the morphism ϕVj
can be reconstructed

from the composition ψ
Vj+1

Vj
◦ ϕVj+1

and the restriction ϕVj
|OT⊗FqWj+1

as follows. Given a
nonzero vector v ∈ Vj, there exist unique vectors vj+1 ∈ Vj+1 and uj+1 ∈ Wj+1 such that

v = vj+1 + uj+1. Then it follows from the commutativity of the diagram (ϕVi
, ψ

Vi+1

Vi
) that

(∗) ϕVj
(1⊗ v) =

(
ψ
Vj+1

Vj
◦ ϕVj+1

)
(1⊗ vj+1) + ϕVj

|OT⊗FqWj+1
(1⊗ uj+1).

Thus by induction we conclude that ϕVj
is uniquely determined by the image of (ϕVi

, ψ
Vi+1

Vi
)

under τ . This shows that τ is injective.

We now determine the image of τ . From equation (∗) above we see that every T -valued
point of Ar−1

Fq
× ΩW1 × ΩW2 × · · · × ΩWr−1 × ΩVr−1 gives rise to a commutative dia-

gram (ϕVi
, ψ

Vi+1

Vi
). However, the morphisms ϕVi

might lack property (i) of Lemma 6.12, so

that the diagram (ϕVi
, ψ

Vi+1

Vi
) constructed in this way is not necessarily a T -valued point of

UF . Thus the image of τ is the subfunctor of Ar−1
Fq
×ΩW1×ΩW2×· · ·×ΩWr−1×ΩVr−1 defined

by requiring that every morphism ϕVi
constructed inductively via equation (∗) possesses

property (i).

More explicitly, the image of τ is the subfunctor defined by the following condition: Given
any integer j = 0, . . . , r − 2 and any collection of vectors vr−1 ∈ Vr−1, ur−1 ∈ Wr−1,
ur−2 ∈ Wr−2, . . . , uj+1 ∈ Wj+1, not all equal to zero, we require that the global section

ϕVj
|OT⊗FqWj+1

(1⊗ uj+1)

+ ψ
Vj+1

Vj
◦ ϕVj+1

|OT⊗FqWj+2
(1⊗ uj+2)

+ ψ
Vj+1

Vj
◦ ψ

Vj+2

Vj+1
◦ ϕVj+2

|OT⊗FqWj+3
(1⊗ uj+3)

...

+ ψ
Vj+1

Vj
◦ . . . ◦ ψ

Vr−1

Vr−2
◦ ϕVr−1(1⊗ vr−1)

in Γ(T,OT ) vanishes nowhere on T .

This condition is an open condition by Proposition 6.1. q.e.d.

Corollary 6.14 The scheme BV is a smooth projective variety.

Proof. In Proposition 6.5 we have already shown that BV is projective. Proposition 6.13
above implies that every open subscheme UF of BV is irreducible. Furthermore, every UF
contains the open stratum S(V)0)

∼= ΩV . Therefore the fact that the UF form a cover of
BV implies that ΩV is dense in BV , and therefore BV is irreducible. The smoothness of BV

follows from Proposition 6.13 and the fact that the open subschemes UF cover BV . q.e.d.
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Corollary 6.15 The closure of a stratum SF in BV is again a union of strata and carries
a natural subscheme structure:

SF =
•⋃

F⊂F ′

SF ′ = ZF

Proof. Proposition 6.6 and Proposition 6.14 together imply that the scheme ZF is
irreducible. Thus the non-empty open subscheme SF of ZF is dense in ZF , and the claim
follows from Remark 6.11, (ii). q.e.d.

Corollary 6.16 The boundary BV r ΩV ⊂ BV is a divisor with normal crossings in the
sense that it is Zariski-locally isomorphic to the embedding of a union of coordinate planes
into affine space.

Proof. It suffices to verify the claim on every open subscheme UF of BV . We use the
characterization of UF in Lemma 6.12. The boundary UF r ΩV represents the closed
subfunctor of UF defined by the condition that at least one of the morphisms ψ

Vi+1

Vi
is equal

to zero. Thus it is clear from the definition of the natural transformation τ above that the
embedding of UF r ΩV into UF is isomorphic to an embedding of a union of coordinate
planes into an open subset of affine space Ad−1

Fq
. q.e.d.

Finally, we construct morphisms from BV to PV andQV . Define a morphism from BV to PV
on the level of functors by mapping a triple (L, ϕ, ψ) to the quotient ϕV : OT ⊗Fq V � LV .
It is clear from Proposition 6.3 that this morphism induces an isomorphism on ΩV .

Similarly, we use the functorial description of QV in Proposition 6.4 to define a morphism
from BV to QV . Given an Fq-scheme T and a triple (L, ϕ, ψ) in BV (T ), construct a pair
(G, λ) in QV (T ) as follows.

The collection of invertible sheaves (LV ′)0 6=V ′⊂V forms an inverse system via the morph-
isms ψ. Thus there exists the inverse limit sheaf lim←−LV ′ on T . In the special case that
the triple (L, ϕ, ψ) lies in UF(T ), it is clear that lim←−LV ′ is again invertible. In the
general case, we conclude that lim←−LV ′ is locally isomorphic to an invertible sheaf (and
thus itself invertible) since the open subschemes UF cover BV . We define G as the dual(
lim←−LV ′

)∨
:= HomOT

(
lim←−LV ′ ,OT

)
of lim←−LV ′ .

Let v be a nonzero vector in V and denote by Fqv the one-dimensional subspace spanned
by v. We define the global section λ(v) of G as the composition

λ(v) : lim←−LV ′ −→ LFqv

ϕ−1
Fqv−→ OT ⊗Fq Fqv

∼=−→ OT .

Then it follows directly from the construction that λ(v) satisfies properties (ii) and (iii)
of Proposition 6.4, and that the collection of global sections (λ(v))0 6=v∈V generates G. We
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have thus defined a morphism from BV to QV . The description of ΩV as a subfunctor
of BV in Proposition 6.7 and as a subfunctor of QV in Proposition 6.4 implies that this
morphism induces an isomorphism on ΩV . Since both BV and QV are projective schemes
over Fq, this morphism is projective as well.

Corollary 6.17 The projective variety BV is a desingularization of QV .

A classical theorem of surface theory (see for example [5], chapter V, Corollary 5.4) states
that every birational morphism of nonsingular projective surfaces can be factored into
finitely many monoidal transformations. From this theorem one can easily deduce that
if d = 3, the desingularization BV coincides with the blowups P̃V = Q̃V constructed in
section 5.
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