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Abstract. Notes for lecture given by the author on November 7, 2014 as part of the special course:
“Randomness, Matrices and High Dimensional Problems”, at IMPA, Rio de Janeiro, Brazil.

The results presented in these notes are from [1].

1. The problem we will focus on

Let n be an even positive integer. Given two sets of n2 nodes consider the following random graph G: For
each pair (i, j) of nodes, (i, j) is an edge of G with probability p if i and j are in the same set and q if they
are in different sets. Each edge is drawn independently and p > q.

(Think nodes as fans of Fluminense and Flamengo and edges representing friendships, in this model, fans
of the same club are more likely to be friends)

For which values of p and q can we recover the partition, with an efficient algorithm, from only looking
at the graph G (with high probability)?

2. The interesting regime

If p � logn
n then it is easy to see that each cluster will not be connected (with high probability) and so

recovery is not possible. In fact, the interesting regime is when

p =
α log(n)

n
and q =

β log(n)

n
, (2.1)

for constants α > β.
Let A be the adjacency matrix of G, meaning that

Aij =

{
1 if (i, j) ∈ E(G)
0 otherwise. (2.2)

Let x ∈ Rn with xi = ±1 represent a partition (note there is an ambiguity in the sense that x and −x
represent the same partition). Then, if we did not worry about efficiency then our guess (which corresponds
to the Maximum Likelihood Estimator) would be the solution of

max
∑
i,j

Aijxixj

s.t. xi = ±1,∀i (2.3)∑
j

xj = 0,

as this maximizes the number of edges within the clusters minus the number of edges across the clusters
(the clusters being each set of the partition given by x).
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In fact, one can show (but will not be the focus of this lecture, see [1] for a proof) that if

α+ β

2
−
√
αβ > 1, (2.4)

then, with high probability, (2.3) recovers the true partition. Moreover, if

α+ β

2
−
√
αβ < 1,

no algorithm (efficient or not) cannot, with high probability, recover the true partition.
In this lecture we are interested in understanding when the true partition can be recovered, using an

efficient algorithm.

3. The algorithm

Note that if we remove the constraint that
∑
j xj = 0 in (2.3) then the optimal solution becomes x ≡ 1.

Let us define B = 2A− (11T − I), meaning that

Bij =

 0 if i = j
1 if (i, j) ∈ E(G)
−1 otherwise.

(3.1)

It is clear that the problem

max
∑
i,j

Bijxixj

s.t. xi = ±1,∀i (3.2)∑
j

xj = 0,

has the same solution has (2.3). However, when the constraint is dropped,

max
∑
i,j

Bijxixj

s.t. xi = ±1,∀i, (3.3)

x ≡ 1 is no longer an optimal solution. Intuitively, there is enough “−1” contributions to discourage
unbalanced partitions. In fact, (3.3) is the problem we’ll set ourselves to solve.

Unfortunately (3.3) is in general NP-hard (one can encode, for example, Max-Cut by picking the right B).
We will relax it to an easier problem by a technique known as lifting. If we write X = xxT then we can
formulate the objective value of (3.3) as∑

i,j

Bijxixj = xTBx = Tr(xTBx) = Tr(BxxT ) = Tr(BX),

also, the condition xi = ±1 can be translated in Xii = x2i = 1. This means that (3.3) is equivalent to

max Tr(BX)

s.t. Xii = 1,∀i (3.4)

X = xxT for some x ∈ Rn.
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The fact that X = xxT for some x ∈ Rn is equivalent to rank(X) = 1 and X � 0 (X is Positive
semidefinite, meaning that it is symmetric and all it’s eigenvalues are non-negative). This means that (3.3)
is equivalent to

max Tr(BX)

s.t. Xii = 1,∀i (3.5)
X � 0

rank(X) = 1.

(But wait, if it is equivalent then why isn’t this problem just as hard? ) — It is just as hard. The idea is that
now we relax the problem and remove one constraint, the rank constraint

max Tr(BX)

s.t. Xii = 1,∀i (3.6)
X � 0.

Now, (3.6) is an optimization problem with a linear objective and convex feasibility set, moreover the
feasibility set is a nice convex set, this type of problems are known as Semidefinite Programs and can be
solved (up to arbitrary precision) in polynomial time [4].

(But wait, if we removed a constraint then why would the solution of this problem have that particular
form? ) — Indeed, it won’t in general. What we will show is that, for some values of α and β, with
high probability, the solution to (3.6) not only satisfies the rank constraint but it coincides with X = ggT

where g corresponds to the true partition. After computing such X, recovering g from it is trivial (leading
eigenvector).

Remark 3.1. There are other types of results that, instead of assuming stochastic input, assume worst-case
input and analyze the performance of rounding procedures that graph solutions to the relaxation and “round
them” to solution of the original problems. I recommend taking a look at a very nice relaxation for Max-Cut
in [2]

4. The analysis

WLOG we can assume that g = (1, ..., 1,−1, ...,−1)T , meaning that the true partition corresponds to the
first n

2 nodes on one side and the other n
2 on the other. Nothing changes but makes it easier to think about.

4.1. Some preliminary definitions. Recall that the degree matrix D of a graph G is a diagonal matrix
where each diagonal coefficient Dii corresponds to the number of neighbours of vertex i and that λ2(M) is
the second smallest eigenvalue of a symmetric matrix M .

Definition 4.1. Let G+ (resp. G−) be the subgraph of G that includes the edges that link two nodes in
the same community (resp. in different communities) and A the adjacency matrix of G. We denote by D+

G

(resp. D−
G ) the degree matrix of G+ (resp. G−) and define the Stochastic Block Model Laplacian to be

LSBM = D+
G −D

−
G −A

4.2. Convex Duality. A standard technique to show that a candidate solution is the optimal one for a
convex problem is to use convex duality.

The dual problem of (3.6) is

min Tr(Z)

s.t. Z is diagonal (4.1)
Z −B � 0.
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The objective value of the dual is always larger or equal to the primal. In fact, let X,Z be respectively a
feasible point of (3.6) and (4.1), then:

Since Z −B � 0 and X � 0 then Tr[(Z −B)X] ≥ 0 which means that

Tr(Z)− Tr(BX) = Tr[(Z −B)X] ≥ 0,

as we wanted. Recall that we want to show that ggT the optimal solution of (3.6). Then, if we find Z
diagonal, such that Z −B � 0 and

Tr[(Z −B)ggT ] = 0, (this condition is known as complementary slackness)

then X = ggT must be an optimal solution of (3.6). To ensure that ggT is the unique solution we just have
to ensure that the nullspace of Z−B only has dimension 1 (which corresponds to multiples of g). Essentially,
if this is the case, then for any other possible solution X one could not satisfy complementary slackness.

This means that if we can find Z such that:

(1) Z is diagonal
(2) Tr[(Z −B)ggT ] = 0
(3) Z −B � 0
(4) λ2(Z −B) > 0,

then ggT is the unique optima of (3.6) and so recovery of the true partition is possible (with an efficient
algorithm).
Z is known as the dual certificate, or dual witness.

4.3. Building the dual certificate. The idea to build Z is to construct it to satisfy properties (1) and (2)
and try to show that it satisfies (3) and (4) using concentration.

If indeed Z −B � 0 then (2) becomes equivalent to (Z −B)g = 0. This means that we need to construct
Z such that Zii = 1

gi
B[i, :]g. Since B = 2A− (11T − I) we have

Zii =
1

gi
(2A− (11T − I))[i, :]g = 2

1

gi
Ag + 1,

meaning that

Z = 2(D+
G −D

−
G ) + I.

This means that

Z −B = 2(D+
G −D

−
G )− I −

[
2A− (11T − I)

]
= 2LSBM + 11T

It trivially follows (by construction) that

(Z −B)g = 0.

This means that

Lemma 4.2. If

λ2(2LSBM + 11T ) > 0, (4.2)

then the relaxation recovers the true partition.

Note that 2LSBM + 11T is a random matrix and so, now, this is “only” an exercise in random matrix
theory.
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4.4. Matrix Concentration. And easy calculation gives

E
[
2LSBM + 11T

]
= 2ELSBM + 11T = 2ED+

G − 2ED−
G − 2EA+ 11T ,

and ED+
G = n

2
α log(n)

n , ED−
G = n

2
β log(n)

n , and EA is a matrix such with 4 n
2 ×

n
2 blocks where the diagonal

blocks have α log(n)
n and the non-diagonal have β log(n)

n . We can write this asEA = 1
2

(
α log(n)

n + β log(n)
n

)
11T+

1
2

(
α log(n)

n − β log(n)
n

)
ggT

This means that

E
[
2LSBM + 11T

]
= ((α− β) log n) I +

(
1− (α+ β)

log n

n

)
11T − (α− β) log n

n
ggT .

Since 2LSBMg = 0 we can ignore what happens in the span of g and it is not hard to see that

λ2

[
((α− β) log n) I +

(
1− (α+ β)

log n

n

)
11T − (α− β) log n

n
ggT

]
= (α− β) log n.

This means that it is enough to show that

‖LSBM −E [LSBM ]‖ < α− β
2

log n, (4.3)

which is a large deviations inequality. (‖ · ‖ denotes operator norm)
I will not describe the details here but the idea is to write LSBM − E [LSBM ] as a sum of independent

random matrices and use Matrix Bernestein in [3].
In fact, using that strategy one can show that, with high probability, 4.3 holds as long as

(α− β)2 > 8(α+ β) + 8/3(α− β). (4.4)

4.5. Comparison with phase transition. To compare (4.4) with (2.4) we note that the latter can be
rewritten as

(α− β)2 > 4(α+ β)− 4 and α+ β > 2

and so the relaxation achieves exact recovery almost at the threshold, essentially only suboptimal by a factor
of 2.
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