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Singular Value Decomposition and Prin-
cipal Component Analysis

Data is most often represented as a matrix, even network data and graphs are
often naturally represented by they adjacency matrix. For this reason Linear Alge-
bra is one of the key tools in data analysis. Perhaps more surprising is the fact that
spectral properties of matrices representing data play a crucial role in data analy-
sis. After a brief review of Linear Algebra we will illustrate this importance with a
discussion of Principal Component Analysis and tools from random matrix theory
to better understand its performance in the high dimensional regime.

1 Brief review of linear algebra tools

We recommend the reader [14] and [12] as base references in the linear algebra.

Singular Value Decomposition

Singular Value Decomposition (SVD) is one of the most useful tools for analyzing
data. Given a matrix M ∈ Rm×n, the SVD of M is given by

M =UΣV T , (1)

where U ∈O(m), V ∈O(n) are orthogonal matrices (meaning that UTU =UUT =
Im×m and V TV =VV T = In×n) and Σ ∈ Rm×n is a matrix with non-negative entries
on its diagonal and otherwise zero entries.

The columns of U and V are referred to, respectively, as left and right singular
vectors of M and the diagonal elements of Σ as singular values of M. Through the
SVD, any matrix can be written as a sum of rank-1 matrices

M =
r

∑
k=1

σkukvT
k , (2)

where σ1 ≥ σ2 ≥ σr > 0 are the non-zero singular values of M, and uk and vk are
the corresponding left and right singular vectors. In particular, rank(M) = r, that
is, the number of non-zero singular values r is the rank of M.

Remark 1.1 Say m ≤ n, it is easy to see that we can also think of the SVD as
having U ∈ Rm×n where UUT = I, Σ ∈ Rn×n a diagonal matrix with non-negative
entries and V ∈ O(n).
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Matrix norms and low rank matrix approximation

A very powerful modelling tool in data science is low rank matrices. In fact, we
will devote whole of Chapter ?? to this topic. As already suggested in the expan-
sion (2) the SVD will play an important role in this, being used to provide low rank
approximation of data matrices.

In order to be able to talk about low rank approximations of matrices, we need
a notion of distance between matrices. Just like with vectors, the distance between
matrices can be measured using a suitable norm of the difference. One popular
norm is the Frobenius norm, or the Hilbert-Schmidt norm, defined as

‖M‖F =
√

∑
i, j

M2
i j, (3)

which is simply the Euclidean norm of a vector of length mn of the matrix elements.
The Frobenius norm can also be expressed in terms of the singular values. To see
this, first express the Frobenius norm in terms of the trace of MT M as

‖M‖2
F = ∑

i, j
M2

i j = Tr(MT M), (4)

where we recall that the trace of a square matrix A is defined as

Tr(A) = ∑
i

Aii. (5)

A particularly important property of the trace is that for any A of size m×n and B
of size n×m

Tr(AB) = Tr(BA). (6)

Note that this implies that, e.g., Tr(ABC) = Tr(CAB), but it does not imply that,
e.g., Tr(ABC) = Tr(ACB) which is not true in general. Now, plugging the SVD (1)
into (4) gives

‖M‖2
F = Tr(MT M) = Tr(V Σ

TUTUΣV T ) = Tr(ΣT
Σ) =

r

∑
k=1

σ
2
k , (7)

where we used the orthogonality of U and V and the trace property (6). We con-
clude that the Frobenius norm equals the Euclidean norm of the vector of singular
values.

A different way to define the size of a matrix is by viewing it as an operator and
measuring by how much it can dilate vectors. For example, the operator 2-norm is
defined as

‖M‖2 = sup
‖x‖=1

‖Mx‖. (8)
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Again, this operator norm can be succinctly expressed in terms of the singular
values. Indeed, for any x ∈ Rn

Mx =
r

∑
k=1

σkuk(vT
k x). (9)

Using the orthogonality of the left singular vectors uk we get

‖Mx‖2 =
r

∑
k=1

σ
2
k 〈vk,x〉2 ≤ σ

2
1

r

∑
k=1
〈vk,x〉2 ≤ σ

2
1

n

∑
k=1
〈vk,x〉2 = σ

2
1 ‖x‖2, (10)

where the last equality is due to the orthogonality of the right singular vectors vk.
Moreover, we get equality by choosing x = v1. We conclude that the 2-norm is
simply the largest singular value

‖M‖2 = σ1. (11)

A very important property of the SVD is that it provides the best low rank
approximation of a matrix, when the approximation error is measured in terms of
the Frobenius norm. Specifically, for any 0 ≤ s ≤ r consider the rank-s matrix
Ms = ∑

s
k=1 σkukvT

k . Then, among all matrices of rank s, Ms best approximates M in
terms of the Frobenius norm error. Moreover, the approximation error is given in
terms of the remaining r− s smallest singular values as

‖M−Ms‖F = inf
B∈Rm×n,rank(B)≤s

‖M−B‖F =

√
r

∑
k=s+1

σ2
k (12)

A similar result holds for the best low rank approximation in the 2-norm

‖M−Ms‖2 = inf
B∈Rm×n,rank(B)≤s

‖M−B‖2 = σs+1 (13)

In fact, Ms is the best low rank approximation for any univariate matrix norm satis-
fying ‖UMV‖= ‖M‖ for any U ∈O(m),V ∈O(n), that is, norms that are invariant
to multiplication by orthogonal matrices.

The low rank approximation property has a wide ranging implication on data
compression. The storage size of an m× n data matrix is mn. If that matrix is
of rank r, then storage size reduces from mn to (n+m+ 1)r (for storing r left
and right singular vectors and values). For r� min{n,m} this reduction can be
quite dramatic. For example, if r = 10 and n = m = 106, then storage reduces
from 1012 entries to just 2 · 107. But even if the matrix is not precisely of rank r,
but only approximately, in the sense that σr+1 � σ1, then we are guaranteed by
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the above approximation results to incur only a small approximation due to com-
pression using the top r singular vectors and values. In many cases, the singular
values of large data matrices decrease very quickly, motivating this type of low
rank approximation which oftentimes is the only way to handle massive data sets
that otherwise cannot be stored and/or manipulated efficiently. Remarkably, even
treating an image as a matrix os pixel intensity values and compressing it this way
yields good image compression and de-noising algorithms (as it keeps mitigates
the noise corresponding to singular values that are truncated).

Remark 1.2 The computational complexity of computing the SVD of a matrix of
size m× n with m ≥ n is O(mn2). This cubic scaling could be prohibitive for
massive data matrices, and in Chapter ?? we discuss numerical algorithms that
use randomization for efficient computation the low rank approximation of such
large matrices.

Spectral Decomposition

If M ∈ Rn×n is symmetric then it admits a spectral decomposition

M =V ΛV T ,

where V ∈ O(n) is a matrix whose columns vk are the eigenvectors of M and Λ is
a diagonal matrix whose diagonal elements λk are the eigenvalues of M. Similarly,
we can write

M =
n

∑
k=1

λkvkvT
k .

When all of the eigenvalues of M are non-negative we say that M is positive
semidefinite and write M � 0. In that case we can write

M =
(

V Λ
1/2
)(

V Λ
1/2
)T

.

A decomposition of M of the form M = UUT (such as the one above) is called a
Cholesky decomposition.

For symmetric matrices, the operator 2-norm is also known as the spectral
norm, given by

‖M‖= max
k
|λk(M)| .
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Quadratic Forms

In both this and following chapters, we will be interested in solving problems of
the type

max
V∈Rn×d

V TV=Id×d

Tr
(
V T MV

)
,

where M is a symmetric n×n matrix.
Note that this is equivalent to

max
v1,...,vd∈Rn

vT
i v j=δi j

d

∑
k=1

vT
k Mvk, (14)

where δ is the Kronecker delta (δi j = 1 for i = j and δi j = 0 otherwise).
When d = 1 this reduces to the more familiar

max
v∈Rn

‖v‖2=1

vT Mv. (15)

It is easy to see (for example, using the spectral decomposition of M) that (15)
is maximized by the leading eigenvector of M and

max
v∈Rn

‖v‖2=1

vT Mv = λmax(M).

Furthermore (14) is maximized by taking v1, . . . ,vd to be the k leading eigen-
vectors of M and its value is simply the sum of the k largest eigenvalues of M.
This follows, for example, from a Theorem of Fan (see page 3 of [22]). A fortu-
nate consequence is that the solution to (14) can be computed sequentially: we can
first solve for d = 1, computing v1, then update the solution for d = 2 by simply
computing v2.

Remark 1.3 All of the tools and results above have natural analogues when the
matrices have complex entries (and are Hermitian instead of symmetric).

2 Principal Component Analysis and Dimension Reduc-
tion

When faced with a high dimensional dataset, a natural approach is to attempt to
reduce its dimension, either by projecting it to a lower dimensional space or by
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finding a better representation for the data using a small number of meaningful fea-
tures. Beyond data compression and visualization, dimension reduction facilitates
downstream analysis such as clustering and regression that perform significantly
better in lower dimensions. We will explore a few different ways of reducing the
dimension, both linearly and non-linearly.

We will start with the classical Principal Component Analysis (PCA). PCA
continues to be one of the most effective and simplest tools for exploratory data
analysis. Remarkably, it dates back to a 1901 paper by Karl Pearson [26].

Suppose we have n data points x1, . . . ,xn in Rp, for some p, and we are in-
terested in (linearly) projecting the data to d < p dimensions. This is particularly
useful if, say, one wants to visualize the data in two or three dimensions (d = 2,3).
There are a couple of seemingly different criteria we can use to choose this projec-
tion:

1. Finding the d-dimensional affine subspace for which the projections of x1, . . . ,xn

on it best approximate the original points x1, . . . ,xn.

2. Finding the d-dimensional projection of x1, . . . ,xn that preserves as much
variance of the data as possible.

As we will see below, these two approaches are equivalent and they correspond
to Principal Component Analysis.

Before proceeding, we recall a couple of simple statistical quantities associated
with x1, . . . ,xn, that will reappear below.

Given x1, . . . ,xn we define its sample mean as

µn =
1
n

n

∑
k=1

xk, (16)

and its sample covariance as

Σn =
1

n−1

n

∑
k=1

(xk−µn)(xk−µn)
T . (17)

Remark 2.1 If x1, . . . ,xn are independently sampled from a distribution, µn and
Σn are unbiased estimators for, respectively, the mean and covariance of the distri-
bution.
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2.0.1 PCA as the best d-dimensional affine fit

We start with the first interpretation of PCA and then show that it is equivalent to
the second. We are trying to approximate each xk by

xk ≈ µ +
d

∑
i=1

(βk)i vi, (18)

where v1, . . . ,vd is an orthonormal basis for the d-dimensional subspace, µ ∈ Rp

represents the translation, and βk ∈ Rd corresponds to the coefficients of xk. With-
out loss of generality we take

n

∑
k=1

βk = 0, (19)

as any joint translation of βk can be absorbed into µ .
If we represent the subspace by V = [v1 · · ·vd ] ∈Rp×d then we can rewrite (20)

as
xk ≈ µ +V βk, (20)

where V TV = Id×d , because the vectors vi are orthonormal.
We will measure goodness of fit in terms of least squares and attempt to solve

min
µ, V, βk
V TV=I

n

∑
k=1
‖xk− (µ +V βk)‖2

2 (21)

We start by optimizing for µ . It is easy to see that the first order condition for
µ corresponds to

∇µ

n

∑
k=1
‖xk− (µ +V βk)‖2

2 = 0⇔
n

∑
k=1

(xk− (µ +V βk)) = 0.

Thus, the optimal value µ∗ of µ satisfies(
n

∑
k=1

xk

)
−nµ

∗−V

(
n

∑
k=1

βk

)
= 0.

Since we assumed in (19) that ∑
n
k=1 βk = 0, we have that the optimal µ is given by

µ
∗ =

1
n

n

∑
k=1

xk = µn,

the sample mean.
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We can then proceed to finding the solution for (21) by solving

min
V, βk

V TV=I

n

∑
k=1
‖xk−µn−V βk‖2

2 . (22)

Let us proceed by optimizing for βk. The problem almost fully decouples in
each k, the only constraint coupling them being (19). We will ignore this constraint,
solve the decoupled problems, and verify that it is automatically satisfied. Hence
we focus on, for each k,

min
βk

‖xk−µn−V βk‖2
2 = min

βk

∥∥∥∥∥xk−µn−
d

∑
i=1

(βk)i vi

∥∥∥∥∥
2

2

. (23)

Since v1, . . . ,vd are orthonormal, it is easy to see that the solution is given by(
β ∗k
)

i = vT
i (xk−µn) which can be succinctly written as βk = V T (xk−µn), which

satisfied (19). Thus, (22) is equivalent to

min
V TV=I

n

∑
k=1

∥∥(xk−µn)−VV T (xk−µn)
∥∥2

2 . (24)

Note that∥∥(xk−µn)−VV T (xk−µn)
∥∥2

2 = (xk−µn)
T (xk−µn)

−2(xk−µn)
T VV T (xk−µn)

+(xk−µn)
T V
(
V TV

)
V T (xk−µn)

= (xk−µn)
T (xk−µn)

−(xk−µn)
T VV T (xk−µn) .

Since (xk−µn)
T (xk−µn) does not depend on V , minimizing (24) is equivalent

to

max
V TV=I

n

∑
k=1

(xk−µn)
T VV T (xk−µn) . (25)

A few algebraic manipulations using properties of the trace yields:
n

∑
k=1

(xk−µn)
T VV T (xk−µn) =

n

∑
k=1

Tr
[
(xk−µn)

T VV T (xk−µn)
]

=
n

∑
k=1

Tr
[
V T (xk−µn)(xk−µn)

T V
]

= Tr

[
V T

n

∑
k=1

(xk−µn)(xk−µn)
T V

]
= (n−1)Tr

[
V T

ΣnV
]
.
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This means that the solution to (25) is given by

max
V TV=I

Tr
[
V T

ΣnV
]
. (26)

As we saw above (recall (14)) the solution is given by V = [v1, · · · ,vd ] where
v1, . . . ,vd correspond to the d leading eigenvectors of Σn.

2.0.2 PCA as the d-dimensional projection that preserves the most variance

We now show that the alternative interpretation of PCA, of finding the d-dimensional
projection of x1, . . . ,xn that preserves the most variance, also arrives to the opti-
mization problem (26). We aim to find an orthonormal basis v1, . . . ,vd (organized
as V = [v1, . . . ,vd ] with V TV = Id×d) of a d-dimensional space such that the pro-
jection of x1, . . . ,xn onto this subspace has the most variance. Equivalently we can
ask for the points 

 vT
1 xk
...

vT
d xk




n

k=1

,

to have as much variance as possible. Hence, we are interested in solving

max
V TV=I

n

∑
k=1

∥∥∥∥∥V T xk−
1
n

n

∑
r=1

V T xr

∥∥∥∥∥
2

. (27)

Note that

n

∑
k=1

∥∥∥∥∥V T xk−
1
n

n

∑
r=1

V T xr

∥∥∥∥∥
2

=
n

∑
k=1

∥∥V T (xk−µn)
∥∥2

= (n−1)Tr
(
V T

ΣnV
)
,

showing that (27) is equivalent to (26) and that the two interpretations of PCA are
indeed equivalent.

2.0.3 Finding the Principal Components

When given a dataset x1, . . . ,xn ∈ Rp, in order to compute the Principal Compo-
nents one needs to compute the leading eigenvectors of

Σn =
1

n−1

n

∑
k=1

(xk−µn)(xk−µn)
T .

A naive way of doing this is to construct Σn (which takes O(np2) work) and then
finding its spectral decomposition (which takes O(p3) work). This means that
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the computational complexity of this procedure is O
(
max

{
np2, p3

})
(see [14]

or [12]).
An alternative is to use the Singular Value Decomposition (1). Let X = [x1 · · ·xn]

recall that,

Σn =
1

n−1
(
X−µn1T )(X−µn1T )T

.

Let us take the SVD of X −µn1T =ULDUT
R with UL ∈ O(p), D diagonal, and

UT
R UR = I. Then,

Σn =
1

n−1
(
X−µn1T )(X−µn1T )T

=ULDUT
R URDUT

L =ULD2UT
L ,

meaning that UL correspond to the eigenvectors of Σn. Computing the SVD of X−
µn1T takes O(min{n2 p, p2n}) work but if one is interested in simply computing the
top d eigenvectors then this computational costs reduces to O(dnp). This can be
further improved with randomized algorithms. There are randomized algorithms
that compute an approximate solution in O

(
pn logd +(p+n)d2

)
time (This will

be discussed in Chapter ??. See also, for example, [13, 28, 23]).
Numerical stability is another important reason why computing the principal

components using the SVD is preferable. Since the eigenvalues of Σn are propor-
tional to the squares of the singular values of X − µn1T , problems arise when the
ratio of singular values exceeds 108, causing the ratio of the corresponding eigen-
values of Σn to be larger than 1016. In this case, the smaller eigenvalue would be
rounded to zero (due to machine precision), which is certainly not desirable.

2.0.4 Which d should we pick?

Given a dataset, if the objective is to visualize it then picking d = 2 or d = 3
might make the most sense. However, PCA is useful for many other purposes, for
example:

1. Denoising: often times the data belongs to a lower dimensional space but
is corrupted by high dimensional noise. When using PCA it is oftentimes
possible to reduce the noise while keeping the signal.

2. Downstream analysis: One may be interested in running an algorithm (clus-
tering, regression, etc.) that would be too computationally expensive or too
statistically insignificant to run in high dimensions. Dimension reduction
using PCA may help there.

In these applications (and many others) it is not clear how to pick d. A fairly
popular heuristic is to try to choose the cut-off at a component that has significantly
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more variance than the one immediately after. Since the total variance is Tr(Σn) =

∑
p
k=1 λk, the proportion of variance in the i’th component is nothing but λi

Tr(Σn)
. A

plot of the values of the ordered eigenvalues, also known as a scree plot, helps
identify a reasonable choice of d. Here is an example:

It is common to then try to identify an “elbow” on the scree plot to choose
the cut-off. In the next Section we will look into Random Matrix Theory to better
understand the behavior of the eigenvalues of Σn and gain insight into choosing
cut-off values.

3 PCA in high dimensions and Marčenko-Pastur law

Let us assume that the data points x1, . . . ,xn ∈ Rp are independent draws of a zero
mean Gaussian random variable g ∼ N (0,Σ) with some covariance matrix Σ ∈
Rp×p. In this case, when we use PCA we are hoping to find a low dimensional
structure in the distribution, which should correspond to the large eigenvalues of
Σ (and their corresponding eigenvectors). For that reason, and since PCA depends
on the spectral properties of Σn, we would like to understand whether the spectral
properties of the sample covariance matrix Σn (eigenvalues and eigenvectors) are
close to the ones of Σ, also known as the population covariance.

Since EΣn = Σ, if p is fixed and n→ ∞ the law of large numbers guarantees
that indeed Σn→ Σ. However, in many modern applications it is not uncommon to
have p in the order of n (or, sometimes, even larger). For example, if our dataset
is composed by images then n is the number of images and p the number of pixels
per image; it is conceivable that the number of pixels be on the order of the number
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of images in a set. Unfortunately, in that case, it is no longer clear that Σn → Σ.
Dealing with this type of difficulties is the goal of high dimensional statistics.

For simplicity we will try to understand the spectral properties of

Sn =
1
n

XXT ,

where x1, . . . ,xn are the columns of X . Since x ∼N (0,Σ) we know that µn → 0
(and, clearly, n

n−1 → 1), hence the spectral properties of Sn will be essentially the
same as Σn.1

Let us start by looking into a simple example, Σ = I. In that case, the distribu-
tion has no low dimensional structure, as the distribution is rotation invariant. The
following is a histogram (left) and a scree plot of the eigenvalues of a sample of Sn

(when Σ = I) for p = 500 and n = 1000. The red line is the eigenvalue distribution
predicted by the Marčenko-Pastur distribution (28), that we will discuss below.

As one can see in the image, there are many eigenvalues considerably larger
than 1, as well as many eigenvalues significantly smaller than 1. Notice that, if
given this profile of eigenvalues of Σn one could potentially be led to believe that
the data has low dimensional structure, when in truth the distribution it was drawn
from is isotropic.

Understanding the distribution of eigenvalues of random matrices is in the core
of Random Matrix Theory (there are many good books on Random Matrix The-
ory, e.g. [29] and [1]). This particular limiting distribution was first established in
1967 by Marčenko and Pastur [21] and is now referred to as the Marčenko-Pastur

1In this case, Sn is actually the maximum likelihood estimator for Σ; we will discuss maximum
likelihood estimation later in Chapter ??.
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distribution. They showed that, if p and n are both going to ∞ with their ratio fixed
p/n = γ ≤ 1, the sample distribution of the eigenvalues of Sn (like the histogram
above), in the limit, will be

dFγ(λ ) =
1

2π

√
(γ+−λ )(λ − γ−)

γλ
1[γ−,γ+](λ )dλ , (28)

with support [γ−,γ+], where γ− = (1− γ)2, γ+ = (1+ γ)2, and γ = p/n. This is
plotted as the red line in the figure above.

Remark 3.1 We will not provide the proof of the Marčenko-Pastur law here (you
can see, for example, [2] for several different proofs of it), but an approach to a
proof is using the so-called moment method. The central idea is to note that one
can compute moments of the eigenvalue distribution in two ways and note that (in
the limit) for any k,

1
p
ETr

[(
1
n

XXT
)k
]
=

1
p
ETr

(
Sk

n

)
= E

1
p

p

∑
i=1

λ
k
i (Sn) =

ˆ
γ+

γ−

λ
kdFγ(λ ),

and that the quantities 1
pETr

[(1
n XXT

)k
]

can be estimated (these estimates rely
essentially in combinatorics). The distribution dFγ(λ ) can then be computed from
its moments.

3.1 Spike Models and BBP phase transition

What if there actually is some (linear) low dimensional structure in the data? When
can we expect to capture it with PCA? A particularly simple, yet relevant, example
to analyze is when the covariance matrix Σ is an identity with a rank 1 perturbation,
which we refer to as a spike model Σ = I + βuuT , for u a unit norm vector and
β > 0.

One way to think about this instance is as each data point x consisting of a
signal part

√
βg0u where g0 is a one-dimensional standard Gaussian N (0,1) (i.e.

a normally distributed multiple of a fixed vector
√

βu) and a noise part g∼N (0, I)
(independent of g0). Then x = g+

√
βg0u is a Gaussian random variable

x∼N (0, I +βuuT ).

Whereas the signal part
√

βg0u resides on a central line in the direction of u, the
noise part is high dimensional and isotropic. We therefore refer to β as the signal-
to-noise ratio (SNR). Indeed, β is the ratio of the signal variance (in the u-direction)
to the noise variance (in each direction).
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A natural question is whether this rank-1 perturbation can be seen in Sn. Or
equivalently, can one detect the direction of the line u from corrupted measure-
ments in high dimension? Let us build some intuition with an example. The fol-
lowing is the histogram of the eigenvalues of a sample of Sn for p = 500, n = 1000,
u is the first element of the canonical basis u = e1, and β = 1.5:

The histogram suggests that there is an eigenvalue of Sn that “pops out” of the
support of the Marčenko-Pastur distribution (below we will estimate the location
of this eigenvalue, and that estimate corresponds to the red “x”). It is worth noting
that the largest eigenvalues of Σ is simply 1+β = 2.5 while the largest eigenvalue
of Sn appears considerably larger than that. Let us try now the same experiment for
β = 0.5:

It appears that, for β = 0.5, the histogram of the eigenvalues is indistinguishable
from when Σ = I. In particular, no eigenvalue is separated from the Marčenko-
Pastur distribution.

This motivates the following question:
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Question 3.2 For which values of γ and β do we expect to see an eigenvalue of
Sn popping out of the support of the Marčenko-Pastur distribution, and what is the
limit value that we expect it to take?

As we will see below, there is a critical value of β , denoted βc, below which we
do not expect to see a change in the distribution of eigenvalues and above which we
expect one of the eigenvalues to pop outside of the support. This phenomenon is
known as the BBP phase transition (after Baik, Ben Arous, and Péché [3]). There
are many very nice papers about this and similar phenomena, including [24, 15, 3,
25, 4, 16, 6, 7]. 2

In what follows we will find the critical value βc and estimate the location of
the largest eigenvalue of Sn for any β . While the argument we will use can be
made precise (and is borrowed from [24]) we will be ignoring a few details for the
sake of exposition. In other words, the argument below can be transformed into a
rigorous proof, but it is not one at the present form.

We want to understand the behavior of the leading eigenvalue of the sample
covariance matrix

Sn =
1
n

n

∑
i=1

xixT
i .

Since x∼N (0, I +βuuT ) we can write x = (I +βuuT )1/2z where z∼N (0, I) is
an isotropic Gaussian. Then,

Sn =
1
n

n

∑
i=1

(I +βuuT )1/2zizT
i (I +βuuT )1/2 = (I +βuuT )1/2Zn(I +βuuT )1/2,

where Zn = 1
n ∑

n
i=1 zizT

i is the sample covariance matrix of independent isotropic
Gaussians. The matrices Sn = (I+βuuT )1/2Zn(I+βuuT )1/2 and Zn(I+βuuT ) are
related by a similarity transformation, and therefore have exactly the same eigen-
values. Hence, it suffices to find the leading eigenvalue of the matrix Zn(I+βuuT ),
which is a rank-1 perturbation of Zn (indeed, Zn(I +βuuT ) = Zn +βZnuuT ). We
already know that the eigenvalues of Zn follow the Marčenko-Pastur distribution,
so we are left to understand the effect of a rank-1 perturbation on its eigenvalues.

To find the leading eigenvalue λ of Zn(I +βuuT ), let v be the corresponding
eigenvector, that is,

Zn(I +βuuT )v = λv.

2Notice that the Marčenko-Pastur theorem does not imply that all eigenvalues are actually in
the support of the Marčenko-Pastur distribution, it just rules out that a non-vanishing proportion are.
However, it is possible to show that indeed, in the limit, all eigenvalues will be in the support (see,
for example, [24]).
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Subtract Znv from both sides to get

βZnuuT v = (λ I−Zn)v.

Assuming λ is not an eigenvalue of Zn, we can multiply by (λ I−Zn)
−1 to get3

β (λ I−Zn)
−1ZnuuT v = v.

Our assumption also implies that uT v 6= 0, for otherwise v = 0. Multiplying by uT

gives
βuT (λ I−Zn)

−1Znu(uT v) = uT v.

Dividing by βuT v (which is not 0 as explained above) yields

uT (λ I−Zn)
−1Znu =

1
β
. (29)

Suppose w1, . . . ,wp are orthonormal eigenvectors of Zn (with corresponding eigen-
values λ1, . . . ,λp), and expand u in that basis:

u =
p

∑
i=1

αiwi.

Plugging this expansion in (29) gives
p

∑
i=1

λi

λ −λi
α

2
i =

1
β

(30)

For large p, each α2
i concentrates around its mean value E[α2

i ] =
1
p (again, this

statement can be made rigorous), and (30) becomes

lim
p→∞

1
p

p

∑
i=1

λi

λ −λi
=

1
β

(31)

Since the eigenvalues λ1,λp follow the Marčenko-Pastur distribution, the limit on
the left hand side can be replaced by the integral

ˆ
γ+

γ−

t
λ − t

dFγ(t) =
1
β

(32)

Using an integral table (or an integral software), we find that

1
β

=

ˆ
γ+

γ−

t
λ − t

dFγ(t) =
1
4γ

[
2λ − (γ−+ γ+)−2

√
(λ − γ−)(λ − γ+)

]
. (33)

3Intuitively, λ is larger than all the eigenvalues of Zn, because it corresponds to a perturbation
of Zn by a positive definite matrix βuuT ; yet, a formal justification is beyond the present discussion.
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For λ = γ+, that is, when the top eigenvalue touches the right edge of the
Marčenko-Pastur distribution, (33) becomes 1

4γ
(γ+− γ−). This is the critical point

that one gets the pop out of the top eigenvalue from the bulk of the Marčenko-
Pastur distribution. To calculate the critical value βc, we recall that γ− = (1−√γ)2

and γ+ = (1+
√

γ)2, hence

1
βc

=
1
4γ

(
(1+
√

γ)2− (1−
√

γ)2) . (34)

Therefore, the critical SNR is

βc =
√

γ =

√
p
n
. (35)

When β >
√

p
n one can observe the pop out of the top eigenvalue from the bulk.

Eq. (35) illustrates the interplay of the SNR β , the number of samples n, and
the dimension p. Low SNR, small sample size, and high dimensionality are all
obstacles for detecting linear structure in noisy high dimensional data.

More generally, inverting the relationship between β and λ given by (33)
(which simply amounts to solving a quadratic), we find that the largest eigenvalue
λ of the sample covariance matrix Sn has the limiting value

λ →


(β +1)

(
1+ γ

β

)
for β ≥√γ,

(1+
√

γ)2 for β <
√

γ.

(36)

In the finite sample case λ will be fluctuating around that value.
Notice that the critical SNR value, βc =

√
γ is buried deep inside the support of

the Marčenko-Pastur distribution, because
√

γ < γ+ = (1+
√

γ)2. In other words,
the SNR does not have to be greater than the operator norm of the noise matrix in
order for it to pop out. We see that the noise effectively pushes the eigenvalue to
the right (indeed, λ > β ).

The asymptotic squared correlation |〈u,v〉|2 between the top eigenvector v of
the sample covariance matrix and true signal vector u can be calculated in a similar
fashion. The limiting correlation value turns out to be

|〈v,u〉|2→


1− γ

β2

1+ γ

β2
for β ≥√γ

0 for β <
√

γ

(37)

Notice that the correlation value tends to 1 as β → ∞, but is strictly less than 1 for
any finite SNR.
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Wigner matrices

Another very important random matrix model is the Wigner matrix (and it will
make appearances in Chapters ?? and ??). Given an integer n, a standard Gaus-
sian Wigner matrix W ∈ Rn×n is a symmetric matrix with independent N (0,1)
off-diagonal entries (except for the fact that Wi j = Wji) and jointly independent
N (0,2) diagonal entries. In the limit, the eigenvalues of 1√

nW are distributed
according to the so-called semi-circular law

dSC(x) =
1

2π

√
4− x21[−2,2](x)dx,

and there is also a BBP like transition for this matrix ensemble [11]. More pre-
cisely, if v is a unit-norm vector in Rn and ξ ≥ 0 then the largest eigenvalue of

1√
nW +ξ vvT satisfies

• If ξ ≤ 1 then

λmax

(
1√
n

W +ξ vvT
)
→ 2,

• and if ξ > 1 then

λmax

(
1√
n

W +ξ vvT
)
→ ξ +

1
ξ
. (38)

The typical correlation, with v, of the leading eigenvector vmax of 1√
nW +ξ vvT

is also known:

• If ξ ≤ 1 then
|〈vmax,v〉|2→ 0,

• and if ξ > 1 then

|〈vmax,v〉|2→ 1− 1
ξ 2 .

Form a statistical viewpoint, a central question is to understand for difference
distributions of matrices, when is it that it is possible to detect and estimate a spike
in a random matrix [27]. When the underlying random matrix corresponds to a
random graph and the spike to a bias on distribution of the graph, corresponding to
structural properties of the graph the estimates above are able to predict important
phase transitions in community detection in networks, as we will see in Chapter ??.
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3.2 Rank and covariance estimation

The spike model and random matrix theory thus offers a principled way for de-
termining the number of principal components, or equivalently of the rank of the
hidden linear structure: simply count the number of eigenvalues to the right of the
Marčenko-Pastur distribution. In practice, this approach for rank estimation is of-
ten too simplistic for several reasons. First, for actual datasets, n and p are finite,
and one needs to take into account non-asymptotic corrections and finite sample
fluctuations [17, 18]. Second, the noise may be heteroskedastic (that is, noise vari-
ance is different in different directions). Moreover, the noise statistics could also
be unknown and it can be non-Gaussian [20]. In some situations it might be pos-
sible to estimate the noise statistics directly from the data and to homogenize the
noise (a procedure sometimes known as “whitening”) [19]. These situations call
for careful analysis, and many open problems remain in the field.

Another popular method for rank estimation is using permutation methods. In
permutation methods, each column of the data matrix is randomly permutated, so
that the low-rank linear structure in the data is destroyed through scrambling, while
only the noise is preserved. The process can be repeated multiple times, and the
statistics of the singular values of the scrambled data matrices are then used to de-
termine the rank. In particular, only singular values of the original (unscrambled)
data matrix that are larger than the largest singular value of the scrambled matrices
(taking fluctuations into account of course) are considered as corresponding to sig-
nal and are counted towards the rank. The mathematical analysis of permutation
methods is another active field of research [8, 9].

In some applications, the objective is to estimate the low rank covariance matrix
of the clean signal Σ from the noisy measurements. We saw that in the spike model,
the eigenvalues of the sample covariance matrix are inflated due to noise. It is
therefore required to shrink the computed eigenvalues of Sn in order to obtain a
better estimate of the eigenvalues of Σ. That is, if

Sn =
p

∑
i=1

λivivT
i

is the spectral decomposition of Sn, then we seek an estimator of Σ, denoted Σ̂ of
the form

Σ̂ =
p

∑
i=1

η(λi)vivT
i .

The scalar nonlinearity η : R+ → R+ is known as the shrinkage function. An
obvious shrinkage procedure is to estimate β = η(λ ) from the computed λ by in-
verting (36) (and setting β = 0 for λ < γ+). It turns out that this particular shrinker
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is optimal in terms of the operator norm loss. However, for other loss functions
(such as the Frobenius norm loss), the optimal shrinkage function takes a differ-
ent form [10]. The reason why the shrinker depends on the loss function is that
the eigenvectors of Sn are not perfectly correlated with those of Σ but rather make
some non-trivial angle, as in (37). In other words, the eigenvectors are noisy, and
it may require more aggressive shrinkage to account for that error in the eigenvec-
tor. It can be shown that the eigenvector v of the sample covariance is uniformly
distributed in a cone around u whose opening angle is given by (37). While we can
improve the estimation of the eigenvalue via shrinkage, it is however unclear how
to improve the estimation of the eigenvector (without any a priori knowledge about
it). Finally, we remark that eigenvalue shrinkage also plays an important role in
denoising, as will be discussed in Chapter ??.
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