
Aubry sets, Hamilton-Jacobi equations,

and the Mañé Conjecture

A. Figalli∗, L. Rifford†

1 Mañé critical value and critical subsolutions

Let (M, g) be a smooth connected compact Riemannian manifold without boundary of dimen-
sion n ≥ 2, and H : T ∗M → R a Ck Tonelli Hamiltonian (with k ≥ 2), that is, a Hamiltonian
of class Ck satisfying the two following properties (here ‖ · ‖∗ denotes a norm on T ∗M ; we note
that the properties we introduce are independent of the particular choice of the norm):

(H1) Superlinear growth: For every K ≥ 0 there exists a constant C∗(K) such that

H(x, p) ≥ K‖p‖∗x − C∗(K) ∀ (x, p) ∈ T ∗M.

(H2) Uniform convexity: For every (x, p) ∈ T ∗M , the second derivative along the fibers
∂2H
∂p2 (x, p) is positive definite.

The Mañé critical value of H can be defined as follows:

Definition 1.1. We call critical value of H, and we denote it by c[H], the infimum of the
values c ∈ R for which there exists a function u : M → R of class C1 satisfying

H(x, du(x)) ≤ c ∀x ∈ M. (1.1)

A priori, it is not clear whether the infimum in Definition 1.1 is attained or not, that is,
whether there exists a C1 function satisfying (1.1) with c = c[H]. For this reason, we introduce
the notion of critical subsolutions. (Recall that, by Rademacher’s theorem, Lipschitz functions
are differentiable almost everywhere.)

Definition 1.2. A function u : M → R is called a critical subsolution for H if it is Lipschitz
and satisfies

H
(
x, du(x)

)
≤ c[H] for a.e. x ∈ M. (1.2)

Thanks to the coercivity of H in the p variable (see (H1) above), it is not difficult to prove
the following:

Proposition 1.3. The set SS[H] of critical subsolutions is a nonempty, compact, convex subset
of C0(M ;R).
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The Lagrangian L : TM → R associated with H by Legendre-Fenchel duality is defined by

L(x, v) := max
p∈T∗

xM

{
〈p, v〉 −H(x, p)

}
.

Thanks to (H1)-(H2), it can be shown (see for instance [5, 15]) that L is a Ck Tonelli Lagrangian,
that is, it is of class Ck and satisfies the two following properties (‖ · ‖ denotes a norm on TM):

(L1) Superlinear growth: For every K ≥ 0 there exists a constant C(K) such that

L(x, v) ≥ K‖v‖x − C(K) ∀ (x, v) ∈ TM.

(L2) Uniform convexity: For every (x, v) ∈ TM , ∂2L
∂v2 (x, v) is positive definite.

Note that the Fenchel inequality

〈p, v〉 ≤ L(x, v) +H(x, p) (1.3)

holds for any x ∈ M , v ∈ TxM,p ∈ T ∗
xM , with equality if and only if (in local coordinates)

v =
∂H

∂p
(x, p) ⇔ p =

∂L

∂v
(x, v). (1.4)

In addition, L and H are dual, in the sense that H is given in terms of L by

H(x, p) = max
v∈T∗

xM

{
〈p, v〉 − L(x, v)

}
. (1.5)

The Legendre-Fenchel duality allows us to characterize the critical subsolutions in a varia-
tional way.

Proposition 1.4. A function u : M → R is a critical subsolution if and only if

u
(
γ(b)

)
− u

(
γ(a)

)
≤

∫ b

a

L
(
γ(s), γ̇(s)

)
ds+ c[H] (b− a), (1.6)

for any Lipschitz curve γ : [a, b] → M .

Proof. ⇒) Let u : M → R be a critical subsolution of class C1 (the case when u is Lipschitz
is easily done by approximation). Then, using (1.3), for any Lipschitz curve γ : [a, b] → M we
have

u
(
γ(b)

)
− u

(
γ(a)

)
=

∫ b

a

〈du
(
γ(s)

)
, γ̇(s)〉 ds

≤
∫ b

a

L
(
γ(s), γ̇(s)

)
ds+

∫ b

a

H
(
γ(s), du(γ(s))

)
ds

≤
∫ b

a

L
(
γ(s), γ̇(s)

)
dt+ c[H] (b− a).

⇐) First of all, if u satisfies (1.6) then it is easy to show that it is Lipschitz. (Given x, y ∈ M ,
choose γ to be a constant speed geodesic from x to y parameterized over [0, d(x, y)].)

Now, fix x a differentiability point for u, and let γ be a curve satisfying (γ(0), γ̇(0)) = (x, v).
Then, by taking the limit as t → 0+ in the inequality

u
(
γ(t)

)
− u

(
γ(0)

)
t

≤ 1

t

∫ t

0

L
(
γ(s), γ̇(s)

)
ds+ c[H]

we get
〈du(x), v〉 − L(x, v) ≤ c[H],

and we conclude by (1.5) and the arbitrariness of v.
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2 Lax-Oleinik semigroup and Weak KAM Theorem

The Lax-Oleinik semigroup {Tt}t≥0 : C0(M ;R) −→ C0(M ;R) associated with L is defined as

Ttu(x) := inf

{
u
(
γ(−t)

)
+

∫ 0

−t

L
(
γ(s), γ̇(s)

)
ds ds

}
∀x ∈ M, t ≥ 0, (2.1)

where the infimum is taken among all Lipschitz curves γ : [−t, 0] → M such that γ(0) = x. If
we define the function ht : M ×M → R by

ht(z, x) := inf
γ

{∫ t

0

L
(
γ(s), γ̇(s)

)
ds

}
∀x, z ∈ M, t > 0, (2.2)

where the infimum is taken over the set of Lipschitz curves γ : [0, t] → M which satisfy γ(0) = z
and γ(t) = x, then Ttu can also be written as

Ttu(x) := inf
z∈M

{
u(z) + ht(z, x)

}
∀x ∈ M. (2.3)

Under our assumptions it is possible to show that the infimum in the definition of ht is always
attained, and that ht is Lipschitz on M × M for any t > 0 (see for instance [30, Appendix
A]). In particular, one can show that Tt is well-defined for all t ≥ 0 and the infimum in (2.1) is
always attained.

Using the above definitions it is easy to check that a function u : M → R is a critical
subsolution if and only if

u(x)− u(z) ≤ ht(z, x) + c[H] t ∀x, z ∈ M, t > 0. (2.4)

In fact, {Tt}t≥0 enjoys the following properties [15, 30]:

Proposition 2.1. The following properties hold:

(i) T0 = Id, and Tt+t′ = Tt ◦ Tt′ for any t, t′ ≥ 0.

(ii) For every t ≥ 0, ‖Ttu− Ttv‖∞ ≤ ‖u− v‖∞ for any u, v ∈ C0(M ;R).

(iii) For every u ∈ C0(M ;R), the map t ∈ [0,∞) 7→ Ttu ∈ C0(M ;R) is continuous.

(iv) The set SS[H] is invariant with respect to {Tt}.

As shown in [15], if u ∈ SS(H) then the functions ut := Ttu+ c[H] t converge uniformly as
t → +∞ to a function u∞ satisfying Ttu∞ = u∞ − c[H] t for all t ≥ 0.

The following proposition shows that u∞ is a viscosity solution of the Hamilton-Jacobi
equation

H(x, du(x)) = c[H], (2.5)

see for instance [30, Proposition 3.6] for a proof:

Proposition 2.2. Let u ∈ C0(M ;R). Then the following properties are equivalent:

(i) Ttu = u− c[H] t for all t ≥ 0.

(ii) u ∈ SS(H) and, for every x ∈ M , there exists a Lipschitz curve γx : (−∞, 0] → M with
γ(0) = x such that

u
(
γx(b)

)
− u

(
γx(a)

)
=

∫ b

a

L
(
γx(s), γ̇x(s)

)
ds+ c[H] (b− a) ∀ a < b ≤ 0. (2.6)
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(iii) u ∈ SS(H) and for every smooth function φ : M → R with φ ≤ u and all x ∈ M ,

φ(x) = u(x) =⇒ H
(
x, dφ(x)

)
≥ c[H]. (2.7)

If any of this properties holds, then we say that u is a weak KAM solution.

Roughly speaking, in the classical KAM theory, weak KAM solutions are smooth and the
graphs of their differentials are invariant tori, see [4].

Remark 2.3. It is possible to show that property (i) in Proposition 2.2 uniquely characterize
c[H], in the sense that, if some continuous function v : M → R satisfies

Ttv = v − c t ∀ t ≥ 0 (2.8)

for some constant c ∈ R, then c = c[H] and v is a weak KAM solution.
Indeed, first of all, using (2.8) it is easy to see that v is Lipschitz and H(x, dv(x)) ≤ c a.e.

(see the proof of Proposition 1.4), so c ≥ c[H] by Definition 1.1 and a simple approximation
argument (locally use a convolution argument to regularize v, and observe that by convexity in
the p variable one gets H(x, dvε(x)) ≤ c+ o(1)).

Moreover, by the equivalence between (i) and (ii) in Proposition 2.2, it follows that for every
x ∈ M there is a curve αx : (−∞, 0] → M , with αx(0) = x, such that

v
(
αx(b)

)
− v

(
αx(a)

)
=

∫ b

a

L
(
αx(s), α̇x(s)

)
ds+ c (b− a) ∀ a < b ≤ 0.

Applying Proposition 1.4 with γ = αx and u an arbitrary critical subsolution, for any t > 0 we
get

−2‖u‖∞ ≤ u(x)− u
(
αx(−t)

)
≤

∫ 0

−t

L
(
αx(s), α̇x(s)

)
ds+ c[H] t

= v(x)− v
(
αx(−t)

)
+ (c[H]− c) t ≤ 2‖v‖∞ + (c[H]− c) t,

so we conclude by letting t → +∞.

Example 2.4 (Mechanical and Mañé Lagrangians).
• Consider a Tonelli Hamiltonian H : T ∗M → R of the form

H(x, p) =
1

2
‖p‖2x + V (x) ∀ (x, p) ∈ T ∗M, (2.9)

where V : M → R is a function of class Ck, k ≥ 2. It is easy to check that

c[H] = max
M

V.

• Let X : M → TM be a vector field of class Ck, k ≥ 2. The Mañé Lagrangian LX : TM → R
associated with X is the Ck Tonelli Lagrangian defined as

LX(x, v) =
1

2
‖v −X(x)‖2x ∀ (x, v) ∈ TM. (2.10)

The Hamiltonian HX associated to LX by Legendre-Fenchel duality is given by

HX(x, p) =
1

2
‖p‖2x + 〈p,X(x)〉 ∀ (x, p) ∈ T ∗M. (2.11)

It is not difficult to see that c[H] = 0.
We notice that, in both cases, constant functions are weak KAM solution (see [30, Examples

3.9 and 3.10] for more details).
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3 Peierls barrier and Aubry set

The Peierls barrier h : M ×M → R is defined as

h(x, y) := lim inf
t→+∞

{
ht(x, y) + c[H]t

}
∀x, y ∈ M.

It is easily checked that, for any x, y, z ∈ M and t > 0,

h(x, z) ≤ h(x, y) + ht(y, z) + c[H] t and h(x, z) ≤ ht(x, y) + c[H] t+ h(y, z). (3.1)

In addition, one can show that h(x, y) is finite for any x, y ∈ M , and satisfies the triangle
inequality

h(x, z) ≤ h(x, y) + h(y, z) ∀x, y, z ∈ M. (3.2)

Recalling (2.4), we also notice that, for any u ∈ SS(H), we have

u(y)− u(x) ≤ h(x, y) ∀x, y ∈ M, (3.3)

which gives in particular

h(x, x) ≥ 0 and h(x, y) + h(y, x) ≥ 0 ∀x, y ∈ M. (3.4)

The following results relate the Peierls barrier to weak KAM solutions (see for instance [30,
Propositions 4.1 and 4.2]):

Proposition 3.1. Let u : M → R be a weak KAM solution, x ∈ M , and γx : (−∞, 0] → M a
curve satisfying γx(0) = x and (2.6). Then any α-limit point z of γx, that is any

z ∈
⋂
t<0

γx
(
(−∞, t]

)
,

satisfies h(z, z) = 0.

Proposition 3.2. For every x ∈ M , the “pointed” Peierls barrier hx : M → R defined as

hx(y) := h(x, y)

is a weak KAM solution.

Definition 3.3. We call projected Aubry set the nonempty compact subset of M defined by

A(H) :=
{
x ∈ M |h(x, x) = 0

}
.

The fact that A(H) is nonempty follows from Proposition 3.1, while the compactness is a
consequence of the Lipschitz regularity of h. Proposition 3.1 shows that A(H) plays the role of
a “boundary at infinity” for the Hamilton Jacobi equation (2.5).

In the next proposition we see that the projected Aubry set can be characterized as the set
where all critical subsolutions are differentiable, and their gradient is uniquely identified there.

Proposition 3.4. For any x ∈ A(H), the following properties hold:

(i) There exists a C2 curve γx : R → A(H), with γx(0) = x, which solves the Euler-Lagrange
equation

d

dt

(
∂L

∂v

(
γx(t), γ̇x(t)

))
=

∂L

∂x

(
γx(t), γ̇x(t)

)
∀ t ∈ R,

and such that, for any u ∈ SS(H),

u
(
γx(b)

)
− u

(
γx(a)

)
=

∫ b

a

L
(
γx(s), γ̇x(s)

)
ds+ c[H] (b− a) ∀ a < b ∈ R.
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(ii) Any u ∈ SS(H) is differentiable at x, and it holds

du(x) =
∂L

∂v

(
x, γ̇x(0)

)
, H(x, du(x)) = c[H].

(iii) If γ : [a, b] → M is a Lipschitz curve with a < b, 0 ∈ [a, b], γ(0) = x, and

u(γ(b))− u(γ(a)) =

∫ b

a

L
(
γ(s), γ̇(s)

)
ds+ c[H] (b− a)

for some u ∈ SS(H), then γ(t) = γx(t) for any t ∈ [a, b].

On the other hand, for every x /∈ A(H) there is a critical subsolution u which is smooth (say
C∞) in an open neighborhood Vx of x, and such that H(x′, du(x′)) < c[H] for any x′ ∈ Vx.

By (i) and (iii) in the proposition above we see that the curve γx is unique, while (ii)
shows that the gradient of a critical subsolution at a point x ∈ A(H) is uniquely identified. In
particular, for any x ∈ A(H) we can define a covector P (x) ∈ T ∗

xM as

P (x) =
∂L

∂v

(
x, γ̇x(0)

)
. (3.5)

This allows us to introduce the Aubry set:

Definition 3.5. We call Aubry set the subset of T ∗M defined by

Ã(H) :=
{
(x, P (x)) ∈ T ∗M |x ∈ A(H)

}
.

The following result is due to Mather [23, 24]:

Theorem 3.6. The set Ã(H) is a nonempty compact subset of T ∗M which is invariant under
the Hamiltonian flow. Moreover it is a Lipschitz graph over A(H).

Example 3.7 (Mechanical and Mañé Lagrangians).
• Consider a mechanical Hamiltonian as in (2.9). Then the Aubry set consists of the set of
unstable equilibria:

Ã(H) =
{
(x, 0) |V (x) = max

M
V
}
.

• Let HX : T ∗M → R be a Mañé Hamiltonian as in (2.11). Then the projected Aubry set
contains the set of recurrent points of the flow of X, and the Aubry set is given by

Ã(H) =
{
(x, 0) |x ∈ A(H)

}
.

The Hamiltonian orbits on Ã(H) are lifting of orbits of X on T ∗M , that is, they are of the
form t 7→ (x(t), p(t))) with ẋ(t) = X(x(t)) and p(t) = 0.

Let us fix u ∈ SS(H). By Proposition 3.4 the set of critical subsolutions which coincide
with u on A(H) is convex, compact, and is invariant with respect to the Lax-Oleinik semigroup.
Then the same argument used to prove the existence of weak KAM solutions gives:

Proposition 3.8. For every u ∈ SS(H), there exists a weak KAM solution v such that v = u
on A(H).

This result shows that it is possible to use critical subsolution to prescribe “boundary
conditions” on A(H). In addition, Fathi proved in [15] that there is a comparison theory for
weak KAM solutions:

Proposition 3.9. If u1, u2 are two weak KAM solutions such that u1 ≤ u2 on A(H), then
u1 ≤ u2 on M .

Hence A(H) is a “set of uniqueness” for (2.5).
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4 The uniqueness issue

Of course, if a given function u is a weak KAM solution for H, then for every constant a ∈ R
the function u+ a is weak KAM solution. Hence we shall say that (2.5) has a unique solution
if weak KAM solutions are unique up to an additive constant.

The next theorem proves that the connectedness of A(H) is strongly related to the unique-
ness of weak KAM solutions (see [30, Theorem 6.1] for a proof of (i), and [16] for (ii)):

Theorem 4.1. Let H : T ∗M → R be a Ck Tonelli Hamiltonian, k ≥ 2. Then:

(i) Assume that (2.5) has a unique solution. Then A(H) is connected.

(ii) Conversely, if A(H) is connected, k ≥ 2n−2, and n ≤ 3, then (2.5) has a unique solution.

Although uniqueness does not hold in general, as shown by Mañé [22] it is a generic property:
more precisely, given a Tonelli Hamiltonian H : T ∗M → R and a potential V : M → R both of
class Ck, k ≥ 2, we define the Hamiltonian HV : T ∗M → R by

HV (x, p) := H(x, p) + V (x) ∀ (x, p) ∈ T ∗M. (4.1)

Denote by Ck(M) the set of Ck potentials on M equipped with the Ck topology. Then,
generically on the potential, uniqueness holds:

Theorem 4.2. Let H : T ∗M → R be a Ck Tonelli Hamiltonian, k ≥ 2. Then there is a residual
subset (i.e., a countable intersection of open dense sets) G in Ck(M) such that, for every V ∈ G,
the critical Hamilton-Jacobi equation (2.5) associated to HV has a unique solution.

Example 4.3 (Mechanical and Mañé Lagrangians).
• In [25] Mather provides examples of potentials V : M → R of class Ck such that the projected
Aubry set of the Hamiltonian (2.9) is connected but uniqueness fails. However, if k ≥ 2n − 2,
then connectedness of A(H) (with H given by (2.9)) does imply uniqueness [16, 32].
• In [16, Theorem 6] it is proved that, if n ≤ 3, then the uniqueness property for Mañé La-
grangians (2.10) is related to chain-recurrent properties of the flow of X.

5 Regularity of critical subsolutions and weak KAM so-
lutions

Fathi and Siconolfi [17] proved that there exist critical subsolutions of class C1, and Bernard
improved this result to C1,1 [3]:

Theorem 5.1. Let H : T ∗M → R be a Ck Tonelli Hamiltonian, k ≥ 2. Then there exists a
critical subsolution u of class C1,1 which is strict outside A(H), that is H(x, du(x)) < c[H] on
M \ A(H).

In particular, by this result, Proposition 3.4, and Definition 3.5, the Aubry set can also be
defined as

Ã(H) :=
⋂

u∈S1(H)

{
(x, du(x)) |x ∈ M s.t. H(x, du(x)) = c[H]

}
,

where S1(H) denotes the set of critical subsolutions of class C1. Indeed, on A(H) the differ-
ential of all critical subsolutions coincide. On the other hand, given x 6∈ A(H) and u a critical
subsolution such that H(x, du(x)) < c[H], then, for any smooth function ϕ supported in a small
neighborhood of x, the function u+ εϕ is still a critical subsolution for ε sufficiently small. In
particular, by choosing ϕ such that dϕ(x) 6= 0, one can construct two critical subsolutions u1
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and u2 such that du1(x) 6= du2(x).

As shown by Bernard [3], Theorem 5.1 is optimal: there exists H smooth which admits no
critical subsolutions of class C2.

Concerning the regularity of solutions, the following result is proven in [29] (see [5, 29, 31]
for the definition of semiconcave functions and their properties):

Theorem 5.2. Let u : M → R be a weak KAM solution. Then u is semiconcave on M , and
C1,1

loc on an open dense subset O of M .

Another result on the regularity of viscosity (sub)solutions is the following theorem of Fathi
[14] (see also [29]):

Theorem 5.3. Let u be a critical viscosity subsolution, and assume that u is a C1 viscosity
solution on some open set V. Then u is C1,1

loc inside V.

Since weak KAM solutions u are Lipschitz, the limiting differential of u at x defined by

du∗(x) :=
{
lim du(xk) |xk → x, u differentiable at xk

}
,

is always a nonempty compact subset of T ∗
xM . In [29], the second author proved that there is

a one-to-one correspondence between the set of limiting differentials at x and the set of curves
γx : (−∞, 0] → M with γx(0) = x and such that

u
(
γx(b)

)
− u

(
γx(a)

)
=

∫ b

a

L
(
γx(s), γ̇x(s)

)
ds+ c[H] (b− a) ∀ a < b ≤ 0.

In addition u can be shown to be C1 at every point γx(−t) with t > 0 (compare with Proposition
3.4(i)-(ii)). Since γx(−t) tends to the projected Aubry set as t → +∞ (Proposition 3.1), regu-
larity properties for weak KAM solutions in a neighborhood of A(H) imply more regularity for
u globally (in the spirit of classical results for Dirichlet-type problems [6, 20, 29]). Furthermore,
as shown for instance by the following result of Bernard [2], some properties on the behavior of
the Hamiltonian flow in a neighborhood of Ã(H) can also bring regularity properties:

Theorem 5.4. Let H be a Tonelli Hamiltonian of class Ck, k ≥ 2, whose Aubry set is a
hyperbolic periodic orbit. Then there is a unique weak KAM solution, and such solution is of
class Ck in a neighborhood of A(H). In particular, there exists a critical subsolution which is
of class Ck on M .

Proof. The key observation of Bernard is that every limiting differential has to be in the unstable
manifold of the periodic orbit, and such a manifold is of class Ck−1. We refer the reader to [2]
for more details.

6 The Mañé conjecture

We recall the notation HV for the Hamiltonian H + V (see (4.1)). The Mañé conjecture in Ck

topology, k ≥ 2, can be stated as follows:

Conjecture 6.1 (Mañé Conjecture). For every Tonelli Hamiltonian H : T ∗M → R of class
Ck, k ≥ 2, there is a residual subset (i.e., a countable intersection of open dense sets) G of
Ck(M) such that, for every V ∈ G, the Aubry set Ã(HV ) of the Hamiltonian HV is either an
equilibrium point or a periodic orbit.
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A natural way to attack the Mañé Conjecture in any dimension would be to prove first
a density result, then a stability result. Namely, given a Hamiltonian of class Ck satisfying
(H1) and (H2), first one could show that the set of potentials V ∈ Ck(M) such that Ã(HV )
is either a equilibrium point or a periodic orbit is dense, and then prove that one can make
them hyperbolic by adding a second small potential, and that the latter property is open in Ck

topology. The stability part is indeed contained in results obtained by Contreras and Iturriaga
in [9], so we can consider that the Mañé Conjecture reduces to the density part.

Conjecture 6.2 (Mañé density Conjecture). For every Tonelli Hamiltonian H : T ∗M → R of
class Ck, k ≥ 2, there exists a dense set D in Ck(M) such that, for every V ∈ D, the Aubry
set of HV is either an equilibrium point or a periodic orbit.

In a series of recent papers [18, 19] we made several progress toward a proof of the Mañé
Conjecture in C2 topology. Our approach is based on a combination of techniques coming from
finite dimensional control theory and Hamilton-Jacobi theory, together with some of the ideas
which were used to prove C1-closing lemmas for dynamical systems.

In the next section we will give a more detailed description of the results in [18, 19]. Here
we mention just a weak form of some of the results obtained there:

Theorem 6.3. Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck with k ≥ 4, and
assume that there exists a critical subsolution of class Ck+1. Then, for any ε > 0 there exists
a potential V : M → R of class Ck−1, with ‖V ‖C2 < ε, such that c[HV ] = c[H] and the Aubry
set of HV is either an equilibrium point or a periodic orbit.

This theorem, combined with Theorem 5.4 and the stability results by Contreras and Itur-
riaga [9], shows that, for smooth Hamiltonians (i.e., of class C∞, or at least of class Ck with
k ≥ 4), the Mañé Conjecture in C2 topology is equivalent to the following conjecture on the
generic smoothness of critical subsolutions (here, for simplicity, we state the conjecture with
C∞):

Conjecture 6.4. For every Tonelli Hamiltonian H : T ∗M → R of class C∞ there is a set
D ⊂ C∞(M) which is dense in C2(M) (with respect to the C2 topology) such that, for every
V ∈ D, the Hamiltonian HV admits a critical subsolution of class C∞.

7 Some results on the Mañé conjecture

The starting point of [18, 19] is the following remark:
Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck with k ≥ 2, and fix ε ∈ (0, 1).

Without loss of generality, up to adding a constant to H (which does not change the dynamics),
we can assume that c[H] = 0. Let L denote the Lagrangian associated to H. Then, in order to
prove the conjecture in Ck topology, we claim that it is sufficient to find a potential V : M → R
of class Ck with ‖V ‖Ck < ε, together with a C1 function v : M → R, and a curve γ : [0, T ] → M
with γ(0) = γ(T ), such that the following properties are satisfied:

(P1) HV

(
x, dv(x)

)
≤ 0 ∀x ∈ M .

(P2)
∫ T

0
LV (γ(t), γ̇(t)) dt = 0.

Indeed, if we are able to do so, then (P1) implies that c[HV ] ≤ 0 (by Definition 1.1 of c[HV ]),
while (P2) implies that hT (γ(t), γ(t)) ≤ c[HV ]T for any t ∈ [0, T ] (see (2.2)). Since by (3.4)
h(x, x) ≥ 0, the only possibility is hT (γ(t), γ(t)) = c[HV ] = 0. In particular this implies that
h(γ(t), γ(t)) = 0, so by Definition 3.3 the closed curve Γ := γ([0, T ]) ⊂ M is contained in
A(HV ).

9



Now, if W : M → R is any smooth function such that W = 0 on Γ, W > 0 outside Γ, and
‖W‖Ck < ε − ‖V ‖Ck , then v is a critical subsolution of HV−W = H + V −W which is strict
outside Γ. By proposition 3.4 this implies that A(HV−W ) = Γ, which concludes the proof.

Let us remark that, by the discussion above, if A(H) already contains a fixed point or a
periodic orbit then the proof is trivial, since it suffices to add to H a smooth potential which
vanishes either on the point or on the orbit, and it is strictly negative outside.

From now on, we assume that the Aubry set A(H) does not contain an equilibrium point
or a periodic orbit, and we choose a recurrent point x̄ ∈ A(H), i.e., there exists a sequence of
times tk → +∞ such that

lim
k→∞

π∗(φH
tk
(x̄, du(x̄))

)
= x̄,

for some critical subsolution u : M → R. (Here and in the sequel, φH
t : T ∗M → T ∗M denotes

the Hamiltonian flow. Note that, since x̄ ∈ A(H), because of Proposition 3.4 the definition of
recurrent point does not depends on the particular subsolution u.)

We denote by O+(x̄) the positive orbit of x̄ in the projected Aubry set, that is,

O+(x̄) :=
{
π∗(φH

t (x̄, du(x̄))
)
| t ≥ 0

}
,

where u : M → R is again an arbitrary critical viscosity subsolution. (As before, the above
definition does not depend on u.)

The rough idea is now the following: Since x̄ is recurrent, the curve t 7→ π∗ (φH
t

(
x̄, du(x̄)

))
passes near x̄ infinitely many times. Hence one would like to:
(a) Choose a time T � 1 such that x̄T := π∗ (φH

T

(
x̄, du(x̄)

))
is sufficiently close to x̄, and

“close” the trajectory by adding a potential.
(b) When closing the trajectory, make sure to control the action so that (P2) holds.
(c) Finally, construct a critical subsolution (see (P1)) to ensure that such a curve belongs to
the projected Aubry set of the new Hamiltonian.

There are many points to address here:

(a) If we add a potential V small in Ck topology, it means that the Hamiltonian vector field
associated to HV is close in Ck−1 topology to the Hamiltonian vector field of H.

Hence this can been seen as a more involved version of the classical closing lemma: fixed
j ≥ 0, one asks whether, given a vector field X with a recurrent point x̃, one can find a vector
field Y close to X in Cj topology which has a periodic orbit. The “cheap strategy” of closing the
trajectory in one step allows to prove the validity of the closing lemma when j = 0. Indeed, this
is due to the fact that, when connecting a trajectory to another which is close to it, one needs
to perform a modification of X which is compactly supported near the trajectory, otherwise
that would destroy all the dynamics.

To give an idea, if X = e1 and we want to move a trajectory up by ε in the direction e2 over
an interval of time of length 1, then we would like to use e1+εe2. However, as just explained, in
order not to destroy the dynamics we need to add a cut-off function both in x1 and x2. While
in the direction of the flow x1 we have some space to introduce our cut-off, even if the points
we want to connect were chosen as the “closest ones” (see Figure 2 below) we need to put a
cut-off function of the form ϕ(x1, x2/ε) in order not to touch the other trajectories nearby (see
Figure 1). So our vector field Y looks like

Y = X + εϕ(x1, x2/ε)e2,

which satisfies ‖Y −X‖C0 . ε but ‖Y −X‖C1 ' 1.

10



1

ε

Figure 1: The dashed line represents the trajectory of Y , and the rectangle is the support of ϕ(x1, x2/ε).

Hence, this solves the problem only for j = 0. For j = 1 new deep ideas have been intro-
duced to solve the problem [26, 27, 28, 21], while for j ≥ 2 the problem is still open, though
many results suggest that the result may be false when j is sufficiently large.

In our case the analog of the closing lemma is the following: If we hope to close the orbit in
only one step, then V can be small only in C1 topology.

If we want to be able to close the trajectory with a potential V small in C2 topology, we may
try to adapt the strategy used to solve the closing lemma in C1 topology: roughly speaking,
fixed an error size ε > 0 and a small radius r which “ideally” represents the distance between
x̄ and x̄T := π∗ (φH

T

(
x̄, du(x̄)

))
, the idea is to close the trajectory in 1/ε steps where at each

step we “move” x̄T in the direction of x̄ by a size εr. However, when doing this, we need to
make sure that the modification done at every “approaching step” does not influence any of
the modifications performed before, and in addition that it does not “destroy” the property of
x̄ of being recurrent.

As we will see, under some suitable assumptions on u this can be done, and actually we
can choose our connecting points so that we have a neighborhood of size r where we can make
the modification. In order words, if we reconsider the case of vector fields (we use the same
notation as above), to move one point up by εr we would use the vector field

Y = X + εrϕ(x1, x2/r)e2.

In this way ‖X − Y ‖C1 . ε.
Of course, being the C2 closing lemma an open problem, the case k ≥ 3 is at the moment

out of reach (at least with this approach).
In order to perform the above strategy, we need to be able to go from one point to another

by adding a small potential. To this aim we employ techniques and results from control theory
which allow us to connect points by Hamiltonian trajectories.

(b) Point (a) above deals with the “closing part” of our statement, that is, finding a closed
orbit for HV . Now we need to ensure that (P2) is satisfied, and for this we use again delicate
techniques from control theory.

(c) The construction of a critical subsolution is different in the case k = 1 and k = 2.
When k = 1, it is very delicate to construct the subsolution near the trajectory: indeed,

the fact that the potential constructed in steps (a) and (b) is small only in C1 (and not in
C2) topology may create conjugate points along the closed trajectory, and this creates problem
when trying to construct solutions of (2.5) using the method of characteristics (since, as we will
see later, we need to ensure that the solution is at least C1,1 near the new trajectory). On the
other hand, once this problem is taken care of, then it is easy to extend this subsolution from
a neighborhood of the trajectory to the whole M by an interpolation procedure.
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When k = 2, the situation is completely reversed: while it is easy to construct the subso-
lution near the trajectory, extending it to the whole M is much more delicate and needs some
additional assumptions.

Let us start to describe more in detail our results.

7.1 The case k = 1

As explained above, the rough idea of choosing a time T � 1 such that π∗ (φH
T

(
x̄, du(x̄)

))
is

sufficiently close to x̄, and then “closing” the trajectory in one step, does work if one wants to
use a potential which is small in C1 topology.

However, we need to close the trajectory making sure that (P2) holds. Hence, we do the
following: First we wait enough time so that there are many points as close as we want to x̄,
and among them we choose two points z01 := π∗ (φH

t1

(
x̄, du(x̄)

))
and z02 := π∗ (φH

t2

(
x̄, du(x̄)

))
,

with t1 > t2, which are the closest ones, see Figure 2.

Sy
_

x
_

y
_

θy
_

Πr
0

( τ,0k-1)
_

Π
0

z 1
0

z 2
0

|z 1
-z 2 

|
3

0
   0 

Figure 2: We fix a time T � 1 and among all points on the orbit which are close to x̄ choose the two

closest points.

Then, we add a first potential to connect the orbit passing through z01 to the one passing
through z02 , and, while doing this, we make sure that the support of the potential does not
intersect any other point on the trajectory t 7→ π∗ (φH

t

(
x̄, du(x̄)

))
for 0 ≤ t ≤ t1: in this way,

since t1 > t2, this ensures that the orbit is now closed.
The connection of the trajectory can be done in two ways: either by using techniques of
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control theory to show that we can go from a point to a close one with a small potential [18,
Proposition 3.1], or by doing a construction “by hand” of the potential where we explicitly de-
fine our connecting trajectory (by taking a convex combination of the original trajectories and
a suitable time rescaling) and the potential [19, Proposition 2.1]. With respect to the “control
theory approach” used in [18, Proposition 3.1], this second construction has the advantage of
forcing the connecting trajectory to be “almost tangent” to the Aubry set, and this is crucial
for the proof of Theorem 7.5 below. However, as a counterpart, the second approach requires
more regularity assumptions on the Hamiltonian. We also mention that, in either cases, we still
need to use control theory techniques to add a second potential in order to ensure that (P2) is
satisfied [19, Lemma 5.4], see the potential V̄0 in Figure 3.

1/3

1/3

1

z2
0

z1
0

Supp (V0)
_

Supp (V1)
_

Π0 Πτ/2 Πτ
_ _

Π2τ
_

Π4τ
_

Cyl[0,   4τ]
 (z1;z2)_ 0 01/3

Figure 3: The potential V̄0 is constructed in two steps: first, on the left, V̄0 is used to connect the

trajectory passing through z01 to the one passing through z02 ; then, on the right, it is used to control

the action of the connecting curve, making sure that the trajectory remains closed. After that, by

adding to V̄0 a nonpositive potential V̄1 which vanishes together with his gradient along the connecting

trajectory ZV̄0

(
· ; z01

)
, we can also ensure that the characteristics associated to HV̄0+V̄1

do not cross

near ZV̄0

(
· ; z01

)
. In this way, using the theory of characteristics, we can construct a viscosity solution

of class C1,1 in a uniform neighborhood of ZV̄0

(
· ; z01

)
.

As mentioned before, since now we do not control the C2 norm of the potential V̄0, the
Hamilton-Jacobi equation associated to H+ V̄0 may have conjugate points along the connecting
trajectory.

This has the following issue: in order to construct a critical solution in a neighborhood of the
trajectory we would like to take a C1,1 critical subsolution for H (whose existence is provided
by Theorem 5.1) as boundary datum on the hyperplane Π0 in a neighborhood of z01 (see Figure
3), and then use the theory of characteristics to construct a solution for some positive time.

To make this strategy work, we add to H+ V̄0 a smooth nonpositive potential V̄1 which sat-
isfies V̄1 = ∇V̄1 = 0 along the connecting curve, and which is very “concave” in the transversal
directions. This has the feature of making the “curvature” of the Hamiltonian system suffi-
ciently negative near the connecting curve, so that the characteristics associated to H+ V̄0+ V̄1

will not cross there, see Figure 3 (we refer to [19, Section C.3] for more details on this delicate
construction).

Finally, a simple interpolation argument allows to make the subsolution global, see Figure
4. Hence, we obtain the following result [19, Theorem 1.2]:

Theorem 7.1. Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck with k ≥ 4. Then,
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_
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_
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Figure 4: The function û is obtained by interpolating (using a cut-off function) between ū (the C1,1

critical viscosity subsolution for H used as boundary datum on Π0) and ūV̄ (the viscosity solution for

HV̄0+V̄1
) inside the cylinder C1/5

[0,T5τ̄ ]

(
ẑ01 ; ẑ

0
2

)
. Since V1 ≤ 0, the function ū is a viscosity subsolution to

HV̄0+V̄1
(z,∇ū(z)) ≤ 0 outside C1/5

[0,T5τ̄ ]

(
ẑ01 ; ẑ

0
2

)
. So, we can find a nonpositive potential W̄ , small in

C1 topology and supported inside C1/5

[0,T5τ̄ ]

(
ẑ01 ; ẑ

0
2

)
, such that HV̄0+V̄1+W̄ (z,∇û(z)) ≤ 0 on the whole

manifold M .

for any ε > 0 there exists a potential V : M → R of class Ck−2, with ‖V ‖C1 < ε, such that
c[HV ] = c[H] and the Aubry set of HV is either an equilibrium point or a periodic orbit.

7.2 The case k = 2

In this situation, as explained before, we cannot simply choose a time T � 1 such that
π∗ (φH

T

(
x̄, du(x̄)

))
is sufficiently close to x̄ and then close the trajectory in one step. Instead,

we exploit some techniques introduced by Mai to prove the closing lemma in C1 topology.

7.2.1 The Mai Lemma

The Mai Lemma was introduced in [21] to give a new and simpler proof of the closing lemma
in C1 topology, first proved by Pugh [26, 27], and Pugh and Robinson [28].

Let {Ei}i∈N be a countable family of ellipsoids in Rk, that is, a countable family of compact
sets in Rk associated with invertible linear maps Pi : Rk → Rk such that

Ei =
{
v ∈ Rk | |Pi(v)| ≤ ‖Pi‖

}
.

For every y ∈ Rk, r > 0 and i ∈ N, we call Ei-ellipsoid centered at y with radius r the set
defined by

Ei(y, r) :=
{
y + rv | v ∈ Ei

}
=

{
y′ | |Pi(y

′ − y)| ≤ r‖Pi‖
}
.

We note that such an ellipsoid contains the open ball B(y, r). The Mai Lemma can be stated
as follows (see also Figure 5):

Lemma 7.2. Let N̂ ≥ 2 be an integer. There exist a real number ρ̂ ≥ 3 and an integer η > 0,
which depend on the family {Ei} and on N̂ only, such that the following holds: For every r̄ > 0
and every finite set Y = {w0, . . . , wJ} ⊂ Rk such that Y ∩Br̄ contains at least two points, there
exist η points ŵ1, . . . , ŵη in Rk and η positive real numbers r̂1, . . . , r̂η satisfying:
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Figure 5: An illustration of The Mai Lemma: there exist two points wj , wl, which can be connected

using a sequence of η− 1 small ellipsoids Ei

(
ŵi, r̂i/N̂

)
, so that none of the points wk (k 6= j, l) belongs

to Ei

(
ŵi, r̂i

)
for i = 1, . . . , η − 1 (in the figure above, we just drew two of the ellipsoids Ei

(
ŵi, r̂i

)
).

(i) there exist j, l ∈ {1, . . . , J}, with j > l, such that ŵ1 = wj and ŵη = wl;

(ii) ∀ i ∈ {1, . . . , η − 1}, Ei

(
ŵi, r̂i

)
⊂ Bρ̂r̄;

(iii) ∀ i ∈ {1, . . . , η − 1}, Ei

(
ŵi, r̂i

)
∩
(
Y \ {wj , wl}

)
= ∅;

(iv) ∀ i ∈ {1, . . . , η − 1}, ŵi+1 ∈ Ei

(
ŵi, r̂i/N̂

)
.

We refer the reader to [21] or the monograph [1] for a proof of the above result.

7.2.2 How to close a trajectory in C1 topology

Here we denote by u a viscosity solution to (2.5). In order to perform the argument below, we
will need to make some assumptions on u, but at the moment we try to be informal.

Given ε > 0 small, we fix a small neighborhood Ux̄ ⊂ M of x̄, and a smooth diffeomorphism
θx̄ : Ux̄ → Bn(0, 1), such that

θx̄(x̄) = 0n and dθx̄(x̄)
(
˙̄γ(0)

)
= e1.

Then, we choose a point ȳ = γ̄(t̄) ∈ A(H), with t̄ > 0, such that, after a smooth diffeomorphism
θȳ : Uȳ → Bn(0, 2), θȳ(ȳ) = (τ̄ , 0n−1) (the point ȳ is chosen in such a way that some controlla-
bility assumptions on the Hamiltonian system in a neighborhood of ȳ holds1, see [18, Section
5.2] for more details). We denote by ū : Bn(0, 2) → R the function given by ū(z) = u

(
θ−1
ȳ (z)

)
for z ∈ Bn(0, 2), and by H̄ : Bn(0, 2)×Rn → R the Hamiltonian associated with the H through
θȳ. Finally, we denote by Π0 the hyperplane passing through the origin which is orthogonal to
the vector e1 in Rn, Π0

r := Π0 ∩Bn(0, r) for every r > 0, and Πτ̄ := Π0 + τ̄ e1, where τ̄ ∈ (0, 1)
is small but fixed, see Figure 6.

1To be precise, this kind of construction should be used also in the case k = 1. Indeed, in order to find
a potential which closes the trajectory and such that (P2) holds, it is important to choose the point ȳ in a
suitable way, so that the action can be controlled near the connecting trajectory. However, in order to make
the presentation simpler and to focus more on the second part of the construction (i.e., how to build a critical
subsolution to get (P1)), in the previous section we have decided to neglect this point. Here instead, since one
of the main issues is exactly the connecting part, we prefer to be more rigorous.
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Figure 6: The point z0i (resp. z̃0i ) is obtained by considering the i-th intersection of the curve t 7→
Φ(t, ŵi) (resp. t 7→ Φ(t, ŵi+1)) with the hypersurface Sȳ. Then, we use [18, Proposition 5.2] to connect

z0i to z̃i.

Define the function Ψ : [0,+∞)×M → M by

Ψ(t, z) := π∗ (φH
t (z, du(z))

)
.

We now fix r̄ > 0 small enough, and we use the recurrence assumption on x̄ to find a time
Tr̄ > 0 such that Ψ(Tr̄, x̄) ∈ θ−1

x̄

(
Π0

r̄

)
, and we look at the set of points

W :=
{
w0 := θx̄(x̄), w1 := θx̄

(
γ̄(t′1)

)
, . . . , wJ := θx̄

(
γ̄(Tr̄)

)}
⊂ Π0 ∩ A ⊂ Π0 ' Rn−1 (7.1)

(see [18, Equation (5.18)]) obtained by intersecting the curve

[0, Tr̄] 3 t 7→ γ̄(t) := Ψ(t, x̄)

with θ−1
x̄

(
Π0

δ̄/2

)
, where r̄ � δ̄ � 1 (more precisely, δ̄ ∈ (0, 1/4) is provided by [18, Proposition

5.2]). We also consider the maps Φi : Π0
δi

→ Π0
δ̄/2

corresponding to the i-th intersection of

the curve t 7→ π∗
(
φH
t (θ−1

x̄

(
w), du(θ−1

x̄ (w))
))

with θ−1
ȳ (Π0

δ̄/2
) (see [18, Equation (5.14)] and

thereafter).
If we assume that u is C2 at the point x̄ (we will properly explain later what this means),

then all the maps Φi are C1. Hence, we define the ellipsoids Ei associated to Pi = DΦi(0n−1),
and we apply Lemma 7.2 to Y = W with N ' 1/ε. In this way we get a sequence of points
ŵ1, . . . , ŵη in Π0

ρ̂r̄ connecting wj to wl, where ρ̂ ≥ 3 is fixed and depends on ε but not on r̄.

Then, we use the flow map to send the points θ−1
x̄ (ŵi) onto the “hyperplane” Sȳ := θ−1

ȳ

(
Π0

δ̄/2

)
in the following way (see [18, Subsection 5.3, Figure 5]):

z0i := θȳ (Φi(ŵi)) , zi := P(z0i ), z̃0i := θȳ (Φi(ŵi+1)) , z̃i := P(z̃0i ), (7.2)
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where P is the Poincaré mapping from Π0
1/2 to Πτ̄

1 (see [18, Lemma 5.1(ii)]).
We have now reduced ourselves to the following problem: connect two trajectories who are

r/N apart, knowing that the support of the potential has to be contained inside a cylinder of
width r, see Figure 7.
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Figure 7: By using first [18, Proposition 3.1] on [0, τ̄/2] we can add a first potential to connect the

trajectories, and then, by [19, Proposition 4.1] on [τ̄ /2, τ̄ ], we can add a second potential to fit the

action without changing the starting and final point of the trajectory.

By using control theory techniques, we then find C2-small potentials Vi, supported inside
some suitable disjoints cylinders Ci, which allow to connect z0i to z̃i with a control on the
action. Then the closed curve γ̃ : [0, tf ] → M is obtained by concatenating γ1 : [0, t̃η] → M
with γ2 : [t̃η, tf ] → M , where

γ2(t) := π∗
(
φH
t−t̃η

(
θ−1
ȳ (z0η), du

(
θ−1
ȳ (z0η)

)))
connects θ−1

ȳ (z0η) to x,

while γ1 is obtained as a concatenation of 2η − 1 pieces: for every i = 1, . . . , η − 1, we use the
flow (t, z) 7→ π∗ (φH+V

t (z, du(z))
)
to connect θ−1

ȳ (z0i ) to θ−1
ȳ (z̃i) on a time interval [t̃i, t̃i + T f

i ],

while on [0, t̃1] and on [ti + T f
i , ti+1] (i = 1, . . . , η − 1) we just use the original flow (t, z) 7→

π∗ (φH
t (z, du(z))

)
to send, respectively, θ−1

x̄ (ŵ1) onto θ−1
ȳ (z01) and θ−1

ȳ (z̃i) onto θ−1
ȳ (z0i+1). (See

[18, Subsection 5.3] for more detail.) Moreover, since u is a viscosity solution we have that the
relation (2.6) holds along all curves t 7→ π∗ (φH

t (ŵi, du(ŵi))
)
, and this allows us to control the

action and ensure that property (P2) holds.
Then, using the characteristic theory for solutions to the Hamilton-Jacobi equation we

construct C1,1 viscosity solutions ūi for the new Hamiltonian inside Ci.
Finally, to conclude we need to “glue” these function with ū outside of Ci. With respect to

the case k = 1 this is much more delicate, since one needs to control the closeness of ūi to ū up
to the second order [18, Subsection 5.5]. Still, this can be done [18, Lemma 5.5], and then the
“gluing” can be performed as shown in Figure 8.

7.2.3 Statement of the result

In order to properly state the result described above, let us first formalize the concept of a
C1,1 function being C2 at one point. Let v : V → R be a function of class C1,1 in an open
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Figure 8: The function ũi is obtained by interpolating (using a cut-off function) between ū

(the viscosity solution for H̄) and ūi (the viscosity solution for H̄V̄i
) inside the “cylinder” C′

i :=

C
((
z0i ,∇ū(z0i )

)
; T3τ̄ (z

0
i ); r̂i/4

)
. Then, by adding a new potential Ṽi, small in C2 topology and sup-

ported inside C′
i ∩ {z = (z1, ẑ) | z1 ∈ [τ̄ , 3τ̄ ]}, we can ensure that H̄V̄i+Ṽi

(z,∇ũi(z)) ≤ 0 on the whole

ball Bn(0, 2). Since the cylinders C′
i are disjoint, we can repeat this construction for i = 1, . . . , η− 1 to

find ũ : Bn(0, 2) → R and Ṽ : Bn(0, 2) → R so that (P1) and (P2) hold.

set V ⊂ M . Thanks to Rademacher’s Theorem, its differential dv is differentiable almost
everywhere in M . Let Dom(Hessgv) ⊂ V be the set of points where dv is differentiable. Then,
for every x ∈ Dom(Hessgv), the function v is two times differentiable at x, and its Hessian with
respect to the metric g is the symmetric bilinear form on TxM defined as

Hessgv(x)[ξ, η] :=
〈(

∇g
ξdv

)
(x), η

〉
∀ ξ, η ∈ TxM,

where ∇g denotes the covariant derivative with respect to g. We call generalized Hessian of v
at x ∈ V the set of symmetric bilinear form on TxM defined by

Hessgv(x) := conv

({
lim
k→∞

Hessgv(xk) |xk → x, xk ∈ Dom(Hessgv)
})

,

where conv denotes the convex hull, and the limit is taken in the fiber bundle of symmetric
bilinear forms on the fibers of TM . By construction, Hessgv(x) is a nonempty compact convex
set of symmetric bilinear forms on TxM for any x ∈ M . Then, the informal sentence “v is C2

at a point x” means that Hessgv(x) is a singleton. (This definition is motivated by the fact
that a C1,1 function is C2 on an open set V if and only if its generalized Hessian is a singleton
at every point of V.)

Recall that, by Theorem 5.3, C1 viscosity solutions are C1,1. So it make sense to talk about
their generalized Hessian. The strategy described in the previous section allows to prove the
following result [18, Theorem 2.1]:

Theorem 7.3. Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck with k ≥ 2. Assume
that there are a recurrent point x̄ ∈ A(H), a critical viscosity subsolution u : M → R, and an
open neighborhood V of O+

(
x̄
)
such that the following properties are satisfied:
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(i) u is of class C1 in V;

(ii) H(x, du(x)) = c[H] for every x ∈ V;

(iii) Hessgu(x̄) is a singleton.

Then, for any ε > 0 there exists a potential V : M → R of class Ck, with ‖V ‖C2 < ε, such that
c[HV ] = c[H] and the Aubry set of HV is either an equilibrium point or a periodic orbit.

Recalling that constant functions are viscosity solutions for Mañé Lagrangians, see Example
2.4, as a corollary we get the following closing-type result:

Corollary 7.4. Let X be a vector field on M of class Ck with k ≥ 2. Then for every ε > 0
there is a potential V : M → R of class Ck, with ‖V ‖C2 < ε, such that the Aubry set of HX +V
is either an equilibrium point or a periodic orbit.

7.2.4 Equivalence between the Mañé conjecture and Conjecture 6.4

Motivated by proving the equivalence between the Mañé conjecture and the generic smoothness
of smooth critical subsolutions (the fact that the former implies the latter follows from Theorem
5.4, so we only need to show the converse implication), we want to address the case when we
only have a sufficiently smooth subsolution.

The strategy used before to prove Theorem 7.3 does not easily generalize to the case of
subsolutions. Indeed, if u is just a subsolution then the relation (2.6) holds only along curves in
the Aubry set, and so in particular it may fail along the curves t 7→ π∗ (φH

t (ŵi, du(ŵi))
)
(since

the points ŵi may not be in the Aubry set). However, as shown before, the fact that (2.6) holds
along such curves was crucial in the proof of Theorem 7.3 to control the action and ensure the
validity of (P2).

Hence, we use instead the following strategy: If u is a critical subsolution which is smooth
in a neighborhood V of O+(x̄), we define the potential V0 : V → R by

V0(x) := −H
(
x, du(x)

)
∀x ∈ V,

so that u becomes a solution of

HV0

(
x, du(x)

)
= 0 ∀x ∈ V. (7.3)

In this way we can apply the strategy explained before to find a small potential Vε which allows
to close the orbit O+

(
x̄
)
. However, the problem is that V0 is not small, so to conclude the proof

we need to replace V0 by another potential V1 : M → R, which has small C2-norm and such
that “the Aubry sets of H + V0 + Vε and H + V1 + Vε coincide” (see [18, Subsection 6.2]).

This construction is much easier in dimension 2. Indeed, the fact that x̄ is recurrent implies
that, for every t ∈ [0, t̄η], there are points of A(H) which are arbitrarily close to γ̄(t) and
“transversal” to γ̄. In two dimension this implies that d2V0 = 0 on Γ̄1, and the construction of
V1 becomes pretty easy [18, Section 6]. On the hand, in higher dimension we can only deduce
that d2V0 is small in the “directions tangent to A(H)”. This fact creates much more difficulties,
since we will need to know that the connecting trajectories can be chosen to belong to “the
tangent space to A(H)”. To do this, we need a version of Lemma 7.2 with constraints (so
that the connecting points ŵi lie almost in a fixed subspace) to be able to refine our connect-
ing trajectories. We refer to [19, Sections 3 and 4] for more details on this delicate construction.

In this way, we finally obtain the following result [19, Theorem 1.1]:
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Theorem 7.5. Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck with k ≥ 4. Assume
that there are a recurrent point x̄ ∈ A(H), a critical viscosity subsolution u : M → R, and an
open neighborhood V of O+

(
x̄
)
such that u is at least Ck+1 on V. Then, for any ε > 0 there

exists a potential V : M → R of class Ck−1, with ‖V ‖C2 < ε, such that c[HV ] = c[H] and the
Aubry set of HV is either an equilibrium point or a periodic orbit.
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