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1. Introduction

1.1. Brunn-Minkowski and Prékopa-Leindler inequalities. Writing |X| to denote Lebesgue

measure of a measurable subset X of Rn (with |∅| = 0), the Brunn-Minkowski-Lusternik inequality

states that if α, β > 0 and A,B,C are bounded measurable subsets of Rn with αA+ βB ⊂ C,1 then

(1.1) |C|
1
n ≥ α|A|

1
n + β|B|

1
n .

Also, in the case when |A| > 0 and |B| > 0, equality holds if and only if there exist a convex body

K (that is, a convex compact set with nonempty interior), constants a, b > 0, and vectors x, y ∈ Rn,

such that αa+ βb = 1, αx+ βy = 0, and

(1.2) A ⊂ aK + x, B ⊂ bK + y, |(aK + x)\A| = 0, |(bK + y)\B| = 0, and |K∆C| = 0,

where K∆C stands for the symmetric difference between K and C. We note that even if A and B

are Lebesgue measurable, the Minkowski linear combination αA+ βB may not be measurable (while

αA + βB is measurable if A and B Borel). We refer to the monograph [49] for a detailed exposition

on this beautiful topic.

The Prékopa-Leindler inequality is a functional generalization of the classical Brunn-Minkowski

inequality. In order to state it precisely, we recall that a function f : Rn → R≥0 is said to be log-

concave if f ((1− λ)x+ λy) ≥ f(x)1−λf(y)λ for all x, y ∈ Rn and λ ∈ (0, 1); in other words, f is

log-concave if it can be written as f = e−ϕ for some convex function ϕ : Rn → (−∞,∞].

Theorem 1.1 (Prékopa, Leindler; Dubuc). Let λ ∈ (0, 1) and f, g, h : Rn → R≥0 be measurable

functions such that

(1.3) h ((1− λ)x+ λy) ≥ f(x)1−λg(y)λ ∀x, y ∈ Rn.

Then

(1.4)

∫
R
h ≥

(∫
R
f

)1−λ(∫
R
g

)λ
.

Also, equality holds if and only if there exist a > 0, w ∈ Rn, and a log-concave function h̃, such that

h = h̃, f = a−λh̃(· − λw), g = a1−λh̃(·+ (1− λ)w) almost everywhere.

Note that, if f, g, h are the indicator functions of some sets A,B,C, then Theorem 1.1 corresponds

exactly to the Brunn-Minkowski inequality.

1By convention, if one of the sets A or B is empty, then αA+ βB := ∅.
1
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The Prékopa-Leindler inequality, due to Prékopa [45] and Leindler [41] in dimension one, was

generalized in Prékopa [46] and Borell [9] to any dimension (cf. Marsiglietti [43], Bueno, Pivovarov

[13], Brascamp, Lieb [11], Kolesnikov, Werner [40], Bobkov, Colesanti, Fragalà [8]). The case of

equality is characterized by Dubuc [19]. Various applications are provided and surveyed in Gardner

[33].

1.2. Stability questions. As discussed above, optimizers are known both for the Brunn-Minkowski

and Prékopa-Leindler inequalities. However, in spite of knowing the equality cases for these inequali-

ties, one might ask about what geometric properties can be deduced if one knows that the equality is

‘almost’ attained. This is what one usually refers to as stability estimates.

Recently, various important stability results about geometric and functional inequalities have been

obtained. For example, Fusco, Maggi, Pratelli [32] proved an optimal stability version of the isoperi-

metric inequality. This result was extended to the anisotropic isoperimetric inequality and to the

Brunn-Minkowski inequality for convex sets by Figalli, Maggi, Pratelli [27, 28] (for the latter prob-

lem, the current best estimate is due to Kolesnikov, Milman [39]). One can further mention, for in-

stance, stronger versions of the functional Blaschke-Santaló inequality, provided by the work of Barthe,

Böröczky, Fradelizi [6]; of the Borell-Brascamp-Lieb inequality, provided by Ghilli, Salani [34], Rossi,

Salani [47, 48] and Balogh, Kristály [4]; of the Sobolev inequality by Figalli, Zhang [30] (extending

Bianchi, Egnell [7] and Figalli, Neumayer [29]), Nguyen [44] and Wang [50]; of the log-Sobolev in-

equality by Gozlan [35]; and of some related inequalities by Caglar, Werner [14], Cordero-Erausquin

[18] and Kolesnikov, Kosov [38]. An “isomorphic” stability result for the Prekopa-Leindler inequality

for log-concave functions in terms of the transportation distance has been obtained by Eldan [20,

Lemma 5.2].

1.2.1. Stability for Brunn-Minkowski. About the specific case of the Brunn–Minkowski inequality

(1.1), the stability question is rather delicate. The first contribution in the direction of stability was

made by Freiman [31], although indirectly, as a consequence of his celebrated 3k − 4 theorem in

dimension n = 1 (see also Christ [17]):

Theorem 1.2 (Freiman). Let A,B,C ⊂ R be bounded measurable sets satisfying A + B ⊂ C and

|C| < |A|+ |B|+ ε for some ε ≤ min{|A|, |B|}. Then there exist intervals I, J ⊂ R such that A ⊂ I,

B ⊂ J , |I\A| < ε and |J\B| < ε.

In the planar case, van Hintum, Spink, Tiba [37] have found the optimal stability version of (1.1).

Theorem 1.3 (van Hintum, Spink, Tiba). For τ ∈ (0, 1
2 ] and λ ∈ [τ, 1 − τ ], let A,B,C be bounded

measurable subsets of R2 satisfying (1− λ)A+ λB ⊂ C and∣∣∣|A| − 1
∣∣∣+
∣∣∣|B| − 1

∣∣∣+
∣∣∣|C| − 1

∣∣∣ < ε

for some ε ≤ e−M(τ), with M(τ) > 0 depending only on τ . Then there exists a convex body K, with

A ⊂ K + x and B ⊂ K + y for some x, y ∈ R2, such that

(1.5) |(K + x)\A|+ |(K + y)\B|+ |K∆C| < cτ−
1
2 ε

1
2

for an absolute constant c > 0.

We note that, for n ≥ 2, in (1.5) one cannot have an estimate with better error term, both in terms

of the order of τ and ε. In higher dimensions, the only available quantitative stability version of the

Brunn-Minkowski inequality has been established by Figalli, Jerison [24].
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Theorem 1.4 (Figalli, Jerison). For τ ∈ (0, 1
2 ] and λ ∈ [τ, 1− τ ], let A,B,C be bounded measurable

subsets of Rn, n ≥ 3, with (1− λ)A+ λB ⊂ C and∣∣∣|A| − 1
∣∣∣+
∣∣∣|B| − 1

∣∣∣+
∣∣∣|C| − 1

∣∣∣ < ε

for some ε < e−An(τ), with An(τ) := 23
n+2

n3n | log τ |3n

τ3n
. Then there exists a convex body K, with

A ⊂ K + x and B ⊂ K + y for some x, y ∈ Rn, such that

(1.6) |(K + x)\A|+ |(K + y)\B|+ |K∆C| < τ−Nnεγn(τ)

where γn(τ) = τ3
n

23n+1n3n | log τ |3n
and Nn > 0 depends only on n.

Remark 1.5. We list here some result for particular cases of Theorem 1.4.

• When A = B, van Hintum, Spink, Tiba [36] obtained the optimal stability version, where the

error term in (1.6) is of the from cnτ
− 1

2 ε
1
2 with cn > 0 depending only on n. Their result

improves the previous contributions [22, 23, 25].

When at least one of the sets A or B is convex, several results have been obtained, as described below.

However, it is important to observe that all these results measure stability by controlling the symmetric

difference between A and a translate of B. This is weaker than the statement in Theorem 1.4, where

one finds a convex set K that contains both A and B (up to a translation) with a control on the missing

volume. Here are some important results.

• When either A or B is convex, an optimal stability estimate has been proved by Barchiesi,

Julin [5]. This extends earlier results about the case where both A and B are convex [27, 28],

or when either A or B is the unit ball [26].

• If A and B are convex and n is large, then Kolesnikov, Milman [39] provided an estimate on

|A∆(x + B)| with a bound of the form c n2.75τ−
1
2 ε

1
2 , for some absolute constant c. Actually,

we note that the term n2.75 can be improved to n2.5+o(1) by combining the general estimates of

Kolesnikov, Milman [39, Section 12] with the bound no(1) on the Cheeger constant of a convex

body in isotropic position, that follows from Chen’s work [16] on the Kannan-Lovasz-Simonovits

conjecture.

1.2.2. Stability for Prékopa-Leindler. With respect to the Brunn-Minkowski inequality, until now

much less was known about stability for the Prékopa Leindler inequality, except for some results

in the case of log-concave functions (see the discussion below). In this paper, we prove the first

quantitative stability result for the Prékopa-Leindler inequality on arbitrary functions.

Theorem 1.6. Given τ ∈ (0, 1
2 ] and λ ∈ [τ, 1−τ ], let f, g, h : Rn → R≥0 be measurable functions such

that h ((1− λ)x+ λy) ≥ f(x)1−λg(y)λ for all x, y ∈ Rn, and

(1.7)

∫
Rn
h < (1 + ε)

(∫
Rn
f

)1−λ(∫
Rn
g

)λ
for some ε > 0.

There are a computable dimensional constant Θn and computable constants Qn(τ) and Mn(τ) depend-

ing only on n and τ ,2 such that the following holds: If 0 < ε < e−Mn(τ), then there exist h̃ log-concave

and w ∈ Rn such that∫
Rn
|h− h̃|+

∫
Rn
|aλf − h̃(·+ λw)|+

∫
Rn
|aλ−1g − h̃(·+ (λ− 1)w)| < εQn(τ)

τΘn

∫
Rn
h,

where a =
∫
Rn g/

∫
Rn f .

2At the end of the proof of Theorem 1.6 (see (5.40)), we indicate explicit values for the constants Mn(τ), Qn(τ),Θn.
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Remark 1.7. If f, g, h are a priori assumed to be log-concave, then Theorem 1.6 was established by

Ball, Böröczky [3] and Böröczky, De [10] in the case n = 1 (in this case, εQn(τ)/τΘn in Theorem 1.6

can be essentially replaced by (ε/τ)
1
3 ; see also Theorem 2.1), and by Böröczky, De [10] in the case

n ≥ 2 (in that case, εQn(τ)/τΘn in Theorem 1.6 can be replaced by (ε/τ)
1
19 ). Further, we note that

Bucur, Fragalà [12] proved another interesting stability version of the Prékopa-Leindler inequality for

log-concave functions, bounding the distance of all one dimensional projections.

Theorem 1.6 is probably quite far from the optimal version, that one could conjecture to provide a

bound of the form C(n, τ)ε
1
2 . In this direction, already for n = 1, Example 1.8 below shows that the

error term in Theorem 1.6 is at least cε
1
2 .

At first sight, this is perhaps surprising, because in the case of Freiman’s result (Theorem 1.2)

the error is of order ε, which shows that the Brunn–Minkowski and Prékopa-Leindler inequalities

exhibit different behaviors for n = 1. Nonetheless, our proof of Theorem 1.6 shows that the Prékopa–

Leindler inequality in dimension n shares some - but not all - of the geometric aspects of the Brunn–

Minkowski inequality in dimension n+ 1, which explains, at least partially, the difference between the

two exponents.

Another important difference between the stability version of the Prékopa-Leindler and the Brunn-

Minkowski inequality is shown by the following observation: when A = B, the convex set K in

Theorem 1.4 coincides with the convex hull of A; on the other hand, for f = g, the function h̃ in

Theorem 1.6 can be quite far from the log-concave hull of f (see Example 1.9 below). In other words,

there is no direct geometric characterization of the function h̃ (see also Remark 1.10 below).

As mentioned above, the following example shows that the error term in Theorem 1.6 is at least cε
1
2 .

Example 1.8. There is an absolute constant c ∈ (0, 1) such that the following holds. For any ε� 1,

there exist log-concave probability densities f, g on R such that

(1.8)

∫
R

sup
z= 1

2
x+ 1

2
y

f(x)
1
2 g(y)

1
2 dz < 1 + ε,

while

(1.9)

∫
R
|g(x)− f(x+ w)| dx ≥ cε

1
2 for any w ∈ R.

Proof. We fix f(x) = e−πx
2

and an odd C2 function ϕ on R satisfying suppϕ ⊂ [−1, 1] and maxϕ = 1.

Note that, since ϕ is odd,
∫
R fϕ = 0.

Given η � 1 to be fixed later, we consider g = (1 + ηϕ)f so that
∫
R g = 1. We note that there

exists a constant c̃ ≥ 2 such that

|[log(1 + ηϕ)]′| =

∣∣∣∣η · ϕ′

1 + η ϕ

∣∣∣∣ ≤ c̃η(1.10)

|[log(1 + ηϕ)]′′| =

∣∣∣∣η · ϕ′′(1 + η ϕ)− η(ϕ′)2

(1 + η ϕ)2

∣∣∣∣ ≤ c̃η(1.11)

for any η ∈ (0, 1
2). In particular, since (log f)′′ = −2π, it follows that g is log-concave provided

η � 1/c̃.

Note now that, since g(x) = f(x) = e−πx
2

for |x| ≥ 1, there exists a constant c0 > 0 such that

(1.12)

∫
R
|g(x)− f(x+ w)| dx ≥

∫ ∞
1
|e−πx2 − e−π(x+w)2 | dx ≥ c0 min{|w|, 1}.

On the other hand, we have∫
R
|g(x)− f(x+ w)| dx ≥

∫
R
|g(x)− f(x)| − |f(x)− f(x+ w)| dx ≥ η

∫
R
f(x)|ϕ(x)| dx− c̄|w|.
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Hence, combining this last estimate with (1.12), we deduce the existence of a constant c1 > 0 such

that

(1.13)

∫
R
|g(x)− f(x+ w)| dx ≥ c1η ∀w ∈ R.

Finally, we estimate
∫
R h for h(z) = sup2z=x+y

√
f(x)g(y). To this aim, consider the auxiliary

function h̃(z) =
√
f(z)g(z). Thanks to Hölder inequality, this satisfies

∫
R h̃ ≤ 1.

Since f and g are log-concave and g(x) = f(x) for |x| ≥ 1, for any z ∈ R, there exists a point yz ∈ R
such that h(z) =

√
f(2z − yz)g(yz). Also, yz = z if |z| ≥ 1, and |yz| ≤ 1 if |z| ≤ 1.

We now observe that, for any z ∈ R, the function ψz(y) = log
√
f(2z − y)g(y) satisfies ψz(z) =

log h̃(z), ψz(yz) = log h(z) , and ψz has a maximum at yz. Then, recalling (1.10), we have

0 = ψ′z(yz) = 2π(z − yz) + 1
2 [log(1 + ηϕ)]′(yz) ⇒ |z − yz| ≤ c̃η.

Hence, since |ψ′′z | is bounded, a Taylor expansion yields (recall that ψ′z(yz) = 0)

log
h(z)

h̃(z)
= ψz(yz)− ψz(z) ≤ c2η

2 ∀ z ∈ R,

for some constant c2 > 1, and we conclude that∫
R
h ≤ ec2η2

∫
R
h̃ ≤ ec2η2 < 1 + 2c2η

2 for η � 1.

Choosing η := (2c2)−
1
2 ε

1
2 , (1.13) and the equation above prove the result. �

The next example shows that, even in the case f = g, the function h̃ provided by Theorem 1.6

cannot be chosen to be the log-concave hull of f (i.e., the smallest log-concave function above f).

Example 1.9. For any ε > 0 there exist f, h : R→ R≥0 measurable functions such that h
(

1
2x+ 1

2y
)
≥

f(x)
1
2 f(y)

1
2 for all x, y ∈ Rn, ∫

R
h < (1 + ε)

∫
R
f,

but ∫
R

(F − f) ≥ 1

2

∫
R
f,

where F denotes the log-concave hull of f .

Proof. Given A� 1, let f be defined as

f(x) =

{
e−x on [0, 1] ∪ [2A, 2A+ 1]

0 otherwise

and set h(z) := supz= 1
2
x+ 1

2
y f(x)

1
2 f(y)

1
2 . Then

h(x) =

{
e−x on [0, 1] ∪ [A,A+ 1] ∪ [2A, 2A+ 1]

0 otherwise

and therefore ∫
R
h < (1 + ε)

∫
R
f

with ε ' e−A � 1. On the other hand, the log-concave hull of f is given by

F (x) =

{
e−x on [0, 2A+ 1]

0 otherwise
.
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Hence, for A� 1, ∫
R

(F − f) =

∫ 2A

1
e−xdx = e−1 − e−2A ≥ 1

2

(
1− e−1

)
=

1

2

∫
R
f,

as desired. �

Remark 1.10. The argument used in Example 1.9 emphasizes a key difference between the Brunn-

Minkowski inequality and the Prékopa-Leindler inequality: while in the Brunn-Minkowski inequality

only arithmetic means of points are considered, in Prékopa-Leindler one considers points z that are the

arithmetic mean of x and y, but then the value of h(z) is obtained as a geometric mean of the values of

f(x) and g(y). This key difference is the source of many new challenges when proving stability results

for Prékopa-Leindler.

1.3. Outline of the proof of Theorem 1.6. We now sketch the structure of the proof of Theo-

rem 1.6, which is split in four main steps. The first three steps deal with the one-dimensional case.

Then, in Step 4, we exploit both the one-dimensional case and Theorem 1.4 to obtain the higher-

dimensional result.

(1) We first deal with the case of symmetrically rearranged functions, and prove the result in

this case. Note that, if f, g, h satisfy (1.3) and (1.7), then also their rearrangements f∗, g∗, h∗

satisfy the same estimates.

(2) With the knowledge that the result holds for f∗, g∗, h∗, we deduce conditions on the distribution

functions t 7→ H1({f > t}), H1({g > t}). In particular, from (1.7) applied to f, g, h, we use a

stability version of the Brunn–Minkowski inequality in one-dimension in order to prove that

f and g are close to “bubble-shaped” functions (i.e., that are nondecreasing on an interval

(−∞, a) and nonincreasing on (a,+∞)).

Calling φ and ψ such “bubble-shaped” functions, we define

λ(z) = sup
(1−λ)x+λy=z

φ(x)1−λψ(y)λ.

This function is measurable (thanks to the fact that φ and ψ are “bubble-shaped”), and an

analysis similar to the proof of Proposition 2.6 shows that φ, ψ, λ satisfy both (1.3) and (1.7)

(but for some smaller power of ε).

(3) Denote

{x ∈ R : φ(x) > t} = (af (t), bf (t)), {x ∈ R : ψ(x) > t} = (ag(t), bg(t)).

Then we use the almost-optimality of φ, ψ, λ to prove that, on a large set, a four-point inequality

(in the same spirit of [24, Lemma 3.6 and Remark 4.1]) is satisfied by the functions Bf (T ) =

bf (eT ) and Bg(T ) = bg(e
T ), and a ‘reversed’ version of such four-point inequality holds for

Af (T ) = af (eT ) and Ag(T ) = ag(e
T ).

As a consequence, we are able to prove that Af ,Ag are both L1-close to convex functions

mf ,mg on a large interval. Analogously, Bf ,Bg are L1-close to concave functions nf , ng on

the same large interval. Thanks to these facts, we show that there exist log-concave function

φ̃ and ψ̃ such that {φ̃ > t} = (mf (log t), nf (log t)) and {ψ̃ > t} = (mg(log t), ng(log t)) on a

large interval.

Finally, we translate the properties ofAf ,Ag,Bf ,Bg,mf ,mg, nf , ng into a bound on ‖φ−φ̃‖1,
which can be thus made small. By Proposition 2.6, we conclude the one-dimensional case of

Theorem 1.6.

(4) In order to obtain the result also in higher dimensions, we consider the hypographs of the

logarithms of f, g, h. Denoting these sets by Sf ,Sg,Sh, respectively, we show that they satisfy
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the Brunn–Minkowski condition Sh ⊃ (1−λ)Sf+λSg. In particular, due to the one-dimensional

case, we can estimate how level sets of f, g, h are close to each other, in terms of volume. This

enables us to use the main theorem in [24] on the sets Sf ,Sg,Sh, which in turn produces a

natural algorithm to construct log-concave functions close to f, g, h.

The rest of the manuscript is organized as follows: in Section 2, we prove tail estimates that allow

us to suitably truncate the functions under consideration, as well as estimate on the size of level

sets. This allows us to perform a set of preliminary reductions of the one-dimensional problem. In

Section 3, we prove Theorem 1.6 in the case when n = 1 and f, g, h are symmetrically decreasing,

while in Section 4 we deal with the general one dimensional case. Finally, in Section 5, we prove the

theorem in arbitrary dimension.

Throughout the manuscript, we will use the notation Hk for the k-dimensional Hausdorff measure

of a set. Sometimes we shall use c > 0 to denote an absolute (computable) constant, whose exact

value might change from one part of the paper to the next, and even from line to line. We will

also occasionally use a subscript, e.g. cn, to indicate dependence of the constant on a dimensional

parameter. Moreover, we write a . b whenever a/b is bounded from above by an absolute and

explicitly computable constant, and we shall use a subscript a .n b to emphasize the dependence of

the bound on the dimension considered. Finally, we write a ' b if both a . b and b . a hold.

Acknowledgments. The first author is supported by the NKFIH Grant 132002, and gratefully acknowl-

edges the perfect working enviroment at ETH Zürich where the paper has been completed. The second

and third author are supported by the European Research Council under the Grant Agreement No.

721675 “Regularity and Stability in Partial Differential Equations (RSPDE).”

2. Tail estimates in the case of almost equality in the one-dimensional

Prékopa-Leindler inequality

A useful tool for our study is the symmetric decreasing rearrangement. For a bounded function

ϕ : R→ R≥0 with 0 <
∫
R ϕ <∞, we define its symmetric decreasing rearrangment ϕ∗ : R→ R≥0 by

ϕ∗(t) = inf
{
α : H1({ϕ ≥ α}) ≤ 2|t|

}
.

In particular, ϕ∗ is an even function that is monotone decreasing on [0,∞), ϕ∗(0) is the essential

supremum of ϕ, and

(2.1) H1({ϕ ≥ α}) = H1({ϕ∗ ≥ α})

for any α > 0 with H1({ϕ ≥ α}) > 0. In particular, the level sets {ϕ∗ ≥ α} are symmetric segments,

and the layer cake representation yields
∫
R ϕ =

∫
R ϕ
∗.

Symmetric decreasing rearrangement works very well for the Prékopa-Leindler inequality. For λ ∈
(0, 1) and bounded functions f, g, h : R→ R≥0 with positive integral, if h((1−λ)x+λy) ≥ f(x)1−λg(y)λ

for any x, y ∈ R, then the one-dimensional Brunn-Minkowski inequality yields h∗((1 − λ)x + λy) ≥
f∗(x)1−λg∗(y)λ for any x, y ∈ R. Also, if ϕ is log-concave, then the same holds for ϕ∗.

The main goal of this section is to show that if we have almost equality in the one-dimensional

Prékopa-Leindler equality, then the functions f, g, h in (1.7) with positive integral satisfy similar tail

estimates like log-concave functions (here ϕ : R → R≥0 has positive integral if 0 <
∫
ϕ < ∞). First

we review the related properties of log-concave functions. Let us recall the following estimate from

[3, 10]:

Theorem 2.1 (Ball, Böröczky, De). For τ ∈ (0, 1
2 ] and λ ∈ [τ, 1 − τ ], let f, g, h : R → R≥0 be log-

concave functions with positive integral such that h ((1− λ)x+ λy) ≥ f(x)1−λg(y)λ for all x, y ∈ R,
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and

(2.2)

∫
R
h < (1 + ε)

(∫
R
f

)1−λ(∫
R
g

)λ
for some ε ∈ (0, 1). Then there exists w ∈ R such that∫

R
|aλf − h(·+ λw)|+

∫
R
|aλ−1g − h(·+ (λ− 1)w)| < c

( ε
τ

) 1
3 | log ε|

4
3

∫
Rn
h,

where a =
∫
R g/

∫
R f , and c > 1 is an absolute constant.

Next, we prove some basic properties of log-concave functions. We observe that if ϕ is log-concave

and 0 <
∫
R ϕ <∞, then the level sets are segments, ϕ is bounded, and its essential supremum coincides

with its supremum ‖ϕ‖∞.

Lemma 2.2. Let ϕ be a log-concave function with 0 <
∫
R ϕ <∞. Then:

(i): H1({ϕ > ‖ϕ‖∞ − s}) ≥ ‖ϕ‖1
‖ϕ‖2∞

s provided 0 < s < ‖ϕ‖∞;

(ii): H1({ϕ > t}) ≤ 2‖ϕ‖1
‖ϕ‖∞

∣∣∣log t
‖ϕ‖∞

∣∣∣ provided 0 < t ≤ 1
2 ‖ϕ‖∞;

(iii):
∫
{ϕ<t} ϕ ≤

2‖ϕ‖1
‖ϕ‖∞ t provided 0 < t ≤ 1

2 ‖ϕ‖∞.

Proof. Using symmetric decreasing rearrangement we can assume that ϕ is even. Also, by scaling, we

may also suppose that ϕ(0) = ‖ϕ‖∞ =
∫
R ϕ = 1.

For (i), let x0 = sup{x : ϕ(x) > 1 − s} = 1
2 H

1({ϕ > 1 − s}), and choose γ > 0 such that

1− s = e−γ x0 . It follows from the log-concavity and the evenness of ϕ that ϕ(x) ≤ 1 if |x| ≤ |x0|, and

ϕ(x) ≤ e−γ |x| if |x| ≥ |x0|. Also, since e−γ x0 > 1− γ x0 we get 1
γ <

x0
s , thus

1 =

∫
R
ϕ ≤ 2x0 + 2

∫ ∞
x0

e−γ x dx = 2x0 +
2 e−γ x0

γ
< 2x0

(
1 +

1− s
s

)
=

2x0

s
.

For (ii) and (iii), let x1 = sup{x : ϕ(x) > t} = 1
2 H

1({ϕ > t}), and choose δ > 0 such that t = e−δ x1 .

It follows again by log-concavity and evenness that ϕ(x) ≥ e−δ |x| if |x| ≤ |x1|, and ϕ(x) ≤ e−δ |x| if

|x| ≥ |x1|.
Then, on the one hand, we have

(2.3)
1

2
≥
∫ x1

0
e−δ x dx =

1− e−δ x1
δ

=
1− t
δ
≥ 1

2δ
=

x1

2| log t|
,

verifying (ii). On the other hand, using (2.3) we get∫
{ϕ<t}

ϕ ≤ 2

∫ ∞
x1

e−δ x dx =
2e−δ x1

δ
=

2tx1

| log t|
≤ 2t,

verifying (iii). �

Given ε ∈ (0, 1], τ ∈ (0, 1
2 ], and λ ∈ [τ, 1 − τ ], we now consider measurable functions f, g, h : R →

R≥0 with positive integral satisfying

h((1− λ)x+ λ y) ≥ f(x)1−λg(y)λ for x, y ∈ R(2.4) ∫
R
h < (1 + ε)

(∫
R
f

)1−λ(∫
R
g

)λ
.(2.5)

For t > 0, we set

(2.6) At = {f ≥ t}, Bt = {g ≥ t}, and Ct = {h ≥ t},

so that

At =
⋂

0<s<t

As, Bt =
⋂

0<s<t

Bs, and Ct =
⋂

0<s<t

Cs.
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It follows from (2.4) that if At, Bs 6= ∅ for t, s > 0, then

(2.7) (1− λ)At + λBs ⊂ Ct1−λsλ .

Lemma 2.3. Let f, g, h satisfy (2.4) and (2.5). Then f and g are bounded.

Proof. For any x0 ∈ R with f(x0) > 0, we have

2

(∫
R
f

)1−λ(∫
R
g

)λ
>

∫
R
h ≥

∫
R
f(x0)1−λg

(
1
λ z −

1−λ
λ x0

)λ
dz = f(x0)1−λλ

∫
R
gλ;

therefore, f is bounded. Similarly, g is bounded, as well. �

We use the following stability version of the inequality between the arithmetic and geometric mean.

It follows from Lemma 2.1 in Aldaz [1] that if a, b > 0 and λ ∈ [τ, 1− τ ] for τ ∈ (0, 1
2 ], then

(2.8) (1− λ)a+ λb− a1−λbλ ≥ τ
(√

a−
√
b
)2
.

According to Lemma 2.3, we can speak about ‖f‖∞ and ‖g‖∞.

Lemma 2.4. Let f, g, h satisfy (2.4) and (2.5). If ε < 2−6τ3, then∣∣∣∣‖f‖∞‖g‖∞
· ‖g‖1
‖f‖1

− 1

∣∣∣∣ ≤ 4τ−
3
2 ε

1
2 .

Proof. We may assume that
∫
R f =

∫
R g = 1.

We set θ = ‖f‖∞/‖g‖∞. Using the notation (2.6), it follows from (2.4) that if 0 < t < ‖f‖1−λ∞ ‖g‖λ∞,

then

(1− λ)Aθλt + λBθλ−1t ⊂ Ct.

We deduce from (2.7) and the one-dimensional Brunn-Minkowski inequality that

1 + ε ≥
∫
R
h ≥

∫ ‖f‖1−λ∞ ‖g‖λ∞

0
H1(Ct) dt

≥ (1− λ)

∫ ‖f‖1−λ∞ ‖g‖λ∞

0
H1(Aθλt) dt+ λ

∫ ‖f‖1−λ∞ ‖g‖λ∞

0
H1(Bθλ−1t) dt

=
1− λ
θλ

∫ ‖f‖∞
0

H1(As) ds+ λ θ1−λ
∫ ‖g‖∞

0
H1(Bs) ds =

1− λ
θλ

+ λ θ1−λ.

We conclude from (2.8) that ∣∣∣θ−λ2 − θ 1−λ
2

∣∣∣ < τ−
1
2 ε

1
2 ,

which in turn yields that

τ−
1
2 ε

1
2 > e

τ | log θ|
2 − 1 >

τ | log θ|
2

.

Since | log θ| < 2τ−
3
2 ε

1
2 ≤ 1

4 provided ε ≤ τ3/64, we have |θ − 1| < 4τ−
3
2 ε

1
2 . �

Lemma 2.5. Let f, g, h satisfy (2.4) and (2.5). If ε
1
2 ≤ η < 1, then

(2.9) H1({f ≥ η‖f‖∞}) .
τ−

5
2 ‖f‖1
‖f‖∞

· | log ε|
4
τ , H1({g ≥ η‖g‖∞}) .

τ−
5
2 ‖g‖1
‖g‖∞

· | log ε|
4
τ ,

and ∫
{f<η}

f . τ−
5
2 ‖f‖1 · η | log ε|

4
τ ,

∫
{g<η}

g . τ−
5
2 ‖g‖1 · η | log ε|

4
τ .

Proof. We may assume that ‖f‖∞ = ‖g‖∞ = 1 and min{
∫
R f,

∫
R g} = 1, so that Lemma 2.4 yields

(2.10) 1 = min

{∫
R
f,

∫
R
g

}
≤ max

{∫
R
f,

∫
R
g

}
≤ 1 + 4τ−

3
2 ε

1
2 < 2.
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For t > 0, it follows from (2.7) that if % ∈ (0, 1), then

(2.11) C% t ⊃
(

(1− λ)A
t

1
1−λ

+ λB
%
1
λ

)
∪
(

(1− λ)A
%

1
1−λ

+ λB
t
1
λ

)
,

thus the one-dimensional Brunn-Minkowski inequality yields that H1(C% t) is at least the arithmetic

mean of (1−λ)H1(A
t

1
1−λ

)+λH1(B
%
1
λ

) and (1−λ)H1(A
%

1
1−λ

)+λH1(B
t
1
λ

), and hence letting % tending

to 1 implies

(2.12) H1(Ct) ≥
1

2

[
(1− λ)H1

(
A
t

1
1−λ

)
+ λH1

(
B
t
1
λ

)]
.

In addition, H1(Ct) − (1 − λ)H1(At) − λH1(Bt) ≥ 0 holds for any t > 0, thanks to (2.7) and the

one-dimensional Brunn-Minkowski inequality.

Therefore, using the near optimality (2.5) for the Prékopa-Leindler inequality, (2.10), and (2.12),

we deduce that for any α ∈ (0, 1], we have

8τ−
3
2 ε

1
2 ≥

∫ α

0

(
H1(Ct)− (1− λ)H1(At)− λH1(Bt)

)
dt

≥
∫ α

0

(
1

2

[
(1− λ)H1

(
A
t

1
1−λ

)
+ λH1

(
B
t
1
λ

)]
− (1− λ)H1(At)− λH1(Bt)

)
dt.

(2.13)

We now define

Γ(α) :=

∫ α

0

(
(1− λ)H1(At) + λH1(Bt)

)
dt.

Note that Γ is an increasing function bounded by 2. Also, through a change of variables, it satisfies∫ α

0

(
(1− λ)H1(A

t
1
s
) + λH1(B

t
1
s
)
)
dt ≥ sα1− 1

sΓ(α
1
s ) ∀ s ∈ (0, 1).

Hence, assuming with no loss of generality that λ ≤ 1/2, it follows from (2.13) that

(2.14) 8τ−
3
2 ε

1
2 ≥ 1− λ

2
· α−

λ
1−λ Γ(α

1
1−λ )− Γ(α).

As 1− λ ≥ 1/2, using the substitution β = α
1

1−λ ∈ (0, 1), (2.14) leads to

Γ(β)

β
≤ 32τ−

3
2 ε

1
2

β1−λ + 4
Γ(β1−λ)

β1−λ ,

and, by iteration,

(2.15)
Γ(β)

β
≤ 32τ−

3
2 ε

1
2

k∑
i=1

4i−1

β(1−λ)i
+ 4k

Γ(β(1−λ)k)

β(1−λ)k
≤ c
(

1 + τ−
3
2
ε

1
2

β1−λ

)
4k

β(1−λ)k
∀ k ≥ 1.

Hence, if ε
1
2 ≤ β, then (2.15) yields

Γ(β)

β
≤ cτ−

3
2

4k

β(1−λ)k
.

Choosing k ∈
[
| log | log β||
| log(1−λ)| , 2

| log | log β||
| log(1−λ)|

]
so that β(1−λ)k ' 1, then the bound above gives (recall that

λ ≥ τ and that | log(1− τ)| ' τ)

Γ(β)

β
≤ cτ−

3
2 42

| log | log β||
τ ≤ cτ−

3
2 | log β|

4
τ ∀β ∈ [ε

1
2 , 1).

Since
Γ(β)

β
≥ (1− λ)H1(Aβ) + λH1(Bβ) ≥ τ

(
H1(At) +H1(Bt)

)
,

this proves (2.9).

Finally, the layer cake formula yields
∫
{f<η} f +

∫
{g<η} g ≤ Γ(η)/τ , and the monotinicity of At and

Bt imply H1({f ≥ η}) +H1({g ≥ η}) ≤ Γ(η)/η, completing the proof of Lemma 2.5. �
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Proposition 2.6. Let f, g, h satisfy (2.4) and (2.5) where τ ∈ (0, 1
2 ] and 0 < ε < cτ3 for certain

absolute constant c ∈ (0, 2−6). For η ≥ ε with η < 4cτ3, we assume that there exist log-concave

functions f̃ , g̃ such that

‖f − f̃‖1 < η‖f‖1 and ‖g − g̃‖1 < η‖g‖1.

Then, setting a =
∫
R g/

∫
R f , there exist a log-concave function h̃ and a constant w ∈ R such that∫

R
|aλf(x)− h̃(x− λw)| dx+

∫
R
|aλ−1g(x)− h̃(x+ (1− λ)w)| dx . τ−1η

1
12 | log ε|

4
3

∫
R
h,∫

R
|h(x)− h̃(x)| dx . τ−2η

1
4 | log ε|

∫
R
h.

Proof. We may assume that min{‖f‖∞, ‖g‖∞} = 1 and
∫
R f =

∫
R g = 1, so that Lemma 2.4 yields

(2.16) 1 = min {‖f‖∞, ‖g‖∞} ≤ max {‖f‖∞, ‖g‖∞} ≤ 1 + 4τ−
3
2 ε

1
2 < 2.

It follows from the conditions ‖f − f̃‖1 < η and ‖g − g̃‖1 < η and η < 1
2 that the approximating

log-concave functions satisfy

(2.17)
1

2
<

∫
R
f̃ ,

∫
R
g̃ < 2.

The main idea of the proof is to show that, for a suitable log-concave function h̃, the log-concave

functions f̃0 = f̃χ{f̃>α} and g̃0 = g̃χ{g̃>α} satisfy almost equality in the Prékopa-Leindler inequality

for some value α ≥ η; therefore, the stability version Theorem 2.1 of the Prékopa-Leindler inequality

for log-concave functions implies that f̃0 and g̃0 can be expressed in terms of shifts and multiples of h̃.

As a first step, we claim that

(2.18) |‖f̃‖∞ − ‖f‖∞| ≤ 32τ−
3
2 η

1
2 and |‖g̃‖∞ − ‖g‖∞| ≤ 32τ−

3
2 η

1
2 .

As the roles of f and g are symmetric, we only prove the statement about f .

First, we assume that ‖f̃‖∞ > ‖f‖∞, hence ‖f‖∞ = ‖f̃‖∞ − α for some α > 0. In this case,

Lemma 2.2 (i) and (2.17) imply that H1({f̃ > ‖f̃‖∞−s}) ≥ s
2 ‖f̃‖

−2
∞ for s ∈ (0, α), thus the layer-cake

representation gives

η ≥
∫ ‖f̃‖∞
‖f‖∞

H1({f̃ > t}) dt > α2

4‖f̃‖2∞
.

Therefore ‖f‖∞ = ‖f̃‖∞ − α ≥ ‖f̃‖∞(1− 2
√
η), and we deduce that

‖f̃‖∞ − ‖f‖∞ ≤ ‖f‖∞
[
(1− 2

√
η)−1 − 1

]
< 8η

1
2 .

Next we assume that ‖f̃‖∞ < ‖f‖∞. We consider the function

f1 = f · χ{f≤‖f̃‖∞} + ‖f̃‖∞ · χ{f>‖f̃‖∞},

that satisfies

1 ≤
(∫

R
f1

)−1

≤
(∫

R
f −

∫
R
|f − f̃ |

)−1

< 1 + 2η.

As f1 ≤ f , we have h((1− λ)x+ λ y) ≥ f1(x)1−λg(y)λ for any x, y ∈ R where∫
R
h ≤ (1 + ε)

(∫
R
f

)1−λ(∫
R
g

)λ
≤ (1 + 4η)

(∫
R
f1

)1−λ(∫
R
g

)λ
.

We deduce from Lemma 2.4 applied to f and g on the one hand, and to f1 and g on the other hand

that
‖f‖∞
‖f̃‖∞

=
‖f‖∞
‖g‖∞

· ‖g‖∞
‖f1‖∞

≤
(

1 + 4τ−
3
2 ε

1
2

)
·
(

1 + 4τ−
3
2 η

1
2

)
(1 + 4η) < 1 + 16τ−

3
2 η

1
2 .
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Recalling (2.16), this proves the claim (2.18). In turn, combining (2.16) and (2.18) leads to

(2.19)
1

2
< ‖f‖∞, ‖g‖∞, ‖f̃‖∞, ‖g̃‖∞ < 2.

For any r > 0, we define

Ar = {f > r}, Ãr = {f̃ > r}, Br = {g > r}, B̃r = {g̃ > r}.

According to the layer-cake representation (representing ‖ϕ − ψ‖1 for non-negative ϕ,ψ ∈ L1(R)) as

the area of the symmetric difference of the parts between the graphs and the first axis),∫ ∞
0
H1(Ar∆Ãr) dr = ‖f − f̃‖1 ≤ η∫ ∞

0
H1(Br∆B̃r) dr = ‖g − g̃‖1 ≤ η.

In particular, the set S ⊂ (0,∞) defined by the property

(2.20) H1(Ar∆Ãr) +H1(Br∆B̃r) ≤ η
1
2 for r ∈ S

satisfies that

(2.21) H1((0,∞)\S) < 4η
1
2 .

It follows from (2.20) that if r, s ∈ S and x ∈ R, then H1
(

(1− λ)Ar∆(1− λ)Ãr

)
≤ (1 − λ)η

1
2 and

H1
(

(x− λBs)∆(x− λ B̃s)
)
≤ λ η

1
2 ; therefore,

(2.22)
∣∣∣H1 ((1− λ)Ar ∩ (x− λBs))−H1

(
(1− λ)Ãr ∩ (x− λ B̃s)

)∣∣∣ ≤ η 1
2 .

Consider

(2.23) r0 = ‖f̃‖∞ − 32τ−1η
1
4 and s0 = ‖g̃‖∞ − 32τ−1η

1
4 .

Using (2.17) and (2.19), we deduce from Lemma 2.2 (i) that

(2.24) H1(Ãr0), H1(B̃s0) ≥ 4τ−1η
1
4 .

Possibly after shifting f and f̃ together on the one hand, and g and g̃ together on the other hand, we

may assume that zero is the common midpoint of the segments Ãr0 and B̃s0 . In particular, setting

cl Ãr = [a1(r), a2(r)] and cl B̃s = [b1(s), b2(s)] for 0 < r < ‖f̃‖∞ and 0 < s < ‖g̃‖∞,

using that a1(r), b1(r) are monotone increasing and a2(r), b2(r) are monotone decreasing provided

0 < r < min{‖f̃‖∞, ‖g̃‖∞}, we have

a2(r), b2(s) ≥ 2τ−1η
1
4 and a1(r), b1(s) ≤ −2τ−1η

1
4 for r ∈ (0, r0], s ∈ (0, s0].

We deduce that if r ∈ S ∩ (0, r0), s ∈ S ∩ (0, s0) and

x ∈ (1 + 2η
1
4 )−1

(
(1− λ)Ãr + (λ B̃s)

)
⊂ (1− η

1
4 )
(

(1− λ)Ãr + (λ B̃s)
)
,

then (1−λ)ai(r), λ bi(s) ≥ 2η
1
4 for i = 1, 2, and x−λ B̃s = [x−λ b2(s), x+λ b1(s)] satisfies x−λ b2(s) ≤

(1− λ)a2(r)− η
1
4λ b2(s) and x+ λ b1(s) ≥ −(1− λ)a1(r) + η

1
4λ b1(s); therefore,

H1
(

(1− λ)Ãr ∩ (x− λ B̃s)
)
≥ 2η

1
2 .

In turn, (2.22) yields that if x ∈ (1 + 2η
1
4 )−1

(
(1− λ)Ãr + (λ B̃s)

)
, then

x ∈ (1− λ)Ar + (λBs).
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In other words, if r ∈ S ∩ (0, r0) and s ∈ S ∩ (0, s0), then

(2.25) (1− λ)Ãr + λ B̃s ⊂ (1 + 2η
1
4 ) ((1− λ)Ar + λBs) ⊂ (1 + 2η

1
4 )
{
h > r1−λsλ

}
.

On the other hand, for any r ∈ (η
1
4 , ‖f̃‖∞) and s ∈ (η

1
4 , ‖g̃‖∞), (2.21) and the definition of r0, s0 yield

the existence of some r̃ ∈ S ∩ (0,min{r, r0}) and s̃ ∈ S ∩ (0,min{s, s0}) with

r̃ ≥ r − θ(r) and s̃ ≥ s− θ(s)

where θ(t) = 26τ−1η
1
4 if t ≥ 1

2 , and θ(t) = 4η
1
2 if t ∈ (0, 1

2). In particular,

r̃ ≥ (1− 27τ−1η
1
4 )r and s̃ ≥ (1− 27τ−1η

1
4 )s for r, s ≥ η

1
4 ,

thus setting t = r1−λsλ, we have

r̃1−λs̃λ ≥ (1− 27τ−1η
1
4 )t ≥ t− 28τ−1η

1
4 .

Therefore, if we define

(2.26) α = 28τ−1η
1
4 ,

then, for any r ∈ (α, ‖f̃‖∞) and s ∈ (α, ‖g̃‖∞), we deduce from (2.25) that t = r1−λsλ satisfies

(1− λ)Ãr + λ B̃s ⊂ (1− λ)Ãr̃ + λ B̃s̃ ⊂ (1 + 2η
1
4 )
{
h > r̃1−λs̃λ

}
⊂ (1 + 2η

1
4 ){h > t− α}.(2.27)

Next we replace f̃ by f̃0 = f̃χ{f̃>α} and g̃ by g̃0 = g̃χ{g̃>α}. Then Lemma 2.2, (2.17), and 1
2 <

‖f̃‖∞, ‖g̃‖∞ < 2 (cf. (2.18)), yield

‖f̃ − f̃0‖1 + ‖g̃ − g̃0‖1 ≤ 32α(2.28)

H1
(
supp f̃0

)
+H1

(
supp g̃0

)
≤ 32| logα|.(2.29)

In particular, we deduce from (2.28) that

(2.30) ‖f − f̃0‖1 + ‖g − g̃0‖1 ≤ 26α,

hence

(2.31)

∫
R
f̃0,

∫
R
g̃0 ≥ 1− 26 · α,

Consider now the log-concave function h̃ defined as

h̃(z) = sup
z=(1−λ)x+λ y

f̃0(x)1−λg̃0(y)λ,

which satisfies h̃(z) ≥ α for any z ∈ int supp h̃ and

(2.32) H1
(

supp h̃
)
≤ 32| logα|

(see (2.29)). According to (2.31) and the Prékopa-Leindler inequality, we have

(2.33)

∫
R
h̃ ≥ 1− 26α.

It follows from the the definition of h̃ and (2.27) that, for any t > α, we have

(2.34) {h̃ > t} =
⋃

t=r1−λsλ

(
(1− λ)Ãr + λ B̃s

)
⊂ (1 + 2η

1
4 ){h > t− α}.
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To relate h̃ to f and g, we deduce from (2.31) and (2.34) that∫
R
h̃ =

∫ ∞
α
H1
(
{h̃ > t}

)
dt ≤ (1 + 2η

1
4 )

∫ ∞
α
H1 ({h > t− α}) dt = (1 + 2η

1
4 )

∫
R
h

< 1 + 4η
1
4 ≤ (1 + 29α)

(∫
R
f̃0

)1−λ(∫
R
g̃0

)λ
.(2.35)

Recalling that α = 28τ−1η
1
4 , thanks to Theorem 2.1 there exists w ∈ R such that∫

Rn
|aλ0 f̃0 − h̃(·+ λw)|+

∫
Rn
|aλ−1

0 g̃0 − h̃(·+ (λ− 1)w)| . τ−
2
3 η

1
12 | logα|

4
3

∫
Rn
h̃

where a0 =
∫
Rn g̃0/

∫
Rn f̃0. Also, by (2.31) and the conditions

∫
R f̃ ,

∫
R g̃ ≤ 1 + η, it holds

1− 214τ−1η
1
4 ≤

∫
R
f̃0,

∫
R
g̃0 ≤ 1 + η,

In particular |a0 − 1| . τ−1η
1
4 , therefore∫

Rn
|f̃0 − h̃(·+ λw)|+

∫
Rn
|g̃0 − h̃(·+ (λ− 1)w)| . τ−

2
3 η

1
12 | logα|

4
3

∫
Rn
h̃.

Recalling (2.30), this proves the first bound in the statement of Proposition 2.6.

To relate h̃ to h, consider the auxiliary function

h̃0(x) =

{
h̃((1 + 2η

1
4 )x)− α if x ∈ int supp h̃,

0 otherwise,

so that, if t > α, then

(2.36) {h̃ > t} = (1 + 2η
1
4 ){h̃0 > t− α}.

Comparing (2.36) and (2.34), it follows that h̃0 ≤ h. In addition, (2.33) implies that

1− 27α < (1 + 2η
1
4 )−1

∫
R
h̃ =

∫
R
h̃0 ≤

∫
R
h < 1 + ε,

therefore

(2.37) ‖h− h̃0‖1 < 28α.

Next we claim that

(2.38) h̃((1 + 2η
1
4 )x) < h̃(x) + 27τ−2η

1
4 for any x ∈ supp h̃.

We observe that t0 = r1−λ
0 sλ0 ≥ 1−26τ−

3
2 η

1
4 according to (2.16), (2.18), and (2.23). Since f̃ and g̃ were

translated to ensure f̃0(0) ≥ r0 and g̃0(0) ≥ s0, we deduce that h̃(0) ≥ t0. Using that h̃ is log-concave,

we deduce that that if h̃(x) ≤ t0, then h̃((1 + 2η
1
4 )x) ≤ h̃(x). On the other hand, if h̃(x) > t0 then

(2.38) follows from ‖h̃‖∞ ≤ 1 + 32τ−
3
2 η

1
2 (see (2.16) and (2.18)) and the bound t0 ≥ 1− 26τ−

3
2 η

1
4 .

Thanks to (2.38), since α ≤ 27τ−2η
1
4 we get

‖h̃− h̃0‖1 =

∫
supp h̃

∣∣∣h̃(x)− h̃((1 + 2η
1
4 )x) + α

∣∣∣ dx
=

∫
supp h̃

∣∣∣h̃(x) + 27τ−2η
1
4 − h̃((1 + 2η

1
4 )x) + (α− 27τ−2η

1
4 )
∣∣∣ dx

≤
∫

supp h̃
h̃(x) + 27τ−2η

1
4 − h̃((1 + 2η

1
4 )x) dx+

∫
supp h̃

27τ−2η
1
4 dx

=

(
1− 1

1 + 2η
1
4

)∫
supp h̃

h̃(x) dx+ 2 · H1(supp h̃) · 27τ−2η
1
4 .
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Since
∫
R h̃ < 2 and H1(supp h̃) ≤ 32| logα| (see (2.35) and (2.32)), we conclude that ‖h̃ − h̃0‖1 <

214τ−2η
1
4 | logα|. Combining this estimate with (2.37) implies that ‖h − h̃‖1 < 215τ−2η

1
4 | logα|. As

α = 28τ−1η
1
4 , we have | logα| . max{| log τ |, | log ε|} . | log ε|. Plugging this into the statements

above, we obtain the original claim, which finishes the proof. �

3. The case of symmetric-rearranged functions

For this part and for the remainder of the paper, we assume all the reductions and results from §2

to hold.

As noticed in the beginning of the previous section, the symmetric decreasing rearrangements of

functions f, g, h satisfying (1.3) and (1.7), denoted by f∗, g∗, h∗, also satisfy (1.3) and (1.7) with the

same constant, as rearrangements preserve Lp−norms. By changing these functions on a zero-measure

set, we may suppose that their level sets are all open. The main result of this section Theorem 3.2

lays out the foundation for the analysis in the following ones. But first state a lemma that is used in

the proof of Theorem 3.2 and also later in the paper.

Lemma 3.1. Let f, g, h : R → R≥0 satisfy (1.3) and (1.7) for 0 < ε < 2−6τ3, ‖f‖1 = ‖g‖1 = 1,

min{‖f‖∞, ‖g‖∞} = 1, and let At = {f ≥ t}, Bt = {g ≥ t}, Ct = {h ≥ t} be their level sets. Then

(i)

∫
R+

|H1(Ct)− (1− λ)H1(At)− λH1(Bt)| dt ≤ 9τ−
3
2 ε

1
2 ;

(ii) there exists a measurable a set F ⊂ R+ such that H1(R+ \ F ) ≤ 9ε
1
4 and

(3.1)
∣∣H1(Ct)− (1− λ)H1(At)− λH1(Bt)

∣∣ ≤ τ− 3
2 ε

1
4 ∀ t ∈ F.

Proof. We may assume that min{‖f‖∞, ‖g‖∞} = ‖f‖∞ = 1, and hence Lemma 2.4 yields that

1 ≤ ‖g‖∞ ≤ 1 + 4τ−
3
2 ε

1
2 .

Let S1 = {t ≥ 0;H1(Ct) ≥ (1 − λ)H1(At) + λH1(Bt)}. By the reductions made, we know that

S1 ⊇ (0, 1) as At 6= ∅ and Bt 6= ∅ if 0 < t < 1 = ‖f‖∞ ≤ ‖g‖∞, and S1 ⊇ (1 + 4τ−
3
2 ,∞) as

At = Bt = ∅ if t > 1 + 4τ−
3
2 ≥ ‖g‖∞ ≥ ‖f‖∞. If t ∈ S2 for S2 = R+ \ S1, then t ≥ 1 and∫

R f =
∫
R g ≤

∫
R h ≤ 1 + ε yield H1(At),H1(Bt),H1(Ct) ≤ 1 + ε; therefore,

|H1(Ct)− (1− λ)H1(At)− λH1(Bt)| ≤ 1 + ε < 2 ∀ t ∈ S2.

Thus, ∫
S2

|H1(Ct)− (1− λ)H1(At)− λH1(Bt)| dt ≤
∫ 1+4τ−

3
2 ε

1
2

1
2 dt = 8τ−

3
2 ε

1
2 .

By the fact that the integral
∫
R+

(H1(Ct)− (1− λ)H1(At)− λH1(Bt)) dt ≤ ε; we obtain that∫
R+

|H1(Ct)− (1− λ)H1(At)− λH1(Bt)| dt ≤ 9τ−
3
2 ε

1
2 .

By using Chebyshev’s inequality, we obtain that the set of t ≥ 0 where the integrand is larger than

τ−
3
2 ε

1
4 has measure at most 9ε

1
4 , which finishes the proof of Lemma 3.1. �

Theorem 3.2. There is an absolute constant c > 0 such that the following holds. Suppose f, g, h :

R→ R≥0 satisfy (1.3) and (1.7) for 0 < ε < ce−
1000| log τ |4

τ4 . Then there exist even log-concave functions

f̃ , g̃ such that

‖f∗ − f̃‖1 + ‖g∗ − g̃‖1 . τ−ωε
τ

221| log τ | ,

where ω is an absolute constant given by ω = 6 + 3ω0
2 , with ω0 as in Lemma 3.3.

Here and henceforth, given a family of sets {Sα}, we shall use the notation
⋃∗
α Sα to denote the

union
⋃
α : Sα 6=∅ Sα.
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Proof of Theorem 3.2. First, we may suppose without loss of generality that ‖f‖1 = ‖g‖1 = 1, and

that min{‖f‖∞, ‖g‖∞} = ‖f‖∞ = 1. These assumptions, together with Lemma 2.4, imply that

0 ≤ ‖g‖∞ − 1 ≤ 4τ−
3
2 ε

1
2 .

Consider, thus, the functions a, b, c : R→ R+ defined so to satisfy, for any R ∈ R,

{f∗ > eR} = (−a(R), a(R)) =: AR,

{g∗ > eR} = (−b(R), b(R)) =: BR,

{h∗ > eR} = (−c(R), c(R)) =: CR.

By (1.3) applied to h∗, we have (remember,
⋃∗
α Sα =

⋃
α : Sα 6=∅ Sα for any sets Sα)

(3.2) CT ⊇
∗⋃

(1−λ)R+λS=T

{(1− λ)AR + λBS} .

Thus, as
∫
f∗ =

∫
g∗ = 1, by a change of variables t = eT , we have

ε ≥
∫ ∞
−∞

(
H1(CT )− ((1− λ)H1(AT ) + λH1(BT ))

)
eT dT.

Notice that the map T 7→ H1(CT )− (1− λ)H1(AT )− λH1(BT ) is, by (3.2) and the Brunn–Minkowski

inequality, nonnegative for all T ∈ R for which AT ,BT 6= ∅. We observe that

AT = AeT , BT = BeT , CT = CeT .

Let F be the set constructed in Lemma 3.1 (ii). In particular, Lemma 3.1 yields that if AR,BS 6=
∅, (1− λ)R+ λS = T, and eT = t ∈ F, we have

(3.3) (1− λ)a(R) + λb(S) ≤ ((1− λ)a+ λb) (T ) + τ−
3
2 ε

1
4 .

Fix thus M = θ log(1/ε), with θ > 0 small to be chosen later. Denote by FM = F ∩ [e−M , eM ]. With

this definition, we have that the set

log(FM ) = {T ∈ R : eT ∈ FM}

has large measure within [−M,M ]. Indeed, recalling that H1(R+ \ F ) ≤ ε
1
4 ,

(3.4)

∫
R
χ[−M,M ]\log(FM )(T ) dT ≤ eM

∫
R
χ[−M,M ]\log(FM )(T ) eTdT = ε−θH1([e−M , eM ] \ F ) ≤ ε

1
4
−θ.

Thus, if θ < 1/8; then H1([−M,M ] \ log(FM )) ≤ ε
1
8 .

Therefore, if T1, T2 ∈ log(FM ), and additionally

T1,2 =
1

2− λ
T1 +

1− λ
2− λ

T2 ∈ log(FM ), T2,1 =
1

2− λ
T2 +

1− λ
2− λ

T1 ∈ log(FM ),

then the reduction in [24, Remark 4.1] and (3.3) show that the following four-point inequalities hold:

a(T1) + a(T2) ≤ a(T1,2) + a(T2,1) +
2

λ
τ−

3
2 ε

1
4 ,

b(T1) + b(T2) ≤ b(T1,2) + b(T2,1) +
2

λ
τ−

3
2 ε

1
4 .

(3.5)

Inspired by this, we recall the statement of Lemma 3.6 in [24] in the one-dimensional case:

Lemma 3.3 (Lemma 3.6 in [24]). Let G ⊂ R be a measurable subset and ψ : G → R be a function,

such that the following properties hold:

(1) The four-point inequality

(3.6) ψ(T1) + ψ(T2) ≤ ψ(T1,2) + ψ(T2,1) + σ
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holds, whenever T1, T2, T1,2, T2,1 ∈ G;

(2) The convex hull co(G) = Ω satisfies H1(Ω \G) ≤ ζ;

(3) There is r ∈ (1/2, 2) with [−r, r] = Ω;

(4) The inequalities −κ ≤ ψ(T ) ≤ κ hold for all T ∈ G for some κ ≥ 1;

(5) There is H ⊂ R such that

(3.7)

∫
H
H1(co({ψ > s}) \ {ψ > s}) ds+

∫
R\H
H1({ψ > s}) ≤ ζ.

Then there exist a concave function Ψ : Ω→ [−2κ, 2κ], and an absolute constant c > 0, such that

(3.8)

∫
G
|Ψ(T )− ψ(T )| dT ≤ cκτ−ω0(σ + ζ)ατ ,

where we let ατ = τ
16| log τ | , and ω0 > 0 is an absolute constant.

We are almost ready to apply Lemma 3.3: we change variables and set ã(T ′) = a(MT ′).

If T ′1, T
′
2, T

′
1,2, T

′
2,1 ∈ log(FM )/M and λ ∈ [τ, 1− τ ], then the four-point inequality (3.6) holds for ã,

with σ = 2ε
1
4

τ5/2
. Moreover, the properties of log(FM ) (see (3.4)) imply

H1(co(log(FM )/M) \ (log(FM )/M)) ≤ ε
1
8 .

From that, we see that Ω̃M := co(log(FM )/M) is an interval that differs by at most ε
1
8 from the

interval [−1, 1], and thus can be written as T0 + I, with I = [−r, r] and |r− 1| ≤ 2ε
1
8 , and T0 ∈ R with

|T0| ≤ ε
1
8 .

Defining the function ã′(T ′′) = ã(T ′+ T0) preserves conditions (1), (2), (4), and (5), in Lemma 3.3.

In addition, now also condition (3) is fulfilled. Furthermore, by Lemma 2.5, we have ã′ is bounded in

absolute value by κ = c
τ4
| log ε|

4
τ , with c an absolute constant.

Finally, as the function a is nonincreasing on R, the level sets of ã′ are all intervals. Hence we may

take H to be the support of ã′ in (3.7) and ζ = 4ε
1
8 .

Therefore, by Lemma 3.3, there is a concave function ã′ : Ω̃′M := Ω̃M − T0 → [−2κ, 2κ] such that∫
log(FM )/M−T0

|ã′(T )− ã′(T )| dT ≤ κτ−ω0 · ε
ατ
8

τ5ατ/2
.

Thus, the function ã(T ) = ã′(T − T0) satisfies∫
log(FM )/M

|ã(T )− ã(T )| dT . | log ε|
4
τ
ε
ατ
8

τ4+ω0
.

This follows from the definition of κ and the fact that τατ = e−τ/16, which is bounded from below and

above whenever τ ∈ (0, 1/2]. Changing variables T = T ′/M above yields that a(T ) = ã(T/M) satisfies

(recall that M = θ log(1/ε))

(3.9)

∫
log(FM )

|a(T ′)− a(T ′)| dT ′ . | log ε|1+ 4
τ
ε
ατ
8

τ4+ω0
.

We observe that, if we denote by ΩM = M Ω̃M the domain of definition of a, then it follows from the

considerations above that H1([−M,M ] \ ΩM ) . | log ε|ε
1
8 .

Notice that the process above can be adapted verbatim to b, and we find a concave function b :

ΩM → [−2κ, 2κ] such that

(3.10)

∫
log(FM )

|b(T ′)− b(T ′)| dT ′ . | log ε|1+ 4
τ
ε
ατ
8

τ4+ω0
.
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Let, for shortness, ω1 := 4+ω0. We must now ensure that a, b satisfy the requirements of distribution

functions. Indeed, in case a, b are both nonincreasing on the subinterval IM = [−3M/4, 3M/4] ⊂ ΩM ,

we do not change them.

On the other hand, if either a or b are not nonincresing on such a large interval, we use Chebyshev’s

inequality in conjunction with (3.9) and (3.10).

This implies that there is a set F ⊂ log(FM ) such that H1(log(FM ) \ F) ≤ τ−
ω1
2 ε

ατ
32 , and

|b(T )− b(T )|+ |a(T )− a(T )| . τ−
ω1
2 ε

ατ
32 , ∀T ∈ F .

Changing a, b on a zero measure set, we may suppose that both are lower semicontinuous. Suppose

then without loss of generality that a attains its maximum at a point T0 ∈ IM .

As H1(ΩM \ F) . τ−
ω1
2 ε

ατ
32 , there is a point T1 ∈ F such that

|T0 − T1| . τ−
ω1
2 ε

ατ
32 .

Analogously, there is a point T2 ∈ F such that |T2 +M | . τ−
ω1
2 ε

ατ
32 , thus,

a(T0)− a(T2) ≤ |a(T2)− a(T2)|+ a(T1)− a(T2) + |a(T1)− a(T1)|+ |a(T1)− a(T0)|

≤ cτ−
ω1
2 ε

ατ
32 + |a(T1)− a(T0)|.

(3.11)

On the other hand, by concavity,

(3.12) a(T1) ≥ γa(T0) + (1− γ)a(T2), with γ ∈ (0, 1) such that γT0 + (1− γ)T2 = T1.

It follows from the manner we have chosen T0, T1, T2 that

τ−
ω1
2 ε

ατ
32 & |T1 − T0| = (1− γ)|T0 − T2| ≥

(
M

4
− cτ−

ω1
2 ε

ατ
32

)
(1− γ).

Thus, if ε > 0 is sufficiently small, we have

γ ≥ 1− 10τ−
ω1
2 ε

ατ
64 .

Also, by boundedness of a, we have

(3.13) |a(T1)− a(T0)| . | log ε|
4
τ τ−

3ω1
2 ε

ατ
64 .

Combining (3.13) and (3.11) implies

a(T0) ≤ a(T2) + c| log ε|
4
τ τ−

3ω1
2 ε

ατ
64

where c > 0 is an absolute constant, and so, by monotonicity,

(3.14) a(T0) ≤ a(T ) + c| log ε|
4
τ τ−

3ω1
2 ε

ατ
64 ∀T ∈ IM T < T0.

We thus define

ã(T ) =

a(T ), if T ∈ IM , T ≥ T0;

a(T0), if T ∈ IM , T < T0.

This new function, besides being concave, is also nonincreasing on IM , and, by (3.9) and (3.14),∫
log(FM )∩IM

|ã(T )− a(T )| dT . | log ε|1+ 4
τ τ−

3ω1
2 ε

ατ
64 .

As both a, ã are bounded by c| log ε|
4
τ /τ4 on IM and H1(IM \ log(FM )) ≤ ε

1
8 , we conclude moreover

that ∫
IM

|ã(T )− a(T )| dT . | log ε|1+ 4
τ τ−

3ω1
2 ε

ατ
64 .
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By symmetry, the same method can be applied to the function b. Given the two resulting concave

functions ã, b̃, they define an almost-everywhere unique pair f̃ , g̃ of functions such that

{x ∈ R : f̃(x) > t} = (−ã(log t), ã(log t)), {x ∈ R : g̃(x) > t} = (−b̃(log t), b̃(log t)),

whenever log t ∈ IM (that is, t ∈ (ε
3θ
4 , ε−

3θ
4 )),

supp(f̃) =
⋃

t∈(ε
3θ
4 ,ε−

3θ
4 )

(−ã(log t), ã(log t)), supp(g̃) =
⋃

t∈(ε
3θ
4 ,ε−

3θ
4 )

(−b̃(log t), b̃(log t)),

and {x ∈ R : f̃(x) > t} = {x ∈ R : g̃(x) > s} = ∅ for t, s > ε−
3θ
4 or whenever ã(log t) = 0 = b̃(log s).

We claim that these functions are log-concave. Indeed, if f̃(x1) > s1 and f̃(x2) > s2 with s1, s2 ∈
(ε

3θ
4 , ε−

3θ
4 ) then

x1 ∈ (−ã(log s1), ã(log s1)), x2 ∈ (−ã(log s2), ã(log s2)).

By concavity, for any t ∈ (0, 1),

tx1 + (1− t)x2 ∈ (−tã(log s1)− (1− t)ã(log s2), tã(log s1) + (1− t)ã(log s2))

⊆ (−ã(log(st1s
1−t
2 )), ã(log(st1s

1−t
2 ))).

Thus f̃(tx1 + (1− t)x2) > st1s
1−t
2 , which concludes in this case.

The case max{s1, s2} > ε−
3θ
4 or ã(max{log s1, log s2}) = 0 is trivial by definition. Also, if s1 ∈

(0, ε
3θ
4 ), then x1 ∈ (−ã(log t0), ã(log t0)), for t0 ∈ (ε

3θ
4 , ε−

3θ
4 ), and thus we reduce to the previous one.

By symmetry, the same holds for g̃, and the claim is proved.

Finally, it remains to prove that ‖f− f̃‖1 +‖g− g̃‖1 is small. By layer-cake representation, choosing

θ = ατ/100 we have

‖f − f̃‖1 =

∫ ∞
0
H1({f > t}∆{f̃ > t}) dt =

∫
R
|a(T )− ã(T )| eT dT

≤
∫ ε

3θ
4

0

(
H1({f > t}) +H1({f̃ > t})

)
dt+ ε−

3θ
4

∫
IM

|a(T )− ã(T )| dT

.
ε

3θ
4 | log ε|

4
τ

τ4
+ | log ε|1+ 4

τ ε
ατ
64
− 3θ

4 τ−
3ω1
2 . ε

ατ
128 | log ε|1+ 4

τ τ−
3ω1
2 ,

(3.15)

where we used ‖f‖∞, ‖g‖∞ ≤ 2 and Lemma 2.5. Naturally, all such considerations hold in the exact

same manner for g, g̃.

We now notice that, if ε > 0 satisfies the smallness condition as in the statement of the result, then

we may bound

| log ε|1+ 4
τ ε

ατ
128 ≤ ε

ατ
256 .

By Proposition 2.6, this is enough to conclude the case of symmetrically decreasing functions. As

we do not need an explicit estimate on the distance between h and a log-concave function, we omit

the final bound one could obtain using that proposition, limiting ourselves thus to the statement of

Theorem 3.2. �

4. The general case

We now turn to the general case, assuming the results in the previous subsection. We shall prove

the following result:

Theorem 4.1. There is an explicitly computable constant c0 > 0 such that the following holds. For

τ ∈ (0, 1
2 ] and λ ∈ [τ, 1 − τ ], if f, g, h : R → R≥0 are measurable functions for which (1.3) and (1.7)
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hold, with 0 < ε < c0e
−M(τ), then there exist a log-concave function h̃ and w ∈ R such that∫

R
|h− h̃|+

∫
R
|aλf − h̃(·+ λw)|+

∫
R
|aλ−1g − h̃(·+ (λ− 1)w)| < c0

εQ(τ)

τω

∫
R
h,

where ω = 5
2 + ω0

8 , with ω0 being the exponent of τ in Lemma 3.3, M(τ) = 1040(ω0 + 4) | log(τ)|4
τ4

, and

Q(τ) = τ4

2100| log τ |4 .

As pointed out in the introduction, in order to prove such a result we shall break the proof into

several steps.

• Step 1: finding better behaving functions f, g, h (cf. (4.6)) that satisfy (1.3) and (1.7)

with a possibly smaller power of ε. Once more, we assume the reductions made in Sections 2

and 3 to hold. That is, we have ‖f‖1 = ‖g‖1 = 1, min{‖f‖∞, ‖g‖∞} = ‖f‖∞ = 1. Lemma 2.4 yields

then that

‖g‖∞ ∈ (1, 1 + 4τ−
3
2 ε

1
2 ).

Also, as ‖f‖1 = ‖g‖1 = 1, using notation from Lemma 2.5,

ε >

∫ ∞
0

(
H1(Ct)− (1− λ)H1(At)− λH1(Bt)

)
dt ≥ 0.

Thus Lemma 3.1 implies

τ−
3
2 ε

1
2 &

∫ ∞
0

∣∣H1(Ct)− (1− λ)H1(At)− λH1(Bt)
∣∣ dt.

Let F be the set constructed in Lemma 3.1 (ii). Moreover, if t < 1 − cτ−
3
2 ε

1
2 , then we know that

Ct ⊃ (1− λ)At + λBt. Thus, Lemma 3.1 and the Brunn-Minkowski inequality yield

(4.1) 0 ≤ H1(Ct)− (1− λ)H1(At)− λH1(Bt) . τ
− 3

2 ε
1
4 , ∀ t ∈ F ∩ (0, 1− cτ−

3
2 ε

1
2 ).

We need one more preliminary result in order to move on with our construction.

Lemma 4.2. Let f, g, h : R → R≥0 satisfy (1.3) and (1.7) for 0 < ε < 2−6τ3, ‖f‖1 = ‖g‖1 = 1,

min{‖f‖∞, ‖g‖∞} = 1, and let At = {f ≥ t}, Bt = {g ≥ t}, Ct = {h ≥ t} be their level sets. Then

there exists a measurable set F ′ ⊂ R+ such that:

(1) H1(R+ \ F ′) . εδ, whenever δ < ατ/2048;

(2)
∣∣H1(Ct)− (1− λ)H1(At)− λH1(Bt)

∣∣ . τ− 3
2 ε

1
4 for all t ∈ F ′;

(3) min{H1(At),H1(Bt)} ≥ εδ for all t ∈ (0, 1 + cτ−
3
2 ε

1
2 ) ∩ F ′, δ ≤ ατ/2048,

where we let, as before, ατ = τ
16| log τ | .

Proof. By the considerations in Section 3, we know that there are log-concave functions f̃∗, g̃∗such

that

‖f∗ − f̃∗‖1 + ‖g∗ − g̃∗‖1 . τ−
3ω1
2 ε

ατ
256 ,

where f∗, g∗ denote the symmetric decreasing rearrangements of f, g, respectively. By the reductions

in the proof of Proposition 2.6, we may suppose that (2.18) holds for the functions f̃∗, g̃∗. In particular,

applying it in conjunction with Lemma 2.2 to these functions, we conclude that

H1({t > 0: H1({f̃∗ > t}) ≤ εδ}) . εδ,

for all δ > 0. By writing

‖f∗ − f̃∗‖1 =

∫ ∞
0
H1({f∗ > t}∆{f̃∗ > t}) dt . τ−

3ω1
2 ε

ατ
256
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and using the argument with Chebyshev’s inequality we have extensively employed throughout this

manuscript, we obtain

H1({t > 0: H1({f∗ > t}) ≤ εδ}) . εδ

for all δ ∈ (0, ατ
1024), and ε > 0 sufficiently small (independently of τ > 0). Thus, by equimeasurability

of the rearrangement,

H1({t > 0: H1({f > t}) ≤ εδ}) . εδ,

for all δ < ατ/1024. In particular, we see that

H1(At) > ε
ατ
2048 ,

whenever t ∈ F ′ ⊆ F ∩ (0, 1− cτ−
3
2 ε

1
2 ), where H1(F \ F ′) ≤ ε

ατ
2048 . The same holds for g, and thus we

may denote still by F ′ the set where the above properties hold for both f and g. By the considerations

above, the set F ′ thus defined satisfies the assertions in Lemma 4.2, and we are done. �

We now wish to employ Freiman’s theorem in order to conclude that the convex hull of the level

sets At, Bt are not too far off from At, Bt themselves. To that extent, notice that, for ε ≤ τ4 � 1,

min{H1(At),H1(Bt)} > ε
ατ
2048 � τ−

3
2 ε

1
4 , ∀ t ∈ F ′,

Thus, thanks to (4.1), we can apply Freiman’s theorem. This yields that

(4.2) H1(co(At) \At) +H1(co(Bt) \Bt) . τ−
3
2 ε

1
4 ,

for all t ∈ F ′. Notice also that, since the sets {At}t>0 are nested, the same property holds for their

convex hulls {co(At)}t>0.

With this in mind, we set

(4.3) co(At) = (a1
f (t), b1f (t)), co(Bt) = (a1

g(t), b
1
g(t)).

The main idea is to slightly change the functions a1
f , a

1
g, b

1
f , b

1
g, in order to construct two functions f, g

close to f, g respectively, and whose level sets are intervals coinciding with co(At), co(Bt) for the vast

majority of levels t > εθ, where θ > 0 will be a small constant to be chosen later.

By redefining on a set of zero measure, we may assume that the functions a1
f , a

1
g, b

1
f , b

1
g are all

right-continuous. Then we define

bf (t) = sup
t′>t,t′∈F ′

b1f (t′), bg(t) = sup
t′>t,t′∈F ′

b1g(t
′),

af (t) = inf
t′>t,t′∈F ′

a1
f (t′), ag(t) = inf

t′>t,t′∈F ′
a1
g(t
′).

(4.4)

The functions af , ag, bf , bg defined in such a way are all, by definition, monotone. Moreover, modi-

fying on a zero-measure set, we may suppose them to be right-continuous as well.

Let now θ > 0 be a fixed parameter, whose exact value we shall determine later. We define

(af , bf ) = (af (εθ), bf (εθ)).

As H1((0, 1 − cτ−
3
2 ε

1
2 ) \ F ′) ≤ ε

ατ
2048 , as long as we choose θ < ατ/2

12 we may always find a point

t0 ∈ F ′ so that 1
100ε

θ < t0 < εθ. Thus, for all t ≥ εθ, (4.2) yields

(4.5) (bf (t)− af (t)) ≤ (bf (t0)− af (t0)) ≤ H1(At0) + cτ−
3
2 ε

1
4 . τ−4| log ε|

4
τ ,

where we used Lemma 2.5 in the last inequality. We then build the function f supported in (af , bf ),

for x ≤ af (1), as

f(x) = sup{t : af (t) < x}.
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We further define it to be 1 in the interval (af (1), bf (1)), and for x ≥ bf (1) we let

f(x) = sup{t : x < bf (t)}.

An entirely analogous construction yields the function g. Notice now that, for s ∈ (0, 1),

{x ∈ R : f(x) > s} =

{x ∈ R : ∃ t > s so that either af (t) < x and x ≤ af (1) or bf (t) > x ≥ bf (1)} ∪ (af (1), bf (1))

=
⋃
t>s

(af (t), bf (t)) =

(
inf
t>s

af (t), sup
t>s

bf (t)

)
= (af (s), bf (s)).

(4.6)

Notice that we used the hypothesis of right-continuity of af , bf in order to obtain the last equality

above. Thus, we have

At =: {f > t} = co(At), ∀ t ∈ F ′.

This allows us to estimate

(4.7)

∫
R
|f(x)− f(x)| dx =

∫ ∞
0
H1(At∆At) dt ≤

∫ εθ

0

(
H1(At) +H1(At0)

)
dt

+

∫
(εθ,1)∩F ′

H1(co(At) \At) dt+

∫
(εθ,1)\F ′

(
H1(At) +H1(At)

)
dt . τ−4εθ| log ε|

4
τ ,

where we used (4.2), θ < ατ/2
12, and once more Lemma 2.5. The same conclusion holds in an entirely

analogous way for ‖g − g‖1.

We now build a function h so that (1.3) and (1.7) are satisfied. In fact, we take the most natural

choice

h(z) = sup
(1−λ)x+λy=z

f(x)1−λg(y)λ.

The level sets Ct = {x ∈ R : h(x) > t} satisfy, by definition,

Ct =
∗⋃

r1−λsλ=t

((1− λ)Ar + λBs).

As the level sets of f, g are intervals, the function h is measurable. It remains to verify that we have

a control of the form ∫
R
h ≤ 1 + c(τ)εγ ,

for some γ > 0 and some function c(τ) > 0. The strategy here is similar to the proof of Proposition 2.6.

First, we may choose θ = ατ/2
13 in (4.7), so that we obtain

(4.8) ‖f − f‖1 =

∫ ∞
0
H1({f > t}∆{f > t}) dt . τ−4ε

ατ
213 | log ε|

4
τ ,

(with the same estimate holding for g, g) and then use Chebyshev’s inequality in order to conclude

that

(4.9) H1
({
t > 0: H1({f > t

})
≤ εδ}) . εδ,

for all δ < ατ/2
15. Then, we fix γ0 < ατ/2

15 and define S ⊂ (0,+∞) to be the largest measurable

subset of (0,+∞) satisfying:

(1) min{H1({f > t}),H1({g > t})} > εγ0 for all t ∈ S ∩
(

0, 1 + cτ−4ε
1
2

)
;

(2) H1({f > t}∆{f > t}) +H1({g > t}∆{g > t}) . ε
ατ
215 for all t ∈ S.

By (4.8) and (4.9), we have H1(R+ \S) . τ−4εγ0 . Thus, for some absolute constant c > 0, there is an

element r0 ∈ (1− cτ−4εγ0 , 1 + cτ−4εγ0) ∩ S. Fix this element until the end of the proof.
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Note that transformations of the form

(f, g, h) 7→ (f(· − x0), g(·+ x0), h), (f, g, h) 7→ (f(· − x0), g(· − x0), h(· − x0))

preserve (1.3) and (1.7) with the same constant. Also, they leave the set S defined above unaltered.

Hence, with no loss of generality, we may suppose that the barycenters of {f > r0} and {g > r0} both

coincide with the origin. Assume this additional fact until the end of the proof as well.

Now we employ the same strategy as in the final part of the proof of Proposition 2.6. Fix t > ε
τγ0
2 .

It is not hard to see that the set {h > t} splits as

Ct =

∗⋃
r1−λsλ=t
r,s∈S

r0>r,s>εγ0

((1− λ)Ar + λBs) ∪
∗⋃

r1−λsλ=t
r,s∈S

either r>r0 or s>r0

((1− λ)Ar + λBs)

∪
∗⋃

r1−λsλ=t
either r 6∈S or s 6∈S

((1− λ)Ar + λBs) =: C
1
t ∪ C

2
t ∪ C

3
t .

Case 1: Analysis of C
1
t . By Young’s convolution inequality and the definition of S, we have

‖χ(1−λ)Ar ∗ χλBs − χ(1−λ)Ar
∗ χλBs‖∞ ≤ ‖χ(1−λ)Ar − χ(1−λ)Ar

‖1 + ‖χλBs − χλBs‖1

. ε
ατ
215 ∀ r, s ∈ S.

(4.10)

On the other hand, by the definition of S and the fact that we are analyzing C
1
t , we have that

min{(1− λ)H1(Ar), λH1(Bs)} ≥ τεγ0 .

We thus have the convolution estimate

(4.11) χ(1−λ)Ar
∗ χλBs(x) > 3ε2γ0

whenever

x ∈
(
(1− λ)af (r) + λag(s) + 3ε2γ0 , (1− λ)bf (r) + λbg(s)− 3ε2γ0

)
.

Since (1 − λ)af (r) + λag(s) ≤ −εγ0 , (1 − λ)bf (r) + λbg(s) ≥ εγ0 , and r, s ∈ (εγ0 , r0), due to the fact

that the barycenters of Ar0 and Br0 coincide with the origin, we have that the set(
(1− λ)af (r) + λag(s) + 3ε2γ0 , (1− λ)bf (r) + λbg(s)− 3ε2γ0

)
contains (1− ε

γ0
4 )
(
(1− λ)Ar + λBs

)
whenever γ0 < ατ/2

15.

On the other hand, (4.10) and (4.11) imply that

x ∈ supp(χ(1−λ)Ar ∗ χλBs) = (1− λ)Ar + λBs.

Thus,

(1− λ)Ar + λBs ⊂
1

1− ε
γ0
4

((1− λ)Ar + λBs) ⊂
1

1− ε
γ0
4

{h > t},

hence

C
1
t ⊂

1

1− ε
γ0
4

Ct.

Case 2: Analysis of C
2
t ∪ C

3
t . Recall that, by assumption, t > ε

τγ0
2 . Hence, since ‖f‖∞, ‖g‖∞ ≤ 2, we

readily obtain

r, s & ε
γ0
2 .
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Since H1(R+ \ S) ≤ εγ0 , there exist r′, s′ ∈ S, with r′, s′ ∈ (εγ0 , r0), such that |r − r′|+ |s− s′| ≤ εγ0

and r > r′, s > s′. Therefore,

(1− λ)Ar + λBs ⊂ (1− λ)Ar′ + λBs′ ⊂
1

1− ε
γ0
4

{h > (r′)1−λ(s′)λ} ⊂ 1

1− ε
γ0
4

{h > t− ετγ0},

which implies

Ct ⊆
1

1− ε
γ0
4

{h > t− ετγ0}, ∀ t > ε
τγ0
2 .

Moreover, since supp(h) ⊂ (1−λ)supp(f)+λsupp(g) and all sets involved are intervals, H1(supp(h)) .

τ−4| log ε|
4
τ . Thus,

∫
R
h =

∫ ∞
0
H1({h > t}) dt ≤

∫ 1
2
ε
τγ0
2

0
H1(supp(h)) dt

+
1

1− ε
γ0
4

∫ ∞
1
2
ε
τγ0
2

H1({h > t}) dt ≤ 1 +
c

τ4
ε
τγ0
2 | log ε|

4
τ ,

for some absolute constant c > 0. This concludes Step 1, as long as we take γ ∈ (0, τγ02 ) and c(τ) = τ−4.

• Step 2: the functions af , ag, bf , bg are suitably close to satisfying 4−point inequalities.

We now use similar methods to the ones employed in Section 3 in order to conclude that the functions

we constructed are close to being concave.

Indeed, for notational simplicity, we reset our construction from the beginning, additionally as-

suming the reductions and conclusions of Step 1 to hold. In other words, we assume that f, g, h

satisfy (1.3) and (1.7), and moreover the level sets of f, g are intervals. We further assume that

‖f‖∞ = 1,
∫
R f =

∫
R g = 1, as in Section 2.

Now Lemma 3.1 yields that there is a set F ⊂ (0,+∞) such that H1(R+ \ F ) . ε
1
4 , and moreover∣∣H1(Ct)− (1− λ)H1(At)− λH1(Bt)

∣∣ . τ− 3
2 ε

1
4 , ∀ t ∈ F.

We may now invoke the set F ′ constructed in Lemma 4.2. With this in hands, we define the set

F ′M := log(F ′) ∩ [−M,M ], M = θ log(1/ε) (θ < δ/2 to be chosen later). We see, from this definition

and a change of variables, H1([−M,M ] \ F ′M ) . ε
δ
2 , and F ′M is such that the sets

AR = AeR = (af (R),bf (R)), BS = BeS = (ag(S),bg(S)), CT = CeT = (ah(T ),bh(T )),

satisfy

(4.12)
∣∣H1(CT )− (1− λ)H1(AT )− λH1(BT )

∣∣ . τ− 3
2 ε

1
4 , ∀T ∈ F ′M

and

(4.13) min{H1(AT ),H1(BT )} ≥ εδ, ∀T ∈ (−∞, log(1 + cτ−
3
2 ε

1
2 )) ∩ F ′M .

We claim that, for R,S, T ∈ F ′M are so that AR,BS 6= ∅, (1− λ)R+ λS = T, then

(4.14) (1− λ)AR + λBS ⊂
(

(1− λ)af (T ) + λag(T )− 1

1000
εδ, (1− λ)af (T ) + λag(T ) +

1

1000
εδ
)
.

Indeed, if this is not the case, then, by (4.13) and the Brunn–Minkowski inequality,

H1 ((1− λ)AR + λBS) ≥ εδ,

and thus, as all sets involved are intervals,

H1 (((1− λ)AR + λBS) \ ((1− λ)AT + λBT )) ≥ 1

1000
εδ.
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This implies, on the other hand, that

H1 (CT \ ((1− λ)AT + λBT )) ≥ 1

1000
εδ,

which, together with (4.12) and the one-dimensional Brunn–Minkowski inequality, contradicts the

definition of F ′M , as long as we take ε � τ3. Thus, whenever R,S, T ∈ F ′M , (1 − λ)R + λS =

T,AR,BS 6= ∅, we have

(1− λ)af (R) + λag(S) ≥ (1− λ)af (T ) + λag(T )− 1

1000
εδ,

(1− λ)bf (R) + λbg(S) ≤ (1− λ)bf (T ) + λbg(T ) +
1

1000
εδ,

(4.15)

which proves (4.14).

As indicated in Section 3, we can apply [24, Remark 4.1] to translate the three-point inequalities

presented in (4.15) into the following four-point inequalities:

af (T1) + af (T2) ≥ af (T1,2) + af (T2,1)− 1

λ
εδ,

ag(T1) + ag(T2) ≥ ag(T1,2) + ag(T2,1)− 1

λ
εδ,

(4.16)

bf (T1) + bf (T2) ≤ bf (T1,2) + bf (T2,1) +
1

λ
εδ,

bg(T1) + bg(T2) ≤ bg(T1,2) + bg(T2,1) +
1

λ
εδ,

(4.17)

whenever

T1, T2 ∈ F ′M , T1,2 =
1

2− λ
T1 +

1− λ
2− λ

T2 ∈ F ′M , T2,1 =
1

2− λ
T2 +

1− λ
2− λ

T1 ∈ F ′M .

This concludes this step, as the functions af , ag, bf , bg are close to af ,ag,bf ,bg, which themselves

satisfy the four-point inequalities.

• Step 3: Constructing the log-concave approximations. We now employ Lemma 3.3 to the

functions af ,ag,bf ,bg.

Indeed, fixing a level r0 > 1 − cεδ with min{H1({f > r0}),H1({g > r0})} ≥ εδ, we may suppose

that the barycenters of the intervals {f > r0}, {g > r0} coincide with the origin; the existence of such

a level follows once again by the definition and properties of the set F ′M .
After this reduction, the definition of F ′M and Lemma 2.5 ensure that the additional hypothesis

|af (T )|+ |bf (T )|+ |ag(T )|+ |bg(T )| . τ−4| log ε|
4
τ

hold on a subset F ⊂ F ′M so that H1(F ′M \ F) . εδ. We thus replace F ′M by F, and henceforth still

denote it by F ′M . Notice also that, in such a set, one has af ,ag nonpositive and bf ,bg nonnegative.

At the present point, one notices that all other prerequisites for Lemma 3.3 are satisfied, thus we

may apply it to bf ,bg, and to −af ,−ag (thanks to (4.16) and (4.17)).

Applying Lemma 3.3 and arguing as in Section 3, we find functions bf , bg, af , ag, defined on an

interval ΩM satisfying H1((−M,M) \ ΩM ) . ε
δ
2 , such that∫

F ′M
|bf (T )− bf (T )| dT +

∫
F ′M
|af (T )− af (T )| dT . | log ε|

4
τ

τω1
ε
δατ
2 ,

∫
F ′M
|bg(T )− bg(T )| dT +

∫
F ′M
|ag(T )− ag(T )| dT . | log ε|

4
τ

τω1
ε
δατ
2 .

(4.18)

Moreover, bf , bg are concave, af , ag are convex, and they are all bounded in absolute value by

cτ−4| log ε|
4
τ .
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Again, the considerations in Section 3 applied almost verbatim to bf ,bg,−af ,−ag imply that, by

potentially decreasing the power of ε in the left-hand side of (4.18), we may suppose that af , ag, bf , bg

are all monotone on a smaller interval IM = (−3M/4, 3M/4), and thus, as af ,ag,bf ,bg are themselves

bounded by cτ−4| log ε|
4
τ ,∫

IM

|af (T )− af (T )| dT +

∫
IM

|bf (T )− bf (T )| dT . | log ε|1+ 4
τ

τ
3ω1
2

ε
δατ
16 ,∫

IM

|ag(T )− ag(T )| dT +

∫
IM

|bg(T )− bg(T )| dT . | log ε|1+ 4
τ

τ
3ω1
2

ε
δατ
16 .

(4.19)

Similarly as before, we pick the unique pair f̃ , g̃ of functions such that

{x ∈ R : f̃(x) > t} = (af (log t), bf (log t)), {x ∈ R : g̃(x) > t} = (ag(log t), bg(log t)),

whenever log t ∈ IM (that is, t ∈ (ε
3θ
4 , ε−

3θ
4 )),

supp(f̃) =
⋃

t∈(ε
3θ
4 ,ε−

3θ
4 )

(af (log t), bf (log t)), supp(g̃) =
⋃

t∈(ε
3θ
4 ,ε−

3θ
4 )

(ag(log t), bg(log t)),

and {x ∈ R : f̃(x) > t} = {x ∈ R : g̃(x) > s} = ∅ for t, s > ε−
3θ
4 or whenever af (log t) = bf (log t) =

0 = ag(log s) = bg(log s).

It follows from the convexity of af , ag, concavity of bf , bg and the argument in Section 3 that these

functions are log-concave.

• Step 4: Conclusion. We can finally conclude the proof. Assume, as in previous sections, that

‖f‖1 = ‖g‖1 = 1 and min{‖f‖∞, ‖g‖∞} = ‖f‖∞ = 1. Moreover, we assume that Steps 1, 2, 3 hold.

Thus, using the functions f̃ , g̃ and the way we built them, we are led to estimate:

‖f − f̃‖1 =

∫ ∞
0
H1({f > t}∆{f̃ > t}) dt

≤
∫
IM

|af (T )− af (T )| eT dT +

∫
IM

|bf (T )− bf (T )|eT dT +

∫ εθ

0
H1({f > t})dt

≤ ε−
3θ
4

(∫
IM

|af (T )− af (T )| dT +

∫
IM

|bf (T )− bf (T )| dT
)

+
c

τ4
εθ| log ε|

4
τ

. | log ε|1+ 4
τ τ−

3ω1
2 ε

δατ
32 . τ−

3ω1
2 ε

δατ
64 ,

(4.20)

by choosing θ = 4
3
δατ
32 and using ε� e−1010

| log τ |4

τ4 . Note that, in this computation, we assumed f and g

to fulfill the requirements in Steps 1-3. In doing so, we lose powers of ε along the way. More precisely,

combining estimates from Section 3 and Steps 1-3, we have:

(1) We must not incorporate any further power from Section 3, as it has only been used in the

reduction to the case of functions whose level sets are intervals;

(2) In Steps 1-3, we must substitute ε 7→ c
τ4
ε
τατ
2048 , by the reduction made in Step 1.

Thus, we conclude that if the functions f, g, h satisfy (1.3) and (1.7), then there are log-concave

functions f̃ , g̃ such that

‖f − f̃‖1 + ‖g − g̃‖1 ≤ cτ−
3ω1
2 ε

τα3τ
230 =: cτ−

3ω1
2 εQ0(τ).

We are now in a position to use Proposition 2.6. We choose η = cτ
−3ω1

2 εQ0(τ). The condition η < c′τ3

for some c′ ∈ (0, 1) becomes

(4.21) ε ≤ ce−M(τ),
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where we define M(τ) = 1040ω1
| log(τ)|4

τ4
, and c > 0 is an absolute constant. Under that condition,

notice that all the smallness conditions in the proof above are also fulfilled.

Hence, thanks to Proposition 2.6 and the smallness condition (4.21), there exists a log-concave

function h̃ such that, for f, g, h satisfying (1.3) and (1.7), if we let a = ‖g‖1/‖f‖1, then there is w ∈ R
for which ∫

R |a
λf(x)− h̃(x− λw)| dx . τ−ω2ε

Q0(τ)
32

∫
R h,∫

R |a
λ−1g(x)− h̃(x+ (1− λ)w)| . τ−ω2ε

Q0(τ)
32

∫
R h,∫

R |h(x)− h̃(x)| dx . τ−ω2ε
Q0(τ)

8

∫
R h.

Here, we have let ω2 = ω1
8 +2. Thus, noting the choices of Q(τ),M(τ) in the statement of Theorem 4.1,

we notice that this finishes the proof of that result, and thus also the proof of Theorem 1.6 in dimension

n = 1.

5. The high-dimensional case

With the one-dimensional case already resolved in the previous section, we now employ a recent

strategy by the first author and A. De [10] in order to reduce the higher-dimensional version to the

one-dimensional one, with the aid of the stability version of the Brunn–Minkowski inequality proved

by the second author and D. Jerison [24]. Indeed, we note that the main result in one-dimension

implies the following result:

Corollary 5.1. Let F,G,H : R+ → R+ be measurable functions such that

(5.1) H(r1−λsλ) ≥ F (r)1−λG(s)λ, ∀ r, s ≥ 0,

where λ ∈ [τ, 1− τ ] for some τ ∈ (0, 1/2]. Suppose that

(5.2)

∫
R+

H ≤ (1 + ε)

(∫
R+

F

)1−λ(∫
R+

G

)λ
holds for 0 < ε < e−M(τ). Then there are constant a, b > 0, with a/b = ‖F‖1/‖G‖1, such that∫

R+

|a−λF (b−λt)−H(t)| dt+

∫
R+

|a(1−λ)G(b(1−λ)t)−H(t)| dt . τ−ωεQ(τ)

∫
R+

H.

Here, ω and Q(τ) are the same as in Theorem 4.1.

Proof. We change variables and define f(x) = F (ex)ex, g(x) = G(ex)ex, h(x) = H(ex)ex. These

functions satisfy (1.3), and, as∫
R
f =

∫
R+

F,

∫
R
g =

∫
R+

G,

∫
R
h =

∫
R+

H,

they also satisfy (1.7). By the result in Section 4, there is a constant η ∈ R such that∫
R
|f(x)− (‖f‖1/‖g‖1)λh(x+ λη)| dx . τ−ωεQ(τ)‖f‖1,∫

R
|g(x)− (‖g‖1‖f‖1)1−λh(x+ (λ− 1)η)| dx . τ−ωεQ(τ)‖g‖1,

for Q(τ) as in the statement of Theorem 4.1. Changing variables back, we obtain∫
R
|F (t)− eλη(‖F‖1/‖G‖1)λH(teλη)| dt . τ−ωεQ(τ)‖F‖1,∫

R
|G(t)− e(λ−1)η(‖G‖1‖F‖1)1−λH(te(λ−1)η)| dt . τ−ωεQ(τ)‖G‖1,
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which implies that ∫
R
|e−λη(‖G‖1/‖F‖1)λF (e−ληs)−H(s)| dt . τ−ωεQ(τ)‖F‖1−λ1 ‖G‖λ1 ,∫

R
|e(1−λ)η(‖F‖1/‖G‖1)1−λG(e(1−λ)ηs)−H(s)| dt . τ−ωεQ(τ)‖F‖1−λ1 ‖G‖λ1 .

Taking a = eη‖F‖1
‖G‖1 , b = eη and using the Prékopa–Leindler inequality on the right-hand side of the

last expression implies the result. �

Let f, g, h : Rn → R+ satisfy the n−dimensional version of (1.3). We use Corollary 5.1 for the triple

F,G,H defined by

Hn({x ∈ Rn : f(x) > t}) = F (t),

Hn({x ∈ Rn : g(x) > t}) = G(t),

Hn({x ∈ Rn : h(x) > t}) = H(t).

By (1.3) and the n−dimensional Brunn-Minkowski inequality, we have

H(r1−λsλ) ≥
(

(1− λ)F (r)1/n + λG(s)1/n
)n
,

whenever F (s), G(r) > 0. Thus, using the weighted inequality between arithmetic and geometric

means, we get the condition (5.1) for F (s), G(r) > 0. Whenever one of them is zero, (5.1) holds

trivially, and thus we have verified (5.1). By layer-cake representation, (5.2) follows at once from

(1.7).

As conditions are verified, we are in position to use the following result:

Lemma 5.2. If ε ∈ (0, e−Mn(τ)), and f, g, h : Rn → R+ satisfy (1.3), (1.7) and
∫
Rn f =

∫
Rn g = 1,

then there is a dimensional constant cn > 0 such that

(5.3)

∫ ∞
0
|F (t)−H(t) | dt+

∫ ∞
0
|G(t)−H(t) | dt ≤ cnτ−

ω
2
−1ε

Q(τ)
2 .

Proof. In what follows, we let, in analogy to the notation employed in sections 2, 3 and 4,

{x ∈ Rn : f(x) > t} = At,

{x ∈ Rn : g(x) > t} = Bt,

{x ∈ Rn : h(x) > t} = Ct

denote the level sets of f, g, h, respectively. Since ‖f‖1 = ‖g‖1 = 1,
∫∞

0 H =
∫
Rn h ≤ 1 + ε, it follows

from Corollary 5.1 that there exists some b > 0 such that

(5.4)

∫ ∞
0
|bλF (bλt)−H(t)| dt+

∫ ∞
0
|b−(1−λ)G(b−(1−λ)t)−H(t)| dt ≤ a(τ, ε),

where we denote a(τ, ε) = cτ−ωeQ(τ). We may assume, without loss of generality, that b ≥ 1.

For t > 0, let

Ãt = b
λ
nAbλt if Ãt 6= ∅

B̃t = b
−(1−λ)

n Bb−(1−λ)t if B̃t 6= ∅.

These sets satisfy |Ãt| = bλF (bλt), |B̃t| = b−(1−λ)G(b−(1−λ)t) and

(5.5)

∫ ∞
0
| |Ãt| −H(t)| dt+

∫ ∞
0
| |B̃t| −H(t)| dt ≤ a(τ, ε).

In addition, we also know from the Prékopa–Leindler condition that

(5.6) (1− λ)b
−λ
n Ãt + λb

1−λ
n B̃t ⊂ Ct.
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We proceed to divide the positive line [0,∞) into two sets where the measures of Ãt, B̃t are either

both close to that of H(t), and otherwise. Indeed, we write [0,+∞) = I ∪ J , where t ∈ I if 3
4 H(t) <

|Ãt| < 5
4 H(t) and 3

4 H(t) < |B̃t| < 5
4 H(t), and t ∈ J otherwise. For J , since ε < e−Mn(τ), (5.5) yields

(5.7)

∫
J
H(t) dt ≤ 4

∫
J

(
| |Ãt| −H(t)|+ | |B̃t| −H(t)|

)
dt ≤ 8a(τ, ε) <

1

2
.

Turning to I, it follows from the Prékopa-Leindler inequality and (5.7) that

(5.8)

∫
I
H(t) dt ≥ 1−

∫
J
H(t) dt >

1

2
.

For t ∈ I, we define α(t) = |Ãt|/H(t) and β(t) = |B̃t|/H(t), and hence 3
4 < α(t), β(t) < 5

4 , and (5.5)

implies

(5.9)

∫ ∞
0

H(t) · (|α(t)− 1|+ |β(t)− 1|) dt ≤ 2a(τ, ε).

We then proceed by estimating, by the Brunn–Minkowski inequality,

H(t) ≥
(

(1− λ)|Abλt|
1
n + λ|Bbλ−1t|

1
n

)n
=
(

(1− λ)b
−λ
n |Ãt|

1
n + λb

1−λ
n |B̃t|

1
n

)n
= |Ãt|1−λ · |B̃t|λ

(
(1− λ)b−

λ
n
|Ãt|

λ
n

|B̃t|
λ
n

+ λb
1−λ
n
|B̃t|

1−λ
n

|Ãt|
1−λ
n

)n
= H(t) · α(t)1−λ · β(t)λ

(
(1− λ)γ

λ
n + λγ−

1−λ
n

)n
,(5.10)

where we let γ = |Ãt|
b|B̃t|

. Then (2.8) yields

(1− λ)γ
λ
n + λγ−

1−λ
n ≥ 1 + τ

(
γ
λ
2n − γ−

1−λ
2n

)2
≥ 1 + τ

(
γ

1
4n − γ−

1
4n

)2
.

We now note that for s ≥ 1, we have

s
1
4n − s−

1
4n = s−

1
4n (s

1
2n − 1) ≥ s−

1
4n · s

1
2n
−1

2n
(s− 1) ≥ 1

2n

(
s− 1

s

)
,

and thus (5.10) implies

(5.11) H(t) ≥ H(t) · α(t)1−λ · β(t)λ
(

1 +
τ

4n

(
γ − γ−1

)2)
.

We claim that if t ∈ I, then

(5.12) α(t)1−λ · β(t)λ
(

1 +
τ

4n

(
γ − γ−1

)2) ≥ 1− 2|α(t)− 1| − 2|β(t)− 1|+ τ
(
√
b− 1)2

8n · b
.

Since α(t)1−λ ·β(t)λ ≥ 1−|α(t)−1|− |β(t)−1|, (5.12) readily holds if |α(t)−1|+ |β(t)−1| ≥ (
√
b−1)2

16n·b .

Therefore we may assume that

(5.13) |α(t)− 1|+ |β(t)− 1| ≤ (
√
b− 1)2

16n · b
<

1

2
,

which condition in turn yields that

(5.14)
bβ(t)

α(t)
≥
b
(

1− (
√
b−1)2

16n2·b

)
1 + (

√
b−1)2

16n·b

≥ b

(
1− 2 · (

√
b− 1)2

32n · b

)
≥ b

(
1−
√
b− 1√
b

)
=
√
b.

We deduce first applying (5.13), and then (5.14) and the fact that γ = α(t)
bβ(t) , that

α(t)1−λ · β(t)λ
(

1 +
τ

4n

(
γ − γ−1

)2) ≥ (1− |α(t)− 1| − |β(t)− 1|)
(

1 +
τ

4n

(
γ − γ−1

)2)
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≥ 1− |α(t)− 1| − |β(t)− 1|+ τ

8n

(
γ − γ−1

)2
≥ 1− |α(t)− 1| − |β(t)− 1|+ τ

8n

(√
b− 1√

b

)2

,

proving (5.12) also under the assumption (5.13), as well.

It follows first from (5.8), after that from (5.10) and (5.12) and finally from (5.9) that

(
√
b− 1)2

16n · b
≤

∫
I
H(t) · (

√
b− 1)2

8n · b
dt ≤ 1

τ

∫
I
H(t) · (2|α(t)− 1|+ 2|β(t)− 1|) dt

≤ 4a(τ, ε)

τ
.

Since ε < e−Mn(τ), we deduce that b < 2; therefore, one easily deduces that

(5.15) b ≤ 1 + 50n
1
2 τ−

1
2a(τ, ε)

1
2 .

Next we claim that

(5.16)

∫ ∞
0

∣∣∣ |At| − |Ãt| ∣∣∣ dt+

∫ ∞
0

∣∣∣ |Bt| − |B̃t| ∣∣∣ dt ≤ 200n
1
2 τ−

1
2a(τ, ε)

1
2 .

Since |Abλt| ≤ |At|, we have∫ ∞
0

∣∣∣|At| − |Ãt|∣∣∣ dt =

∫ ∞
0

∣∣∣|At| − bλ|Abλt|∣∣∣ dt
≤

∫ ∞
0

∣∣∣|At| − bλ|At|∣∣∣ dt+ bλ
∫ ∞

0
||At| − |Abλt|| dt

= (bλ − 1) + bλ
∫ ∞

0
(|At| − |Abλt|) dt

= 2(bλ − 1) ≤ 100λ2λ−1n
1
2 τ−

1
2a(τ, ε)

1
2 ≤ 100n

1
2 τ−

1
2a(τ, ε)

1
2 .

Similarly, |Bt| ≤ |Bbλ−1t|, and hence∫ ∞
0

∣∣∣|Bt| − |B̃t|∣∣∣ dt =

∫ ∞
0

∣∣∣|Bt| − bλ−1|Bbλ−1t|
∣∣∣ dt

≤
∫ ∞

0

∣∣∣|Bt| − bλ−1|Bt|
∣∣∣ dt+ bλ−1

∫ ∞
0
||Bt| − |Bbλ−1t|| dt

= (1− bλ−1) + bλ−1

∫ ∞
0

(|Bbλ−1t| − |Bt|) dt

= 2(1− bλ−1) ≤ 100n
1
2 τ−

1
2a(τ, ε)

1
2 ,

proving (5.16). We conclude the proof by combining (5.5) and (5.16). �

As a by-product of Lemma 5.2, notice that, by setting min(‖f‖∞, ‖g‖∞) = ‖f‖∞ = 2, then

τ−
1
2a(τ, ε)

1
2 &n

∫ max ‖g‖∞,‖h‖∞

2
(G(t) +H(t)) dt.

In particular, we know that

(5.17) Ct ⊃ (1− λ)At + λBt

whenever t ∈ (0, 2). We claim, before proceeding with the proof, that under such conditions,

(5.18) ‖g‖∞ ≤
2e · 3n+1

τn+1
.

Indeed, if y0 ∈ Rn is fixed, we have

Ct ⊃ (1− λ)A
t

1
1−λ /g(y0)

λ
1−λ

+ λy0.
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In particular, ∫ t

0
F (s) ds =

1

1− λ

∫ t1−λg(y0)λ

0
F

(
r1/(1−λ)

g(y0)λ/(1−λ)

)(
r

g(y0)

)λ/(1−λ)

dr

≤ 1

1− λ

(
t

g(y0)

)λ ∫ t1−λg(y0)λ

0
F

(
r1/(1−λ)

g(y0)λ/(1−λ)

)
dr

≤ 1

(1− λ)n+1

(
t

g(y0)

)λ ∫ t1−λg(y0)λ

0
H(r) dr.

Therefore, by picking t = 2 and using that
∫
H ≤ 1 + ε,

∫ 2
0 F (s) ds = 1,

g(y0) ≤ 2 · (1 + ε)1/λ

(1− λ)(n+1)/λ
.

A quick analysis shows that, for λ ∈ (0, 1), the inequality

(1− λ)1/λ ≥ 1

3
(1− λ)

holds. If ε < τ, then the numerator is at most 2e, and thus, as y0 was arbitrary above, we conclude

the claim. Using now (5.17), we get

H(t) ≥
(

(1− λ)F (t)1/n + λG(t)1/n
)n
≥ F (t) +G(t)

2
− |F (t)−G(t)|

2
∀ t ∈ (0, 2).

Notice also that, by Lemma 5.2 ,∫ ∞
0
|F (t)−G(t)| dt .n τ−

1
2a(τ, ε)

1
2 .

Thus, by these considerations and the almost-optimality of f, g, h for the Prékopa–Leindler inequality,

we obtain

(5.19) cnτ
− 1

2a(τ, ε)
1
2 ≥

∫ α

0

(
H(t)− F (t) +G(t)

2
+
|F (t)−G(t)|

2

)
dt ∀α ≥ 0.

On the other hand, notice that (2.11) implies, together with a limiting argument and the Brunn–

Minkowski inequality,

H(t) ≥ max

{(
λG
(
t
1
λ

)1/n
+ (1− λ)F (1)1/n

)n
,

(
(1− λ)F

(
t

1
1−λ
)1/n

+ λG(1)1/n

)n}
,

for all t ∈ (0, 2) so that H(t) > 0. Thus, (5.19) implies

(5.20) cnτ
− 1

2a(τ, ε)
1
2 ≥

∫ α

0

(
1

2

(
(1− λ)nF

(
t

1
1−λ
)

+ λnG
(
t
1
λ

))
− F (t) +G(t)

2

)
dt.

We thus let, in analogy to Lemma 2.5,

Γ(α) =

∫ α

0
((1− λ)nF (t) + λnG(t)) dt.

Again in analogy to Lemma 2.5, we may suppose without loss of generality that λ ≤ 1/2. Then (5.20)

implies
1− λ

2
Γ(α

1
1−λ )α−

λ
1−λ ≤ cnτ−

1
2a(τ, ε)

1
2 +

Γ(α)

2τn
.

As in the proof of Lemma 2.5, we let β = α
1

1−λ . We thus have

Γ(β)

β
≤ 2cnτ

− 3
2a(τ, ε)

1
2 · 1

β1−λ +
1

τn+1

Γ(β1−λ)

β1−λ ,



32 KÁROLY J. BÖRÖCZKY (RÉNYI INSTITUTE), ALESSIO FIGALLI (ETH) AND JOÃO P. G. RAMOS (ETH)

and therefore

Γ(β)

β
≤

(
2cnτ

− 3
2a(τ, ε)

1
2

k∑
i=1

(1/τn+1)i−1

β(1−λ)i

)
+ (1/τn+1)k

Γ(β(1−λ)k)

β(1−λ)k
.

We now select k ∈ N to be the first natural number such that β(1−λ)k > e−1. This implies that

Γ(β) . (1/τn+1)k

(
1 + cn

√
a(τ, ε)

β1−λτ
3
2

)
β.

If β > ε
Q(τ)

2 , then the estimate above yields

Γ(β) ≤ cnτ−
ω+3
2 β| log(β)|

4(n+3)| log τ |
τ .

In particular, one concludes directly from the definition of Γ that

(5.21) F (β) +G(β) ≤ cnτ−
ω+3+n

2 | log ε|
4(n+3)| log τ |

τ , ∀β > ε
Q(τ)

2 .

We are now ready to give the proof of Theorem 1.6 in dimensions n ≥ 2. For that, we use the shorthand

ρn(τ) = 4(n+10)| log τ |
τ .

Proof of Theorem 1.6, n ≥ 2. Let θ > 0 be small, to be chosen later. Define the (truncated) log-

hypographs of f, g, h as

Sf = {(x, T ) ∈ Rn+1 : x ∈ {f > εθ}, εθ ≤ eT < f(x)},

Sg = {(x, T ) ∈ Rn+1 : x ∈ {g > εθ}, εθ ≤ eT < g(x)},

Sh = {(x, T ) ∈ Rn+1 : x ∈ {h > εθ}, εθ ≤ eT < h(x)}.

We first claim that the measure of the two first of such sets is well-controlled. Indeed, it follows

directly from the definition of such sets and (5.21) that, for θ < Q(τ)/4,

(5.22) cnθτ
−ω+3+n

2 | log ε|ρn(τ) ≥ θ| log ε| · Hn({f > εθ}) ≥ Hn+1(Sf ).

On the other hand, by a change of variables and the normalization chosen for f, one obtains

(5.23) Hn+1(Sf ) =

∫ log ‖f‖∞

θ log ε
F (es) ds >

1

2
.

The same estimates together with (5.18) show that

(5.24) cnθτ
−ω+3+n

2 | log ε|ρn(τ) ≥ Hn+1(Sg) >
τ (n+1)

2e · 3n+1
.

holds as well. Employing Lemma 5.2, we obtain that

|Hn+1(Sf )−Hn+1(Sh)|+ |Hn+1(Sg)−Hn+1(Sh)|

≤
∫ ∞
θ log ε

(|F (es)−H(es)|+ |G(es)−H(es)|) ds

≤ ε−θ
(∫ ∞

0
(|F (t)−H(t)|+ |G(t)−H(t)|) ds

)
≤ cnτ−

ω+3
2 ε

Q(τ)
2
−θ =: τn · δ(ε, τ, θ).

(5.25)

We denote, until the end of the proof, δ = δ(ε, τ, θ) for shortness. By (1.3), we have

(5.26) (1− λ)Sf + λSg ⊂ Sh.
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In particular, (5.25), (5.26) and the fact that Hn+1(Sf ) > 1/2 imply the following control on the

measure of Sh:

(5.27) 2cnτ
−ω+3+n

2 | log ε|ρn(τ) ≥ Hn+1(Sh) ≥ τn

2
.

We are in position to use Theorem 1.4. That result states that, under the conditions satisfied by

the sets Sf ,Sg and Sh in (5.22), (5.23), (5.24), (5.25) and (5.26), then for δ < e−An(τ), the sets

Sf ,Sg are both close (in quantitative terms of δ = δ(ε, τ, θ)) to their convex hulls. Here, we let

An(τ) = 23
n+2

n3n | log τ |3n

τ3n
, in accordance to Theorem 1.3 in [24].

In more effective terms, Theorem 1.4 implies that there exist an absolute constant cn > 0 and an

exponent γn(τ) = τ3
n

23n+1n3n | log τ |3n
such that the following holds. Denote the closure of the convex hull

of Sf ,Sg,Sh by Sf , Sg, Sh respectively. There are w̃ = (w, %) ∈ Rn+1, and a convex set Sh ⊃ Sh with

Sh ⊃ (Sf − w̃) ∪ (Sg + w̃),

Hn+1(Sh \ Sh) +Hn+1(Sf \ Sf ) +Hn+1(Sg \ Sg) ≤ cnτ−Nn−
ω+3+n

2 | log ε|ρn(τ)δγn(τ),

Hn+1(Sh \ Sh) +Hn+1(Sh \ (Sf − w̃)) +Hn+1(Sh \ (Sg + w̃)) ≤ cnτ−Nn−
ω+3+n

2 | log ε|ρn(τ)δγn(τ).

(5.28)

We thus use the shorthand N ′n = Nn + ω+3+n
2 . Now (5.28) readily implies that Hn+1(Sh \ Sh) ≤

2cnτ
−N ′n | log ε|ρn(τ)δγn(τ), and thus

(5.29) Hn+1(Sh∆(Sf − w̃)) +Hn+1(Sh∆(Sg − w̃)) ≤ 6cnτ
−N ′n | log ε|ρn(τ)δγn(τ).

We now employ the analysis of [10, Lemma 6.1]. Explicitly, suppose first w̃ = (w, %), % > 0. We let

S%f = {(x, T ) ∈ Sf : θ log ε ≤ T ≤ θ log ε+ %}.

By the fact that Hn+1(Sf + (0, %)) = Hn+1(Sf ) = Hn+1(Sf ∩ (Sf + (0, %))) +Hn+1(S%f ), it follows that

Hn+1(Sf∆(Sf + (0, %))) = 2Hn+1(S%f ). But we also have that Sωf ⊂ Sf \ (Sh + w̃), which, by (5.28)

and (5.29), implies that

Hn+1(S%f ) ≤ 6cnτ
−N ′n | log ε|ρn(τ)δγn(τ).

Thus, by triangle inequality,

Hn+1(Sf∆(Sh + (w, 0))) ≤ 2Hn+1(S%f ) +Hn+1(Sf∆(Sh + w̃)) ≤ 18cnτ
−N ′n | log ε|ρn(τ)δγn(τ).

A similar argument works in case % < 0, if one considers S
|%|
h instead of S%f . In the end, this allows one

to conclude that the w ∈ Rn from before satisfies that

(5.30) Hn+1(Sh∆(Sf − w)) +Hn+1(Sh∆(Sg + w)) ≤ 72cnτ
−N ′n | log ε|ρn(τ)δγn(τ).

We now note that, as {f > εθ} × {T = θ log ε} ⊂ Sf , then

Sf ⊃ co({f > εθ})× {T = θ log ε}.

We associate to each x ∈ co({f > εθ}) the function

Tf (x) = sup{T ∈ R : (x, T ) ∈ Sf}.

This satisfies clearly Tf (x) ≥ θ log ε,∀x ∈ co({f > εθ}). We claim that this function is, moreover,

concave. Indeed, if (x, T1), (y, T2) ∈ Sf , by convexity of that set we get

(tx+ (1− t)y, tT1 + (1− t)T2) ∈ Sf .
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Thus,

Tf (tx+ (1− t)y) = sup{T ∈ R : (tx+ (1− t)y, T ) ∈ Sf}

≥ t sup{T ∈ R : (x, T1) ∈ Sf}+ (1− t) sup{T ∈ R : (y, T2) ∈ Sf}

= tTf (x) + (1− t)Tf (y), ∀ t ∈ (0, 1).

By definition of Sf , it also follows that Tf (x) ≥ log f(x), ∀x ∈ co({f > εθ}). Let

f̃(x) =

eTf (x), if x ∈ co({f > εθ});

0, otherwise .

Now notice that (x, r) belongs to the interior of Sf if and only if Tf (x) > r > θ log ε and x belongs

to the interior of co({f > εθ}). Writing A(r) = {(x, T ) ∈ A, T = r} for horizontal slices of a set

A ⊂ Rn+1, we compute, by Fubini,

Hn+1(Sf \ Sf ) =

∫ ∞
−∞
Hn(Sf (r) \ Sf (r)) dr

=

∫ log 2

θ log ε
Hn({log f̃ > r} \ {log f > r}) dr

=

∫ 2

εθ
Hn({f̃ > s}∆{f > s}) ds

s

≥ 1

2

∫ 2

εθ
Hn({f̃ > s}∆{f > s}) ds.

(5.31)

By Chebyshev’s inequality and (5.28), there is

s0 ∈ (εθ, εθ + cnτ
−N
′
n
2 δ

γn(τ)
2 )

so that Hn({f̃ > s0}∆{f > s0}) ≤ τ−
N′n
2 | log ε|ρn(τ)δ

γn(τ)
2 .

Recalling the definition of δ, one notices that, if Q(τ)
4 > θ, and ε < (cn)−1e

210Nn log(τ)
γn(τ)Q(τ) we may take

s0 ∈ (εθ, 2εθ) so that

(5.32) Hn({f̃ > s0}∆{f > s0}) . τ−N
′
n/2| log ε|ρn(τ)ε

γn(τ)Q(τ)
8 .

Define then the function f̃1 to be zero whenever f̃ ≤ s0, and equal to f̃ otherwise. This new function

is again log-concave.

We claim that this new function is still sufficiently close to f. Indeed, by gathering (5.31), (5.32)

and (5.21), we have

‖f̃1 − f‖1 =

∫ 2

0
Hn({f̃1 > t}∆{f > t}) dt

≤
∫ s0

0

(
Hn({f̃1 > s0}) +Hn({f > t})

)
dt+

∫ 2

s0

Hn({f̃1 > t}∆{f > t}) dt

≤ cnτ−
ω+3+n

2 εθ| log ε|ρn(τ) +

∫ 2

s0

Hn({f̃ > t}∆{f > t}) dt

≤ cnτ−
ω+3+n

2 εθ| log ε|ρn(τ) + 2Hn+1(Sf \ Sf )

.n τ
−N ′nε

γn(τ)Q(τ)
16 | log ε|ρn(τ),

(5.33)

where we chose θ = γn(τ)Q(τ)
16 . Fix this value, and thus the value of δ, for the rest of the proof. Such an

inequality is evidently not restrictive to f, and the same argument yields that there is a log-concave
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function g̃1 so that

(5.34) ‖g̃1 − g‖1 .n τ−N
′
n−(n+1)ε

γn(τ)Q(τ)
16 | log ε|ρn(τ).

In order to conclude, we only need to prove that both of f̃1, g̃1 are sufficiently close, after a trans-

lation, to a log-concave function h̃1. In order to prove that, one only needs to construct the function

h̃ in entire analogy to what we did for f̃ , g̃; that is, we let

Th(x) = sup{T ∈ R : (x, T ) ∈ Sh}.

One readily verifies that this new function is, again, concave, and that the function

h̃(x) =

eTh(x), if x ∈ co({h > eθ});

0, otherwise,

is log-concave. Using (5.30) together with an argument similar to (5.33) implies that

(5.35) Hn+1(Sh∆(Sf − w)) +Hn+1(Sh∆(Sg + w)) ≥∫ ‖h̃1‖∞
0

(
Hn({h̃ > s}∆{f̃(·+ w) > s}) +Hn({h̃ > s}∆{g̃(· − w) > s})

) ds

s
.

Notice now that ‖f̃1‖∞ = ‖f‖∞, ‖g̃1‖∞ = ‖g‖∞, by construction. The idea is then to truncate from

below at height {h̃ > s0} and from above at height % := max(‖f̃1‖∞, ‖g̃1‖∞) in order to generate a

new function, which is again log-concave by construction. Denote this new function by h̃1. Moreover,

by (5.35) in conjunction with (5.18), we have

2e · 3n+1τ−n−1cnτ
−N ′n | log ε|ρn(τ)δγn(τ)

≥
∫ %

s0

(
Hn({h̃1 > s}∆{f̃1(·+ w) > s}) +Hn({h̃1 > s}∆{g̃1(· − w) > s})

)
ds

=

∫
Rn

(
|h̃1(x)− f̃1(x+ w)|+ |h̃1(x)− g̃1(x− w)|

)
dx.

(5.36)

Combining (5.33), (5.34) and (5.36) implies that

‖h̃1(· − w)− f‖1 + ‖h̃1(·+ w)− g‖1 .n τ−N
′
n−n−1| log ε|ρn(τ)ε

γn(τ)Q(τ)
16 .

Finally, in order to prove that h is close to h̃1, we estimate∫
Rn
|h(x)− h̃1(x)| dx =

∫ s0

0
Hn({h > s}) ds

+

∫ %

s0

Hn({h > s}∆{h̃ > s}) ds+

∫ ∞
%
Hn({h > s}) ds

≤ cnτ−
ω+3+n

2 εQ(τ)γn(τ)/16| log ε|ρn(τ) +

∫ %

s0

Hn({h > s}∆{h̃1 > s}) ds

+ cnτ
−ω/2ε

Q(τ)
2 ,

(5.37)

where we used both (5.21) and Lemma 5.2 in the last line. In order to deal with the middle term, we

remark that an argument entirely analogous to that of (5.31) implies that

Hn(Sh \ Sh) ≥ 1

%

∫ %

s0

Hn({h > s}∆{h̃ > s}) ds,
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which on the other hand implies

(5.38)

∫ %

s0

Hn({h > s}∆{h̃1 > s}) ds .n τ−n−1τ−N
′
nεγnQ(τ)/16| log ε|ρn(τ).

Inserting (5.38) into (5.37) implies

(5.39) ‖h− h̃1‖1 .n τ−N
′
n−(n+1)ε

γn(τ)Q(τ)
16 | log ε|ρn(τ).

Finally, in order to arrive at the statement of Theorem 1.6, we notice that the expression on the

right-hand side of (5.39) may be bounded by cnτ
−N ′n−n−1ε

γn(τ)Q(τ)
32 , as long as ε < e

−cn | log τ |ρn(τ)2

Qn(τ)2 , for

cn � 1 sufficiently large absolute constant.

An inspection of the constants needed for the proof above allows us conclude that Theorem 1.6

holds with Σn = Nn + ω+3+n
2 + (n + 1), as τγn(τ) is bounded by an explicitly computable absolute

constant C̃n whenever τ ∈ [0, 1]. We also conclude that we may take Qn(τ) = Q(τ)γn(τ)
16 , and the result

holds whenever ε < cne
−Mn(τ), where cn > 0 is an explicitly computable absolute constant, and one

may take

(5.40) Mn(τ) = cn| log(τ)|max

{
An(τ)

Q(τ)
,
ρn(τ)2

Qn(τ)2

}
,

for cn > 0 a sufficiently large absolute constant, depending only on the dimension n ≥ 2. This finishes

the proof of the higher-dimensional case, and thus also of Theorem 1.6. �
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[3] K. Ball, K. Böröczky: Stability of the Prékopa-Leindler inequality. Mathematika, 56, 339-356 (2010).
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