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Abstract. We consider a family of degenerate elliptic equations of the form div(∇F (∇u)) = f , where
F ∈ C1,1 is a convex function which is elliptic outside a ball. We prove an excess-decay estimate at
points where ∇u is close to a nondegenerate value for F . This result applies to degenerate equations
arising in traffic congestion, where we obtain continuity of∇u outside the degeneracy, and to anisotropic
versions of the p-laplacian, where we get Hölder regularity of ∇u.

1. Introduction

We study the local regularity of minimizers of the functional

(1.1)

∫
Ω
F (∇u) + fu

where Ω ⊆ Rn is an open set, F : Rn → R, f : Ω → R, and u : Ω → R. When a uniform ellipticity
condition on F holds true, the regularity results are classical. Even in the vectorial case, partial
regularity of minimizers was proved under the uniform strict quasiconvexity assumption in [13, 1] (see
also the references quoted therein).

To understand regularity for more degenerate elliptic problems, a natural idea is to prove Hölder
regularity at points where the gradient is close to a value where the function F is C2 and uniformly
convex. This scheme has been carried out by Anzellotti and Giaquinta in [3] under the uniform
convexity assumption for elliptic systems and in [2] if uniform strict quasiconvexity is assumed. In the
latter paper it is proved that, if u : Rn → RN (with N ≥ 1) and

(1.2) lim
r→0

∫
−
Br(x0)

|∇u(y)− ξ0|2 dy = 0

for some ξ0 ∈ RnN and x0 ∈ Rn, F is C2 in a neighborhood of ξ0, and a uniform strict quasiconvexity
holds true around ξ0, then u is of class C1,α in a neighborhood of x0 for every α < 1. Their proof is
based on a linearization argument. They differentiate the Euler equation

∂i(∂iF(∇u)) = f in Ω

(here and in the following we use the Einstein’s summation convention) with respect to a direction
e ∈ Sn−1 to obtain

∂i[∂ijF(∇u(x))∂j(∂eu(x))] = ∂ef(x) in Ω.

Then, using (1.2), they prove that the solution of the differentiated operator is close, on smaller
scales, to the solution v of a differential operator with constant coefficients

∂i[∂ijF(ξ0)∂jv(x)] = 0 in Ω.
1
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Since F is strictly quasiconvex in ξ0, this equation is in turn nondegenerate. In this way, they obtain
regularity of u from the regularity of the linearized operator.

In this paper we study the regularity of minimizers of the function (1.1) in the scalar case assuming
that F is C1,1 and uniformly elliptic outside a ball, and ellipticity may degenerate inside. Basic ex-
amples which fall under these assumptions are F (x) = n(x)p for some p > 1 with n an elliptic norm
(see Definition 3.1), and F (x) = (|x| − 1)p+ for some p > 1 (notice that, since we consider Lipschitz
minimizers, the behavior of F at infinity is not relevant). The first example arises as an anisotropic
generalization of the p-laplacian, whereas the second example is related to some recent problems of
traffic dynamic. In the following we assume that F ∈ C1,1 outside the degeneracy region to prove
that every locally Lipschitz minimizer is C1,α at nondegenerate points. In a previous paper [6] we
already addressed this problem when F ∈ C2, using techniques of Wang [22] and Savin [18]. However,
for F ∈ C1,1 new techniques are needed. In this respect we mention a De Giorgi type approach in
a work of De Silva and Savin [7]; it looks possible to us that also their technique may lead to prove
our result, but we believe that our approach in this setting has its own interest. On the contrary,
the results in [2, 6] described above assumed F ∈ C2 and this assumption cannot be easily removed
with their technique, since their proof is based on a linearization argument which cannot work if the
second derivatives of F are not continuous, because the linearized operator has no reason to stay close
to the nonlinear one. Our approach is still based on a blow-up argument; however, we prove that
the operator can be linearized, up to subsequence, around a limit operator which is uniformly elliptic
thanks to the fact that the gradient is assumed to be mainly outside the degeneracy. To obtain strong
compactness of a rescaled sequence, we use an idea of De Silva and Savin [7] presented in Lemma 4.4.

The paper is organized as follows. In section 2 we present the basic estimate of decay of the excess
function around nondegenerate points. Then we see that this estimate can be iterated at every scale
to obtain the C1,α regularity. Finally, we see that the smallness assumption is satisfied if u is close to
a linear nondegenerate function in a certain sense, which in turn can be verified in the applications. In
section 3 we see how the estimate allows to prove C1,α regularity for the solutions of the anisotropic
p-laplacian and regularity outside the degeneracy for some equations arising in the context of traffic
congestion. In section 4 we collect all the proofs.
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of the italian Ministero dell’istruzione dell’Università e della Ricerca. The second author was partially
supported by NSF grant DSM-1262411. The authors wish to thank Giuseppe Rosario Mingione for a
useful discussion on the problem.

2. Main result

First we introduce the excess function, which measures the distance of the gradient of a solution
∇u from its average. In terms of this quantity we express the smallness condition which guarantees
regularity. The C0,α regularity for ∇u is expressed in terms of the decay of the excess itself, through
Campanato’s Theorem.
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We denote by Br(x) the open ball of center x ∈ Rn and radius r > 0, often shortened as Br if x = 0.

Given g : Ω→ Rn, with the notation
∫
−
Br(x)

g we mean the average of g on the ball Br(x). We refer to

the same quantity also with the notation (g)Br(x).

Let Ω be an open set and let f ∈ Lq(Ω) for some q > n. For every u ∈W 1,2(Ω), x ∈ Ω, r < d(x,Ω)
we consider the excess

U(u, x, r) :=
(∫
−
Br(x)

|∇u(y)− (∇u)Br(x)|2 dy
)1/2

+ r(q−n)/(2q)‖f‖Lq(B1).

The following Theorem provides an excess-decay estimate for local minimizers of the functional
(1.1) at points where ∇u is nondegenerate. As we shall show in the corollaries below, the result can be
iterated on smaller scales to provide Hölder regularity for the gradient around nondegenerate points.

Theorem 2.1. Let f ∈ Lq(B1) for some q > n ≥ 2. Let F : Rn → R be a convex function such that
F ∈ C1,1(Rn \B1/4(0)) and

(2.1) λ Id ≤ ∇2F (x) ≤ Λ Id for a.e. x ∈ Rn \B1/4(0).

Let u ∈W 1,∞(B1) be a minimizer of the functional (1.1) and let us assume that |∇u| ≤ 1 in B1.
Then there exist τ0, α > 0, depending only on n, q, λ,Λ, ‖∇F‖L∞(B1), such that for every τ ≤ τ0

there exists ε = ε(τ) for which the following property holds true: If for some x ∈ B1/2 and r < 1/4 we
have

3

4
≤ |(∇u)Br(x)| ≤ 1, U(u, x, r) ≤ ε,

then
U(u, x, τr) ≤ ταU(u, x, r).

Theorem 2.1 can be iterated to obtain the decay of the excess at every scale.

Corollary 2.2. Let q, f , F , and u be as in Theorem 2.1. Then there exist τ0, α > 0, depending only
on n, q, λ,Λ, ‖∇F‖L∞(B1), such that for every τ ≤ τ0 there exists ε = ε(τ) for which the following
property holds true: If for some x ∈ B1/2 and r < 1/4 we have

(2.2)
7

8
≤ |(∇u)Br(x)| ≤ 1, U(u, x, r) ≤ ε,

then

(2.3) U(u, x, τkr) ≤ ταkU(u, x, r) ∀ k ∈ N.

The assumption in Corollary 2.3 is satisfied in a ball if the gradient of u is aligned in a fixed
direction, as the following corollary states. This will be in turn useful to obtain C1,α regularity at
nondegenerate points in the applications of Section 3.

Corollary 2.3. Let q, f , F , and u be as in Theorem 2.1. Then there exist η, α, C, τ, r0 > 0, depending
only on n, q, λ,Λ, ‖f‖Lq(B1), ‖∇F‖L∞(B1), such that if |∇u(x)| ≤ 1 for every x ∈ B1 and

(2.4) |{x ∈ B1 : ∂vu(x) ≥ 1− η}| ≥ (1− η)|B1|
for some v ∈ Sn−1, then

(2.5) U(u, x, τkr0) ≤ ταkU(u, x, r0) ∀ k ∈ N ∀x ∈ B1/2.

In particular, we have

(2.6) ‖u‖C1,α(B1/2) ≤ C.
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3. Applications

3.1. The anisotropic p-Laplace equation. The simplest example of degenerate elliptic equation is
given by the p-Laplace equation

∂i(|∇u|p−2∂iu) = f,

corresponding to the choice F (x) = |x|p/p in the minimization of the function (1.1); in this case the
degeneracy consists in a single point, the origin, and it is possible to obtain C1,α regularity of the
solution. It has been proved by Uraltseva [21], Uhlenbeck [20], and Evans [10] for p ≥ 2, and by Lewis
[16] and Tolksdorff [19] for p > 1 (see also [8, 22]). In the following, we introduce a generalization
of the p-laplacian which involves an anisotropic norm. We consider an open set Ω ⊆ Rn and a local
minimizer for the functional

(3.1)

∫
Ω

n(∇u)p

p
+ fu,

where n : Rn → R+ is a positively 1-homogeneous convex function and f ∈ Lq(Ω) for some q > n.1

To ensure the equation to be elliptic outside the origin, we need to consider only norms which
satisfy an ellipticity condition in the direction ortogonal to ∇n. For example, the p-norms (namely

n(x) = (|x1|p + ... + |xn|p)1/p for x = (x1, ..., xn) ∈ Rn) are not included in the following definition
and indeed the problem of regularity of minimizers is, to our knowledge, open.

Definition 3.1. An “elliptic norm” n ∈ C1,1
loc (Rn \ {0}) is a convex positively 1-homogenous function

with n(0) = 0, positive outside the origin, for which there exist λ,Λ > 0 such that

λ

∣∣∣∣τ − (τ · ∇n(v))
∇n(v)

|∇n(v)|2

∣∣∣∣2 ≤ n(v)∂ijn(v)τiτj ≤ Λ |τ |2(3.2)

for a.e. v ∈ Rn, τ ∈ Rn.2

In the following, we prove that every Lipschitz solution of the anisotropic p-Laplace equation is
C1,α.

Theorem 3.2. Let p > 1, Ω a bounded open subset of Rn, n ≥ 2, and f ∈ Lq(B1) for some q > n.

Let n : Rn → R be an elliptic norm and let u ∈W 1,∞
loc (Ω) be a local minimizer of the functional (3.1).

Then there exists α ∈ (0, 1), which depends only on n, p, q, λ, Λ, ‖∇n‖∞ such that ∇u ∈ C0,α
loc (Ω),

namely for every Ω′ b Ω there exists a constant C > 0 such that

(3.3) |∇u(x)−∇u(y)| ≤ C|x− y|α ∀x, y ∈ Ω′.

This constant C depends only on n, p, q, λ, Λ, ‖∇n‖∞, Ω′, ‖f‖q, and ‖∇u‖∞ in a neighborhood of
Ω′.

1Recall that a function u ∈ W 1,1
loc (Ω) is said a local minimizer of a function of the form (1.1) if, for every Ω′ b Ω, we

have ∫
Ω′
F (∇u+∇φ) + f(u+ φ) ≥

∫
Ω′
F (∇u) + fu ∀φ ∈W 1,1

0 (Ω′).

2In this definition the term “norm” is used with a slight abuse of notation: indeed we are not requiring the symmetry
of n, namely n(v) = n(−v). We also observe that an equivalent formulation for (3.2) is to ask that

λ′|τ |2 ≤ ∂ijH(v)τiτj ≤ Λ′|τ |2 ∀ v, τ ∈ Rn

for some 0 < λ′ ≤ Λ′, where H(v) :=
(
n(v)

)2
.
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In the theorem above we assume Lipschitz regularity of the solution to prove C1,α regularity; notice
that the Lipschitz regularity follows, for instance, from [9, 4, 11]. To avoid annoying details about a
regularization argument, we prove the result in terms of an a-priori estimate; hence we assume that u
is smooth, and so is n outside the origin (For more details about the regularization, see for instance
[6, Proof of Theorem 1.1]).

The key idea to prove Theorem 3.2 is a lemma which provides a separation between degeneracy
and nondegeneracy. It says that the gradient of the solution ∇u is either close to a nonzero constant,
or it decays on a smaller ball. When the first case happens at some scale, we obtain C1,α regularity
of u through Corollary 2.3. Otherwise, the decay of ∇u at every scale provides C1,α regularity of u.

As we show now the dichotomy, stated at scale one in Lemma 4.5, is based on the construction
of suitable subsolutions to a uniformly elliptic equation, namely (∂eu(x)− 1/2)+ for every e ∈ Sn−1.
Indeed, let u : B1 → R be a Lipschitz local minimizer of (1.1) with Lipschitz constant 1; then it solves
the Euler equation

(3.4) ∂i

[
n
(
∇u(x)

)p−1
∂in
(
∇u(x)

)]
= f(x) x ∈ B1.

Let us introduce the coefficients

(3.5) Aij(x) := n(x)p−2
(

(p− 1)∂in(x)∂jn(x) + n(x)∂ijn(x)
)

∀x ∈ Rn.

Given e ∈ Sn−1, we differentiate (3.4) in the direction e ∈ Sn−1 to obtain

∂i

[
Aij
(
∇u(x)

)
∂j
(
∂eu(x)

)]
= ∂ef(x).

We notice that, setting

(3.6) aij(x) := (p− 1)∂in(x)∂jn(x) + n(x)∂ijn(x) ∀x ∈ Rn,

the coefficients aij are uniformly elliptic. Indeed, ∇n is 0-homogeneous and since n ∈ C1,1
loc (Rn \ {0})

we have that 0 < c ≤ |∇n| ≤ C <∞; therefore for every τ ∈ Rn we obtain that

aijτiτj ≥ (p− 1)|∇n(v)|2
∣∣∣∣τ · ∇n(v)

|∇n(v)|

∣∣∣∣2 + λ

∣∣∣∣τ − (τ · ∇n(v))
∇n(v)

|∇n(v)|2

∣∣∣∣2
≥ min{c2(p− 1), λ}|τ |2,

and analogously from above. Hence the coefficients Aij are uniformly elliptic in every compact region
which does not contain the origin.

Since the function t 7→ (t − 1/2)+ is convex and Lipschitz with derivative 1{t>1/2}, it follows that
the function

(3.7) ve(x) := (∂eu(x)− 1/2)+ e ∈ Sn−1

is a subsolution of the equation

∂i

[
Aij
(
∇u(x)

)
∂jve(x)

]
= ∂ef(x)1{∂eu>1/2}(x).

Notice that the values of the coefficients Aij(∇u(x)) are only relevant when 1/2 ≤ |∇u(x)| ≤ 1. Indeed
the solution satisfies |∇u(x)| ≤ 1 (by assumption), and when |∇u(x)| ≤ 1/2 we have that ve(x) = 0.
Therefore, thanks to the ellipticity assumption on n, the equation might be assumed to be uniformly
elliptic.
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The idea of the proof now follows a paper by Wang [22], where Theorem 3.2 is presented for
the classical p-laplacian. In this case, however, the author considers a different subsolution, namely
n(∇u)p, which solves an elliptic equation with nondegenerate coefficients. Indeed, given a locally
lipschitz minimizer of (1.1) with f = 0, the coefficients aij (introduced in (3.6)) are uniformly elliptic
and the function n(∇u)p formally solves

∂i

[
aij
(
∇u(x)

)
∂j

(
n
(
∇u(x)

)p)] ≥ 0.

The choice of the subsolution in [22] leads to additional difficulties to pass from a nondegenerate
slope of u in modulus to closeness to a linear function. Moreover, the regularity at nondegenerate
points is carried out in [22] through the analysis of the equation in nondivergence form, proving as
a key lemma that any solution of the p-laplace equation is close to the solution of the linearized
problem at nondegeneracy points. Wang’s scheme can be carried out for a general elliptic norm n
only assuming better regularity on n, namely n ∈ C2(Rn \ {0}). Hence, as we shall see in Section 4,
the proof of Theorem 3.2 requires the use of our Theorem 2.1.

3.2. Degenerate elliptic equations and traffic models. Corollary 2.3 can be used to prove local
C0,α regularity of the gradient of the solution of a degenerate elliptic equation outside the degeneracy
region. We refer to [6, 5] and the references quoted therein for a detailed presentation of the model
and for the physical meaning of the continuity of the gradient at nondegenerate points. We also refer
to [15] for a nonvariational analysis of the same kind of degenerate elliptic equations.

The following result is a generalization of [6, Theorem 1.1] (see also [17] where the result is proved in
dimension n = 2) to more general functions F (we do not require C2 regularity of F ). The degeneracy
region is a convex set containing the origin, described as the unit ball of a convex positively 1-
homogenous function which does not need to be elliptic. The variational proof is based on Corollary 2.3,
which in turn uses a different technique with respect to the proof presented in [6] that is based on
some ideas of Savin [18] and Wang [22].

Theorem 3.3. Let Ω a bounded open subset of Rn, n ≥ 2, f ∈ Lq(Ω) for some q > n. Let m : Rn → R
be a convex positively 1-homogenous function with m(0) = 0 which is positive outside the origin. Let

F : Rn → R be a convex nonnegative function such that F ∈ C1,1
loc (Rn \ {m ≤ 1}), and assume that for

every δ > 0 there exist λδ,Λδ > 0 such that

(3.8) λδI ≤ ∇2F (x) ≤ ΛδI for a.e. x such that 1 + δ ≤m(x) ≤ 1/δ.

Let u ∈ W 1,∞
loc (Ω) be a local minimizer of the functional (1.1). Then, for any continuous function

H : Rn → R such that {m ≤ 1} ⊆ {H = 0}, we have

H(∇u) ∈ C0(Ω).

More precisely, for every open set Ω′ b Ω there exists a modulus of continuity ω : [0,∞)→ [0,∞) for
H(∇u) on Ω′, which depends only on n, the modulus of continuity of H, the functions δ → λδ,δ → Λδ,
‖∇u‖∞ in a neighborhood Ω′′ ⊂ Ω of Ω′, and ‖∇F‖∞ in a neighborhood of ∇u(Ω′′), such that∣∣H(∇u(x))−H(∇u(y))

∣∣ ≤ ω(|x− y|) ∀x, y ∈ Ω′.

In particular, if F ∈ C1(Rn) then ∇F (∇u) ∈ C0(Ω).
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4. Proofs

4.1. Proof of Theorem 2.1. Before proving the result, we state some simple lemmas. The proof of
the first lemma is an easy computation which is left to the reader.

Lemma 4.1. Let p > 1, X ∈ Rn, and let v1, ...,vn ∈ Rn be a family of vectors satisfying |vi| = 1 for
any i = 1, ..., n and

∣∣det
(
v1| . . . |vn

)∣∣ > c0 > 0 (here
(
v1| . . . |vn

)
denotes the matrix whose columns

are given by the vectors v1, ...,vn ∈ Rn). Then there exists a constant c > 0, which depends only on
n and c0, such that

(4.1) |X · vj | ≤ |X| ≤
1

c

n∑
i=1

|X · vi| ∀ j = 1, ..., n.

From Lemma 4.1 we deduce that, given independent unit vectors v1, ...,vn ∈ Rn and X ∈ L2(Ω;Rn),
we have

‖X · vj‖L2(Ω) ≤ ‖X‖L2(Ω;Rn) ≤
1

c

n∑
i=1

‖X · vi‖L2(Ω) ∀ j = 1, ..., n.

This implies the following result:

Lemma 4.2. Let Ω ⊆ Rn be an open set. Let {Xh}h∈N ⊆ L2(Ω;Rn), X∞ ∈ L2(Ω;Rn), and let
{v1, ...,vn} be a basis of Rn. Then {Xh}h∈N is precompact in L2(Ω;Rn) if and only if {Xh · vi}h∈N is
precompact in L2(Ω) for every i = 1, .., n. If this happens then we have that

lim
h→∞

Xh = X∞ in L2(Ω;Rn) if and only if

lim
h→∞

Xh · vi = X∞ · vi in L2(Ω) ∀ i = 1, .., n.
(4.2)

Another useful result is the following:

Lemma 4.3. Let Λ > λ > 0 and r > 0. For every h ∈ N let Ah : Br → Rn×n be a sequence of
measurable functions such that Ah(x) is a nonnegative symmetric matrix for a.e. x ∈ Br, Ah ≤ Λ Id
and

(4.3) lim
h→∞

∣∣∣{Ah ≤ λ Id}
∣∣∣ = 0.

Then there exists a measurable function A : Br → Rn×n such that A(x) is a nonnegative symmetric
matrix for a.e. x ∈ Br,
(4.4) λ Id ≤ A(x) ≤ Λ Id for a.e. x ∈ Br,
and, up to subsequences,

(4.5) Ah → A weakly in L2(Br;Rn×n).

Proof. Since 0 ≤ Ah ≤ Λ Id for every h ∈ N we have that there exists a function A : Br → Rn×n with
0 ≤ A ≤ Λ Id and such that, up to a subsequence, (4.5) holds. By (4.3), up to a further subsequence
we may assume that

(4.6)
∞∑
h=1

∣∣∣{Ah ≤ λ Id}
∣∣∣ <∞.

Setting

Ik =
⋃
k≤h
{Ah ≤ λ Id} ∀ k ∈ N
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we have that |Ik| → 0 by (4.6) and that, by (4.5), Ah → A weakly in L2(Br \Ik;Rn×n) for every k ∈ N.
The set {A ∈ Rn×n : λ Id ≤ A ≤ Λ Id} is convex and closed in Rn×n. Since λ Id ≤ Ah(x) ≤ Λ Id for
every x ∈ Br \ Ik and for every h > k, we take the limit in the weak convergence as h → ∞ and we
obtain that λ Id ≤ A(x) ≤ Λ Id for a.e. x ∈ Br \ Ik. Since k is arbitrary, we obtain (4.4). �

The following lemma is a Caccioppoli inequality for a subsolution of an elliptic differental operator
in terms of an a priori estimate. The proof follows an idea in [7, Proposition 2.3] and it is based on
the variational structure of the equation (4.8).

Lemma 4.4. Let v ∈ Sn−1, λ > 0, c > 0, and f ∈ C1(B1). Let F ∈ C2(Rn) be a convex function
such that

(4.7) λ Id ≤ ∇2F (x) for all x ∈ Rn such that x · v ≥ c.

Let u ∈ C2(B1) be a solution of

(4.8) ∂i(∂iF (∇u)) = f in B1

which is Lipschitz with constant 1 in B1. Let G : R → R be a nondecreasing 1-Lipschitz function
which is constant on the set {t ≤ c}. Then there exists C > 0, depending only on n and λ, such that
for every η ∈ Rn

(4.9)
∥∥∇[G(∂vu)]

∥∥
L2(B3/4)

≤ C
(
‖G(∂vu)‖L2(B1) + ‖f‖L2(B1) + ‖∇F (∇u)− η‖L2(B1)

)
.

Proof. By approximation, it suffices to prove the result when G ∈ C1.
We differentiate the equation (4.8) in the direction v to get

∂i(∂ijF (∇u)∂jvu) = ∂vf in B1.

Let ζ ∈ C∞c (B1) be a nonnegative and smooth cutoff function which is 1 in B3/4. We test the

above equation with the test function G(∂vu) ζ2, which is Lipschitz and compactly supported, and we
integrate by parts:∫

B1

∂ijF (∇u) ∂jvu ∂i[G(∂vu)] ζ2

= −2

∫
B1

∂ijF (∇u) ∂jvuG(∂vu) ζ∂iζ +

∫
B1

f ∂v[G(∂vu)] ζ2 + 2

∫
B1

f G(∂vu) ζ∂vζ.

(4.10)

We estimate each term of (4.10). As regards the left-hand side we notice that G′(∂vu) = 0 on the set
{∂vu ≤ c}. Hence we apply (4.7) and the fact that 0 ≤ G′ ≤ 1 to get∫

B1

∂ijF (∇u) ∂jvuG
′(∂vu) ∂ivu ζ

2 ≥ λ
∫
B1

G′(∂vu) |∇∂vu|2ζ2 ≥ λ
∫
B1

|∇[G(∂vu)]|2ζ2(4.11)
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To estimate the first term in the right-hand side of (4.10) we integrate by parts and, for some ε to be
chosen later, we have

− 2

∫
B1

∂ijF (∇u) ∂jvuG(∂vu) ζ∂iζ = −2

∫
B1

∂v[∂iF (∇u)− ηi]G(∂vu) ζ∂iζ

= 2

∫
B1

[∂iF (∇u)− ηi] ∂v[G(∂vu)] ζ∂iζ + 2

∫
B1

[∂iF (∇u)− ηi]G(∂vu) ∂v[ζ∂iζ]

≤ ε
∫
B1

|∇[G(∂vu)]|2ζ2 +
‖∇ζ‖2∞

ε

∫
B1

|∇F (∇u)− η|2

+ ‖∇[ζ∇ζ]‖2∞
∫
B1

|G(∂vu)|2 +

∫
B1

|∇F (∇u)− η|2

(4.12)

As regards the last two terms in (4.10) we have∫
B1

f ∂v[G(∂vu)] + 2

∫
B1

f G(∂vu) ζ∂vζ

≤ ε

2

∫
B1

|∇[G(∂vu)]|2 +
1

2ε

∫
B1

f2 + ‖∇ζ‖2∞
∫
B1

|G(∂vu)|2 +

∫
B1

f2.

(4.13)

We choose ε ≤ 2λ/3 and we obtain from (4.10), (4.11), (4.12), (4.13) that there exists a constant C,
depending only on n and λ, such that∫

B3/4

|∇[G(∂vu)]|2 ≤
∫
B1

|∇[G(∂vu)]|2ζ2

≤ C
(∫

B1

|∇[G(∂vu)]|2 +

∫
B1

f2 +

∫
B1

|∇F (∇u)− η|2
)
,

proving (4.9). �

Proof of Theorem 2.1. With a standard regularization, presented in detail in an analogous situation
in [6, Proof of Theorem 1.1], we may assume without loss of generality that F ∈ C2(B1), f ∈ C1(B1),
and that u ∈ C2(B1) is a solution of

(4.14) ∂i(∂iF (∇u)) = f in B1.

By contradiction, let τ, α > 0 to be chosen later and let us consider sequences {xh}h∈N ⊆ B1/2,

{rh}h∈N ⊆ (0, 1/4), and {uh}h∈N ⊆ C2(B1) such that uh are solutions to (4.14) and

(4.15) |∇uh| ≤ 1 in B1 ∀h ∈ N,

(4.16) U(uh, xh, rh) = λh → 0 as h→∞,

(4.17) U(uh, xh, τrh) > ταU(uh, xh, rh) ∀h ∈ N,

(4.18) (∇uh)Brh (xh) → γ∞ as h→∞, γ∞ ∈ Rn,
3

4
≤ |γ∞| ≤ 1.

Let us define the rescaled functions

ũh(x) :=
uh(xh + rhx)

rh
x ∈ B1;

since uh are solutions to (4.14) we have

(4.19) ∂i(∂iF (∇ũh)) = f̃h in B1,
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where f̃h(x) := rhf(xh + rhx) for x ∈ B1. Moreover, setting γh := (∇uh)Brh (xh), we have that

γh = (∇ũh)B1 . We remark that, by a change of variables,

(4.20) ‖f̃h‖Lq(B1) = r
(q−n)/q
h

(∫
Brh (xh)

|f(y)|q dy
)1/q

= r
(q−n)/q
h ‖f‖Lq(Brh (xh))

By the change of variable formula we rewrite (4.15), (4.16), (4.17), and (4.18) in terms of ũh:

(4.21) |∇ũh| ≤ 1 ∀h ∈ N,

(4.22)
(∫
−
B1

|∇ũh(y)− γh|2 dy
)1/2

+ r
(q−n)/(2q)
h ‖f‖Lq(B1) = λh → 0 as h→∞,

(which implies that rh → 0 as h→∞),

(4.23)
(∫
−
Bτ

|∇ũh − (∇ũh)Bτ |2

λ2
h

)1/2
+

(τrh)(q−n)/(2q)

λh
‖f‖Lq(B1) > τα ∀h ∈ N,

(4.24) (∇ũh)B1 = γh → γ∞ as h→∞, γ∞ ∈ Rn,
3

4
≤ |γ∞| ≤ 1.

By Poincaré inequality and (4.22) we have that

(4.25) ‖ũh(x)− ũh(0)− γh · x‖L2(B1) . λh;

therefore the functions
ũh(x)− ũh(0)− γh · x

λh
are bounded in W 1,2(B1). Hence there exists u∞ ∈W 1,2(B1) such that, up to a subsequence,

(4.26)
ũh(x)− ũh(0)− γh · x

λh
→ u∞(x) in L2(B1),

(4.27)
∇ũh(x)− γh

λh
→ ∇u∞(x) weakly in L2(B1).

Step 1. Let v ∈ Sn−1 be such that 5/8 < γ∞ · v (so that 1/2 < γh · v ≤ 1 for h large enough), and
set

vh(x) :=
(
∂vũh(x)− γh · v

2

)
+
− γh · v

2
,

(4.28) wh(x) := ∂vũh(x)− γh · v.
From the fact that

vh = wh on
{
x ∈ B1 : ∂vũh(x) ≥ γh · v

2

}
and

0 > vh = −γh · v
2

> wh on
{
x ∈ B1 : ∂vũh(x) <

γh · v
2

}
we obtain

(4.29) ‖vh‖L2(B1) ≤ ‖wh‖L2(B1) ≤ C0λh,

which implies

(4.30) lim
h→∞

‖vh‖L2(B1) = 0, lim
h→∞

‖wh‖L2(B1) = 0.
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Let σ := 2n/(n− 1). We claim that there exist constants C1, C2, C3 > 0 such that

‖∇vh‖L2(B3/4) ≤ C1

(
‖vh‖L2(B1) + ‖f̃h‖L2(B1) + ‖∇F (∇ũh)−∇F (γh)‖L2(B1)

)
≤ C2λh,(4.31)

(4.32) ‖vh‖Lσ(B3/4) + ‖wh‖Lσ(B3/4) ≤ C3λh,

(4.33) lim
h→∞

∥∥∥vh − wh
λh

∥∥∥
L2(B3/4)

= 0.

Notice that from (4.31) and (4.29) we obtain that the sequence {vh/λh}h∈N is bounded in W 1,2(B3/4)

and therefore it is precompact in L2(B3/4); from (4.33) we also obtain that

(4.34) the sequence {wh/λh}h∈N is precompact in L2(B3/4).

We now prove (4.31), (4.32), and (4.33).

By Lemma 4.4 applied with u = ũh, f = f̃h, c = γh · v/2 > 1/4, η = ∇F (γh), and G(x) =
(x− γh · v/2)+ − γh · v/2, we obtain that

‖∇vh‖L2(B3/4) ≤ C1

(
‖vh‖L2(B1) + ‖f̃h‖L2(B1) + ‖∇F (∇ũh)−∇F (γh)‖L2(B1)

)
We claim that the three terms in the right-hand side can be estimated by the excess λh up to a
constant. Indeed by (4.29) we estimate the first term; from (4.20) we deduce that

‖f̃h‖L2(B1) . ‖f̃h‖Lq(B1) ≤ r
−(q−n)/(2q)
h ‖f̃h‖Lq(B1) . λh.

Finally, for the last term we remember that |γh| ≥ 3/4, F is Lipschitz in B1 (by convexity) and
F ∈ C1,1(Rn \B1/4). Hence, |∇F (∇ũh)−∇F (γh)| can be estimated thanks to the Lipschitz regularity
of ∇F on the set {|∇ũh| ≥ 1/4}; on the complement {|∇ũh| < 1/4} we estimate the quantity
|∇F (∇ũh)−∇F (γh)| by 2‖∇F‖2L∞(B1) and we notice that on that set |∇ũh−γh| ≥ 1/8. We therefore

obtain ∫
B1

|∇F (∇ũh)−∇F (γh)|2 ≤ C
(
‖∇2F‖2L∞(Rn\B1/4) + ‖∇F‖2L∞(B1)

)∫
B1

|∇ũh − γh|2

and we conclude the proof of the second inequality in (4.31).
Since W 1,2(B3/4) embeds into Lσ(B3/4), by (4.31) we have that

‖vh‖Lσ(B3/4) ≤ C4λh;

from the higher integrability of vh and the fact that γh · v/2 ≥ 1/4 we obtain∣∣∣{x ∈ B3/4 : ∂vũh(x) <
γh · v

2

}∣∣∣ ≤ ∣∣∣{x ∈ B3/4 : ∂vũh(x) <
γh · v

2

}∣∣∣4σ(γh · v
2

)σ
≤ 4σ‖vh‖σLσ(B3/4) ≤ C5λ

σ
h.

(4.35)

Then, from (4.35) and since ũh is Lipschitz with constant 1 (see (4.21)) we get∥∥∥vh − wh
λh

∥∥∥2

L2(B3/4)
≤ 4

λ2
h

∣∣∣{x ∈ B3/4 : ∂vũh(x) <
γh · v

2

}∣∣∣ ≤ 4C5λ
σ−2
h ,

which converges to 0 by (4.22) and proves (4.33).



12 M. COLOMBO AND A. FIGALLI

Finally, by (4.21), (4.35), and (4.29) we have

‖wh‖σLσ(B3/4) ≤
∫
B3/4∩{∂vũh≥

γh·v
2
}
|∂vũh(x)− γh · v|σ +

∣∣∣{x ∈ B3/4 : ∂vũh(x) <
γh · v

2

}∣∣∣2σ
≤ ‖vh‖σLσ(B3/4) + C52σλσh ≤ (1 + 2σC5)λσh,

which proves (4.32).

Step 2. We claim that

(4.36) lim
h→∞

∇ũh − γh
λh

= ∇u∞ in L2(B3/4)

and

(4.37) ‖∇ũh − γh‖Lσ(B3/4) ≤ C6λh.

Indeed, let v1, ...,vn ∈ Sn−1 be n linearly independent vectors such that γ∞ · vi > 5/8 and∣∣det
(
v1|...|vn

)∣∣ ≥ C(n) > 0. First, we prove that the sequence (∇ũh − γh)/λh is precompact in

L2(B3/4;Rn). Thanks to Lemma 4.2 it is enough to show that vi · (∇ũh − γh)/λh is precompact for
every i = 1, ..., n, which in turn follows from (4.34), applied with wh = ∂vi ũh(x) − γh · vi. The char-
acterization of the limit of a subsequence of (∇ũh − γh)/λh follows from (4.27). As a consequence, it
is not necessary to consider a subsequence. Finally, from Lemma 4.1 and (4.32) we obtain that

‖∇ũh − γh‖Lσ(B3/4) .
n∑
i=1

‖vi · (∇ũh − γh)‖Lσ(B3/4) ≤ nC3λh,

which proves (4.37).

Step 3. Given a function f : B1 → R, v ∈ Sn−1, and ε > 0, we define the discrete derivative of f as

[∂εvf ](x) :=
f(x+ εv)− f(x)

ε
x ∈ B1−ε

and the discrete gradient as

∇εf(x) :=
(

[∂εe1f ](x), ..., [∂εenf ](x)
)

x ∈ B1−ε.

We claim that, for ε sufficiently small,

(4.38) ‖∇εu∞‖L2(B3/4) ≤ ‖∇u∞‖L2(B1) . 1,

(4.39)

∫
−
Bτ

|∇u∞ − (∇u∞)Bτ |2 dx ≥
τ2α

4
,

(4.40)

∫
−
Bτ

|∇εu∞ − (∇εu∞)Bτ |2 dx >
τ2α

8
.

We notice that the second inequality in (4.38) follows from (4.27) and the lower semicontinuity of the
norm. To prove (4.39), we first take the limit in the second term of the left-hand side of (4.23) to get

lim sup
h→∞

(τrh)(q−n)/(2q)

λh
‖f‖Lq(B1) ≤ τ (q−n)/(2q) ≤ τα

2
,(4.41)

where in the last inequality we have assumed that α < (q−n)/(2q) and τ is sufficiently small (depending
on q, n, α).
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We notice now, as a general remark, that if r ∈ (0, 1], fh, f ∈ L2(Br), and limh→∞ fh = f in L2(Br),
then

(4.42) lim
h→∞

∫
−
Br

|fh − (fh)Br |2 =

∫
−
Br

|f − (f)Br |2.

Applying (4.42) to fh := (∇uh − γh)/λh and r := τ < 3/4 (so that by (4.36) we have that
(∇uh− γh)/λh → ∇u∞ in L2(Bτ )), letting h→∞ in (4.23) and taking (4.41) into account we obtain(∫

−
Bτ

|∇u∞ − (∇u∞)Bτ |2 dx
)1/2

= lim
h→∞

(∫
−
Bτ

|∇ũh − (∇ũh)Bτ |2

λ2
h

)1/2

≥ lim inf
h→∞

(
τα − (τrh)(q−n)/(2q)

λh
‖f‖Lq(B1)

)
≥ τα − τα

2
=
τα

2
,

which proves (4.39).
Finally, since limε→0∇εu∞ = ∇u∞ in L2(Bτ ), we apply (4.42) to ∇εu∞ and r = τ to deduce from

(4.39) that (4.40) holds true for ε sufficiently small.

Step 4. Let v ∈ Sn−1 and for every h ∈ N let wh = γh/|γh|. We claim that the function ∂εvũh solves

(4.43)

∫
B3/4

Ah,εij (x) ∂i∂
ε
vũh(x) ∂jφ(x) dx+

∫
B3/4

∂εvf̃h(x)φ(x) dx = 0

for every φ ∈ W 1,2
0 (B3/4), h ∈ N, and ε ∈ (0, 1/4), for some measurable coefficients Ah,εij : B3/4 → R

with the property that Ah,ε(x) is a nonnegative symmetric matrix for every x ∈ B3/4 and that

λ Id ≤ (Ah,εij (y)) ≤ Λ Id ∀ y ∈ B3/4 ∩
{
∂wh ũh ≥

1

4

}
∩
{
∂wh ũh(·+ εv) ≥ 1

4

}
.(4.44)

Indeed, since ũh are solutions of (4.19), for every φ ∈W 1,2
0 (B3/4) and ε < 1/4 we have∫

B3/4

∂iF (∇ũh(x)) ∂iφ(x) = −
∫
B3/4

f̃h(x)φ(x),∫
B3/4

∂iF (∇ũh(x+ εv)) ∂iφ(x) = −
∫
B3/4

f̃h(x+ εv)φ(x).

Subtracting the two equations and dividing by ε we obtain

−
∫
B3/4

f̃h(x+ εv)− f̃h(x)

ε
φ(x) =

∫
B3/4

∂iF (∇ũh(x+ εv))− ∂iF (∇ũh(x))

ε
∂iφ(x)

=

∫
B3/4

Ah,εij (x) ∂j∂
ε
vũh(x) ∂iφ(x),

where

(4.45) Ah,εij (x) :=

∫ 1

0
∂ijF

(
(1− t)∇ũh(x+ εv) + t∇ũh(x)

)
dt ∀x ∈ B3/4.

Notice that, if x ∈ B3/4 is a point such that ∂wh ũh(x) ≥ 1/4 and ∂wh ũh(x+ εv) ≥ 1/4 then for every
t ∈ [0, 1]

|(1− t)∇ũh(x+ εv) + t∇ũh(x)| ≥ (1− t)∂wh ũh(x+ εv) + t∂wh ũh(x) ≥ 1

4
,
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therefore (4.44) holds true thanks to (2.1).

Step 5. Let v ∈ Sn−1. We claim that, for every ε > 0 sufficiently small, the function ∂εvũ∞ solves

(4.46)

∫
B3/4

Aεij(x) ∂i∂
ε
vũ∞(x) ∂jϕ(x) dx = 0

for every ϕ ∈W 1,2
0 (B3/4−ε), for some measurable coefficients Aεij : B3/4 → R with the property that

(4.47) λ Id ≤ (Aεij) ≤ Λ Id ∀x ∈ B3/4.

Indeed, let us consider the function φ(x) := ϕ(x)χ(∂wh ũh(x))χ(∂wh ũh(x + εv)) where χ ∈ C∞(R)
is such that χ((−∞, 1/2]) = 0 and χ([5/8,∞)) = 1. By the identity

χ(∂wh ũh) = χ
((
∂wh ũh(x)− |γh|

2

)
+
− |γh|

2

)
and (4.31) applied to vh =

(
∂wh ũh(x)−|γh|/2

)
+

+ |γh|/2 we have that χ(∂wh ũh(x)) ∈W 1,2∩L∞(B3/4)

with derivative

∂j [χ(∂wh ũh)] = χ′(∂wh ũh)∂j

[(
∂wh ũh(x)− |γh|

2

)
+

]
.

Similarly χ(∂wh ũh(x+ εv)) ∈W 1,2 ∩ L∞(B3/4) with derivative

∂j [χ(∂wh ũh(x+ εv)))] = χ′(∂wh ũh(x+ εv))∂j

[(
∂wh ũh(x+ εv)− |γh|

2

)
+

]
.

Hence φ(x) ∈W 1,2
0 ∩ L∞(B5/8). Notice also that from (4.31) it follows that

(4.48)
∥∥∥∇(∂wh ũh(x)− |γh|

2

)
+

∥∥∥
L2(B3/4)

. λh.

Moreover we have that, since |γh ≥ 3/4,∣∣∣{x ∈ B3/4 : ∂wh ũh(x) < 5
8

}∣∣∣1/2
|B3/4|1/2

· 1

8
≤
(∫
−
B3/4

∣∣∣∂wh ũh(y)− |γh|
∣∣∣2 dy)1/2

≤
(∫
−
B1

|∇ũh(y)− γh|2 dy
)1/2

≤ λh

and therefore

(4.49) lim
h→∞

∣∣∣{x ∈ B3/4 : ∂wh ũh(x) ≥ 5

8

}∣∣∣ = |B3/4|.

Similarly

(4.50) lim
h→∞

∣∣∣{x ∈ B3/4 : ∂wh ũh(x+ εv) ≥ 5

8

}∣∣∣ = |B3/4|.
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Using φ as a test function in (4.43) and dividing by λh we obtain

0 =

∫
B3/4

∂εvf̃h(x)

λh
φ(x) +

∫
B3/4

Ah,εij (x) ∂i∂
ε
vũh(x) ∂j

[
ϕ(x)χ(∂wh ũh(x))χ(∂wh ũh(x+ εv))

]
=

∫
B3/4

∂εvf̃h(x)

λh
φ(x) +

∫
B3/4

Ah,εij (x)
∂i∂

ε
vũh(x)

λh
∂jϕ(x)χ(∂wh ũh(x))χ(∂wh ũh(x+ εv))

+

∫
B3/4

Ah,εij (x)
∂i∂

ε
vũh(x)

λh
ϕ(x) ∂j

(
χ(∂wh ũh(x))χ(∂wh ũh(x+ εv))

)
.

(4.51)

We want to take the limit as h → ∞ in (4.51). As regards the first term in the right-hand side, by
Hölder inequality and (4.20) we have∣∣∣ ∫

B3/4

∂εvf̃h(x)

λh
φ(x)

∣∣∣ ≤ ‖∂εvf̃h(x)‖L1(B3/4)

λh
‖φ(x)‖L∞(B3/4)

.
‖f̃h(x)‖Lq(B1)

εr
(q−n)/(2q)
h ‖f‖Lq(B1)

‖φ(x)‖L∞(B3/4)

≤
r

(q−n)/(2q)
h

ε
‖φ(x)‖L∞(B3/4),

therefore

(4.52) lim
h→∞

∫
B3/4

∂εvf̃h(x)

λh
φ(x) = 0.

Then, we want to apply Lemma 4.3 to Ah(x) := Ah,ε(x)χ(∂wh ũh(x))χ(∂wh ũh(x + εv)). For this,
notice that the assumption (4.3) of the lemma is satisfied thanks to (4.44), (4.49), (4.50), and the fact
that

χ(∂wh ũh(x)) = χ(∂wh ũh(x+ εv)) = 1

on the set {
x ∈ B3/4 : ∂wh ũh(x) ≥ 5

8

}
∩
{
x ∈ B3/4 : ∂wh ũh(x+ εv) ≥ 5

8

}
.

Moreover, for every x ∈ B3/4 such that χ(∂wh ũh(x))χ(∂wh ũh(x+εv)) > 0 we have that ∂wh ũh(x) > 1/2
and ∂wh ũh(x+ εv) > 1/2 and therefore

λ Id ≤ Ah,ε(x) ≤ Λ Id.

This implies that

0 ≤ Ah,ε(x)χ(∂wh ũh(x))χ(∂wh ũh(x+ εv)) ≤ Λ Id ∀x ∈ B3/4.

Hence, we obtain that there exist Aε : B3/4 → Rn×n such that λ Id ≤ Aε ≤ Λ Id and, up to
subsequences,

(4.53) Ah,ε(x)χ(∂wh ũh(x))χ(∂wh ũh(x+ εv))→ Aε(x) weakly in L2(B3/4;Rn×n).

From the equality

∂i∂
ε
vũh(x)

λh
=

1

ε

(
ei ·
(∇ũh(x+ εv)− γh

λh

)
− ei ·

(∇ũh(x)− γh
λh

))
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and by (4.36) we have

(4.54) lim
h→∞

∂i∂
ε
vũh(x)

λh
=
∂iu∞(x+ εv)− ∂iu∞(x)

ε
= ∂i∂

ε
vu∞(x) in L2(B3/4−ε),

so by (4.53), (4.54), and the fact that ∂jϕ ∈ L∞(B3/4), we obtain

lim
h→∞

∫
B3/4

Ah,εij (x)
∂i∂

ε
vũh(x)

λh
∂jϕ(x)χ(∂wh ũh(x))χ(∂wh ũh(x+ εv))

=

∫
B3/4

Aεij(x) ∂i∂
ε
vũ∞(x) ∂jϕ(x).

(4.55)

To estimate the last term we notice that, since

1

2
+

1

σ
+

1

2n
= 1,

by Hölder inequality we have that∣∣∣∣∣
∫
B3/4

Ah,εij (x)
∂i∂

ε
vũh(x)

λh
ϕ(x)χ′(∂wh ũh(x)) ∂j

(
∂wh ũh(x)− |γh|

2

)
+
χ(∂wh ũh(x+ εv))

∣∣∣∣∣
≤ ‖ϕ‖L∞(B3/4) ·

∥∥∥∇∂εvũh(x)

λh

∥∥∥
Lσ(B3/4)

·
∥∥∥∇(∂wh ũh(x)− |γh|

2

)
+

∥∥∥
L2(B3/4)

·
∥∥∥Ah,εij (x)χ′(∂wh ũh(x))χ(∂wh ũh(x+ εv))

∥∥∥
L2n(B3/4)

.

Since 0 ≤ Ah,εij (x) ≤ Λ Id for every x such that χ′(∂wh ũh(x))χ(∂wh ũh(x+ εv)) > 0, it follows that

(4.56)
∥∥∥Ah,εij (x)χ′(∂wh ũh(x))χ(∂wh ũh(x+ εv))

∥∥∥
L2n(B3/4)

≤ C(Λ)‖χ′‖∞.

Thus, from (4.56), (4.37), (4.48), (4.56) we have that

lim
h→∞

∫
B3/4

Ah,εij (x)
∂i∂

ε
vũh(x)

λh
ϕ(x)χ′(∂wh ũh(x))∂j

(
∂wh ũh(x)− |γh|

2

)
+
χ(∂wh ũh(x+ εv)) = 0.

(4.57)

Similarly,

lim
h→∞

∫
B3/4

Ah,εij (x)
∂i∂

ε
vũh(x)

λh
ϕ(x)χ(∂wh ũh(x))χ′(∂wh ũh(x+ εv)) ∂j

(
∂wh ũh(x+ εv)− |γh|

2

)
+

= 0.

(4.58)

Hence, letting h→∞ in (4.43) and taking (4.52), (4.55), (4.57), and (4.58) into account, we obtain

0 =

∫
B3/4

Aεij(x) ∂i∂
ε
vũ∞(x) ∂jϕ(x).

Step 6. We find a contradiction.
Since by (4.46) the functions ∂εvũ∞ ∈W 1,2(B3/4) solve a uniformly elliptic equation for ε > 0 small

enough, by De Giorgi-Nash-Moser Theorem there exists α > 0 such that for every v ∈ Sn−1

(4.59) ‖∂εvũ∞‖C0,2α(B1/2) . ‖∂εvũ∞‖L2(B3/4) ≤ ‖∇εũ∞‖L2(B3/4) . 1,
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where the last inequality follows from (4.38); in particular, applying the previous inequality to v =
e1, ..., en, we obtain that

(4.60) ‖∇εũ∞‖C0,2α(B1/2) ≤ C7.

Hence, by Jensen inequality and (4.60), for τ sufficiently small we have that∫
−
Bτ

|∇εu∞(x)− (∇εu∞)Bτ |2 dx ≤
∫
−
Bτ

∫
−
Bτ

|∇εu∞(x)−∇εu∞(y)|2 dx dy ≤ C7τ
4α <

τ2α

8
,

which contradicts (4.40) and concludes the proof. �

4.2. Proof of Corollaries 2.2 and 2.3.

Proof of Corollary 2.2. Let x ∈ B1/2 and r < 1/4; let τ0, α, τ, ε(τ) be as in Theorem 2.1. Let ε ≤ ε(τ)
be a constant to be chosen later. We prove (2.3) by induction. For k = 1 we apply Theorem 2.1 and
we obtain (2.3). Assuming as inductive assumption that

(4.61) U(u, x, τ ir) ≤ ταiU(u, x, r) ∀ i ≤ k − 1,

we prove

(4.62) U(u, x, τkr) ≤ ταkU(u, x, r).

By (2.2) and (4.61) applied with i = k − 1 we have that U(u, x, τk−1r) ≤ ε ≤ ε(τ). In order to
satisfy the assumptions of Theorem 2.1 at x with radius τk−1r we have to show that

(4.63)
3

4
≤ |(∇u)B

τk−1r
(x)| ≤ 1.

For every i ∈ N let us set γi = (∇u)Bτir(x). For every i = 1, ..., k − 1 by (4.61) we have that

|γi − γi−1| =
(∫
−
Bτir(x)

|γi − γi−1| dy
)1/2

≤
(∫
−
Bτir(x)

|∇u(y)− γi|2 dy
)1/2

+
(∫
−
Bτir(x)

|∇u(y)− γi−1|2 dy
)1/2

≤
(∫
−
Bτir(x)

|∇u(y)− γi|2 dy
)1/2

+
1

τn/2

(∫
−
Bτi−1r(x)

|∇u(y)− γi−1|2 dy
)1/2

≤ U(u, x, τ ir) +
1

τn/2
U(u, x, τ i−1r) ≤

(
τα +

1

τn/2

)
τα(i−1)U(u, x, r).

Hence, by the triangular inequality we obtain

|(∇u)B
τk−1r(x)

− (∇u)Br(x)
| = |γk−1 − γ0| ≤

k−1∑
i=1

|γi − γi−1|

≤
(
τα +

1

τn/2

)( ∞∑
i=1

τα(i−1)
)
U(u, x, r) ≤ C(τ, n, α) ε ≤ 1

8

(4.64)

where in the last inequality we have chosen ε small (depending on n, τ, α). From (4.64) and (2.2) we
obtain (4.63). So, we can apply Theorem 2.1 with radius τk−1r to obtain

(4.65) U(u, x, τkr) ≤ ταU(u, x, τk−1r),

which, together with (4.61), implies (4.62). �
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Proof of Corollary 2.3. Let x ∈ B1/2; let τ = τ0, α, ε = ε(τ0) be as in Corollary 2.2. First we prove
that, if η and r0 are chosen sufficiently small, then

(4.66)
7

8
≤ |(∇u)Br0 (x)| ≤ 1 U(u, x, r0) ≤ ε.

We choose r0 < 1/4 sufficiently small so that

(4.67) r
(q−n)/(2q)
0 ‖f‖Lq(B1) ≤

ε

2
.

We estimate the first term in the excess splitting the integral over Br0(x) ∩ {∂vu ≥ 1 − η} and its
complement. For every y ∈ Br0(x) ∩ {∂vu ≥ 1− η} we have that

|∇u(y)− v|2 = |∇u(y)|2 + |v|2 − 2∇u(y) · v ≤ 2(1−∇u(y) · v) ≤ 2η.

In the complement of Br0(x) ∩ {∂vu ≥ 1− η} we have that |∇u− v| ≤ |∇u|+ |v| ≤ 2. Therefore we
have

∫
−
Br0 (x)

|∇u(y)− v|2 dy ≤ |{y ∈ Br0(x) : ∂vu(y) ≥ 1− η}|
|Br0 |

4η2 + 4
|{y ∈ Br0(x) : ∂vu(y) ≤ 1− η}|

|Br0 |

≤ 4η2 +
1

|Br0 |
|{y ∈ B1 : ∂vu(y) ≤ 1− η}|.

(4.68)

Noticing that (2.4) implies that |{y ∈ B1 : ∂vu(y) ≤ 1− η}| ≤ η|B1| we obtain

(4.69)

∫
−
Br0 (x)

|∇u(y)− v|2 dy ≤ 4η2 + η
|B1|
|Br0 |

≤ ε2

4
,

where in the last inequality we have chosen η sufficiently small. From (4.69) it follows that∫
−
Br0 (x)

|∇u(y)− (∇u)Br0 (x)|2 dy = inf
γ∈Rn

∫
−
Br0 (x)

|∇u(y)− γ|2 dy

≤
∫
−
Br0 (x)

|∇u(y)− v|2 dy ≤ ε2

4

(4.70)

and therefore by (4.70) and (4.67) we get the second inequality in (4.66). From (4.69) we have∣∣∣∫−
Br0 (x)

(∇u(y)− v) dy
∣∣∣ ≤ (∫−

Br0 (x)
|∇u(y)− v|2 dy

)1/2
≤ ε

2
;

it implies

|(∇u)Br0 (x)| ≥ |v| − |(∇u)Br0 (x) − v| ≥ 1− ε

2
≥ 7

8
,

which proves the first inequality in (4.66). Hence the assumptions of Corollary 2.2 are satisfied and
we obtain (2.5).

We are left to prove (2.6). From (2.5) and (4.66) it follows that for every k ∈ N and x ∈ B1/2,(∫
−
B
τkr0

(x)
|∇u(y)− (∇u)B

τkr0
(x)|2 dy

)1/2

≤ U(u, x, τkr0) ≤ ταkU(u, x, r0) ≤ εταk.

From Campanato theorem [12, Theorem 1.3, section III] we obtain (2.6).
�
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4.3. Proof of Theorem 3.2.

Lemma 4.5. Let η ∈ (0, 1). Let p, n, λ, Λ, u, q, f be as in Theorem 3.2 with Ω = B1. Assume that
|∇u(x)| ≤ 1 for every x ∈ B1 and

(4.71) sup
e∈Sn−1

|{x ∈ B1/2 : ∂eu(x) ≥ (1− η)}| ≤ (1− η)|B1/2|.

Then there exist constants c := c(n, p, q, λ,Λ) and C := C(n, η, p, q, λ,Λ) such that if ‖f‖Lq(B1) ≤ C
then

(4.72) |∇u| ≤ 1− cη2 ∀x ∈ B1/4.

Proof. Let us fix e ∈ Sn−1 and let ve be defined as in (3.7). We repeat the proof of [14, Theorem 8.18]
(see also [17, Lemma 4]) applied to the function 1/2− ve(x), which is a nonnegative supersolution in
B1 of the equation

∂i

[
Aij(∇u(x))∂j

(1

2
− ve(x)

)]
= ∂ef(x)1{∂eu≥1/2}

(the coefficients Aij are defined in (3.5); as we mentioned before, to properly justify this computation
one needs to perform a suitable regularization argument in the spirit of [6, Proof of Theorem 1.1] and
[22]). This equation can be considered to be uniformly elliptic since the values of Aij(∇u(x)) where
|∇u(x)| ≤ 1/2 are not relevant. We obtain that there exists a constant c0 := c0(n, p, q, λ,Λ) such that
a weak Harnack inequality holds

c0‖1/2− ve‖L1(B1/2) ≤ inf
x∈B1/4(0)

{1/2− ve(x)}+ ‖f‖Lq(B1).

On the set

{x ∈ B1/2 : ∂eu ≤ (1− η)}
(whose measure is greater than η|B1/2| from (4.71)), the integrand is greater or equal to η and we
obtain

inf{1/2− ve(x) : x ∈ B1/4} ≥ c0

∫
B1/2

(1/2− ve(x)) dx − ‖f‖Lq(B1)

≥ c0η|{x ∈ B1/2 : (∂eu(x)− 1/2)+ ≤ 1− η}| − ‖f‖Lq(B1)

≥ c0η
2|B1/2| − C.

(4.73)

Therefore, setting c := c0|B1/2|/2 and C := c0η
2|B1/2|/2, we have

inf{1/2− ve(x) : x ∈ B1/4} ≥ cη2,

which in turn can be rewritten as

∂eu(x) ≤ 1− cη2 ∀x ∈ B1/4.

Since this argument holds true for every direction e ∈ Sn−1 we obtain (4.72). �

Iterating the previous lemma on smaller scales and using the scale invariance of the anisotropic
p-laplacian we obtain the following result.

Lemma 4.6. Let p, n, λ, Λ, u, q, f be as in Theorem 3.2. Let η > 0 be sufficiently small, c and C
as in Lemma 4.5, δ = cη2, and k ∈ N. If |∇u(x)| ≤ 1 for every x ∈ B1,

(4.74) sup
e∈Sn−1

|{x ∈ B2−2i−1(0) : ∂eu ≥ (1− η)(1− δ)i}| ≤ (1− η)|B2−2i−1 | ∀ i = 1, ..., k,
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and ‖f‖Lq(B1) ≤ C, then we have that

(4.75) |∇u(x)| ≤ (1− δ)i ∀x ∈ B2−2i ∀ i = 1, ..., k + 1.

Proof. We prove the result by induction on i. Assuming (4.74) with i = 0 we obtain (4.75) with i = 1
from Lemma 4.5. Let us assume that the result holds true for i and let us prove it for i+ 1. Thanks
to the homogeneity of the anisotropic p-laplacian, the function

v(x) :=
22iu(2−2ix)

(1− δ)i
x ∈ B1

satisfies by inductive assumption |∇v| ≤ 1 in B1 and it is a minimizer of

(4.76)

∫
B1

n(∇v)p

p
+ f̃v,

where

f̃(x) :=
2−2i

(1− δ)i(p−1)
f(2−2ix).

Hence the norm of f̃ is estimated by

‖f̃‖qLq(B1) =
2−2i(p−n)

(1− δ)i(p−1)q

∫
B2−2i

|f(y)|q dy ≤ 2−2i(q−n)

(1− δ)i(p−1)q
‖f‖qLq(B1).

Therefore, provided that δ is chosen small enough so that 2−2(q−n)/(pq−q) ≤ 1− δ, we obtain that
‖f̃‖Lq(B1) ≤ ‖f‖Lq(B1) ≤ C. The assumption (4.74) can be rewritten as (4.71) applied to v instead of
u; therefore, Lemma 4.5 gives us that

|∇v(x)| ≤ 1− δ ∀x ∈ B1/4,

which implies (4.75) with i+ 1 in place of i. �

Proof of Theorem 3.2. By a covering argument, it is enough to show that, if u : B1 → R is Lipschitz,
then

(4.77) sup
x∈B2−2i

|∇u(x)−∇u(0)| ≤ C02−2αi ∀ i ∈ N,

for some α ∈ (0, 1), C0 > 0 which depends only on d, p, λ, Λ to be chosen later. Let η > 0 to be fixed
later; let c, C, δ = cη2 as in Lemma 4.6. Up to changing u with

u(r0x)− u(0)

r0‖∇u‖L∞(B1)
∀x ∈ B1

thanks to the homogeneity of the anisotropic p-laplacian we can assume that

u(0) = 0, |∇u(x)| ≤ 1 ∀x ∈ B1, and ‖f‖Lq(B1) ≤ C.
Let k ∈ N ∪ {∞} be the largest index for which (4.74) holds true. Let α1 ∈ (0,∞) be such that
2−2α1 = 1− δ. If k =∞ we have that by Lemma 4.6

sup
x∈B2−2i

|∇u(x)| ≤ (1− δ)i = 2−2α1i ∀ i ∈ N;

hence (4.77) is satisfied. If k <∞ set

v(x) :=
22(k+1)u(2−2(k+1)x)

(1− δ)k+1
.



AN EXCESS-DECAY RESULT FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS 21

By the maximality of k we have that there exists e ∈ Sn−1 such that

(4.78) |{x ∈ B1/2 : ∂ev(x) ≥ 1− η}| ≥ (1− η)|B1|.
Thanks to Lemma 4.6 applied to u we obtain that

(4.79) sup
x∈B2−2i

|∇u(x)| ≤ (1− δ)i = 2−2α1i ∀ i = 1, ..., k + 1.

and
|∇v(x)| ≤ 1 ∀x ∈ B1.

We choose η > 0 so that Corollary 2.3 applies to v with F (x) = n(x)p/p (notice that assumption (2.1)
is not a restriction since |∇v| ≤ 1); we obtain that there exist α2, C2 > 0 such that for every i ∈ N

1

2−α1(k+1)
sup

x∈B2−2i

|∇u(2−2(k+1)x)−∇u(0)| = sup
x∈B2−2i

|∇v(x)−∇v(0)| ≤ C22−2α2i,

which can be rewritten, setting α = min{α1, α2}, as

(4.80) sup
x∈B

2−2(i+k+1)

|∇u(x)−∇u(0)| ≤ C22−2α2i+α1(k+1) ≤ C22−2α(i+k+1).

From (4.79) we deduce that for every i = 1, ..., k + 1

sup
x∈B2−2i

|∇u(x)−∇u(0)| ≤ 2 sup
x∈B2−2i

|∇u(x)| ≤ 2 · 2−2α1i ≤ 2 · 2−2αi,

which, together with (4.80), proves (4.77) when k <∞ with C0 = max{2, C2}. �

4.4. Proof of Theorem 3.3. Since the proof of this theorem follows closely the lines of [6, Theorem
1.1], we just outline the argument.

First we remark that all results in Section 2 hold replacing B1 and B1/4 with sets {m < M} and
{m < m} for some 0 ≤ m < M (indeed, the statements and the proofs can easily be adapted to this
setting with easy modifications).

Then we regularize the equation by approximation, reducing ourselves to prove an a-priori estimate
on a regular solution as in [6, Theorem 1.4].

Finally, to prove regularity at nondegenerate points we use Corollary 2.3 instead of [6, Lemma 4.1
and Proposition 4.3]. �
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