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These are lecture notes not in final form and will be continuously edited and/or corrected (as I am
sure it contains many typos). Please let me know if you find any typo/mistake. Also, I am posting the
open problems on my Blog, see [Ban15].

6.1 Sparse Recovery

Most of us have noticed how saving an image in JPEG dramatically reduces the space it occupies in
our hard drives (as oppose to file types that save the pixel value of each pixel in the image). The idea
behind these compression methods is to exploit known structure in the images; although our cameras
will record the pixel value (even three values in RGB) for each pixel, it is clear that most collections of
pixel values will not correspond to pictures that we would expect to see. This special structure tends
to exploited via sparsity. Indeed, natural images are known to be sparse in certain bases (such as the
wavelet bases) and this is the core idea behind JPEG (actually, JPEG2000; JPEG uses a different
basis).

Let us think of x ∈ RN as the signal corresponding to the image already in the basis for which it is
sparse. Let’s say that x is s-sparse, or ‖x‖0 ≤ s, meaning that x has, at most, s non-zero components
and, usually, s � N . The `0 norm1 ‖x‖0 of a vector x is the number of non-zero entries of x. This
means that, when we take a picture, our camera makesN measurements (each corresponding to a pixel)
but then, after an appropriate change of basis, it keeps only s � N non-zero coefficients and drops
the others. This motivates the question: “If only a few degrees of freedom are kept after compression,
why not measure in a more efficient way and take considerably less than N measurements?”. This
question is in the heart of Compressed Sensing [CRT06a, CRT06b, CT05, CT06, Don06, FR13]. It is
particularly important in MRI imaging [?] as less measurements potentially means less measurement
time. The following book is a great reference on Compressed Sensing [FR13].

More precisely, given a s-sparse vector x, we take s < M � N linear measurements yi = aTi x and
the goal is to recover x from the underdetermined system:

1The `0 norm is not actually a norm though.
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Last lecture we used Gordon’s theorem to show that, if we took random measurements, on the
order of s log

(
N
s

)
measurements suffice to have all considerably different s-sparse signals correspond

to considerably different sets of measurements. This suggests that ≈ s log
(
N
s

)
may be enough to

recover x, we’ll see (later) in this lecture that this intuition is indeed correct.
Since the system is underdetermined and we know x is sparse, the natural thing to try, in order

to recover x, is to solve
min ‖z‖0
s.t. Az = y,

(1)

and hope that the optimal solution z corresponds to the signal in question x. Unfortunately, (1) is
known to be a computationally hard problem in general. Instead, the approach usually taken in sparse
recovery is to consider a convex relaxation of the `0 norm, the `1 norm: ‖z‖1 =

∑N
i=1 |zi|. Figure 1

depicts how the `1 norm can be seen as a convex relaxation of the `0 norm and how it promotes
sparsity.

Figure 1: A two-dimensional depiction of `0 and `1 minimization. In `1 minimization (the picture of
the right), one inflates the `1 ball (the diamond) until it hits the affine subspace of interest, this image
conveys how this norm promotes sparsity, due to the pointy corners on sparse vectors.

This motivates one to consider the following optimization problem (surrogate to (1)):

min ‖z‖1
s.t. Az = y,

(2)

In order for (2) we need two things, for the solution of it to be meaningful (hopefully to coincide
with x) and for (2) to be efficiently solved.
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We will formulate (2) as a Linear Program (and thus show that it is efficiently solvable). Let us
think of ω+ as the positive part of x and ω− as the symmetric of the negative part of it, meaning that
x = ω+ − ω− and, for each i, either ω−i or ω+

i is zero. Note that, in that case,

‖x‖1 =

N∑
i=1

ω+
i + ω−i = 1T

(
ω+ + ω−

)
.

Motivated by this we consider:

min 1T (ω+ + ω−)
s.t. A (ω+ − ω−) = y

ω+ ≥ 0
ω− ≥ 0,

(3)

which is a linear program. It is not difficult to see that the optimal solution of (3) will indeed satisfy
that, for each i, either ω−i or ω+

i is zero and it is indeed equivalent to (2). Since linear programs are
efficiently solvable [VB04], this means that (2) efficiently.

6.2 Duality and exact recovery

The goal now is to show that, under certain conditions, the solution of (2) indeed coincides with x.
We will do this via duality (this approach is essentially the same as the one followed in [Fuc04] for the
real case, and in [Tro05] for the complex case.)

Let us start by presenting duality in Linear Programming with a game theoretic view point. The
idea will be to reformulate (3) without constraints, by adding a dual player that wants to maximize
the objective and would exploit a deviation from the original constraints (by, for example, giving the
dual player a variable u and adding to to the objective uT (y −A (ω+ − ω−))). More precisely consider
the following

min
ω+

ω−

max
u

v+≥0
v−≥0

1T
(
ω+ + ω−

)
−
(
v+
)T
ω+ −

(
v−
)T
ω− + uT

(
y −A

(
ω+ − ω−

))
. (4)

Indeed, if the primal player (picking ω+ and ω− and attempting to minimize the objective) picks
variables that do not satisfy the original constraints, then the dual player (picking u, v+, and v− and
trying to maximize the objective) will be able to make the objective value as large as possible. It is
then clear that (3) = (4).

Now image that we switch the order at which the players choose variable values, this can only
benefit the primal player, that now gets to see the value of the dual variables before picking the primal
variables, meaning that (4) ≥ (5), where (5) is given by:

max
u

v+≥0
v−≥0

min
ω+

ω−

1T
(
ω+ + ω−

)
−
(
v+
)T
ω+ −

(
v−
)T
ω− + uT

(
y −A

(
ω+ − ω−

))
. (5)

Rewriting

max
u

v+≥0
v−≥0

min
ω+

ω−

(
1− v+ −ATu

)T
ω+ +

(
1− v− +ATu

)T
ω− + uT y (6)
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With this formulation, it becomes clear that the dual players needs to set 1 − v+ − ATu = 0,
1− v− +ATu = 0 and thus (6) is equivalent to

max
u

v+≥0
v−≥0

1−v+−ATu=0
1−v−+ATu=0

uT y

or equivalently,

maxu uT y
s.t. −1 ≤ ATu ≤ 1.

(7)

The linear program (7) is known as the dual program to (3). The discussion above shows that
(7) ≤ (3) which is known as weak duality. More remarkably, strong duality guarantees that the optimal
values of the two programs match.

There is a considerably easier way to show weak duality (although not as enlightening as the one
above). If ω− and ω+ are primal feasible and u is dual feasible, then

0 ≤
(
1T − uTA

)
ω+ +

(
1T + uTA

)
ω− = 1T

(
ω+ + ω−

)
− uT

[
A
(
ω+ − ω−

)]
= 1T

(
ω+ + ω−

)
− uT y,

(8)
showing that (7) ≤ (3).

6.3 Finding a dual certificate

In order to show that ω+ − ω− = x is an optimal solution2 to (3), we will find a dual feasible point u
for which the dual matches the value of ω+ − ω− = x in the primal, u is known as a dual certificate
or dual witness.

From (8) it is clear that u must satisfy
(
1T − uTA

)
ω+ = 0 and

(
1T + uTA

)
ω− = 0, this is known

as complementary slackness. This means that we must have the entries of ATu be +1 or −1 when x
is non-zero (and be +1 when it is positive and −1 when it is negative), in other words(

ATu
)
S

= sign (xS) ,

where S = supp(x), and
∥∥ATu∥∥∞ ≤ 1 (in order to be dual feasible).

Remark 6.1 It is not difficult to see that if we further ask that
∥∥(ATu)

Sc

∥∥
∞ < 1 any optimal primal

solution would have to have its support contained in the support of x. This observation gives us the
following Lemma.

Lemma 6.2 Consider the problem of sparse recovery discussed this lecture. Let S = supp(x), if AS
is injective and there exists u ∈ RM such that(

ATu
)
S

= sign (xS) ,

2For now we will focus on showing that it is an optimal solution, see Remark 6.1 for a brief discussion of how to
strengthen the argument to show uniqueness
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and ∥∥(ATu)
Sc

∥∥
∞ < 1,

then x is the unique optimal solution to the `1 minimization program 2.

Since we know that
(
ATu

)
S

= sign (xS) (and that AS is injective), we’ll try to construct u by least

squares and hope that it satisfies
∥∥(ATu)

Sc

∥∥
∞ < 1. More precisely, we take

u =
(
ATS
)†

sign (xS) ,

where
(
ATS
)†

= AS
(
ATSAS

)−1
is the Moore Penrose pseudo-inverse of ATS . This gives the following

Corollary.

Corollary 6.3 Consider the problem of sparse recovery discussed this lecture. Let S = supp(x), if
AS is injective and ∥∥∥(ATScAS

(
ATSAS

)−1
sign (xS)

)
Sc

∥∥∥
∞
< 1,

then x is the unique optimal solution to the `1 minimization program 2.

Recall the definition of A ∈ RM×N satisfying the restricted isometry property from last Lecture.

Definition 6.4 (Restricted Isometry Property) A matrix A ∈ RM×N is said to satisfy the (s, δ)
restricted isometry property if

(1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2 ,

for all two s-sparse vectors x.

Last lecture (Lecture 5) we showed that if M � s log
(
N
s

)
and A ∈ RM×N is drawn with i.i.d.

gaussian entries N
(
0, 1

M

)
then it will, with high probability, satisfy the (s, 1/3)-RIP. Note that, if A

satisfies the (s, δ)-RIP then, for any |S| ≤ s one has ‖AS‖ ≤
√

1 + 1
3 and l

(
ATSAS

)−1 ‖ ≤ (1− 1
3

)−1
=

3
2 , where ‖ · ‖ denotes the operator norm ‖B‖ = max‖x‖=1 ‖Bx‖.

This means that, if we take A random with i.i.d. N
(
0, 1

M

)
entries then, for any |S ≤ s| we have

that

‖AS
(
ATSAS

)−1
sign (xS) ‖ ≤

√
1 +

1

3

3

2
=
√

3
√
s,

and because of the independency among the entries of A, ASc is independent of this vector and so for
each j ∈ Sc we have

Prob

(∣∣∣ATj AS (ATSAS)−1 sign (xS)
∣∣∣ ≥ 1√

M

√
3
√
st

)
≤ 2 exp

(
− t

2

2

)
,

where Aj is the j-th column of A.
Union bound gives

Prob

(∥∥∥ATSAS (ATSAS)−1 sign (xS)
∥∥∥
∞
≥ 1√

M

√
3
√
st

)
≤ 2N exp

(
− t

2

2

)
,
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which implies

Prob
(∥∥∥ATSAS (ATSAS)−1 sign (xS)

∥∥∥
∞
≥ 1
)
≤ 2N exp

−
(√

M√
3s

)2
2

 = exp

(
−1

2

[
M

3s
− 2 log(2N)

])
,

which means that we expect to exactly recover x via `1 minimization when M � s log(N), similarly
to what was predicted by Gordon’s Theorem last Lecture.

6.4 A different approach

Given x a sparse vector, we want to show that x is the unique optimal solution to

min ‖z‖1
s.t. Az = y,

(9)

Let S = supp(x) and suppose that z 6= x is an optimal solution of the `1 minimization problem.
Let v = z − x, it satisfies

‖v + x‖1 ≤ ‖x‖1 and A(v + x) = Ax,

this means that Av = 0. Also, ‖x‖S = ‖x‖1 ≥ ‖v+x‖1 = ‖ (v + x)S ‖1+‖vSc‖1 ≥ ‖x‖S−‖vS‖1+‖v‖Sc ,
where the last inequality follows by triangular inequality. This means that ‖vS‖1 ≥ ‖vSc‖1, but since
|S| � N it is unlikely for A to have vectors in its nullspace that are this concentrated on such few
entries. This motivates the following definition.

Definition 6.5 (Null Space Property) A is said to satisfy the s-Null Space Property if, for all v
in ker(A) (the nullspace of A) and all |S| = s we have

‖vS‖1 < ‖vSc‖1.

From the argument above, it is clear that if A satisfies the Null Space Property for s, then x will
indeed be the unique optimal solution to (2). Also, now that recovery is formulated in terms of certain
vectors not belonging to the nullspace of A, one could again resort to Gordon’s theorem. And indeed,
Gordon’s Theorem can be used to understand the number of necessary measurements to do sparse
recovery3 [CRPW12]. There is also an interesting approach based on Integral Geometry [ALMT14].

As it turns out one can show that the
(
2s, 13

)
-RIP implies s-NSP [FR13]. We omit that proof as

it does not appear to be as enlightening (or adaptable) as the approach that was shown here.

6.5 Partial Fourier matrices satisfying the Restricted Isometry Property

While the results above are encouraging, rarely one has the capability of designing random gaussian
measurements. A more realistic measurement design is to use rows of the Discrete Fourier Transform:
Consider the random M ×N matrix obtained by drawing rows uniformly with replacement from the
N ×N discrete Fourier transform matrix. It is known [CT06] that if M = Ωδ(K polylogN), then the
resulting partial Fourier matrix satisfies the restricted isometry property with high probability.

3In these references the sets considered are slightly different than the one described here, as the goal is to ensure
recovery of just one sparse vector, and not all of them simultaneously.
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A fundamental problem in compressed sensing is determining the order of the smallest number M
of random rows necessary. To summarize the progress to date, Candès and Tao [CT06] first found that
M = Ωδ(K log6N) rows suffice, then Rudelson and Vershynin [RV08] proved M = Ωδ(K log4N), and
more recently, Bourgain [Bou14] achieved M = Ωδ(K log3N); Nelson, Price and Wootters [NPW14]
also achieved M = Ωδ(K log3N), but using a slightly different measurement matrix. The latest result
is due to Haviv and Regev [HR] giving an upper bound of M = Ωδ(K log2 k logN). As far as lower
bounds, in [BLM15] it was shown that M = Ωδ(K logN) is necessary. This draws a contrast with
random Gaussian matrices, where M = Ωδ(K log(N/K)) is known to suffice.

Open Problem 6.1 Consider the random M × N matrix obtained by drawing rows uniformly with
replacement from the N ×N discrete Fourier transform matrix. How large does M need to be so that,
with high probability, the result matrix satisfies the Restricted Isometry Property (for constant δ)?

6.6 Coherence and Gershgorin Circle Theorem

Last lectures we discussed the problem of building deterministic RIP matrices (building deterministic
RIP matrices is particularly important because checking whether a matrix is RIP is computationally
hard [BDMS13, TP13]). Despite suboptimal, coherence based methods are still among the most
popular ways of building RIP matrices, we’ll briefly describe some of the ideas involved here.

Recall the definition of the Restricted Isometry Property (Definition 6.4). Essentially, it asks that
any S ⊂ [N ], |S| ≤ s satisfies:

(1− δ)‖x‖2 ≤ ‖ASx‖2 ≤ (1 + δ)‖x‖2,

for all x ∈ R|S|. This is equivalent to

max
x

xT
(
ATSAS − I

)
x

xTx
≤ δ,

or equivalently ∥∥ATSAS − I∥∥ ≤ δ.
If the columns of A are unit-norm vectors (in RM ), then the diagonal of ATSAS is all-ones, this

means that ATSAS − I consists only of the non-diagonal elements of ATSAS . If, moreover, for any two
columns ai, aj , of A we have

∣∣aTi aj∣∣ ≤ µ for some µ then, Gershgorin’s circle theorem tells us that∥∥ATSAS − I∥∥ ≤ δ(s− 1).
More precisely, given a symmetric matrix B, the Gershgorin’s circle theorem [HJ85] tells that all

of the eigenvalues of B are contained in the so called Gershgorin discs (for each i, the Gershgorin disc

corresponds to
{
λ : |λ−Bii| ≤

∑
j 6=i |Bij |

}
. If B has zero diagonal, then this reads: ‖B‖ ≤ maxi |Bij |.

Given a set of N vectors a1, . . . , aN ∈ RM we define its worst-case coherence µ as

µ = max
i 6=j

∣∣aTi aj∣∣
Given a set of unit-norm vectors a1, . . . , aNRM with worst-case coherence µ, if we form a matrix

with these vectors as columns, then it will be (s, µ(s− 1)µ)-RIP, meaning that it will be
(
s, 13
)
- RIP

for s ≤ 1
3
1
µ .

7



6.6.1 Mutually Unbiased Bases

We note that now we will consider our vectors to be complex valued, rather than real valued, but all
of the results above hold for either case.

Consider the following 2d vectors: the d vectors from the identity basis and the d orthonormal
vectors corresponding to columns of the Discrete Fourier Transform F . Since these basis are both
orthonormal the vectors in question are unit-norm and within the basis are orthogonal, it is also easy
to see that the inner product between any two vectors, one from each basis, has absolute value 1√

d
,

meaning that the worst case coherence of this set of vectors is µ = 1√
d

this corresponding matrix [I F ]

is RIP for s ≈
√
d.

It is easy to see that 1√
d

coherence is the minimum possible between two orthonormal bases in Cd,
such bases are called unbiased (and are important in Quantum Mechanics, see for example [BBRV01])
This motivates the question of how many orthonormal basis can be made simultaneously (or mutually)
unbiased in Cd, such sets of bases are called mutually unbiased bases. LetM(d) denote the maximum
number of such bases. It is known that M(d) ≤ d+ 1 and that this upper bound is achievable when
d is a prime power, however even determining the value of M(6) is open [BBRV01].

Open Problem 6.2 How many mutually unbiased bases are there in 6 dimensions? Is it true that
M(6) < 7?4

6.6.2 Equiangular Tight Frames

Another natural question is whether one can get better coherence (or more vectors) by relaxing the
condition that the set of vectors have to be formed by taking orthonormal basis. A tight frame (see,
for example, [CK12] for more on Frame Theory) is a set of N vectors in CM (with N ≥M) that spans
CM “equally”. More precisely:

Definition 6.6 (Tight Frame) v1, . . . , vN ∈ CM is a tight frame if there exists a constant α such
that

N∑
k=1

|〈vk, x〉|2 = α‖x‖2, ∀x∈CM ,

or equivalently
N∑
k=1

vkv
T
k = αI.

The smallest coherence of a set of N unit-norm vectors in M dimensions is bounded below by the
Welch bound (see, for example, [BFMW13]) which reads:

µ ≥

√
N −M
M(N − 1)

.

One can check that, due to this limitation, deterministic constructions based on coherence cannot
yield matrices that are RIP for s�

√
M , known as the square-root bottleneck [BFMW13, Tao07].

4The author thanks Bernat Guillen Pegueroles for suggesting this problem.
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There are constructions that achieve the Welch bound, known as Equiangular Tight Frames
(ETFs), these are tight frames for which all inner products between pairs of vectors have the same

modulus µ =
√

N−M
M(N−1) , meaning that they are “equiangular”. It is known that for there to exist an

ETF in CM one needs N ≤M2 and ETF’s for which N = M2 are important in Quantum Mechanics,
and known as SIC-POVM’s. However, they are not known to exist in every dimension (see here for
some recent computer experiments [SG10]). This is known as Zauner’s conjecture.

Open Problem 6.3 Prove or disprove the SIC-POVM / Zauner’s conjecture: For any d, there exists
an Equiangular tight frame with d2 vectors in Cd dimensions. (or, there exist d2 equiangular lines in
Cd).

We note that this conjecture was recently shown [Chi15] for d = 17 and refer the reader to
this interesting remark [Mix14] on the description length of the constructions known for different
dimensions.

6.6.3 The Paley ETF

There is a simple construction of an ETF made of 2M vectors in M dimensions (corresponding to
a M × 2M matrix) known as the Paley ETF that is essentially a partial Discrete Fourier Transform
matrix. While we refer the reader to [BFMW13] for the details the construction consists of picking
rows of the p× p Discrete Fourier Transform (with p ∼= 1 mod 4 a prime) with indices corresponding
to quadratic residues modulo p. Just by coherence considerations this construction is known to be
RIP for s ≈ √p but conjectured [BFMW13] to be RIP for s ≈ p

polylogp , which would be predicted if

the choice os rows was random (as discussed above)5. Although partial conditional (conditioned on
a number theory conjecture) progress on this conjecture has been made [BMM14] no unconditional
result is known for s� √p. This motivates the following Open Problem.

Open Problem 6.4 Does the Paley Equiangular tight frame satisfy the Restricted Isometry Property
pass the square root bottleneck? (even by logarithmic factors?).

We note that [BMM14] shows that improving polynomially on this conjecture implies an improve-
ment over the Paley clique number conjecture (Open Problem 8.4.)

6.7 The Kadison-Singer problem

The Kadison-Singer problem (or the related Weaver’s conjecture) was one of the main questions in
frame theory, it was solved (with a non-constructive proof) in the recent breakthrough of Marcus,
Spielman, and Srivastava [MSS15b], using similar techniques to their earlier work [MSS15a]. Their
theorem guarantees the existence of universal constants η ≥ 2 and θ > 0 s.t. for any tight frame
ω1, . . . , ωN ∈ CM satisfying ‖ωk‖ ≤ 1 and

N∑
k=1

ωkω
T
k = ηI,

5We note that the quadratic residues are known to have pseudorandom properties, and indeed have been leveraged
to reduce the randomness needed in certain RIP constructions [BFMM14]
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there exists a partition of this tight frame S1, S2 ⊂ [N ] such that each is “almost a tight frame” in the
sense that, ∑

k∈Sj

ωkω
T
k � (η − θ) I.

However, a constructive prove is still not known and there is no known (polynomial time) method
that is known to construct such partitions.

Open Problem 6.5 Give a (polynomial time) construction of the tight frame partition satisfying the
properties required in the Kadison-Singer problem (or the related Weaver’s conjecture).
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