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Abstract. To a compact symplectic orbifold with a hamiltonian
action of a group G (and with other compatible data), we can
associate a quantization space V which is a representation of G.
This paper reports on the decomposition of V into irreducible rep-
resentations of G in terms of data at the fixed points, and on the
semiclassical limit of this decomposition, for the case where G is a
compact connected semisimple Lie group.

1. Introduction

Let (M,ω) be a compact symplectic orbifold such that [ω] is the
Chern class of a complex line bundle L over M . Choose an almost
complex structure, J , on M compatible with ω (i.e. such that (u, v) 7→
ω(u, Jv) is a positive metric), and choose a hermitian connection on L
with curvature given by ω. To such data we can associate a first order
elliptic differential operator, called the Dolbeault-Dirac operator [8, 6]:

∂/ : C∞(M ;∧0,evenT ∗M ⊗ L) −→ C∞(M ;∧0,oddT ∗M ⊗ L) .

Inspired by Bott [2], we define quantization of (M,ω), to be the (K-
theoretic) index of ∂/, i.e.

Q(M,ω) := kernel ∂/− cokernel ∂/ .

This index depends only on (M,ω) and not on the auxiliary data.

If a group G acts on M , the action lifts to L and preserves all data
(in particular, the action must be hamiltonian [12]), then the quantiza-
tion space becomes a linear representation of G. We will first address
the following question: What is the decomposition of Q(M,ω) into
irreducible representations of G?

As explained in this paper, not only does the answer depend exclu-
sively on data at the fixed points, but also this answer can be given
by a very explicit formula useful for computations. The prototype for
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2 QUANTIZATION OF SYMPLECTIC ORBIFOLDS

this formula is a formula of Kostant [15] for multiplicities of group rep-
resentations. The prototype for the proof is an observation of Cartier
that we will now review.

From now on, let G be a compact connected semisimple Lie group
with a maximal torus T . Let ρ : G → GL(V ) be an irreducible repre-
sentation with maximal weight λ. As a T -representation, V breaks up
into weight spaces

V =
⊕

weightsµ

Vµ ,

where mult(µ) := dimVµ. Kostant [15] gave a formula for the multi-
plicity of a weight µ in ρ:

mult(µ) =
∑
ω∈W

(−1)ωP(ω(δ + λ)− (δ + µ)) ,(1.1)

where W is the Weyl group, δ = 1
2

∑
α∈∆+ α, ∆+ is a chosen set of pos-

itive roots, and P(ν) is the number of ways that ν may be partitioned
into a sum of positive roots:

P(ν) := {(nα ∈ Z+
0 ) | ν =

∑
α∈∆+

nαα} .

Cartier [7] showed that the Kostant formula is equivalent to the Weyl
character formula, which states that

χ(exp ξ) =

∑
ω∈W (−1)ωe(δ+λ)(ωξ)

eδ(ξ)
∏

α∈∆+(1− e−α(ξ))
,(1.2)

χ being the character of ρ and ξ ∈ Lie(T ). Cartier’s simple argument
starts by expanding the Weyl denominator in a power series, to obtain

1∏
α∈∆+(1− e−α)

=
∑

weights ν

P(ν)e−ν ,

where P is the Kostant partition function. Now the Weyl formula can
be written∑

µ

mult(µ)eµ(ξ) =
∑
ω∈W

∑
ν

(−1)ωP(ν)e(δ+λ)(ωξ)e−(δ+ν)(ξ) .

Formula (1.1) follows from equating the coefficients of eµ(ξ).

The upshot of this argument is that formulas (1.1) and (1.2) are
dual of each other by a Fourier expansion. This is less trivial than it
sounds: There are several ways of expanding the Weyl denominator
into a Fourier series, and for some of these expansions the coefficient
of eν will be given by a divergent infinite sum.
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In §4 we obtain a formula (Theorem 1) resembling Kostant’s for the
multiplicity of a weight µ in Q(M,ω) for an action of a torus with the
fixed points not necessarily isolated. We start from the equivariant
index formula [1] modified for orbifolds [19, 8, 17], and apply a suitable
Fourier expansion. Our proof uses the language of associated orbifolds
explained in §A.3; Appendix A also reviews other relevant orbifold
definitions. To ensure that each coefficient in the Fourier series is given
by a convergent series, in §3 we define a polarization [10]. §2 describes
how to handle an action of a compact connected semisimple Lie group
by a combination of tricks.

In §5 we compute the semiclassical limit of the multiplicity for-
mula (4.1): We replace the line bundle, L, by its nth tensor power, to

get a T -invariant elliptic first order differential operator ∂/(n). Setting

mult(n)(µ) to be the multiplicity with which µ occurs as a weight of
the representation of T on

kernel ∂/(n) − cokernel ∂/(n) ,

we show that, as the integer n tends to infinity, the function of µ given
by

n−dmult(n)(nµ) ,

where d = 1
2

dimM−dimT , tends to the Radon-Nikodym derivative for
the Duistermaat-Heckman measure relative to the Lebesgue measure on
the dual of the Lie algebra of T : Theorem 2 of §5 and Theorem 3 of §6.
The proof of Theorem 2 relies on complex analysis and on elementary
results of invariant theory for finite groups; the proof of Theorem 3
relies on Fourier calculus and is analogous to the manifold proof in [6].

The case of torus actions on symplectic manifolds with only isolated
fixed points was solved by the second author with Lerman and Stern-
berg [10]; their multiplicity formula was derived from the Atiyah-Bott-
Lefschetz formula by an argument along the lines of Cartier’s. Later
he and Prato [11] tackled the case of nonabelian actions (the argument
in this paper is different from theirs and is an expansion of the remarks
in [6]). The present paper is a continuation of [6] which contained the
corresponding results for the case of manifolds. The extension to orb-
ifolds is important since, not only are the generic reduced spaces of
symplectic manifolds orbifolds, but also the generic reduced spaces of
symplectic orbifolds are still orbifolds. Number-theoretic applications
of multiplicity formulas for orbifolds can be found in [5].
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2. Quantization of Nonabelian Group Actions

Let ρ : G → GL(V ) be a representation of a compact connected
semisimple Lie group G with a maximal torus T . The dimension of the
space, V G, of G-invariants is given by

dimV G =

∫
G

χ(g)dg

=
1

|W |

∫
T

∏
roots α

(1− eα(ξ))︸ ︷︷ ︸∑
µ cµe

µ(ξ)

χ(t) dt where exp ξ = t

=
1

|W |
∑
µ

cµ dimVµ .

The middle equality follows from Weyl’s integral formula (see, for in-
stance, [3]), the others follow from orthogonality relations for charac-
ters, and the coefficients cµ are constants. Hence, the dimension of the
space of G-invariants is a linear combination of the multiplicities for the
maximal torus with coefficients independent of the G-representation.1

Now let V = Q(M,ω) be the quantization space of a compact sym-
plectic orbifold as described in §1, and let O be a coadjoint orbit
of G equipped with its canonical Lie-Poisson symplectic form, ωO.
The coadjoint action of G is hamiltonian with moment map given
by inclusion. By the Borel-Weil theorem, any irreducible complex G-
representation, ρ : G → GL(V ρ) is the quantization space of a unique
(integral) coadjoint orbit O,

Q(O, ωO) ' V ρ .

The “shifting trick” [12] is the observation that

dim
(
Q(M ×O, ω − ωO)

)G
= multiplicity of ρ in Q(M,ω) .

We conclude that multiplicities for a nonabelian group action are linear
combinations of multiplicities for the action of a maximal torus. From
now on we restrict attention to actions of tori.

1We thank Michèle Vergne for showing us this trick.
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3. Polarization

Let (M,ω) be a compact symplectic orbifold such that [ω] is the
Chern class of a complex line bundle L over M . Suppose that a torus
T acts on (M,ω), and that this action is effective, lifts to L and has a
moment map Φ. Choose an almost complex structure, J , on M com-
patible with ω and choose a hermitian connection on L with curvature
given by ω, both invariant by T .

The normal bundle, NF , to a connected component, F , of the fixed
point set splits into a direct sum of vector subbundles

EF,1 ⊕ . . .⊕ EF,m ,(3.1)

m depending on F , such that the isotropy representation of T on EF,j
has a fixed rational weight, αF,j ∈ Lie(T )∗, where αF,j 6= αF,k for
j 6= k. Since T is compact, each F is non-degenerate, in the sense that
all αF,j 6= 0. Hence, we can polarize these weights as in [10] by choosing
an element, v, of Lie(T ) such that αF,j(v) 6= 0 for all i, j, and setting

α+
F,j = εF,jαF,j where εF,j = sign αF,j(v) .

The polarized weights all lie in the half-space ξ(v) > 0.

Let nF,j be half of the real rank of the vector bundle EF,j, and let

α#
F =

∑
εF,j=−1

nF,jαF,j and nF =
∑

εF,j=−1

nF,j .

For every m-tuple of non-negative integers, k = (k1, . . . , km), let EF (k)
be the tensor product(

m⊗
j=1

Skj(E+
F,j)

)∗
⊗

 ⊗
εF,j=−1

∧nF,j(E+
F,j)

∗

where Skj(E+
F,j) is the kj-th symmetric power of E+

F,j and

E+
F,j =

{
EF,j if εF,j = 1
E∗F,j if εF,j = −1 .

4. Multiplicity Formula for Orbifolds

Given a weight µ of T , let ∆F (µ) be the convex polytope in Rm

consisting of all m-tuples, (s1, . . . , sm), si ≥ 0, for which

ΦF −
∑
j

sjα
+
F,j = µ
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where ΦF is the value of the moment map Φ on the connected com-
ponent F of the fixed point set. In this expression α+

F,j and ΦF are

rational, whereas µ is integral. The fact that the α+
F,j’s are polarized

(see §4) implies that ∆F (µ) is compact.

Theorem 1. The multiplicity with which µ occurs as a weight of the
representation of T on Q(M,ω) is equal to the sum

mult(µ) =
∑
F

(−1)nFNF (µ)

where

NF (µ) =
∑

k∈∆F (µ−α#
F )

KRR(F,EF (k)⊗ LF )(4.1)

KRR(F,EF (k)⊗L) being the Kawasaki-Riemann-Roch number [14] of
the orbifold vector bundle EF (k)⊗LF over F , with respect to the almost
complex structure induced on F by J .

Proof. The equivariant index theorem for orbifolds [19, 8] states
that, for a generic ξ in Lie(T ) (generic in the sense that exp ξ generates
a dense subgroup of T ), the trace of exp ξ on the (virtual) vector space
Q(M,ω) is equal to the sum over the fixed point components, F , of
“local traces”, χ

F
(ξ), whose definition we will now undertake.

Let F̂ be the orbifold associated to F , as described in §A.3; F̂ will
in general have various connected components of possibly different di-
mensions, depending on the canonical stratification of F (see §A.2).
Let LF̂ , EF̂ ,j and E+

F̂ ,j
be the pull-backs of L|F , EF,j and E+

F,j by the

natural map µ : F̂ → F ; according to (3.1), the pull-back of the normal

bundle NF splits into EF̂ ,1 ⊕ . . . ⊕ EF̂ ,m. These bundles over F̂ have
canonical automorphisms as explained in §A.4, which we denote

AF := A(LF̂ ) , AF,j := A(EF̂ ,j) , A+
F,j := A(E+

F̂ ,j
) .

Finally, let −2πiΩF,j be the curvature form associated with a hermitian
connection on EF,j, and we define Ω+

F,j, ΩF̂ ,j and Ω+

F̂ ,j
similarly for the

bundles E+
F,j, EF̂ ,j and E+

F̂ ,j
, respectively.

The local traces are then

χ
F

(exp ξ) =

eΦ
F

(ξ)

∫
F̂

1

mF̂

·
AF exp(ωF̂ )Todd(F̂ )

DF̂

∏
j det

(
I − A−1

F,j exp(−αF,j(ξ)I − ΩF̂ ,j)
) ,(4.2)
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where ωF̂ is the pull-back of the symplectic form ω to F̂ , mF̂ is the

order function of F̂ (see §A.2) and DF̂ is the associated characteristic
form defined in §A.4 – the innocent looking DF̂ is actually an elaborate
characteristic form involving the normal bundles of the orbifold strata
inside F .

If εF,j = −1, we rewrite the jth term in the denominator in polarized
form as

(−1)nF,j detA−1
F,j e

−nF,jαF,j(ξ) det exp
(
−ΩF̂ ,j

)
·

det
(
I − AF,j exp(αF,j(ξ)I + ΩF̂ ,j)

)
.

(4.3)

Let E#

F̂
be the line bundle ⊗

εF,j=−1

∧nF,j(E+

F̂ ,j
)

∗

having curvature form −2πiΩ#

F̂
and canonical automorphism A#

F =

(
∏

εF,j=−1 detA+
F,j)
−1. Since exp(traceB) = det(expB) for an endo-

morphism B, and the curvature form satisfies trace Ω(E) = Ω(∧nE),
where n is the rank of the vector bundle E, if we substitute (4.3)
into (4.2), we can rewrite (4.2) in polarized form:

χ
F

(exp ξ) =

(−1)nF e(Φ
F
−α#

F
)(ξ)

∫
F̂

1

mF̂

·
AFA

#
F exp

(
ωF̂ + Ω#

F̂

)
Todd(F̂ )

DF̂

∏
j det

(
I − (A+

F,j)
−1 exp(−α+

F,j(ξ)I − Ω+

F̂ ,j
)
) .

(4.4)

By Lemma (B.1) of [6], we can expand (4.4) into an infinite trigono-
metric series

χ
F

(exp ξ) = (−1)nF
∑
k

ck e
(Φ
F

+α#
F
−k1α+

F,1
−...−kmα+

F,m
)(ξ)

(4.5)

summed over all non-negative integer m-tuples, k, where ck equals

∫
F̂

1

mF̂

·

(∏
j traceSkF,j((A+

F,j)
−1 exp(−Ω+

F̂ ,j
))
)
AFA

#
F exp(ωF̂ + Ω#

F̂
)Todd(F̂ )

DF̂

.

(4.6)
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By definition of associated Chern character (see §A.4), formula (4.6) is
simply ∫

F̂

1

mF̂

·
Ĉh(EF̂ (k)⊗ LF̂ )Todd(F̂ )

DF̂

which is the Riemann-Roch number of the orbifold line bundle EF (k)⊗
LF over F as proved by Kawasaki [14].

On the other hand, for ξ ∈ Lie(T ) the trace of exp ξ on the (virtual)
vector space Q(M,ω) is equal to∑

weightsµ

mult(µ)eµ(ξ) ,(4.7)

and by comparing (4.5) with (4.7) one obtains the identity (4.1). �

Remark. In the manifold case, we recover the result in [6] where the
Kawasaki-Riemann-Roch number is the usual Riemann-Roch number:

RR(F,EF (k)⊗ LF ) =

∫
F

Ch(EF (k)⊗ LF )Todd(F ) .

5. Semiclassical Limit

Let n be a positive integer. Replacing the line bundle, L, by its
nth tensor power, one gets, as in §1, a T -invariant elliptic first order

differential operator ∂/(n). Denote by mult(n)(µ) the multiplicity with

which µ occurs as a weight of the representation of T on kernel ∂/(n) −
cokernel ∂/(n), and let d = 1

2
dimM − dimT .

Theorem 2. As n tends to infinity, the quantity n−dmult(n)(nµ) tends
to ∑

F⊆MT

(−1)σF
∫

∆F (µ)

ResF (s)ds ,(5.1)

where ResF (s) is the sum of residues of

eΣsjzj
1

|ΓF |

∫
F

expωF
cF,1(z1) . . . cF,m(zm)

,(5.2)

ΓF being the structure group of F and cF,j(z) the Chern polynomial of
E+
F,j.
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Proof. By Theorem 1, mult(n)(nµ) is equal to the sum∑
F

(−1)nFN (n)
F (nµ)

where

N (n)
F (nµ) =

∑∫
F̂

1

mF̂

·
Ĉh(EF̂ (k)⊗ Ln

F̂
)Todd(F̂ )

DF̂

(5.3)

summed over all non-negative integral solutions, k, of the equation

nΦF − k1α
+
F,1 − . . .− kmα

+
F,m + α#

F = nµ .

(If we replace L by Ln, we must replace ω by nω, Φ by nΦ and AF by
AnF .) We set dimF = 2p, and dim ∆F (µ) = q. By (5.3), we have

n−dN (n)(nµ) = n−(d−p)
∑
k

∫
F̂

n−p
1

mF̂

·
Ĉh(EF̂ (k)⊗ Ln

F̂
)Todd(F̂ )

DF̂

.

(5.4)

Lemma 5.5. Up to an error of order O
(

1
n

)
, the sum in (5.4) equals

∑
k

1

|ΓF |
∑
g∈ΓF

ρnF,0(g)ρ#
F (g)

∫
F

expωF
∏
j

traceSkj
(
ρ+
F,j(g) exp

(
−Ω+

F,j

n

))
,

(5.6)

where ρF,0, ρ#
F , ρ+

F,j are the representations of the structure group ΓF
of F on the orbifold charts of L, E# and E+

j over F .

Proof. Let F̂l be a connected component of F̂ and let 2pl = dim F̂l.
With ω and AF replaced by nω and AnF in (4.6), the integrand in this
expression can be expanded into a sum of terms of the form

± 1

mF̂l

·
AnFA

#
FA (nωF̂ )r ∧ Ωi1 ∧ . . . ∧ Ωis ∧ (Ω#

F̂
)ν ∧ T µ

DF̂l

,

where A is a factor involving the A+
j ’s, Ωia is a coefficient of the cur-

vature form Ω+

F̂ ,ia
, and T µ is the component of degree 2µ of Todd(F̂l).

However, this term can only contribute to the integral if r+s+ν+µ =
pl, in which case it can be rewritten as

± 1

mF̂l

·
AnFA

#
FA npl ωr

F̂
∧ (Ωi1/n) ∧ . . . ∧ (Ωis/n) ∧ (Ω#

F̂
/n)ν ∧ T µ/nµ

DF̂l

.

When multiplied by n−p (as in (5.4)), the terms in this sum for which ν
or µ is positive or p > pl can be discarded since they contribute errors
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of order O( 1
n
). We are left with the components of F̂ whose dimension

is 2p. Such components are indexed by the conjugacy classes of ΓF (see
§A.3). Hence the sum in (5.4) is equal to

∑
k

∑
γ∈Conj(ΓF )

1

mF̂γ

∫
F̂γ

AnFA
#
F expωFγ

∏
j traceSkj

((
A+
F,j

)−1
exp

(
−

Ω+

F̂ ,j

n

))
DF̂γ

.

On the component F̂γ, corresponding to γ ∈ Conj(ΓF ), we have

AF = ρF,0(γ) , A# = ρ#
F (γ) , and A+

j is conjugate to ρ+
j (γ)

(we use the same symbol for a class function on a group and its induced
function on conjugacy classes of that group). We also have DF̂γ

= 1

since NF̂γ
is trivial, mF̂γ

is the common order of the centralizers of

elements in the conjugacy class γ, and any class function, χ, satisfies∑
γ∈Conj(ΓF )

χ(γ)

mF̂γ

=
1

|ΓF |
∑
g∈ΓF

χ(g) .

Finally, as the natural immersions µ : F̂γ → F are bijective, the integral

over F̂γ coincides with the integral over F . �

Since the action of T is effective, we have q = m− dimT , and hence
d− p = q+

∑m
j=1(nj − 1). By Lemma 5.5 and Lemma B.1, (5.4) is, up

to an error of order O( 1
n
), equal to

n−q
∑
k

WF,kRes

[
e
k1
n
z1+...+ km

n
zm

∫
F

expωF∏
j det(zjI + Ω+

F,j)

]
(5.7)

where the operator Res takes the sum of residues and the numberWF,k

equals

1

|ΓF |
∑
g∈ΣF

ρnF,0(g)ρ#
F (g)

∏
j

(ρ+
F,j(g))−kj ,

ΣF being the abelian subgroup of ΓF consisting of the elements, g, for
which each ρ+

F,j(g) is a scalar multiple of the identity. By the orthogo-
nality relations for characters we know that∑

g∈ΣF

(
ρnF,0ρ

#
F

∏
j

(ρ+
F,j)
−kj

)
(g) = 0
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unless
(
ρnF,0ρ

#
F

∏
j(ρ

+
F,j)
−kj
)

is the trivial character of ΣF , in which case

this sum is |ΣF |. Hence, (5.7) is equal to

n−q
∑
k

|ΣF |
|ΓF |

Res

[
e
∑
j

kj
n
zj

∫
F

expωF∏
j det(zjI + Ω+

F,j)

]
(5.8)

summed over all k satisfying both

Φ
F
− k1

n
α+
F,1 − . . .−

km
n
α+
F,m +

α#
F

n
= µ

and

ρnF,0ρ
#
F

∏
j

(ρ+
F,j)
−kj = id(5.9)

in the character group of ΣF . By representation theory for finite abelian
groups, condition (5.9) is picking out a sublattice of order |ΣF | inside
Z
m. Therefore, as n tends to infinity (5.8) tends to the integral∫

∆F (µ)

Res

[
esz
∫
F

1

|ΓF |
· expωF
c1(z1) . . . cm(zm)

]
ds ,(5.10)

where cj(zj) := det
(
zjI + Ω+

F,j

)
is the Chern polynomial of E+

F,j. �

Remark. When the dimension of ∆F (µ) is q > 0 expression (5.8)
converges pointwise to (5.10) for all rational µ. However, when q = 0
it converges to (5.10) in a weak sense: for µ rational and any continu-
ous test function f , the distribution (5.8) evaluated at f tends to the
evaluation of the distribution (5.10) at f , as n tends to infinity.

6. Duistermaat-Heckman Measure

In [6] it was proved that, in the case of manifolds, the function of µ
defined by (5.1) is the Radon-Nikodym derivative

dµDH

dµLebesgue

(6.1)

where µDH is the Duistermaat-Heckman measure and µLebesgue is the
standard Lebesgue measure on Lie(T )∗ (suitably normalized). The
same is true for orbifolds:

Theorem 3. The piecewise polynomial function defined by (5.1) is the
Radon-Nikodym derivative (6.1).
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The proof is analogous to that in [6]. Instead of the usual abelian
localization formula, the orbifold version should be used [17], where
the contributions of the fixed point components are affected by a factor
equal to the inverse of the order of the orbifold structure group of that
component [4].

Appendix A. Orbifolds

A.1. An n-dimensional orbifold, M , is a Hausdorff topological space,
|M |, equipped with a complete atlas of orbifold charts, that is, a collec-

tion of triples (Ũ ,Γ, φ) where Ũ is a connected open subset of Rn, Γ is

a finite group acting on Ũ by linear transformations,2 and φ : Ũ → |M |
is a continuous Γ-invariant map inducing a homeomorphism from Ũ/Γ
to U := φ(Ũ); satisfying appropriate compatibility conditions and such
that the U ’s cover |M | and this collection of charts is maximal; more
details and a review of orbifold differential geometry can be found
in [4, 8, 13, 16, 17, 18]. For instance, a smooth function on an orb-
ifold is a collection of smooth invariant functions on each orbifold chart
which agree on overlaps, and similarly for many other concepts.

A.2. Let M and N be two orbifolds with a continuous inclusion of the
underlying topological spaces. Suppose that M has an orbifold atlas

where on each chart (Ũ ,Γ, φ) the pre-image of N , if not empty, is given

by the intersection of Ũ with a linear subspace V of Rn. Let ΓV be the
subgroup of those elements in Γ whose action preserves V . Then N

is a suborbifold of M if the collection {(Ũ ∩ V,ΓV , φ|Ũ∩V )}, together
with the induced injections, forms an atlas of orbifold charts for N .

If (Ũ ,Γ, φ) is an orbifold chart for M , the structure group, Γp, of
a point p ∈ U is the isotropy group of a pre-image of p under φ; Γp is
defined up to isomorphism. The type of the structure group induces a
canonical stratification of M into suborbifolds. On each connected
component of M , there is an open dense set of points for which the
order of the structure group is minimal, called the principal stratum
of M . When M is connected, the structure group, ΓM , of M is the
(abstract) isotropy group of its principal stratum; the order of M is
the order of ΓM . When M is not connected the orders of its connected
components define the locally constant order function mM : M → N.

2We assume that the set of all fixed points of Γ has codimension at least two.
We do not assume the action of Γ to be effective. The result of the action of g ∈ Γ
on u ∈ U is denoted by g · u.
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A.3. Given an orbifold M , the associated orbifold [14, 9] M̂ has

charts (Ṽ ,Γ, ψ) built as follows: For each chart, (Ũ ,Γ, φ), of M , let

Ṽ = {(u, g) ∈ Ũ × Γ | g · u = u} .

Γ acts on Ṽ via h · (u, g) = (h · u, hgh−1). Let V = Ṽ/Γ be the space of

orbits with projection ψ : Ṽ → V. The orbifold charts (Ṽ ,Γ, ψ) inherit

the compatibility conditions from the (Ũ ,Γ, φ). As a set,

M̂ =
⊔
p∈M

Conj(Γp) ,

where Conj(Γp) is the set of conjugacy classes in Γp. For example, when
M is a teardrop orbifold (i.e. M is homeomorphic to a sphere and has
just one singular point, p, with structure group Z/n for some n), then

M̂ has n components: one component diffeomorphic to M plus n − 1
points each with structure group Z/n, corresponding to p paired with
the nonzero elements of Z/n. Associated orbifolds may be viewed as a
bookkeeping device which allows for concise orbifold index formulas.

A.4. A rank k orbifold vector bundle, π : E →M , over an orbifold

M is a collection of Γ-equivariant rank k vector bundles πŨ : ẼU → Ũ
on each chart (Ũ ,Γ, φ), together with suitable compatibility conditions.
The fibers π−1(p) are in general diffeomorphic to some quotient of a
k-dimensional vector space by an the action of the structure group Γp.
Additional structures on an orbifold bundle are defined as collections
of Γ-invariant objects on each πŨ : ẼU → Ũ agreeing on overlaps.

An orbifold vector bundle, E → M̂ , over an associated orbifold has

a canonical automorphism, A(E), given on each chart (Ṽ ,Γ, ψ) by

the natural action of g ∈ Γ on the fiber of ẼV above (u, g) ∈ Ṽ [17].

Suppose that M has an almost complex structure. Then the normal

bundle, NM̂ , of the natural immersion µ : M̂ → M can be endowed
with a hermitian connection; let −2πiΩ(NM̂) be its curvature. The
associated characteristic form (appearing in the index formulas) is

DM̂ = det
(
I − A−1(NM̂) exp(−Ω(NM̂))

)
.

The associated Chern character of a complex vector bundle E → M̂
with curvature −2πiΩ with respect to a hermitian connection is

Ĉh(E) = trace (A(E) exp Ω) .
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Appendix B. Integral Estimate

Lemma B.1. Let V be a d-dimensional complex vector space, and let
A,B be commuting elements of GL(V ), with A diagonalizable. Then

n−(d−1)traceSk(A exp B
n

) =


λkRes

[
e
d+k−1
n

z

det(z−B)

] (
1 +O

(
1
n

))
if A = λI

O
(

1
n

)
otherwise

(B.2)

where the O( 1
n
)’s are uniform in k, and the operator Res takes the

integral along a contour about the origin containing the zeroes of det(z−
B) and divides it by 2πi.

Proof. Without loss of generality, we can assume that A and B
are simultaneously diagonalizable with eigenvalues λ1, . . . , λd (of A)
and µ1, . . . , µd (of B), and that eµ1 , . . . , eµd are distinct. Let C be a
contour about the origin containing λ1, . . . , λd. For n large enough,
the left hand side of (B.2) is equal to the contour integral

n−(d−1) 1

2πi

∫
C

zd+k−1∏
j

(
z − λjeµj/n

)dz .
The pole at λje

µj/n has residue

n−(d−1)

(
λje

µj/n
)d+k−1∏

i6=j
(
λjeµj/n − λieµi/n

)(B.3)

where

λje
µj/n − λieµi/n =

{
λj

µj−µi
n

(
1 +O( 1

n
)
)

if λj = λi
(λj − λi)

(
1 +O( 1

n
)
)

if λj 6= λi .

There are (d − 1) factors in the denominator of (B.3). Therefore,
if A has at least two different eigenvalues, all residues (B.3) are of
order O( 1

n
). If A = λI, then we express n−(d−1)traceSk(exp B

n
) as in

Theorem (B2) of [6]. �

By analyticity, (B.2) is valid for any endomorphism B : V → V , not
necessarily in GL(V ). When k is of order O(n) (i.e. k →∞ as n→∞,
but k

n
= O(1)), (B.2) remains true if all eigenvalues of A have absolute

value at most 1.
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