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BEGOÑA BARRIOS, ALESSIO FIGALLI, AND ENRICO VALDINOCI

Abstract. We prove that C1,α s-minimal surfaces are of class C∞. For
this, we develop a new bootstrap regularity theory for solutions of integro-

differential equations of very general type, which we believe is of independent

interest.
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1. Introduction

Motivated by the structure of interphases arising in phase transition models with
long range interactions, in [4] the authors introduced a nonlocal version of minimal
surfaces. These objects are obtained by minimizing a “nonlocal perimeter” inside
a fixed domain Ω: fix s ∈ (0, 1), and given two sets A,B ⊂ Rn, let us define the
interaction term

L(A,B) :=

∫
A

∫
B

dx dy

|x− y|n+s
.

The nonlocal perimeter of E inside Ω is defined as

Per(E,Ω, s) := L
(
E ∩ Ω, (Rn \ E) ∩ Ω

)
+ L

(
E ∩ Ω, (Rn \ E) ∩ (Rn \ Ω)

)
+ L

(
(Rn \ E) ∩ Ω, E ∩ (Rn \ Ω)

)
.
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Then nonlocal (s-)minimal surfaces correspond to minimizers of the above func-
tional with the “boundary condition” that E ∩ (Rn\Ω) is prescribed.

It is proved in [4] that “flat s-minimal surface” are C1,α for all α < s, and
in [9, 1, 10] that, as s → 1−, the s-minimal surfaces approach the classical ones,
both in a geometric sense and in a Γ-convergence framework, with uniform estimates
as s → 1−. In particular, when s is sufficiently close to 1, they inherit some nice
regularity properties from the classical minimal surfaces (see also [8, 13, 14] for
the relation between s-minimal surfaces and the interfaces of some phase transition
equations driven by the fractional Laplacian).

On the other hand, all the previous literature only focused on the C1,α regularity,
and higher regularity was left as an open problem. In this paper we address this
issue, and we prove that C1,α s-minimal surfaces are indeed C∞, according to the
following result1:

Theorem 1. Let s ∈ (0, 1), and ∂E be a s-minimal surface in KR for some R > 0.
Assume that

∂E ∩KR =
{

(x′, xn) : x′ ∈ Bn−1R and xn = u(x′)
}

(1)

for some u : Bn−1R → R, with u ∈ C1,α(Bn−1R ) for any α < s and u(0) = 0. Then

u ∈ C∞(Bn−1ρ ) ∀ ρ ∈ (0, R).

The regularity result of Theorem 1 combined with [4, Theorem 6.1] and [10,
Theorems 1, 3, 4, 5], implies also the following results (here and in the sequel,
{e1, e2, . . . , en} denotes the standard Euclidean basis):

Corollary 2. Fix so ∈ (0, 1). Let s ∈ (so, 1) and ∂E be a s-minimal surface in BR
for some R > 0. There exists ε? > 0, possibly depending on n, so and α, but
independent of s and R, such that if

∂E ∩BR ⊆ {|x · en| 6 ε?R}
then ∂E ∩BR/2 is a C∞-graph in the en-direction.

Corollary 3. There exists εo ∈ (0, 1) such that if s ∈ (1− εo, 1), then:

• If n 6 7, any s-minimal surface is of class C∞;
• If n = 8, any s-minimal surface is of class C∞ except, at most, at countably

many isolated points.

More generally, in any dimension n there exists εn ∈ (0, 1) such that if s ∈ (1−εn, 1)
then any s-minimal surface is of class C∞ outside a closed set Σ of Hausdorff
dimension n− 8.

Also, Theorem 1 here combined with Corollary 1 in [15] gives the following
regularity result in the plane:

Corollary 4. Let n = 2. Then, for any s ∈ (0, 1), any s-minimal surface is a
smooth embedded curve of class C∞.

1Here and in the sequel, we write x ∈ Rn as x = (x′, xn) ∈ Rn−1 × R. Moreover, given r > 0

and p ∈ Rn, we define

Kr(p) := {x ∈ Rn : |x′ − p′| < r and |xn − pn| < r}.
As usual, Br(p) denotes the Euclidean ball of radius r centered at p. Given p′ ∈ Rn−1, we set

Bn−1
r (p′) := {x′ ∈ Rn−1 : |x′ − p′| < r}.

We also use the notation Kr := Kr(0), Br := Br(0), Bn−1
r := Bn−1

r (0).
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In order to prove Theorem 1 we establish in fact a very general result about
the regularity of integro-differential equations, which we believe is of independent
interest.

For this, we consider a kernel K = K(x,w) : Rn×(Rn\{0})→ (0,+∞) satisfying
some general structural assumptions. In the following, σ ∈ (1, 2).

First of all, we suppose that K is close to an autonomous kernel of fractional
Laplacian type, namely

there exist a0, r0 > 0 and η ∈ (0, a0/4) such that∣∣∣∣ |w|n+σK(x,w)

2− σ
− a0

∣∣∣∣ 6 η ∀x ∈ B1, w ∈ Br0 \ {0}.
(2)

Moreover, we assume that2

there exist k ∈ N ∪ {0} and Ck > 0 such that

K ∈ Ck+1
(
B1 × (Rn \ {0})

)
,

‖∂µx∂θwK(·, w)‖L∞(B1) 6
Ck

|w|n+σ+|θ|
∀µ, θ ∈ Nn, |µ|+ |θ| 6 k + 1, w ∈ Rn \ {0}.

(3)

Our main result is a “Schauder regularity theory” for solutions3 of an integro-
differential equation. Here and in the sequel we use the notation

δu(x,w) := u(x+ w) + u(x− w)− 2u(x). (4)

Theorem 5. Let σ ∈ (1, 2), k ∈ N ∪ {0}, and u ∈ L∞(Rn) be a viscosity solution
of the equation ∫

Rn
K(x,w) δu(x,w)dw = f(x, u(x)) inside B1, (5)

with f ∈ Ck+1(B1 × R). Assume that K : B1 × (Rn \ {0}) → (0,+∞) satisfies
assumptions (2) and (3) for the same value of k.

Then, if η in (2) is sufficiently small (the smallness being independent of k), we
have u ∈ Ck+σ+α(B1/2) for any α < 1, and

‖u‖Ck+σ+α(B1/2) 6 C
(
1 + ‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
, (6)

where4 C > 0 depends only on n, σ, k, Ck, and ‖f‖Ck+1(B1×R).

Let us notice that, since the right hand side in (5) depends on u, there is no
uniqueness for such an equation. In particular it is not enough for us to prove
a-priori estimates for smooth solutions and then argue by approximation, since we
do not know if our solution can be obtained as a limit of smooth solution.

2Observe that we use | · | both to denote the Euclidean norm of a vector and, for a multi-index
case α = (α1, . . . , αn) ∈ Nn, to denote |α| := α1 + · · · + αn. However, the meaning of | · | will
always be clear from the context.

3We adopt the notion of viscosity solution used in [5, 6, 7].
4As customary, when σ + α ∈ (1, 2) (resp. σ + α > 2), by (6) we mean that u ∈

Ck+1,σ+α−1(B1/2) (resp. u ∈ Ck+2,σ+α−1(B1/2)). (To avoid any issue, we will always im-

plicitly assume that α is chosen different from 2− σ, so that σ + α 6= 2.)
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We also note that, if in (3) one replaces the Ck+1-regularity of K with the
Ck,β-assumption

‖∂µx∂θwK(·, w)‖C0,β(B1) 6
Ck

|w|n+σ+|θ|
, (7)

for all |µ|+ |θ| 6 k, then we obtain the following:

Theorem 6. Let σ ∈ (1, 2), k ∈ N ∪ {0}, and u ∈ L∞(Rn) be a viscosity solution
of equation (5) with f ∈ Ck,β(B1×R). Assume that K : B1×(Rn \{0})→ (0,+∞)
satisfies assumptions (2) and (7) for the same value of k.

Then, if η in (2) is sufficiently small (the smallness being independent of k), we
have u ∈ Ck+σ+α(B1/2) for any α < β, and

‖u‖Ck+σ+α(B1/2) 6 C
(
1 + ‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
,

where C > 0 depends only on n, σ, k, Ck, and ‖f‖Ck,β(B1×R).

The proof of Theorem 6 is essentially the same as the one of Theorem 5, the only
difference being that instead of differentiating the equations (see for instance the
argument in Section 2.4) one should use incremental quotients. Although this does
not introduce any major additional difficulties, it makes the proofs longer and more
tedious. Hence, since the proof of Theorem 5 already contains all the main ideas
to prove also Theorem 6, we will show the details of the proof only for Theorem 5.

The paper is organized as follows: in the next section we prove Theorem 5, and
then in Section 3 we write the fractional minimal surface equation in a suitable
form so that we can apply Theorems 5 and 6 to prove Theorem 1.

Acknowledgements: We wish to thank Guido De Philippis and Francesco Maggi
for stimulating our interest in this problem. We also thank Guido De Philippis for
a careful reading of a preliminary version of our manuscript, and Nicola Fusco for
kindly pointing out to us a computational inaccuracy. BB was partially supported
by Spanish Grant MTM2010-18128. AF was partially supported by NSF Grant
DMS-0969962. EV was partially supported by ERC Grant 277749 and FIRB Grant
A&B.

2. Proof of Theorem 5

The core in the proof of Theorem 5 is the step k = 0, which will be proved in
several steps.

2.1. Toolbox. We collect here some preliminary observations on scaled Hölder
norms, covering arguments, and differentiation of integrals that will play an im-
portant role in the proof of Theorem 5. This material is mainly technical, and the
expert reader may go directly to Section 2.2 at page 10.

2.1.1. Scaled Hölder norms and coverings. Given m ∈ N, α ∈ (0, 1), x ∈ Rn,
and r > 0, we define the Cm,α-norm of a function u in Br(x) as

‖u‖Cm,α(Br(x)) :=
∑
|γ|6m

‖Dγu‖L∞(Br(x)) +
∑
|γ|=m

sup
y 6=z∈Br(x)

|Dγu(y)−Dγu(z)|
|y − z|α

.
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For our purposes it is also convenient to look at the following classical rescaled
version of the norm:

‖u‖∗Cm,α(Br(x)) :=

m∑
j=0

∑
|γ|=j

rj‖Dγu‖L∞(Br(x))

+
∑
|γ|=m

rm+α sup
y 6=z∈Br(x)

|Dγu(y)−Dγu(z)|
|y − z|α

.

This scaled norm behaves nicely under covering, as the next observation points out:

Lemma 7. Let m ∈ N, α ∈ (0, 1), ρ > 0, and x ∈ Rn. Fix λ ∈ (0, 1), and
suppose that Bρ(x) is covered by finitely many balls {Bλρ/2(xk)}Nk=1. Then, there
exists Co > 0, depending only on λ and m, such that

‖u‖∗Cm,α(Bρ(x)) 6 Co
N∑
k=1

‖u‖∗Cm,α(Bλρ(xk)).

Proof. We first observe that, if j ∈ {0, . . . ,m} and |γ| = j,

ρj‖Dγu‖L∞(Bρ(x)) 6 λ−j(λρ)j max
k=1,...,N

‖Dγu‖L∞(Bλρ(xk))

6 λ−m
N∑
k=1

(λρ)j‖Dγu‖L∞(Bλρ(xk))

6 λ−m
N∑
k=1

‖u‖∗Cm,α(Bλρ(xk)).

Now, let |γ| = m: we claim that

ρm+α sup
y 6=z∈Bρ(x)

|Dγu(y)−Dγu(z)|
|y − z|α

6 2λ−(m+α)
N∑
k=1

‖u‖∗Cm,α(Bλρ(xk)).

To check this, we take y, z ∈ Bρ(x) with y 6= z and we distinguish two cases.
If |y − z| < λρ/2 we choose ko ∈ {1, . . . , N} such that y ∈ Bλρ/2(xko). Then |z −
xko | 6 |z − y|+ |y − xko | < λρ, which implies y, z ∈ Bλρ(xko), therefore

ρm+α |Dγu(y)−Dγu(z)|
|y − z|α

6 ρm+α sup
ỹ 6=z̃∈Bλρ(xko )

|Dγu(ỹ)−Dγu(z̃)|
|ỹ − z̃|α

6 λ−(m+α)‖u‖∗Cm,α(Bλρ(xko )).

Conversely, if |y − z| > λρ/2, recalling that α ∈ (0, 1) we have

ρm+α |Dγu(y)−Dγu(z)|
|y − z|α

6 2λ−αρm‖Dγu‖L∞(Bρ(x))

6 2λ−αρm
N∑
k=1

‖Dγu‖L∞(Bλρ(xk))

6 2λ−(m+α)
N∑
k=1

‖u‖∗Cm,α(Bλρ(xk)).

This proves the claim and concludes the proof. �
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Scaled norms behave also nicely in order to go from local to global bounds, as
the next result shows:

Lemma 8. Let m ∈ N, α ∈ (0, 1), and u ∈ Cm,α(B1). Suppose that there exist
µ ∈ (0, 1/2) and ν ∈ (µ, 1] for which the following holds: for any ε > 0 there
exists Λε > 0 such that, for any x ∈ B1 and any r ∈ (0, 1− |x|], we have

‖u‖∗Cm,α(Bµr(x)) 6 Λε + ε‖u‖∗Cm,α(Bνr(x)). (8)

Then there exist constants εo, C > 0, depending only on n, m, µ, ν, and α, such
that

‖u‖Cm,α(Bµ) 6 CΛεo .

Proof. First of all we observe that

‖u‖∗Cm,α(Bµr(x)) 6 ‖u‖Cm,α(Bµr(x)) 6 ‖u‖
∗
Cm,α(B1)

because r ∈ (0, 1), which implies that

Q := sup
x∈B1

r∈(0,1−|x|]

‖u‖∗Cm,α(Bµr(x)) < +∞.

We now use a covering argument: pick λ ∈ (0, 1/2] to be chosen later, and
fixed any x ∈ B1 and r ∈ (0, 1 − |x|] we cover Bµr(x) with finitely many balls
{Bλµr/2(xk)}Nk=1, with xk ∈ Bµr(x), for some N depending only on λ and the
dimension n. We now observe that, since µ < 1/2,

|xk|+ r/2 6 |xk − x|+ |x|+ r/2 6 µr + |x|+ r/2 < r + |x| 6 1. (9)

Hence, since λ 6 1/2, we can use (8) (with x = xk and r scaled to λr) to obtain

‖u‖∗Cm,α(Bλµr(xk)) 6 Λε + ε‖u‖∗Cm,α(Bλνr(xk)).

Then, using Lemma 7 with ρ := µr and λ = µ/(2ν), and recalling (9) and the
definition of Q, we get

‖u‖∗Cm,α(Bµr(x)) 6 Co

N∑
k=1

‖u‖∗Cm,α(Bλµr(xk))

6 CoNΛε + Coε

N∑
k=1

‖u‖∗Cm,α(Bλνr(xk))

= CoNΛε + Coε

N∑
k=1

‖u‖∗Cm,α(Bµr/2(xk))

6 CoNΛε + εCoNQ.

Using the definition of Q again, this implies

Q 6 CoNΛε + εCoNQ,

so that, by choosing εo := 1/(2CoN),

Q 6 2CoNΛεo .

Thus we have proved that

‖u‖∗Cm,α(Bµr(x)) 6 2CoNΛεo ∀x ∈ B1, r ∈ (0, 1− |x|],

and the desired result follows setting x = 0 and r = 1. �
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2.1.2. Differentiating integral functions. In the proof of Theorem 5 we will need to
differentiate, under the integral sign, smooth functions that are either supported
near the origin or far from it. This purpose will be accomplished in Lemmata 11
and 12, after some technical bounds that are needed to use the Dominated Conver-
gence Theorem.

Recall the notation in (4).

Lemma 9. Let r > r′ > 0, v ∈ C3(Br), x ∈ Br′ , h ∈ R with |h| < (r − r′)/2.
Then, for any w ∈ Rn with |w| < (r − r′)/2, we have

|δv(x+ he1, w)− δv(x,w)| 6 |h| |w|2‖v‖C3(Br).

Proof. Fixed x ∈ Br′ and |w| < (r − r′)/2, for any h ∈ [(r′ − r)/2, (r − r′)/2] we
set g(h) := v(x+ he1 + w) + v(x+ he1 − w)− 2v(x+ he1). Then

|g(h)− g(0)| 6 |h| sup
|ξ|6|h|

|g′(ξ)|

6 |h| sup
|ξ|6|h|

∣∣∂1v(x+ ξe1 + w) + ∂1v(x+ ξe1 − w)− 2∂1v(x+ ξe1)
∣∣.

Noticing that |x + ξe1 ± w| 6 r′ + |h| + |w| < r, a second order Taylor expansion
of ∂1v with respect to the variable w gives∣∣∂1v(x+ ξe1 + w) + ∂1v(x+ ξe1 − w)− 2∂1v(x+ ξe1)

∣∣ 6 |w|2‖∂1v‖C2(Br). (10)

Therefore

|δv(x+ he1, w)− δv(x,w)| = |g(h)− g(0)| 6 |h| |w|2‖v‖C3(Br),

as desired. �

Lemma 10. Let r > r′ > 0, v ∈W 1,∞(Rn), h ∈ R. Then, for any w ∈ Rn,

|δv(x+ he1, w)− δv(x,w)| 6 4|h|‖∇v‖L∞(Rn).

Proof. It sufficed to proceed as in the proof of Lemma 9, but replacing (10) with
the following estimate:∣∣∂1v(x+ ξe1 + w) + ∂1v(x+ ξe1 − w)− 2∂1v(x+ ξe1)

∣∣ 6 4‖∂1v‖L∞(Rn).

�

Lemma 11. Let ` ∈ N, r ∈ (0, 2), K satisfy (3), and U ∈ C`+2
0 (Br). Let γ =

(γ1, . . . , γn) ∈ Nn with |γ| 6 ` 6 k + 1. Then

∂γx

∫
Rn
K(x,w) δU(x,w) dw =

∫
Rn
∂γx

(
K(x,w) δU(x,w)

)
dw

=
∑

16i6n
06λi6γi

λ=(λ1,...,λn)

(
γ1
λ1

)
. . .

(
γn
λn

)∫
Rn
∂λxK(x,w) δ(∂γ−λx U)(x,w) dw

(11)

for any x ∈ Br.

Proof. The latter equality follows from the standard product derivation formula,
so we focus on the proof of the first identity. The proof is by induction over |γ|.
If |γ| = 0 the result is trivially true, so we consider the inductive step. We take x
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with r′ := |x| < r, we suppose that |γ| 6 ` − 1 and, by inductive hypothesis, we
know that

gγ(x) := ∂γx

∫
Rn
K(x,w) δU(x,w) dw =

∫
Rn
θ(x,w) dw

with

θ(x,w) :=
∑

16i6n
06λi6γi

λ=(λ1,...,λn)

(
γ1
λ1

)
. . .

(
γn
λn

)
∂λxK(x,w) δ(∂γ−λx U)(x,w) dw.

By (3), if 0 < |h| < (r − r′)/2 then

|∂λxK(x+ he1, w)− ∂λxK(x,w)| 6 C|λ|+1|h| |w|−n−σ. (12)

Moreover, if |w| < (r − r′)/2, we can apply Lemma 9 with v := ∂γ−λx U and obtain

|δ(∂γ−λx U)(x+ he1, w)− δ(∂γ−λx U)(x,w)| 6 |h| |w|2‖U‖C|γ−λ|+3(Br). (13)

On the other hand, by Lemma 10 we obtain

|δ(∂γ−λx U)(x+ he1, w)− δ(∂γ−λx U)(x,w)| 6 4 |h| ‖∂γ−λx U‖C1(Rn).

All in all,

|δ(∂γ−λx U)(x+ he1, w)− δ(∂γ−λx U)(x,w)|
6 |h| ‖U‖C|γ−λ|+3(Rn) min{4, |w|2}.

(14)

Analogously, a simple Taylor expansion provides also the bound

|δ(∂γ−λx U)(x,w)| 6 ‖U‖C|γ−λ|+2(Rn) min{4, |w|2}. (15)

Hence, (3), (12), (14), and (15) give∣∣∂λxK(x+ he1, w) δ(∂γ−λx U)(x+ he1, w)− ∂λxK(x,w) δ(∂γ−λx U)(x,w)
∣∣

6
∣∣∂λxK(x+ he1, w)

[
δ(∂γ−λx U)(x+ he1, w)− δ(∂γ−λx U)(x,w)

]∣∣
+
∣∣[∂λxK(x+ he1, w)− ∂λxK(x,w)

]
δ(∂γ−λx U)(x,w)

∣∣
6 C1|h| min{|w|−n−σ, |w|2−n−σ},

with C1 > 0 depending only on `, C` and ‖U‖C`+2(Rn). As a consequence,

|θ(x+ he1, w)− θ(x,w)| 6 C2|h| min{|w|−n−σ, |w|2−n−σ},
and, by the Dominated Convergence Theorem, we get∫

Rn
∂x1

θ(x,w) dw = lim
h→0

∫
Rn

θ(x+ he1, w)− θ(x,w)

h
dw

= lim
h→0

gγ(x+ he1)− gγ(x)

h
= ∂x1gγ(x),

which proves (11) with γ replaced by γ+e1. Analogously one could prove the same
result with γ replaced by γ + ei, concluding the inductive step. �

The differentiation under the integral sign in (11) may also be obtained under
slightly different assumptions, as next result points out:

Lemma 12. Let ` ∈ N, R > r > 0. Let U ∈ C`+1(Rn) with U = 0 in BR.
Let γ = (γ1, . . . , γn) ∈ Nn with |γ| 6 `. Then (11) holds true for any x ∈ Br.
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Proof. If x ∈ Br, w ∈ B(R−r)/2 and |h| 6 (R−r)/2, we have that |x+w+he1| < R
and so δU(x+ he1, w) = 0. In particular

δU(x+ he1, w)− δU(x,w) = 0

for small h when w ∈ B(R−r)/2. This formula replaces (13), and the rest of the
proof goes on as the one of Lemma 11. �

2.1.3. Integral computations. Here we collect some integral computations which will
be used in the proof of Theorem 5.

Lemma 13. Let v : Rn → R be smooth and with all its derivatives bounded. Let
x ∈ B1/4, and γ, λ ∈ Nn, with γi > λi for any i ∈ {1, . . . , n}. Then there exists a
constant C ′ > 0, depending only on n and σ, such that∣∣∣∣∫

Rn
∂λxK(x,w) δ(∂γ−λx v)(x,w) dw

∣∣∣∣ 6 C ′ C|γ| ‖v‖C|γ−λ|+2(Rn). (16)

Furthermore, if

v = 0 in B1/2 (17)

we have ∣∣∣∣∫
Rn
∂λxK(x,w) δ(∂γ−λx v)(x,w) dw

∣∣∣∣ 6 C ′ C|γ| ‖v‖L∞(Rn). (18)

Proof. By (3) and (15) (with U = v),∫
Rn

∣∣∂λxK(x,w)
∣∣ ∣∣∣ δ(∂γ−λx v)(x,w)

∣∣∣ dw
6 C|λ|

(
‖v‖C|γ−λ|+2(Rn)

∫
B2

|w|−n−σ+2 dw + 4‖v‖C|γ−λ|(Rn)
∫
Rn\B2

|w|−n−σ dw

)
,

which proves (16).
We now prove (18). For this we notice that, thanks to (17), v(x+w) and v(x−w)

(and also their derivatives) are equal to zero if x and w lie in B1/4. Hence, by an
integration by parts we see that∫

Rn
∂λxK(x,w) δ(∂γ−λx v)(x,w) dw

=

∫
Rn
∂λxK(x,w) ∂γ−λw

[
v(x+ w)− v(x− w)

]
dw

=

∫
Rn\B1/4

∂λxK(x,w) ∂γ−λw

[
v(x+ w)− v(x− w)

]
dw

= (−1)|γ−λ|
∫
Rn\B1/4

∂λx∂
γ−λ
w K(x,w)

[
v(x+ w)− v(x− w)

]
dw.

Consequently, by (3),∣∣∣∣∫
Rn
∂λxK(x,w) δ(∂γ−λx v)(x,w) dw

∣∣∣∣
6 2C|γ| ‖v‖L∞(Rn)

∫
Rn\B1/4

|w|−n−σ−|γ−λ| dw,

proving (18). �



10 BEGOÑA BARRIOS, ALESSIO FIGALLI, AND ENRICO VALDINOCI

2.2. Approximation by nicer kernels. In what follows, it will be convenient to
approximate the solution u of (5) with smooth functions uε obtained by solving
equations similar to (5), but with kernels Kε which coincide with the fractional
Laplacian in a neighborhood of the origin. Indeed, this will allow us to work with
smooth functions, ensuring that in our computations all integrals converge. We will
then prove uniform estimates on uε, which will give the desired Cσ+α-bound on u
by letting ε→ 0.

To simplify the notation, up to multiply both K and f by 1/a0, we assume
without loss of generality that the constant a0 in (2) is equal to 1.

Let η ∈ C∞(Rn) satisfy

η =

{
1 in B1/2,
0 in Rn \B3/4,

and for any ε, δ > 0 set ηε(w) := η
(
w
ε

)
for any ε > 0, η̂δ(x) := δ−nη(x/δ). Then

we define

Kε(x,w) := ηε(w)
2− σ
|w|n+σ

+ (1− ηε(w))K̂ε(x,w), (19)

where

K̂ε(x,w) := K(x,w) ∗
(
η̂ε2(x)η̂ε2(w)

)
, (20)

and

Lεv(x) :=

∫
Rn
Kε(x,w) δv(x,w)dw. (21)

We also define

fε(x) := f(x, u(x)) ∗ η̂ε(x). (22)

Note that we get a family fε ∈ C∞(B1) such that

lim
ε→0+

fε = f uniformly in B3/4.

Finally, we define uε ∈ L∞(Rn) ∩ C(Rn) as the unique solution to the following
linear problem: {

Lεuε = fε(x) in B3/4

uε = u in Rn \B3/4.
(23)

It is easy to check that the kernels Kε satisfy (2) and (3) with constants independent
of ε (recall that, to simplify the notation, we are assuming a0 = 1). Also, since
K satisfies assumption (3) with k = 0 and the convolution parameter ε2 in (19) is
much smaller than ε, the operators Lε converge to the operator associated to K
in the weak sense introduced in [6, Definition 22]. Indeed, let v a smooth function
satisfying

|v| 6M in Rn, |v(w)− v(x)− (w − x) · ∇v(x)| 6M |x− w|2 ∀w ∈ B1(x),
(24)
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for some M > 0. Then, from (3) and (24), it follows that

∫
Rn

∣∣∣∣ηε(w)
2− σ
|w|n+σ

+ (1− ηε(ω))
(
K(x,w) ∗ η̂ε2(x)η̂ε2(w)

)
−K(x,w)

∣∣∣∣ |δv(x,w)| dw

6
∫
Rn

(
ηε(w)

∣∣∣ 2− σ
|w|n+σ

−K(x,w)
∣∣∣+ (1− ηε(ω))

∣∣∣K(x,w) ∗ η̂ε2(x)η̂ε2(w)−K(x,w)
∣∣∣)

×|δv(x,w)| dw

6
∫
Bε

C|w|2−n−σ +

∫
Rn\Bε

∣∣K(x,w) ∗ η̂ε2(x)η̂ε2(w)−K(x,w)
∣∣ |δv(x,w)| dw

6 Cε2−σ + I, (25)

with

I :=

∫
Rn\Bε

∣∣K(x,w) ∗ η̂ε2(x)η̂ε2(w)−K(x,w)
∣∣ |δv(x,w)| dw.

By (3), (24), and the fact that σ > 1, we have

I =

∫
Rn\Bε

∫
B1

∫
B1

∣∣K(x− ε2y, w − ε2w̃)η(y)η(w̃)−K(x,w)
∣∣ dy dw̃ |δv(x,w)| dw

6
∫
Rn\Bε

Cε2

|w|n+1+σ
|δv(x,w)| dw

6 C

∫
B1\Bε

ε2

|w|n−1+σ
dw + C

∫
Rn\B1

ε2

|w|n+1+σ
dw

6 C(ε3−σ + ε2).

Combining this estimate with (25), we get

∫
Rn

∣∣∣∣ηε(w)
2− σ
|w|n+σ

+ (1− ηε(ω))(K(x,w) ∗ η̂ε2(x)η̂ε2(w))−K(x,w)

∣∣∣∣ δv(x,w)dw 6 Cε2−σ,

where C depends of M and σ. Since σ < 2 we conclude that

‖Lε − L‖ → 0 as ε→ 0.



12 BEGOÑA BARRIOS, ALESSIO FIGALLI, AND ENRICO VALDINOCI

Thanks to this fact, we can repeat almost verbatim5 the proof of [6, Lemma 7] to
obtain the uniform convergence

uε → u on Rn as ε→ 0. (27)

2.3. Smoothness of the approximate solutions. We prove now that the func-
tions uε defined in the previous section are of class C∞ inside a small ball (whose
size is uniform with respect to ε): namely, there exists r ∈ (0, 1/4) such that, for
any m ∈ Nn

‖Dmuε‖L∞(Br) 6 C (28)

for some positive constant C = C(m,σ, ε, ‖u‖L∞(Rn), ‖f‖L∞(B1×R)).
For this, we observe that by (19)

2− σ
|w|n+σ

= Kε(x,w)− (1− ηε(w))K̂ε(x,w) + (1− ηε(w))
2− σ
|w|n+σ

,

so for any x ∈ B1/4

2− σ
2cn,σ

(−∆)σ/2uε(x) =

∫
Rn

2− σ
|w|n+σ

δuε(x,w)dw

= fε(x)−
∫
Rn

(1− ηε(w))K̂ε(x,w) δuε(x,w)dw

+

∫
Rn

(1− ηε(w))
2− σ
|w|n+σ

δuε(x,w)dw

5In order to repeat the argument in the proof of [6, Lemma 7] one needs to know that the

functions uε are equicontinuous, which is a consequence of [6, Lemmata 2 and 3]. To be precise, to

apply [6, Lemma 3] one would need the kernels to satisfy the bounds
(2−σ)λ

|w|n+σ 6 K∗(x,w) 6 (2−σ)Λ

|w|n+σ

for all w 6= 0, while in our case the kernel K (and so also Kε) satisfies

(2− σ)λ

|w|n+σ
6 K(x,w) 6

(2− σ)Λ

|w|n+σ
∀ |w| 6 r0 (26)

with λ := a0 − η, Λ := a0 + η, and r0 > 0 (observe that, by our assumptions in (2), λ > 3a0/4).

However this is not a big problem: if v ∈ L∞(Rn) satisfies∫
Rn

K∗(x,w) δv(x,w) dw = f(x) in B3/4

for some kernel satisfying (3) and
(2−σ)λ

|w|n+σ 6 K∗(x,w) 6 (2−σ)Λ

|w|n+σ only for |w| 6 r0, we define

K′(x,w) := ζ(w)K∗(x,w) + (2 − σ)
1−ζ(w)

|w|n+σ , with ζ a smooth cut-off function supported inside

Br0 , to get∫
Rn

K′(x,w) δv(x,w) dw = f(x) +

∫
Rn

[1− ζ(w)]

(
−K∗(x,w) +

2− σ
|w|n+σ

)
δv(x,w) dw.

Since 1− ζ(w) = 0 near the origin, by assumption (3), the second integral is uniformly bounded

as a function of x, so [6, Lemma 3] applied to K′ gives the desired equicontinuity.
Finally, the uniqueness for the boundary problem{∫

Rn K(x,w) δv(x,w) dw = f(x, u(x)) in B3/4,

v = u in Rn \B3/4.

follows by a standard comparison principle argument (see for instance the argument used in the

proof of [2, Theorem 3.2]).
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(here cn,σ is the positive constant that appears in the definition of the fractional
Laplacian, see e.g. [16, 11]). Then, for any x ∈ B1/4 it follows that

(−∆)σ/2uε(x)

= dn,σ

[
fε(x) +

∫
Rn

(1− ηε(w))
( 2− σ
|w|n+σ

− K̂ε(x,w)
)
δuε(x,w)dw

]
=: dn,σ[fε(x) + hε(x)] (29)

=: dn,σgε(x).

with dn,σ :=
2cn,σ
2− σ

.

Making some changes of variables we can rewrite hε as follows:

hε(x) =

∫
Rn

(1− ηε(w − x))
( 2− σ
|w − x|n+σ

− K̂ε(x,w − x)
)
uε(w)dw

+

∫
Rn

(1− ηε(x− w))
( 2− σ
|w − x|n+σ

− K̂ε(x, x− w)
)
uε(w)dw

− 2uε(x)

∫
Rn

(1− ηε(w))
( 2− σ
|w|n+σ

− K̂ε(x,w)
)
dw. (30)

We now notice that “the function hε is locally as smooth as uε”, is the sense that
for any m ∈ N and U ⊂ B1/4 open we have

‖hε‖Cm(U) 6 Cε,m
(
1 + ‖uε‖Cm(U)

)
(31)

for some constant Cε,m > 0. To see this observe that, in the first two integrals, the

variable x appears only inside ηε and in the kernel K̂ε, and ηε is equal to 1 near
the origin. Hence the first two integrals are smooth functions of x (recall that K̂ε

is smooth, see (20)). The third term is clearly as regular as uε because the third
integral is smooth by the same reason as before. This proves (31).

We are now going to prove that the functions uε belong to C∞(B1/5), with

‖uε‖Cm(B1/4−rm ) 6 C(r1,m, σ, ε, ‖uε‖L∞(Rn), ‖f‖L∞(B1×R)) (32)

for any m ∈ N, where rm := 1/20− 25−m (so that 1/4− rm > 1/5 for any m).
To show this, we begin by observing that, since σ ∈ (1, 2), by (29), (31), and

[6, Theorem 61], we have that uε ∈ L∞(Rn) ∩ C1,β(B1/4−r1) for any β < σ − 1
(r1 = 1/100), and

‖uε‖C1,β(B1/4−r1 )
6 Cε

(
‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
. (33)

Now, to get a bound on higher derivatives, the idea would be to differentiate (29)
and use again (31) and [6, Theorem 61]. However we do not have C1 bounds on the
function uε outside B1/4−r1 , and therefore we can not apply directly this strategy

to obtain the C2,α regularity of the function uε.
To avoid this problem we follow the localization argument in [5, Theorem 13.1]:

we take δ > 0 small (to be chosen) and we consider a smooth cut-off function

ϑ :=

{
1 in B1/4−(1+δ)r1 ,
0 on Rn \B1/4−r1 ,

and for fixed e ∈ Sn−1 and |h| < δr1 we define

v(x) :=
uε(x+ eh)− uε(x)

|h|
. (34)
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The function v(x) is uniformly bounded in B1/4−(1+δ)r1 because u ∈ C1(B1/4−r1).
We now write v(x) = v1(x) + v2(x), being

v1(x) :=
ϑuε(x+ eh)− ϑuε(x)

|h|
and v2(x) :=

(1− ϑ)uε(x+ eh)− (1− ϑ)uε(x)

|h|
.

By (33) it is clear that
v1 ∈ L∞(Rn)

and that (recall that |h| < δr1)

v1 = v inside B1/4−(1+2δ)r1 . (35)

Moreover, for x ∈ B1/4−(1+2δ)r1 , using (29), (22), and (31) we get∣∣∣(−∆)σ/2v1(x)
∣∣∣ =

∣∣∣(−∆)σ/2v(x)− (−∆)σ/2v2(x)
∣∣∣

=

∣∣∣∣gε(x+ eh)− gε(x)

|h|
− (−∆)σ/2v2(x)

∣∣∣∣
6 Cε

(
1 + ‖uε‖C1(B1/4−r1 )

)
+
∣∣∣(−∆)σ/2v2(x)

∣∣∣ . (36)

Now, let us denote by Ko(y) :=
cn,σ
|y|n+σ the kernel of the fractional Laplacian. Since

for x ∈ B1/4−(1+2δ)r1 and |y| < δr1 we have that (1 − ϑ)uε(x ± y) = 0, it follows
from a change of variable that

|(−∆)σ/2v2(x)| 6
∣∣∣ ∫

Rn
(v2(x+ y) + v2(x− y)− 2v2(x))Ko(y)dy

∣∣∣
6

∣∣∣ ∫
Rn

(1− ϑ)uε(x+ y + eh)− (1− ϑ)uε(x+ y)

|h|
Ko(y)dy

∣∣∣
+
∣∣∣ ∫

Rn

(1− ϑ)uε(x− y + eh)− (1− ϑ)uε(x− y)

|h|
Ko(y)dy

∣∣∣
6

∫
Rn

(1− ϑ)|uε|(x+ y)
∣∣∣Ko(y − eh)−Ko(y)

|h|

∣∣∣dy
+

∫
Rn

(1− ϑ)|uε|(x− y)
∣∣∣Ko(y − eh)−Ko(y)

|h|

∣∣∣dy
6 ‖uε‖L∞(Rn)

∫
Rn\Bδr1

1

|y|n+σ+1
dy

6 Cδ‖uε‖L∞(Rn).

Therefore, by (36) we obtain∣∣(−∆)σ/2v1(x)
∣∣ 6 Cε,δ(1 + ‖uε‖C1(B1/4−r1 )

+ ‖uε‖L∞(Rn)

)
, x ∈ B1/4−(1+2δ)r1 ,

and we can apply [6, Theorem 61] to get that v1 ∈ C1,β(B1/4−r2) for any β < σ−1,
with

‖v1‖C1,β(B1/4−r2 )
6 Cε

(
1 + ‖v1‖L∞(Rn) + ‖uε‖C1(B1/4−r1) + ‖uε‖L∞(Rn)

)
,

provided δ > 0 was chosen sufficiently small so that r2 > (1 + 2δ)r1. By (34), (35),
and (33), this implies that uε ∈ C2,β(B1/4−r2), with

‖uε‖C2,β(B1/4−r2 )
6 Cε

(
1 + ‖uε‖C1(B1/4−r1 )

+ ‖uε‖L∞(Rn)

)
6 Cε

(
1 + ‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
.



BOOTSTRAP REGULARITY AND NONLOCAL MINIMAL SURFACES 15

Iterating this argument we obtain (32), as desired.

2.4. Uniform estimates and conclusion of the proof for k = 0. Knowing
now that the functions uε defined by (23) are smooth inside B1/5 (see (32)), our
goal is to obtain a-priori bounds independent of ε.

By [6, Theorem 61] applied6 to u, we have that u ∈ C1,β(B1−R1) for any β < σ−1
and R1 > 0, with

‖u‖C1,β(B1−R1
) 6 C

(
‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
. (37)

Then, for any ε sufficiently small, fε ∈ C1(B1/2) with

‖fε‖C1(B1/2) 6 C
′
(

1 + ‖u‖C1(B1−R1
)

)
6 C ′C

(
1 + ‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
,

(38)

where C ′ > 0 depends on ‖f‖C1(B1×R) only.
Consider a cut-off function η̃ which is 1 inside B1/7 and 0 outside B1/6.
Then, recalling (23), we write the equation satisfied by uε as

fε(x) =

∫
Rn
Kε(x,w) δ(η̃uε)(x,w)dw +

∫
Rn
Kε(x,w) δ((1− η̃)uε)(x,w)dw,

and by differentiating it, say in direction e1, we obtain (recall Lemmata 11 and 12)

∂x1fε(x) =

∫
Rn
Kε(x,w)δ(∂x1(η̃uε))(x,w)dw

+

∫
Rn
∂x1

[
Kε(x,w)δ((1− η̃)uε)(x,w)

]
dw

+

∫
Rn
∂x1

Kε(x,w)δ(η̃uε)(x,w)dw

for any x ∈ B1/5. It is convenient to rewrite this equation as∫
Rn
Kε(x,w)δ(∂x1

(η̃uε))(x,w)dw = A1 −A2 −A3,

with

A1 := ∂x1
fε(x),

A2 :=

∫
Rn
∂x1

Kε(x,w)δ(η̃uε)(x,w)dw

A3 :=

∫
Rn
∂x1

[
Kε(x,w)δ((1− η̃)uε)(x,w)

]
dw.

We claim that

‖A1 −A2 −A3‖L∞(B1/14) 6 C
(

1 + ‖u‖L∞(Rn) + ‖uε‖C2(B1/6)

)
(39)

with C depending only on ‖f‖C1(B1×R). To prove this, we first observe that by (38)

‖A1‖L∞(B1/14) 6 C
(
1 + ‖u‖L∞(Rn)

)
.

6As already observed in the footnote on page 12, the fact that the kernel satisfies (26) only for
w small is not a problem, and one can easily check that [6, Theorem 61] still holds in our setting.
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Also, since |∂x1
K̂ε(x,w)| 6 C|w|−(n+σ),7 by (16) (used with γ = λ := (1, 0, . . . , 0)

and v := η̃uε) we get

‖A2‖L∞(B1/14) 6 C‖η̃uε‖C2(Rn) 6 C‖uε‖C2(B1/6),

where we used that η̃ is supported in B1/6.
Moreover, since (1 − η̃)uε = 0 inside B1/7, we can use (18) with v := (1 − η̃)uε

to obtain ∣∣∣∣∫
Rn
∂x1

Kε(x,w) δ((1− η̃)uε)(x,w) dw

∣∣∣∣
+

∣∣∣∣∫
Rn
Kε(x,w) ∂x1

δ((1− η̃)uε)(x,w) dw

∣∣∣∣
6 C Ck ‖(1− η̃)uε‖L∞(Rn)

for any x ∈ B1/14, which gives (note that, by an easy comparison principle,
‖uε‖L∞(Rn) 6 C(1 + ‖u‖L∞(Rn)))

‖A3‖L∞(B1/14) 6 C(1 + ‖u‖L∞(Rn)).

The above estimates imply (39).
Since ∂x1(η̃uε) is bounded on the whole of Rn, by (39) and [6, Theorem 61] we

obtain that ∂x1(η̃uε) ∈ C1,β(B1/14−R2
) for any R2 > 0, with

‖∂x1(η̃uε)‖C1,β(B1/14−R2
) 6 C

(
1 + ‖u‖L∞(Rn) + ‖uε‖C2(B1/6)

)
,

which implies

‖uε‖C2,β(B1/15) 6 C
(

1 + ‖u‖L∞(Rn) + ‖uε‖C2(B1/6)

)
. (40)

To end the proof we need to reabsorb the C2-norm on the right hand side. To do
this, we observe that by standard interpolation inequalities (see for instance [12,
Lemma 6.35]), for any δ ∈ (0, 1) there exists Cδ > 0 such that

‖uε‖C2(B1/6) 6 δ‖uε‖C2,β(B1/5) + Cδ‖uε‖L∞(Rn). (41)

Hence, by (40) and (41) we obtain

‖uε‖C2,β(B1/15) 6 Cδ(1 + ‖u‖L∞(Rn)) + Cδ‖uε‖C2,β(B1/5). (42)

To conclude, one needs to apply the above estimates at every point inside B1/5 at
every scale: for any x ∈ B1/5, let r > 0 be any radius such that Br(x) ⊂ B1/5.
Then we consider

vxε,r(y) := uε(x+ ry), (43)

and we observe that vxε,r solves an analogous equation as the one solved by uε with
the kernel given by

Kx
ε,r(y, z) := rn+σKε(x+ ry, rz)

and with right hand side

Fε,r(y) := rσ
∫
Rn
f(x+ ry − x̃, u(x+ ry − x̃))η̂ε(x̃)dx̃.

7This can be easily checked using the definition of K̂ε and (3). Indeed, because of the presence
of the term (1− ηε(w)) which vanishes for |w| 6 ε/2, one only needs to check that∫

Rn
|w − z|−n−σ η̂ε2 (z) dz 6 C|w|−n−σ for |w| > ε/2,

which is easy to prove (we leave the details to the reader).
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We now observe that the kernels Kx
ε,r satisfy assumptions (2) and (3) uniformly

with respect to ε, r, and x. Moreover, for |x|+ r 6 1/5, and ε small, we have

‖Fε,r‖C1(B1/2) 6 r
σC(1 + ‖u‖C1(B3/4)),

with C > 0 depending on ‖f‖C1(B1×R) only. Hence, by (37) this implies

‖Fε,r‖C1(B1/2) 6 r
σC
(
1 + ‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
.

Thus, applying (42) to vxε,r (by the discussion we just made, the constants are all
independent of ε, r, and x) and scaling back, we get

‖uε‖∗C2,β(Br/15(x))
6 Cδ

(
1 + ‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
+ Cδ‖uε‖∗C2,β(Br/5(x))

.

Using now Lemma 8 inside B1/5 with µ = 1/15, ν = 1/5, m = 2, and Λδ =
Cδ(1 + ‖u‖L∞(Rn) + ‖f‖L∞(B1×R)), we conclude (observe that 1/15 · 1/5 = 1/75)

‖uε‖C2,β(B1/75) 6 C
(
1 + ‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
,

which implies

‖u‖C2,β(B1/75) 6 C
(
1 + ‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
by letting ε→ 0 (see (27)). Since β < σ − 1, this is equivalent to

‖u‖Cσ+α(B1/75) 6 C
(
1 + ‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
, for any α < 1.

A standard covering/rescaling argument completes the proof of Theorem 5 in the
case k = 0.

2.5. The induction argument. We already proved Theorem 5 in the case k = 0.
We now show by induction that, for any k > 1,

‖u‖Ck+σ+α(B
1/23k+4 ) 6 Ck

(
1 + ‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
, (44)

for some constant Ck > 0: by a standard covering/rescaling argument, this proves (6)
and so Theorem 5. As we shall see, the argument is more or less identical to the
case k = 0. To be fully rigorous, we should apply the regularization argument with
the functions uε as done in the previous step. However, to simplify the notation
and make the argument more transparent, we will skip the regularization.

Define g(x) := f(x, u(x)), and consider a cut-off function η̃ which is 1 inside
B1/23k+5 and 0 outside B1/23k+4 .

By Lemmata 11 and 12 we differentiate the equation k + 1 times according to
the following computation: first we observe that, since (44) is true for k− 1 and we
can choose α ∈ (2 − σ, 1) so that σ + α > 2, we deduce that g ∈ Ck+1(B1/23k+4)
with

‖g‖Ck+1(B
1/23k+4 ) 6 C

(
1 + ‖u‖Ck+1(B

1/23k+4 )

)
6 C

(
‖u‖L∞(Rn) + ‖f‖L∞(B1×Rn)

)
,

(45)
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with C > 0 depending on ‖f‖Ck+1(B1×R) only. Now we take γ ∈ Nn with |γ| = k+1
and we differentiate the equation to obtain

∂γg(x)

=
∑

16i6n
06λi6γi

λ=(λ1,...,λn)

(
γ1
λ1

)
. . .

(
γn
λn

)∫
Rn
∂λxK(x,w) δ(∂γ−λx (η̃u))(x,w) dw

+
∑

16i6n
06λi6γi

λ=(λ1,...,λn)

(
γ1
λ1

)
. . .

(
γn
λn

)∫
Rn
∂λxK(x,w) δ(∂γ−λx (1− η̃)u)(x,w) dw.

Then, we isolate the term with λ = 0 in the first sum:∫
Rn
K(x,w) δ(∂γx(η̃u))(x,w) dw = A1 −A2 −A3

with

A1 := ∂γg(x),

A2 :=
∑

16i6n
06λi6γi

λ=(λ1,...,λn)6=0

(
γ1
λ1

)
. . .

(
γn
λn

)∫
Rn
∂λxK(x,w) δ(∂γ−λx (η̃u))(x,w) dw

A3 :=
∑

16i6n
06λi6γi

λ=(λ1,...,λn)

(
γ1
λ1

)
. . .

(
γn
λn

)∫
Rn
∂λxK(x,w) δ(∂γ−λx (1− η̃)u)(x,w) dw

We claim that

‖A1 −A2 −A3‖L∞(B
1/23k+6 ) 6 C

(
1 + ‖u‖L∞(Rn) + ‖u‖Ck+2(B

1/23k+4 )

)
, (46)

Indeed, by the fact that |γ − λ| 6 k we see that

‖A2‖L∞(B
1/23k+6 ) 6 C Ck ‖η̃u‖Ck+2(Rn)

6 C Ck ‖u‖Ck+2(B
1/23k+4 ).

(47)

Furthermore, since (1− η̃)u = 0 inside B1/23k+5 , we can use (18) with v := (1− η̃)u
to obtain

‖A3‖L∞(B
1/23k+6 ) 6 C‖u‖L∞(Rn).

This last estimate, (45), and (47) allow us to conclude the validity of (46).
Now, by [6, Theorem 61] applied to ∂γx(η̃u) we get

‖u‖Cσ+k+α(B
1/23k+7 ) 6 C

(
1 + ‖u‖Ck+2(B

1/23k+4 ) + ‖u‖L∞(Rn)

)
,

which is the analogous of (40) with σ + α = 2 + β. Hence, arguing as in the case
k = 0 (see the argument after (40)) we conclude that

‖u‖Cσ+k+α(B
1/23(2k+1)+5 ) 6 C

(
1 + ‖u‖L∞(Rn) + ‖f‖L∞(B1×R)

)
.

A covering argument shows the validity of (44), comcluding the proof of Theorem 5.

3. Proof of Theorem 1

The idea of the proof is to write the fractional minimal surface equation in a
suitable form so that we can apply Theorem 5.
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3.1. Writing the operator on the graph of u. The first step in our proof
consists in writing the s-minimal surface functional in terms of the function u
which (locally) parameterizes the boundary of a set E. More precisely, we assume
that u parameterizes ∂E ∩ KR and that (without loss of generality) E ∩ KR is
contained in the ipograph of u. Moreover, since by assumption u(0) = 0 and u is
of class C1,α, up to rotating the system of coordinates (so that ∇u(0) = 0) and
reducing the size of R, we can also assume that

∂E ∩KR ⊂ Bn−1R × [−R/8, R/8]. (48)

Let ϕ ∈ C∞(R) be an even function satisfying

ϕ(t) =

{
1 if |t| 6 1/4,
0 if |t| > 1/2,

and define the smooth cut-off functions

ζR(x′) := ϕ(|x′|/R) ηR(x) := ϕ(|x′|/R)ϕ(|xn|/R).

Observe that

ζR = 1 in Bn−1R/4 , ζR = 0 outside Bn−1R/2 ,

ηR = 1 in KR/4, ηR = 0 outside KR/2.

We claim that, for any x ∈ ∂E ∩
(
Bn−1R/2 × [−R/8, R/8]

)
,

∫
Rn
ηR(y − x)

χE(y)− χRn\E(y)

|x− y|n+s
dy

= 2

∫
Rn−1

F

(
u(x′ − w′)− u(x′)

|w′|

)
ζR(w′)

|w′|n−1+s
dw′,

(49)

where

F (t) :=

∫ t

0

dτ

(1 + τ2)(n+s)/2
.

Indeed, writing y = x− w we have (observe that ηR is even)∫
Rn
ηR(y − x)

χE(y)− χRn\E(y)

|x− y|n+s
dy

=

∫
Rn
ηR(w)

χE(x− w)− χRn\E(x− w)

|w|n+s
dw (50)

=

∫
Rn−1

ζR(w′)

[∫ R/4

−R/4

χE(x− w)− χRn\E(x− w)(
1 + (wn/|w′|)2

)(n+s)/2 dwn

]
dw′

|w′|n+s
,

where the last equality follows from the fact that ϕ(|wn|/R) = 1 for |wn| 6 R/4,
and that by (48) and by symmetry the contributions of χE(x−w) and χRn\E(x−w)
outside {|wn| 6 R/4} cancel each other.
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We now compute the inner integral: using the change variable t := wn/|w′| we
have ∫ R/4

−R/4

χE(x− w)(
1 + (wn/|w′|)2

)(n+s)/2 dwn
=

∫ R/4

u(x′)−u(x′−w′)

1(
1 + (wn/|w′|)2

)(n+s)/2 dwn
= |w′|

∫ R/(4|w′|)

(u(x′)−u(x′−w′))/|w′|

1(
1 + t2

)(n+s)/2 dt
= |w′|

[
F

(
R

4|w|′

)
− F

(
u(x′)− u(x′ − w′)

|w|′

)]
.

In the same way,∫ R/4

−R/4

χRn\E(x− w)(
1 + (wn/|w′|)2

)(n+s)/2 dwn
= |w′|

[
F

(
u(x′)− u(x′ − w′)

|w|′

)
− F

(
− R

4|w′|

)]
.

Therefore, since F is odd, we immediately get that∫ R/4

−R/4

χE(x− w)− χRn\E(x− w)(
1 + (wn/|w′|)2

)(n+s)/2 dwn = 2|w′|F
(
u(x′ − w′)− u(x′)

|w′|

)
,

which together with (50) proves (49).
Let us point out that to justify these computations in a pointwise fashion one

would need u ∈ C1,1(x) (in the sense of [3, Definition 3.1]). However, by using the
viscosity definition it is immediate to check that (49) holds in the viscosity sense
(since one only needs to verify it at points where the graph of u can be touched
with paraboloids).

3.2. The right hand side of the equation. Let us define the function

ΨR(x) :=

∫
Rn

[1− ηR(y − x)]
χE(y)− χRn\E(y)

|x− y|n+s
dy. (51)

Since 1−ηR(y−x) vanishes in a neighborhood of {x = y}, it is immediate to check

that the function ψR(z) :=
1− ηR(z)

|z|n+s
is of class C∞, with

|∂αψR(z)| 6
C|α|

1 + |z|n+s
∀α ∈ Nn.

Hence, since 1/(1 + |z|n+s) ∈ L1(Rn) we deduce that

ΨR ∈ C∞(Rn), with all its derivatives uniformly bounded. (52)
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3.3. An equation for u and conclusion. By [4, Theorem 5.1] we have that the
equation ∫

Rn

χE(y)− χRn\E(y)

|x− y|n+s
dy = 0

holds in viscosity sense for any x ∈ (∂E)∩KR. Consequently, by (49) and (51) we
deduce that u is a viscosity solution of∫

Rn−1

F

(
u(x′ − w′)− u(x′)

|w′|

)
ζR(w′)

|w′|n−1+s
dw′ = −ΨR(x′, u(x′))

2

inside Bn−1R/2 . Since F is odd, we can add the term F
(
−∇u(x′) · w

′

|w′|

)
inside the

integral in the left hand side (since it integrates to zero), so the equation actually
becomes∫

Rn−1

[
F

(
u(x′ − w′)− u(x′)

|w′|

)
− F

(
−∇u(x′) · w

′

|w′|

)]
ζR(w′)

|w′|n−1+s
dw′

= −ΨR(x′, u(x′))

2
. (53)

We would like to apply the regularity result from Theorem 6, exploiting (52) to
bound the right hand side of (53). To this aim, using the Fundamental Theorem
of Calculus, we rewrite the left hand side in (53) as∫

Rn−1

(
u(x′ − w′)− u(x′) +∇u(x′) · w′

)a(x′,−w′)ζR(w′)

|w′|n+s
dw′, (54)

where

a(x′,−w′) :=

∫ 1

0

(
1 +

(
t
u(x′ − w′)− u(x′)

|w′|
− (1− t)∇u(x′) · w

′

|w′|

)2)−(n+s)/2
dt.

Now, we claim that∫
Rn−1

δu(x′, w′)KR(x′, w′) dw′ = −ΨR(x′, u(x′)) +AR(x′), (55)

where

KR(x′, w′) :=
[a(x′, w′) + a(x′,−w′)]ζR(w′)

2|w′|(n−1)+(1+s)

and

AR(x′) :=

∫
Rn−1

[u(x′ −w′)− u(x′) +∇u(x′) ·w′] [a(x′, w′)− a(x′,−w′)]ζR(w′)

|w′|n+s
dw′

To prove (55) we introduce a short-hand notation: we define

u±(x′, w′) := u(x′ ±w′)− u(x′)∓∇u(x′) ·w′, a±(x′, w′) := a(x′,±w′) ζR(w′)

|w′|n+s
,

while the integration over Rn−1, possibly in the principal value sense, will be de-
noted by I[·]. With this notation, and recalling (54), it follows that (53) can be
written

−ΨR

2
= I[u−a−]. (56)

By changing w′ with −w′ in the integral given by I, we see that

I[u+a+] = I[u−a−],
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consequently (56) can be rewritten as

−ΨR

2
= I[u+a+]. (57)

Notice also that

u+ + u− = δu, I[u+(a+ − a−)] = I[u−(a− − a+)]. (58)

Hence, adding (56) and (57), and using (58), we obtain

−ΨR = I[u+a+] + I[u−a−]

=
1

2
I[(u+ + u−)(a+ + a−)] +

1

2
I[(u+ − u−)(a+ − a−)]

=
1

2
I[δu (a+ + a−)] +

1

2
I[(u+ − u−)(a+ − a−)]

=
1

2
I[δu (a+ + a−)]− I[u−(a+ − a−)],

which proves (55).
Now, to conclude the proof of Theorem 1 it suffices to apply Theorem 6 iter-

atively: more precisely, let us start by assuming that u ∈ C1,β(Bn−12r ) for some
r 6 R/2 and any β < s. Then, by the discussion above we get that u solves∫

Rn−1

δu(x′, w′)Kr(x
′, w′) dw′ = −Ψr(x

′, u(x′)) +Ar(x) in Bn−1r .

Moreover, one can easily check that the regularity of u implies that the assumptions
of Theorem 6 with k = 0 are satisfied with σ := 1+s and a0 := 1/(1−s). (Observe
that (7) holds since ‖u‖C1,β(Bn−1

2r ).) Furthermore, it is not difficult to check that,

for |w′| 6 1,

|[u(x′ − w′)− u(x′) +∇u(x′) · w′] [a(x′, w′)− a(x′,−w′)]| 6 C|w′|2β+1,

which implies that the integral defining Ar is convergent by choosing β > s/2.
Furthermore, a tedious computation (which we postpone to Subsection 3.4 below)
shows that

Ar ∈ C2β−s(Bn−1r ). (59)

Hence, by Theorem 6 with k = 0 we deduce that u ∈ C1,2β(Bn−1r/2 ). But then this

implies that Ar ∈ C4β−s(Bn−1r/4 ) and so by Theorem 6 again u ∈ C1,4β(Bn−1r/8 ) for all

β < s. Iterating this argument infinitely many times8 we get that u ∈ Cm(Bn−1λmr)
for some λ > 0 small, for any m ∈ N. Then, by a simple covering argument we
obtain that u ∈ Cm(Bn−1ρ ) for any ρ < R and m ∈ N, that is, u is of class C∞

inside Bρ for any ρ < R. This completes the proof of Theorem 1.

8Note that, once we know that ‖u‖
Ck,β(Bn−1

2r )
is bounded for some k > 2 and β ∈ (0, 1], for

any |γ| 6 k − 1 we get

∂γxAr(x) =

∫
Rn−1

∂γx
(
[u(x′ − w′)− u(x′) +∇u(x′) · w′] [a(x′, w′)− a(x′,−w′)]

) ζr(w′)
|w′|n+s

dw′,

and exactly as in the case k = 0 one shows that∣∣∂γx([u(x′ − w′)− u(x′) +∇u(x′) · w′] [a(x′, w′)− a(x′,−w′)]
)∣∣ 6 C|w′|2β+1 ∀ |w′| 6 1,

and that Ar ∈ Ck−1,2β−s(Bn−1
r ).
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3.4. Hölder regularity of AR. We now prove (59), i.e., if u ∈ C1,β(Bn−12r ) then
Ar ∈ C2β−s(Bn−1r ) (r 6 R/2). For this we introduce the following notation:

U(x′, w′) := u(x′ − w′)− u(x′) +∇u(x′) · w′

and

p(τ) :=
1

(1 + τ2)
n+s
2

.

In this way we can write

a(x′,−w′) =

∫ 1

0

p

(
t
u(x′ − w′)− u(x′)

|w′|
− (1− t)∇u(x′) · w

′

|w′|

)
dt. (60)

Let us define

A (x′, w′) := a(x′, w′)− a(x′,−w′).

Then we have

Ar(x
′) =

∫
Rn−1

U(x′, w′)
A (x′, w′)

|w′|n+s
ζr(w

′) dw′.

To prove the desired Hölder condition of the function Ar(x
′), we first note that

U(x′, w′) =

∫ 1

0

[
∇u(x′)−∇u(x′ − tw′)

]
dt · w′.

Since u ∈ C1,β(Bn−1R ) and 2r 6 R, we get

|U(x′, w′)− U(y′, w′)| 6 C min{|x′ − y′|β |w′|, |w′|β+1}, for y′ ∈ Bn−1r (61)

and

|U(x′, w′)| 6 C|w′|β+1. (62)

Therefore, from (61) and (62) it follows that, for any y′ ∈ Bn−1r ,

|Ar(x′)−Ar(y′)| =

∣∣∣∣ ∫
Rn−1

(
U(x′, w′)A (x′, w′)− U(y′, w′)A (y′, w′)

) ζr(w′)
|w′|n+s

dw′
∣∣∣∣

6 C

∫
Rn−1

min{|x′ − y′|β |w′|, |w′|β+1} |A (x′, w′)|
|w′|n+s

ζr(w
′) dw′

+ C

∫
Rn−1

|w′|β+1 |A (x′, w′)−A (y′, w′)|
|w′|n+s

ζr(w
′) dw′

=: I1(x′, y′) + I2(x′, y′). (63)

To estimate the last two integrals we define

A∗(x
′, w′) := a(x′, w′)− p

(
∇u(x′) · w

′

|w′|

)
.

With this notation

A (x′, w′) = A∗(x
′, w′)−A∗(x

′,−w′). (64)
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By (60) and (62), since |p′(t)| 6 C and p is even, it follows that

|A∗(x′,−w′)|

6
∫ 1

0

∫ 1

0

∣∣∣∣ ddλp
(
λt
u(x′ − w′)− u(x′)

|w′|
− [λ(1− t) + (1− λ)]∇u(x′) · w

′

|w′|

)∣∣∣∣ dλ dt
6

∫ 1

0

t
|U(x′, w′)|
|w′|

(∫ 1

0

∣∣∣∣p′(λtU(x′, w′)

|w′|
− ∇u(x′) · w

′

|w′|

)∣∣∣∣ dλ) dt
6 C|w′|β (65)

for all |w′| 6 r.
Estimating A∗(x′, w′) in the same way, by (64) and (65), we get, for any β > s/2,

I1(x′, y′) 6 C

∫
Rn−1

min{|x′ − y′|β |w′|, |w′|β+1}|w′|β−n−sζr(w′) dw′

6 C|x′ − y′|β
∫ r

|x′−y′|
tβ−s−1dt+

∫ |x′−y′|
0

t2β−s−1 dt

6 C|x′ − y′|2β−s. (66)

On the other hand, to estimate I2 we note that

|A (x′, w′)−A (y′, w′)| 6 |A∗(x′, w′)−A∗(y
′, w′)|

+ |A∗(y′,−w′)−A∗(x
′,−w′)|. (67)

Hence, arguing as in (65) we have

|A∗(x′,−w′)−A∗(y
′,−w′)|

6
∫ 1

0

t
|U(x′, w′)|
|w′|

∫ 1

0

∣∣∣∣p′(λtU(x′, w′)

|w′|
− ∇u(x′) · w

′

|w′|

)
−p′
(
λt
U(y′, w′)

|w′|
− ∇u(y′) · w

′

|w′|

)∣∣∣∣ dλ dt
+

∫ 1

0

t
|U(x′, w′)− U(y′, w′)|

|w′|

∫ 1

0

∣∣∣∣p′(λtU(y′, w′)

|w′|
− ∇u(y′) · w

′

|w′|

)∣∣∣∣ dλ dt
=: I2,1(x′, y′) + I2,2(x′, y′). (68)

We bound each of these integrals separately. First, since |p′(t)| 6 C, it follows
immediately from (61) that

I2,2(x′, y′) 6 C min{|x′ − y′|β , |w′|β}. (69)

On the other hand, by (62), (61), and the fact that u ∈ C1,β(Bn−1R ) and p′ is
uniformly Lipschitz, we get

I2,1(x′, y′) 6 C|w′|β
(
|U(x′, w′)− U(y′, w′)|

|w′|
+ |∇u(x′)−∇u(y′)|

)
6 C|w′|β

(
min{|x′ − y′|β , |w′|β}+ |x′ − y′|β

)
6 C|w′|β |x′ − y′|β . (70)
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Then, assuming without loss of generality r 6 1 (so that also |x′−y′| 6 1), by (68),
(69), and (70) it follows that

|A∗(x′,−w′)−A∗(y
′,−w′)| 6 C

(
min{|x′ − y′|β , |w′|β}+ |w′|β |x′ − y′|β

)
6 C min{|x′ − y′|β , |w′|β}. (71)

As |A∗(y′, w′)−A∗(x′, w′)| is bounded in the same way, by (67), we have

|A (x′, w′)−A (y′, w′)| 6 C min{|x′ − y′|β , |w′|β}.
By arguing as in (66), we get that, for any s/2 < β < s,

I2(x′, y′) 6 C

∫
Rn−1

|w′|β+1 min{|x′ − y′|β , |w′|β}
|w′|n+s

ζr(w
′)dw′

6 C|x′ − y′|2β−s. (72)

Finally, by (63), (66) and (72), we conclude that

|Ar(x′)−Ar(y′)| 6 C|x′ − y′|2β−s, y′ ∈ Bn−1r ,

as desired.
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Poincaré Anal. Non Linéaire 29 (2012), no. 4, 479–500.

[15] O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimen-

sion 2, Calc. Var. Partial Differential Equations, DOI: 10.1007/s00526-012-0539-7,
http://www.springerlink.com/content/467n313161531332

[16] L. Silvestre, Regularity of the obstacle problem for a fractional power of
the Laplace operator, Ph.D. Thesis, Austin University, 2005, available at

http://www.math.uchicago.edu/∼luis/preprints/luisdissreadable.pdf
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