COMPLETE CLASSIFICATION OF GLOBAL SOLUTIONS
TO THE OBSTACLE PROBLEM
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ABSTRACT. The characterization of global solutions to the obstacle problems in RY, or
equivalently of null quadrature domains, has been studied over more than 90 years. In this
paper we give a conclusive answer to this problem by proving the following long-standing
conjecture: The coincidence set of a global solution to the obstacle problem is either a half-
space, an ellipsoid, a paraboloid, or a cylinder with an ellipsoid or a paraboloid as base.
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1. INTRODUCTION

1.1. Null quadrature domains and the obstacle problem. In 1678, Newton stated his
famous no gravity in the cavity theorem: spherical shells do not exert gravitational force inside
the cavity of the shell. This result was later extended to ellipsoidal shells (homoeoid) first by
Laplace, and soon after by Ivory using a more geometric approach.
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2 COMPLETE CLASSIFICATION OF GLOBAL SOLUTIONS TO THE OBSTACLE PROBLEM

In modern terms, these results can be stated in terms of null quadrature domains. We
recall that an open set Q C RY is called a null quadrature domain if

/hda:zO
Q

for every harmonic function h € L(2)NC(Q). With this terminology, the results of Newton,
Laplace, and Ivory can be stated saying the complement of a ball/elliposoid is a null quadra-
ture domain. In greater generality, one can prove that null quadrature domains include:

- half-spaces;

- exteriors of ellipsoids;

- exterior of paraboloids;

- cylinders over domains of the types listed above.

A major question, which has been investigated over the last 90 years, is to understand whether
this list includes all the possible null quadrature domains. Before discussing it, it is important
to point out that null quadrature domains are rigorously related to solutions to the obstacle
problem. More precisely, as discussed for instance in [3, Theorem II] and [13, Theorem 4.1]

Q) is a null quadrature domain <
Q = {u > 0} for some non-negative solution u € C’llo’c1 (RY) of Au = X{u>0}-

In other words, characterizing null quadrature domains is equivalent to characterizing the
coincidence set {u = 0} for global solutions to the obstacle problem

Au=X(s0p, u>0,  inRY. (1.1)

It is well-known that global solutions to the obstacle problem are convex (see for instance [15,
Theorem 5.1]). In particular, the coincidence set {u = 0} is convex.

1.2. Classification results. The first partial classification of global solutions with compact
coincidence sets has been achieved more than 90 years ago: in 1931, Dives [5] showed that,
for N = 3, if {u = 0} has non-empty interior and is bounded then it is an ellipsoid. Many
years later, in 1979, Lewy gave a new proof of this result [14].

In 1981, M. Sakai gave a full classification of global solutions in two dimensions using
complex analysis (cf. [16]).

The higher dimensional analogue to Dive’s result, i.e., if {u = 0} is bounded and has non-
empty interior then it is an ellipsoid, was proved shortly after in two steps. First, DiBenedetto
and Friedman proved the result in 1986 under the additional assumption that {u = 0} is
symmetric with respect to {z; = 0} for all j € {1,..., N} (cf. [4]). Then, in the same year,
Friedman and Sakai [9] removed the symmetry assumption. Very recently, in [8], two of the
authors gave a very concise proof of the characterization of compact coincidence sets.

Hence, while global solutions with compact coincidence sets have been completely classified,
the structure of solutions with unbounded coincidence sets remained largely open and is related
to the following conjecture (here, one is implicitly assuming that {u = 0} has non-empty
interior, as otherwise solutions are trivially classified, see Remark 2.5 below):

Conjecture: The coincidence set of a global solution to the obstacle problem is either a
half-space, an ellipsoid, a paraboloid, or a cylinder with an ellipsoid or a paraboloid as base.

This conjecture, which has been investigated over more than 30 years, has been officially
raised in several papers: first by Shahgholian in [17, conjecture on p. 10|, then by Karp
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and Margulis in [12, Conjecture 4.5], and recently in the monograph ‘Research Problems in
Function Theory’ [10, §3.1 pp. 63-64, and Problem 3.28].

In the recent work [6] the first and third author, together with Shahgholian, have been able
to solve the conjecture in dimension N > 6 (see Remark 1.4 below).

Here we are able to fully characterize global solutions in the remaining dimensions (actually,
our proof gives a complete characterization for all dimensions N > 3), allowing us to prove
the conjecture above.

Theorem 1.1 (Complete characterization of global solutions to the obstacle problem). Let
N > 2, and let u be a solution of (1.1) such that the coincidence set {u = 0} has non-empty
interior. Then the coincidence set is is either a half-space, an ellipsoid, a paraboloid, or a
cylinder with an ellipsoid or a paraboloid as base.

As we shall explain later, this result is a rather direct consequence of the classification of
monotone solutions. More precisely, the core of this paper is the following:

Theorem 1.2 (Characterization of monotone solutions). Let N > 3 and let u be an xy-
monotone solution according to Definition 2.8 below. Then {u = 0} is a paraboloid.

Remark 1.3. Thanks to [7, Main Theorem]|, Theorem 1.1 implies a very refined result on the
behavior of the regular part of the free boundary close to singularities.

Remark 1.4. As mentioned before, Theorem 1.2 has already been proved for N > 6 in [6].
An important reason for this dimensional restriction comes from the fact that, in the proof
in [6], a key role is played by the Newtonian potential associated to {u = 0}, defined (up to
a multiplicative constant) as mﬁ * X{u=o}- However, if {u = 0} is a paraboloid then the
above convolution converges only for N > 6.

As we shall see later, this definition can be “corrected” to obtain a convergent expression
also in lower dimensions (see Definition 3.1 and Lemma 3.3). However, the positivity of the
Newtonian potential is important for the arguments in [6], while our generalized potential
loses this property.

At a more “fundamental” level, the role of the dimension can be seen as follows: if p(x) =
lim, o0 @ denotes the blow-down polynomial appearing in Definition 2.8(iv), then the
behaviour of u — p changes considerably with the dimension. In particular, if {u = 0} is a
paraboloid (this is a particular case of xy-monotone solution) then one can check by explicit
computations that, for N > 4, there exists a linear function ¢ such that:

- fp,, lw —p — €| dx is bounded for N > 6;

- fBR |lu —p — €] dx ~ log(R) for N = 5;

- fBR lu—p—¢|dz ~ R for N = 4.

This different behavior is the reason for the dimensional restriction N > 6 in [6]. In this
paper, instead, we develop a new approach that only requires fBR |lu—p—{|dx = o(R), giving
a unified proof of Theorem 1.2 for N > 4. Unfortunately, in the “critical” dimension N = 3,
fBR |u —p|dx ~ Rlog R. In particular, there is no affine function that dictates the behaviour
at infinity of u —p. As the reader will see, this fact is a source of major difficulties for proving
Theorem 1.2 in dimension N = 3.

We note that also for N = 2 the behavior of u — p is superlinear: fBR |u — p|dz ~ R3/2.
However, when N = 2 one can rely on the Riemann mapping theorem to obtain a short proof
of Theorem 1.1 (see [16]).
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1.3. Structure of the paper. In Section 2, we begin by introducing some notation and
collecting a series of useful preliminary estimates on solutions to the obstacle problem and on
the Alt-Caffarelli-Friedman (ACF) functional, that will play a crucial role in our proof.

In Section 3 we prove that, for an x y-monotone solution u, one can define a Newtonian-type
potential V¢ associated to its coincidence set C = {u = 0} so that the expansion u = p + V¢
holds.

In Section 4, thanks to the Newtonian expansion proved in the previous section, we prove
that the coincidence set C is asymptotically contained inside a paraboloid. The proof of this
result is rather easy in dimension N > 4, while the case N = 3 requires an extremely delicate
argument.

In Section 5, we use the result from Section 4 to analyze the asymptotic behavior of V.
In particular: for N > 4 we can show that V behaves at infinity like a linear function (up
to sublinear corrections); for N = 3, on each large ball Bg, V¢ is at most C'R-away from an
affine function whose slope behaves like log R. In other words, while for N > 4 the gradient
of V¢ is essentially bounded, for N = 3 it has a BMO-type behavior (see Lemma 5.2).

In Section 6, exploiting the information on V obtained in the previous section, we can
construct matching paraboloid solutions (i.e. solutions that have paraboloids as coincidence
sets). More precisely, for N > 4 we can find a paraboloid solution up such that u —up grows
sublinearly at infinity. Instead, for N = 3, for each R we construct a paraboloid solution up,
such that ‘B—lRlHu —upgllLysy) < CR.

With all this preparatory work, we can then prove our main result.

More precisely, in Section 7 we focus on the case N > 4. In that case, applying the
ACF formula to the difference between u and suitable translations of the paraboloid solution
constructed in Section 6 and exploiting the sublinear growth at infinity, we are able to prove
that such solutions are ordered. Once this is achieved, we conclude easily.

Instead, in Section 8 we focus on the case N = 3. In this case, due to the lack of a sublinear
approximation of u via paraboloid solutions, we cannot directly apply the ACF formula to
deduce that u and some suitable paraboloid solution are ordered. Instead, we apply the ACF
formula to the functions %(u — upy)(R-) (each of which may not satisfy a linear growth
bound) in order to construct a comparison solution us, whose coincidence set is a paraboloid.
Then, by a delicate ACF-type dichotomy, we show that one-homogeneous blow-down limits
of u — u exist and:

- either they have constant sign (so u and us are “ordered at infinity”);

- or they are linear functions.

While in the first case we can conclude similarly to the case N > 4, the second case requires
a very refined analysis. More precisely, exploiting the information that u — u., behaves as a
linear function at infinity, we can construct fine adjustments of the paraboloid solution u to
show that, for some suitable translations of s, the ACF energy vanishes. Then, we conclude
similarly as in the first case.

Finally, in Section 9, we provide a new self-contained argument showing how Theorem 1.1
follows from Theorem 1.2.

Acknowledgements. The second author has received funding from the European Research
Council under the Grant Agreement No. 721675 “Regularity and Stability in Partial Differ-
ential Equations (RSPDE)”.
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2. NOTATION AND PRELIMINARIES

Throughout this work, RY will be equipped with the Euclidean inner product z - y and
the induced norm |z|. Due to the nature of the problem, we will often write 2 € RY as
r = (2',2n) € RN71 x R. Also, we denote by (e?);<;<n the elements of the canonical base
of RV,

In our estimates, C' denotes a generic positive constant that may change from line to line.
We shall use Cy whenever the constant depends only on the dimension.

We write B,(x) to denote the open N-dimensional ball of center xz and radius r, while
B! (z') is the open (N — 1)-dimensional ball of center 2/ € RV~! and radius r. Whenever the
center is omitted, it is assumed to be the origin 0.

When considering a set A, x4 shall denote the characteristic function of A. With HN—1,
we refer to (N — 1)-dimensional Hausdorff measure. If A and B are two sets, we denote their
symmetric difference by AAB := (A\ B) U (B \ A). Given a function f : A ¢ RY — R,
we define fy := max{f,0} and f_ := max{—f,0}. Furthermore, we define the differential
operator V' f := (01 f,...,0n-1f).

Definition 2.1 (Coincidence set). Given a solution u to the obstacle problem (1.1), we define
its coincidence set C to be

C:={u=0}.

Remark 2.2. As already mentioned before, global solutions to the obstacle problem are convex
(see e.g. [15, Theorem 5.1]). In particular, the coincidence set C of a global solution is convex.

To get compactness of solutions, it is useful to recall that they are uniformly C'!-regular.
Also, as shown by Caffarelli, their blow-down limits with respect to quadratic rescaling are
either half-space solutions or quadratic polynomials (see [2]). We summarize these results in
the following two lemmas:

Lemma 2.3 (Characterization of blow-down limits). Let u : RY — [0,00) be a global solution
to the obstacle problem. Then the following convergence holds in CI{)’(?‘(RN) for each o € (0,1):

%max(m -e,0)2  for some e € OBy,

. u(rz)

im = .
r—oo 12 %xTQa: for some Q € RN*N symmetric,

nonnegative definite, satisfying tr(Q) = 1.

A global solution of the form %max(m -€,0)? is called half-space solution.

Lemma 2.4 (Uniform regularity and compactness). The following regqularity and compactness
properties hold:

(i) Let u be a global solution to the obstacle problem in RYN such that u(0) = 0. Then
HD2“HL0<>(RN) < COn.

(ii) Let (up)ren be a sequence of global solutions to the obstacle problem in RN that vanish
at the origin. Then there erists a subsequence (ukj )jen converging to a global solution
Uug in Cﬁ)’?(RN) for each o € (0,1). In addition, X{u,; =0} = X{ug=0} @-¢- in RN,

Proof. The fact that HDQuHLm(RN)
the uniform quadratic growth of the solution (see [15, Theorem 2.1]) combined with regularity

is bounded by a dimensional constant is a consequence of
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estimates for harmonic functions inside the open set {u > 0}, as done for instance in the proof
of [15, Theorem 2.3]. This proves (i).

Concerning (ii), we note that the compactness in C’llo’g‘ (RY) is a direct consequence of (i) and
Ascoli-Arzela Theorem. The a.e. convergence of the characteristic functions of the contact
sets follows from [15, Proposition 3.17(i)-(ii)]. O

Remark 2.5. As noted in the previous proof, global solutions grow at most quadratically at
infinity (cf. [15, Theorem 2.1]). Also, if the convex set {u = 0} has empty interior, then
Au = 1. Hence, Liouville’s theorem implies that the only global solutions whose coincidence
sets have empty interior are quadratic polynomials.

Within the class of global solutions to the obstacle problem, we now introduce some ter-
minology for denoting some special solutions

Definition 2.6 (Cylindrical solutions). We say that a global solution to the obstacle problem
is cylindrical if there exists e € OBy such that

Vu-e=0 inRY,
A useful criterion for being a cylindrical solution is contained in the following:

Lemma 2.7. Let u be a global solution, and assume that its coincidence set C contains an
infinite line. Then u is constant in the direction of that line.

Proof. First of all we may assume that C has non-empty interior, as otherwise v is a non-
negative quadratic polynomial (see Remark 2.5) and the result follows easily.

Since C is convex, the assumption of containing a line implies that C is a product, namely
there exists a system of coordinates such that C = K x R for some convex set X ¢ RV-11
Hence, given o € R, the global solution wu, () := u(x 4+ ce™) has the same contact set as u,
and therefore A(u — u,) = 0. Since u — u, vanishes on C which has non-empty interior, it
follows by unique continuation that v — u, = 0. Since o is arbitrary, this shows that wu is
invariant in the e’V-direction, proving the result. ]

Definition 2.8 (z-monotone solutions). We say that a global solution to the obstacle problem
(1.1) 4s xy-monotone if:
(i) C has non-empty interior;
(ii) C C {xnx >0} and 0 € OC;
(iii) Onu < 0 in RN,
(iv) "Sf;m) — %x’TQx’ =: p(a’) in C’llo’g(RN) as r — oo, a € (0,1), where x = (2/,xn),

Q € RIN=UXWN=1) 45 symmetric, positive definite, and satisfies tr(Q) = 1.

Remark 2.9. Thanks to Definition 2.8(ii)-(iii), if u is x-monotone then {te” : ¢ > 0} C C.
Also, since the matrix Q € RW=DX(N=1) in Definition 2.8(iv) is positive definite, there exists
a constant ¢, > 0 such that

p(z’) > cp’x"2 for all 2’ € RV, (2.1)
IThis classical fact can be proved as follows. Assume that the line £ is parallel to e, that £ = {Z + se” :
s € R} for some & € R, and define K, := C N {zx = 7}. Let conv(A) denote the convex hull of the set
A. Then, by convexity of C, conv(K, U¥) C C for any 7 € R. Since conv(K, U/f) = K, x R, it follows that
C D K xR with £ x R :=U; (K; x R). On the other hand, it is clear by construction that C C K x R, so the
result follows.
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The following important result on xy-monotone solutions is proved in [6]:

Lemma 2.10 (C is “almost contained” in a paraboloid). Let N > 3, and let u be an xy-
monotone solution. Fix 6 € (0,1), and define T5 := {(y’,yN) eRN : |y)? < y}VJ”S}. Then
there exists a radius ¥ > 1 such that

C \ Bsyp C {yN > f} NTs. (2.2)

Proof. This result is proved in [6, Proposition 5.1] assuming that CN{zy < 0} = {0} in place
of Definition 2.8(ii). However, it is easy to check that exchanging this assumption with ours
does not affect the proof. O

Definition 2.11 (Ellipsoids and Paraboloids). We call a set E C R ellipsoid if, after a
translation and a rotation,
<1}

for some a = (a1,...,any) € (0,00)Y. We call a set P C RN a paraboloid, if, after a
translation and a rotation,

P = {(x',xN) eRN :zn >0, 2 € \/xNE’},

N
E = {:UGRN Z

J=1

k»gw ‘ m&w

where E' is an (N — 1)-dimensional ellipsoid.

An important role in this paper will be played by the Alt-Caffarelli-Friedman (ACF) func-
tional originally introduced in [1]: given a function v : RV — R with N > 2, we define

\vm Vo_[?
v,7T) r4/ |93|N72d$' (2.3)

We recall in the following lemma some useful facts about the ACF functional.

Lemma 2.12 (Properties of the Alt-Caffarelli-Friedman monotonicity functional). Let N >
2, and let v : RNV — R be a continuous Wlf)cz function such that both vy and v— are subhar-
monic. Then:

(i) The functional ®(v,r) is finite for each r >0, and
r— (v, r) is non-decreasing.
(ii) The following bound holds for any r > 0:

2
||V|”i| dz <CN<][vidx> .
X

T 4ar

(iii) The following bound holds for any r > 0:

B(v,7) < fjf(f v+dx>2<][ Ud:n>2.
B

4r Byr

(iv) Assume that ®(v, R) — 0 as R — co. Then either v >0 in RY orv <0 in RY.
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Proof. Usually (i) is stated and proved under the extra assumption v(0) = 0. However, as
noted in [15, Theorem 2.4], this extra condition is not needed and therefore (i) holds in our
setting.
By subharmonicity of v+ and Holder’s inequality, we can estimate
C
2 N
lv+l72(8,) < V£l poomo vl  and  flvtllpe(p,,) < TT\;”%HLI(BM)' (2.4)
Also, as noted in [15, Section 2.2.3], the bound

[Vl S de < Cy <][w2dx>
™ '

T 2r

holds for any nonnegative subharmonic function w. Applying this inequality to w = v+ and
using (2.4), we obtain (ii).

Multiplying the two estimates in (ii) for v; and v_, (iii) follows.

To prove (iv) we can assume that there is a point y € RY such that v(y) = 0 as otherwise,
by continuity of v, either v > 0 or v < 0 and the result is trivially true. By the monotonicity
and non-negativity of ®, our assumption implies that ®(v,r) = 0 for all » > 0. Hence, by the
definition of the ACF functional (cf. (2.3)), for each r € (0, c0),

either Vvy =0 inB, or Veu_=0 inB,.
Since by assumption v(y) = 0 we deduce that, for all r > |y|,
either vy =0 inB, or wv_=0 in B,.
Therefore, by continuity,
either vy =0 in U B,=RY o v_=0 in U B, =RY,
>y >y
which proves (iv). O

We conclude this section with a couple of simple but important results on the difference of
two global solutions. These results will play a crucial role in the proof of Theorem 1.2 where
we will apply the ACF functional to the difference of two global solutions.

Lemma 2.13 (Subharmonicity properties and Caccioppoli estimate). Let uj,usg : RY - R
be global solutions to the obstacle problem. Then the following hold:

(i) The functions (u; — u2)+, (u1 —u2)— and |uy — uz| are subharmonic.
(ii) The following bound holds for any r > 0:

][\V up — ug) \de < - ][ (uy — up)? da.
Bg,«(:co)
Proof. Set w :=uy — uz and note that, since Au; = x4, >0y,
AW = X{u;>0} — X{up>0} = 0 inside {ug > ua}. (2.5)

Choosing a sequence of smooth convex non-decreasing functions ¢. : R — R such that
Pel(—00,0) = 0 and ©ve(8) — sy as € — 0 locally uniformly, we see that

Alpe(w)] = (W) [X{u1>0} — X{us>0}] + @7 (w)|Vw]* > 0.
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Letting € — 0, we conclude that (u; — u2)4+ is subharmonic. Since (u; —u2)— = (u2 — u1)+,
by symmetry between u; and us we deduce that (u; — ug)— is subharmonic. Finally, since
|lup — ug| = (u1 —u2)+ + (u; — ug)_, the subharmonicity of |u; — ug| follows. This proves (i).

To prove (ii) we define w,(x) := % and we note that, as a consequence of (2.5), it holds

w,Aw, > 0, or equivalently

A(w?) > 2|Vw,|?. (2.6)
Now, fix 0 < n € CL(By) a cut-off function satisfying » = 1 in B;. Integrating the inequality
(2.6) against  we obtain

1
/|Vwr|2da:§/|Vwr|2nda:§ 2/ w?Andr < C/w?dx,
B By b2 B,

as desired. OJ

Remark 2.14. As a direct consequence of Lemma 2.13(i) we recover the well-known fact that,
given a global solution u, (J.u)+ and (9.u)_ are subharmonic for each e € 9B;. Indeed, given

h > 0 it suffices to apply Lemma 2.13(i) to u and u(- + he) to deduce that both (%)
+

and (%) are subharmonic, and then the result follows by letting A — 0.

Lemma 2.15 (Strong convergence). Let ¢ € (0,00) and let (ug)ken, (Vi)ken be two sequences
of global solutions to the obstacle problem in RN such that

Wy = up — v —w  weakly in Wl’Q(BQ) as k — oo,
for some harmonic function w : RN — R. Then, for each 6 € (0,1),

wE = up — v —> w  strongly in W1’2(B59) as k — oo.
Proof. First of all note that, for all £ € N,

wpAwy, = (ug — k) (Xfup >0} — X{u,>03) > 0.

Hence, given n € C2°(B,; [0,00)) satisfying n = 1 in Bs,, integrating by parts twice we get

/|Vwk|2 < /|Vwk|277 = _/(wkszk -V + nwiAwy) < —/wkvwk -Vn
B&Q BQ BQ BQ

where the last equality follows by the harmonicity of w.
Now, choosing a sequence (1;)jen C Co°(By;[0,00)) such that n; =1 in B, for all j € N
and n; — XB,, pointwise in B,, we conclude that

limsup/]Vwk|2 < /]Vw[Q.

k—o0
Bs, Bs,

Therefore, by the lower-semicontinuity of the Dirichlet energy we deduce that || Vwg|[ ;25 s0)

[Vwll 2 Bs,)- Lhis convergence of the L?-norm of the gradients together with the weak
convergence implies the desired strong convergence. ([l
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3. THE NEWTONIAN POTENTIAL EXPANSION

As mentioned in Remark 1.4, in [6] a very important role is played by the Newtonian po-
tential associated to the coincidence set of a solution, defined (up to a multiplicative constant)
as m% * xc. Unfortunately, if C is a paraboloid then the above convolution converges only
for N > 6. For this reason we will introduce a generalized Newtonian potential in the spirit of
[11], which will be shown in Lemma 3.2 to be well-defined and to have subquadratic growth.

Definition 3.1 (Generalized Newtonian potential). Let N > 3, and define the function

1 1 -y
G(w,y) : |N—2 _( _Q)W

— — for allz,y € RV,
|z —yl ly

Given M C RY measurable, assume that G(x,-)xym € LY(RY) for each x € RN. Then we

define the generalized Newtonian potential associated to M as
1
Vi (z) == aN/G(m,y) dy, where ay =
M

NN )| (3.1)

Lemma 3.2 (Scaling of the generalized Newtonian potential). Let M € RY be a measurable
set for which Vi is well-defined. Then Vi satisfies the following scaling law:

Vi (yz) =42 Vi, (x) for all v > 0.
Y
Proof. The proof follows from a direct calculation: since

G(yz,y) =~ NG <x, z> for all v > 0, z,y € RV,

Vi (yz) = aN/G(vw,y) dy = 72_N04N/G <x 'ZQ dy

M M
= 727N04N G(x, z)’yN dz = 72 VlM(x).
vy

ESY4
5

0

Lemma 3.3 (Generalized Newtonian potential of C). Let N > 3, and let u be an x nx-monotone
solution in the sense of Definition 2.8. Then

(i) The generalized potential Vi of C is well-defined and locally bounded.

(ii) Ve(z) grows subquadratically as |x| — co. More precisely, there exists a constant C such
that

M§C for all z € RV,
x

(iii) Vo € W2P(RYN) for each p € [1,00), AVe = —xc, and Ve(0) = [VVe(0)| = 0.

loc

Proof. Fix 0 € (0,1), let Ty be as in Lemma 2.10, and recall that (2.2) holds.
To prove the estimate, we first note that the trivial bound
1 1 ||
|G(z,y)| < St TV —2)—5=
o =y |y N jy[
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holds. Also, by the Taylor expansion f(1) = f(0) + f/(0) + fo 7)f"(7)dr applied to
f(7r) = W7 we get

jz/?

yY

Using these two bounds and (2.2), we obtain

1 1 €
/ Gla,y)| dy < / ( S G V) ‘N'_1>dy
c CNBy: \ | — Y] |y |y

1 1 ||
+/ ( vt =+ (N—-2) N—1> dy
C(Baja)\Ba2s) \ | — | |y |yl

|G(z,y)| < C— for |y| > 2|z|. (3.2)

2
+C |$| ~ dy
C\ By ’y‘
1 1 ||

< / ( N—2 =+ N—2 + (N - 2) N—l) dy (33)

Bas \ |7 — | [y |yl

1 1 ||

+/ ( vt Trvz TV -2) N—1>dy

T5N(B2)z|\B2r) |z — | ly| |y

2

+C | ‘ dy_Il-l-Ig-FIg

Ts\(Ba|y|UBar) ’y‘

Since the integral of W over a ball is maximized when x coincides with the center of
the ball, for the first integral I; we have

1 1 1 1
/ N2 T T N2 d?JS?/ N2dy<Cand/ ﬁdyg(j7

I < C(1+a)). (3.4)

About I, we note that this integral is nonzero only if |x| > 7. In such a case, we observe
that, provided that  is large enough,

Ts N (B2‘33| \Bgf) cTsN {f <yn < 2|l’|}

hence

Hence, since ﬁ < yLN and N > 3,

1 2\33| No1 1
N ys/ dy—/ HY YTy A (g = 1)) s
/Tarw(Bm\Bzf) Jy| N2 Ty {r<yn<2lal} YN 2 : =2
2zl (n_1)as) (N-1)(146)
< c/ RN g < o1 4 )TN < 01+ )M, (3.5)
f.

and analogously

1 2| (N 1)(1+5)
/ —x1dy < C/ N q
T5N(Bae| \B2#) ) [yl
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< O(1+ o) 32N < 01+ J2))°, (3.6)

1 T
/ ( N—2 +(N-2) ‘N|1> dySC’(l—l—m)H‘s.
TsN(Baz|\B2r) Y| |y

W, we use again that the integral of W over

a ball is maximized when z’ coincides with the center of the ball. This yields

1 1 1 146
dy’:/ dy'</ dy = Ct' s
/T(;ﬁ{yN:t} |z’ — g/ |N—2 B P A R oy N2

l+5 1+6

therefore

Finally, to estimate the integral of

and therefore, since — <

2"y

1 2| s 5
TsN(Bz|z| \B2r) |z — y| 7

Overall, this proves that I, < C(1+ \x|)%5
Finally, for I3, we simply note that

Tg\(Bgm U Bgf) cTsN {yN > max{|:z:],f}},
hence

2 [e') B 1
/ Ja* ~ dy < \ar|2/ HN N Tsn {yny = t})t—N dt
Ts\(Baja UB2s) Y] max{|z|,7}

~cla [
max{|z|,7}

Combining all these bounds, we have shown that
16wy < e ja)'s,
C

where 6 € (0,1) is arbitrary. This proves that V¢ is well-defined and locally bounded. Also,
choosing § = 1/2, we obtain that

M <Cin  forallz eRY (3.8)
x

where the constant C; y depends only on the dimension N and the radius 7 defined in (2.2)
for 6 =1/2.

To prove the W2P-regularity of Vz we note that, for o > 2max{#, |z|},
lz?

(N—

)(1+6) (N—=1)(149)
£ N Q4 < OlzPA+ |2) T

V<o) (3.7)

O (N—1)(1+6)
Ve(@) = Veng, (@) < © vy < CW/ £ N 4t < Ol
T5\B o ’ | 4
This implies that V¢ is the locally uniform limit of the sequence of the continuous functions

Vens, as @ — oo. Also, since

1 1
aNAz< N5 — T N3 — (N - 2)$ y) —d; in the sense of distributions,
|z —yl |yl Y
one easily deduces that AVenp, = —xcnB, € L>®(RN) for each ¢ > 0. Thus, by elliptic

regularity, the functions Venp, are locally uniformly bounded in W2P for each p < co. In
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particular because of the compact embedding W?2?(B,) < C1%(B,) for p > N, we deduce
that

Vens, = Ve and  VVeng, = Ve locally uniformly in RN, as 0 — o0.
Since G(0,-) = 0 and V,G(0,-) = 0, we obtain for each ¢ > 0 that
Ve, 0)= [ GO.pdy=0,  VVern,(0)= [ V.GO.0)dy=0,
CNB, CNB,
so we conclude that V¢(0) = VV(0) = 0. O

As a consequence of the previous lemma, we can now show the following important result.

Proposition 3.4 (Newtonian potential expansion). Let N > 3, let u be an xx-monotone
solution in the sense of Definition 2.8, and let p be the blow-down limit in Definition 2.8(iv).
Then the expansion

u=p+ Ve
holds.

Proof. Recall that, thanks to Lemma 3.3(iii), V¢ is a strong VVlif (RY) solution of AVz = —xc.
Moreover, if we set v := u — p, then v € C’llo’c1 (RY) (see Lemma 2.4(i)) and it solves the same
equation as Vg, i.e. Av = —x¢. Hence v — V¢ is harmonic in RY, and it follows from
Definition 2.8(iv) and Lemma 3.3(ii) that v — V¢ has subquadratic growth. This allows us to
apply Liouville’s theorem to obtain that

v—Ve={0+c,
where £ is a linear function and ¢ is a constant. Thus we have proved
u=p+l+c+Ve, inRY,
Now, since 0 € JC, it follows from Lemma 3.3(iii) that
0 =u(0) = p(0) + £(0) + ¢+ V¢(0) = ¢,
0 = Vu(0) = Vp(0) + V£(0) + VV¢(0) = V£(0).
This proves that both £ and ¢ vanish, concluding the proof. ]

As we shall see in the next section, this potential expansion allows us to obtain a very
precise control on the asymptotic behavior of the coincidence set C.

4. IMPROVED ESTIMATE ON THE ASYMPTOTIC BEHAVIOR OF THE COINCIDENCE SET C

The goal of this section is to prove that C is contained in some paraboloid. While for N > 4
there is a very simple argument to prove this result, the proof for N = 3 is amongst the most
delicate of this paper (see in particular the proof of Lemma 4.3 below).

Proposition 4.1 (C is contained in a paraboloid). Let N > 3, and let u be an xn-monotone
solution in the sense of Definition 2.8. Then there are constants ag,vo € (0,+00) such that:

(i) CO{xn > ao} C {|2'|* < voxn};
(ii) CN{xny < ap} is bounded.
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Proof. Thanks to Lemma 2.10 it follows that C N {zy < a} is bounded for each a > 0, so (ii)
holds for each ag > 0. In particular, it suffices to prove (i) for ag sufficiently large.

We first prove the result in the case N > 4 (since the proof is very simple), and then focus
on the delicate case N = 3.
e The case N > 4. Arguing as in the proof of Lemma 3.3, given § € (0,1), for |z| > 7 we
have

1 1 1 |z|
Vc(w)—/G(:r,y)dyZ/ ( — — x5 — (N —2)—%— )dy
anN C CNBas |$—y|N 2 |y|N 2 |?/|N !

1 1 ||
—I—/ — — — — (N —2) — ) dy
CH(BM\BW)(\»”C—Z/N 2N y V!

|z
-C —vdy=nhL+1r+13
T5\Ba|q| ly|
(cp. (3.3)). Then, again as in the proof of Lemma 3.3, we have that |I;| < C(1 + |z|) and

(N—l;(1+6)+1_

1436

N<o@+z) for N >4

15| < Claf*(1 + |a])

(cp. (3.4) and (3.7)). For Is, we observe that the first term is non-negative and we estimate
the remaining two as in (3.5) and (3.6), so to get

1 2]
122/ —x— + (N —2) _)dy
Taﬁ(Bzm\BR)<’y‘N ? Jy) ¥

(N—-1)(1+9)
TN > o1+ |z)E for N> 4.

> —C(1+ |z|)

Choosing 6=1/3 proves that Ve(z) > —C(1 + |z|) for all x € RV,
Now, applying Proposition 3.4 and combining this bound with (2.1), we conclude that
0 =u(z) = p(x) + Ve(x) > cp|2)* — C(1 + |z|) for all z € {u = 0}.
From this estimate we easily deduce that
2> < C(1+|zn|) = C(1 + zn) for all z € {u =0}

(recall that {u =0} C {xxy > 0}), so (i) follows.
e The case N = 3. This case follows from Lemmas 4.2 and 4.3 below. ]

The rest of the section is devote to the proof of Lemmas 4.2 and 4.3.

Lemma 4.2 (Sections of C are controlled by their measure). Let N = 3, and let u be an
xn-monotone solution in the sense of Definition 2.8. We define C; := {y € R? : (y/,t) € C}
and H(t) := H%(C;) for allt > 0. Then:

- either {C¢}i>0 s bounded, i.e. sup;sqdiam(C;) < oo;

- or there exist ag > 1 and Cy < oo such that, for all x5 > ay,

Cuy C {|2')? < CoH(x3)}.
Proof. We may assume that

sup diam(C;) = oo. (4.1)
>0
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Suppose, towards a contradiction, that the statement of the lemma is not true. Then, there
exists a sequence (z"),eny C R? x (0, 00) such that 2% — oo as n — oo and, for all n € N,

|(z™))? > nH(z}) and 2" €C. (4.2)
Define d, := diam(Cyy). From Lemma 2.10 we know that, given ¢ € (0,1),

d, < (:cg)% for all n sufficiently large. (4.3)

On the other hand, (4.1) together with the monotonicity of ¢ — diam(C;) (recall that by
Definition 2.8, u is decreasing in the e3-direction) imply that

d, —> 00 asn — oo.

Let us define for each n € N the rescaling

up(x) == u((O,Jrg;)%—f— dnm).

Note that, as a consequence of (4.2), the convex sets {u,, = 0} N{xr3 = 0} C R? have diameter
1, contain the origin, and their H?-measure goes to zero. Hence, thanks to Lemma 2.4(ii), the
fact that ¢ — C(t) is increasing (recall that by Definition 2.8, u is decreasing in the e3-direction)
and the convergence of coincidence sets (see [15, Proposition 3.17 (iv) and Proposition 3.17
(v)]), passing if necessary to a subsequence we obtain that

Al
u, = ug  in C Y (R?) as n — oo,

and

diam({ug = 0} N {z3 = 0})>1, Huo =0} N{-1 <23 <0} =0, (4.4)

where ug is a global solution to the obstacle problem. Also, since 0 € C (cf. Definition 2.8(ii))
and ¢ € (0,1), it follows from (4.3) that

dist(0, (0, z%)) o b

d _(n)lTH—>oo as n — Q.
n T3

Thus, by the convexity of C (cf. Remark 2.2), we deduce that {te? : ¢ <0} C {up = 0}. On
the other hand, the fact that {te®: ¢ > 0} C C (see Remark 2.9) implies that {te®:t > 0} C
{up = 0}. Hence

{te3 : t € R} C {ug = 0},
and therefore it follows from Lemma 2.7 that g is invariant the e3-direction, i.e.
ug () = up(z’,0) for all z € R3.

Combining this information with (4.4), we deduce that the coincidence set of vy has measure
zero, hence Remark 2.5 implies that ug coincides with a quadratic polynomial ¢ = ¢(z’). On
the other hand, [6, Lemma B.2] implies that the blow-down limit of g is p (being the blow-
down limit of u), and therefore the only possibility is that ug = ¢ = p. By the nondegeneracy
of p in R? (see Definition 2.8(iv)), this implies that {ug = 0} N {z3 = 0} coincides with
the origin, a contradiction to the fact that this set has diameter at least 1 (see (4.4)). This
contradiction proves the lemma. ]
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Lemma 4.3 (The measure of sections grows at most linearly). Let N = 3, and let u be an
xn-monotone solution in the sense of Definition 2.8. Then there exists a constant C such
that for, all t > 0,

H2(CN{xs =1t}) < C(1+1).

Proof. We split the proof into 8 steps.
Step 1. Preliminary observations about sections of C.
Recall the notation C; := {y/ € R? : (3/,t) € C} and H(t) := H%(Cy).
First, we claim that v/H is a concave function, i.e. for all A € [0,1], t1,t2 > 0
M/H(t) + (1= NVH(t2) < VH(M + (1 — MNta).

Indeed, by the Brunn-Minkowski inequality (in R?)

(WHE@a) + (1= NVHEG,)) < HA(AC + (1 - NG,

Hence, since ACy; + (1 — A)Ci, C Cx,1(1-x)t, (by the convexity of C), the claim follows.
Now, the concavity of v H together with the smoothness2 of OC implies that

(VH) (t)(t —s) < VH(t) —/H s)(t — s) forall 0 <s<t. (4.5)

In particular, since H(0) > 0,

H(t
(VH)'(t) < t( ) for all ¢ > 0. (4.6)
Furthermore, by the monotonicity of w in the xs-direction,
0<H(s) < H(t) forall 0 <s <t (4.7)

Finally, from Lemma 2.10 we infer that for every § € (0,1) there is a(§) > 0 such that
H(t) < 't for all t > a(4). (4.8)

Step 2. The generalized Newtonian potential expansion.
Let V¢ be the generalized Newtonian potential of the coincidence set C, cf. Definition 3.1.
Thanks to Lemma 4.2 and (4.8) it follows that, for ¢ > 0 sufficiently large,

1 1 _ s forallyeRt::{t—\/H(t)<y3<t—|—\/H(t)}ﬂC

Si
ted —yl [yl |yl3

Combining this with Proposition 3.4, Remark 2.9 and Definition 2.8(iv), we find that, for
sufficiently large t,

~ 1 1 ty
C\R:

Step 3. A one-dimensionalized version of V. 3
The objective of this step is to replace the potential integral defining V¢ by a one-dimensional

2Since C is a convex set with non-empty interior, it follows from the regularity theory of the free boundary
for the obstacle problem that OC is smooth (see for instance [2]). However, if one does not want to rely on
this result, it suffices to replace (\/ﬁ )" with the right or left limit, respectively, of the derivative of Vv H, which
always exists by the concavity of v H.
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integral, up to a well-controlled error. To be more precise, we claim that there exists a
constant C' such that, for all ¢ > 0 sufficiently large,

1 1 ty3> '

N S dy — W) < CH®) +1), 4.10

(o o WscHEm+o, @10

(CN{ys>a})\Re
where
t—+/ H(t) 00
1 1t 1 1t
= - __\H - __\H
W) / (t—s s 32> )dst / (t—s s 52) (o)ds
a t++/H(t)

a := max{ap,a(d)} > 0 and q is as in Lemma 4.2 and a(d) is as in (4.8).
For the remainder of this step, fix a point y = (¢/, s) € C \ R;. Note that, by the definition
of R¢, we have |t — s| > y/H(t). Combining Lemma 4.2, (4.5), (4.6), and (4.7),
1y'|? < CH(s) < CH(t) for all s € (a,t —+/H(t)) and (4.11)

Y| < CH(s) <C<\/ )+ —— t)>2
< C(H(t) + ffg) (5 — t)2> for all 5 > ¢ + /H(?). (4.12)

Let us now note that, by the mean value theorem, there is & ; € (0,]y’|?) such that

1 1 ts ( 1 1 t)
VE—P+ P VI (2l \stos s
<1 1 _ 1 _3 ts

((s =)+ &1)2

WP (4.13)

Nl

2 (82 + fs,t)% (32 + fs,t)

For s € (a,t —\/H(t)), we can estimate the right-hand side above as

1

2

1 _ 1 _3 ts
(s — )2+ &)?

(2+64)2  (s24&u)?

1 t
<f7 /2<2 e T 12
_2‘(t— s)3 +s3 5P 1™ < ((t—s)?’—i_s4>’y|7

0 (4.13) implies that

1 1 ts ( 1 1 t)
Ve + VP <32+|y\2>% st s &

t
< 2< ? v/ |2 for all s € (a,t —/H(t)). (4.14)
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Now, combining first (4.14), (4.11), (4.8) and (4.7), we see that

t—/HD)

1 1ty 11 ¢

- _ g2 _ o H
[ (e wwn)e [ (s a)res
Cn{a<ys<t—+/H(t)} a
t—/HD)
1 ¢
< =+ YV H(s)?
<C / <(t—s)3+s4> (s)“ds
t—+/H(t) t—/H(t)

1 52—1—2(5

< CH(1)? / Tt / ——ds < C(H() +1). (4.15)

On the other hand, for s > ¢+ /H (t), we can apply the Taylor formula f(1) = f(0)+ f'(0) +
S (L= 7)f"(r) dr with f(7) = ((s — t7)% + &)~ 2 to get
1 1 ts

t2 t2
<C s <C 5
((s=t)2+ &) (s—1)

| (60260} (24607 (460

and, by a direct estimate, we can estimate

1 1 ts 1 1 3t
9 R g =3 2 5| = — )3 tat s
(s =12+ E&0)2  (2+E0)2 (2+E&y)3| (=17 8 s

Combining the last two inequalities with (4.13) we get

1 1 ts ( 1 1t )
VE-02+WE VPR (24l \s—tlos s
1 2\ e HD
<Cmm{(s—t)3’(s—t)5}|y| forall s >t++/H(t). (4.16)
Moreover, using (4.7), (4.12), (4.16) and (4.8) we estimate

o0
1 1 tys / 1 1 ¢
= I gy — — -2\ H(s)d
/ (!t€3—y| |yl !y\?’) Y (t—s 2 82> (s)ds

Cr{ys>t++/H(t)} t++/H(t)
<C 7 i ! r H(s)*d
< min (s—t)3’ (s—1p s)“ds
H(t)
<C / H(s)? ds—i—()’]otQH(s)2 ds
(s —1)°
0] 2t

2t [e%s)
2 1 t2 1
< CH(2t) / g e O )/<(S_t)5 + (S_t)3>H(s) ds
t++/H (t) 2t
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2t [ee]
H(t 2 1 2 1
< C<H(t) + tg )t — t)2> / ot CH(t)/<(‘:)5 + (5)3>31+5 ds < CH(L).
t++/H(t) 2t N2 2
This bound, together with (4.15), finishes the proof of (4.10).
Step 4. Estimating W from below.
To simplify notation we set, for t > a,
t—y/H(t) )
1 1 t 1 1 t
= -—-——= |H = -3 |H
o= [ (-t Saea wme= [ (- D)
a t++/H(t)

so that W (t) = Wi (t) + Wa(t).
To estimate W7 from below, we split the integral so that the integrand in each part has a
sign. More precisely, since

1 1 1 1
—f—LSOforsE a,i and —f—i20f0rs€ i,t— H(t)|,
t—s s s2 V2 t—s s s2 V2

we set W1 = W171 + WLQ with

R O
Wy () = / (t R 82> H(s)ds,  Wia(t) = / (t -1 SQ)H(S) ds.
a t/\/i

We estimate Wi 1 by neglecting the first term, so to get

t/V2 t t
Wya(t) > — / <i+;)H(s)dsz—/f@ds—t/i(2‘s)ds.

a

To estimate W o, using (4.5) and (4.7) as well as(4.6) we obtain

O t_mH Hit Vo 1t
Wia(t) = H(t) / t_sder / st / <S+$2>H(s)ds
t/\V2 t/\V2 t/\V2
> H(t) <log(t) +1log (1 — %)) — LH(t)log(H(t))
t—+/H(t) t—+/H(t)
- / (VH® + VHE) Y H(ti — 1) 45— cng / (i 4 St) ds
t/\V2 t/\V2
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m\/Ht H
> H(t)log(t) — 3 H(t)log(H(t)) — 2/ H / <)_mds—0H(t)

t—s
t/V2
t—/H(D)
> H(t)log(t) ~ LH() log(H(0) - 2VH@) [ (V) (s)ds - CH(1
t/\2

> H(t)log(t) — 3 H(t)log(H(t)) — CH(t).

It remains to estimate Ws(t). Since the integrand in W5 is nonnegative, using (4.7) we obtain
that

s—t s s

W) > 0 [ (1 _1_f)d5>H()1og() H (1) log(H () — H(1).
HO)

Combining all estimates, we find the lower bound
t ¢

W(t) > 2H (1) log(t) — H(t)log(H (1)) — CH(t) — / His)ds—t / HS ) 4. (1)

a a

Step 5. An integral inequality.
Combining (4.9), (4.10), and (4.17), we deduce the existence of a constant C' such that, for
sufficiently large t,

C(H(t)+1t) > 2H(t)log(t) — H(t)log(H / H(s) o, H;@

which implies in particular that
C(H(t)+t) >2(H(t) +t)log(t) — (H(t) +t)log(H(t) + t)

t
H(s H(s
/ +Sds—t/

M, we find that

Hence, setting (t) := =5

t

t
Cu(t) > wit)log(t) (0o (0) — 7 [ws)as— [ as

> —)(t) log(v(t)) — = /1/) /w ds for all ¢ sufficiently large. (4.18)

Our goal in the following is to show that 1) is bounded. To this end let us replace ¢ by the
monotone function

U(t) := sup ¥(s).

s€[a,t]
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In order to find an integral inequality for ¥, given ¢t > a let 7 = 7(t) € [a,t] be such that
U(t) = (7). Then, by the definition of ¥,

U(s) = U(t) for all s € [, t]. (4.19)

Noticing that %fat U(s)ds > L [TW(s)ds (since U is increasing) and that () > t(t) by
construction, we deduce that
¢

CU(1) + B(e) log(V(1) + ; [ W(s)ds = Culr) + v(r)log(v(r) + 1 [ w(s)ds.

a

Thus, since ¥(s) > 1(s) for all s > q, it follows from (4.18) and (4.19) that

CU(t) + W(t) 1og(xp(t))+1/\y(s) ds > /Mds:/\p(w—@z)(s)ds

S
a

t

>/Wd8:/wds.

- s s
a a
Since 1 fj U(s)ds < U(t) (by the monotonicity of ¥), we can simplify the relation above to
conclude that
t

CU(L) + (1) log(U(1)) > W(t) log(t) — /

a

U(s)

ds. (4.20)

Step 6. Switching to a differential inequality and comparison.
Define F(t) := [ @ ds. Then F'(t) = @ > 0 and (4.20) becomes
F(t
—CF'(t)— F'(t)log(F'(t)) < i) (4.21)

Since H(t) < t'*9 (see (4.8)) it follows that ¢(t) < t°. Therefore W(t) < t°, from which it
follows that

Fii) <t and F(t) < %té. (4.22)
In particular, this yields
F'(t) -0 and 0> F'(t)log(F'(t)) = 0 as t — 00.
Note now that, for 7p > 0 small enough, the function
h:(0,79) — (0,00), h(t) := —C1 —1log(1) = —C7 + 7|log 7|

is strictly increasing, invertible, and has a locally Lipschitz-continuous inverse. This im-
plies that, for sufficiently large ¢ty > 0, the ordinary differential inequality (4.21) enjoys the
comparison principle, i.e. if G : (tg,00) — oo satisfies
/ G()
h(G'(t)) > 5 forallt >ty and F(tg) < G(to)
then F(t) < G(t) for all t > .
Step 7. Construction of a comparison solution.
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Let A > 1,B > 0, and define G4 p : (0,00) = R as G4 p(t) := Alog(t) — B. Then, for
B := A(C +log(A)),

HCp(0) = 07 = g7 ) = i€+ gty + HEE
_ Alog(;) -B _ GAf *) for all ¢ > 0.

Fix now § € (0, 1) and define A := ¢2°. Then, if ¢, is chosen sufficiently large, thanks to (4.22)
we get

G a,5(to) = 3 log(to) — 26t3 log(to) — Ct = ((2 — 26) log(to) — C)t3° > F(to).

Step 8. Conclusion.
By the comparison principle mentioned in Step 6, choosing A and B as in Step 7 we deduce
that

F(t) < Gap(t) < Alog(t) for all ¢ > . (4.23)
Also, for all 0 < z,y < 1,

y > h(z) = —Cz + z|log(x = z= < B '

Hence, recalling (4.21), (4.23) and (4.22), for t > tp we obtain
F(t)
¢

( Alog(t)
— — 2A1 4A
F'(t) <2 <2 i - 8(f) <=,

_ log(@) _ log(AIOTg(t)> t(log(t) — log(log(t)) — log(A)) t
provided that ¢y has been chosen sufficiently large. Recalling that F'(t) = w > @ this
implies that

H
(tZ” _ (1) <44 forall £ >t
which concludes the proof. (|

5. LINEAR AND ALMOST-LINEAR BEHAVIOR OF V

In this section we prove that, for N > 4, the generalized Newtonian potential V can
be written as the sum of a linear function and a correction with sublinear growth towards
infinity. In contrast, for N = 3, the best one can show is the following BMO-type property:
on every large ball Br there exists an affine function Ag whose slope grows like log R and
whose average distance from V¢ is of order R.

We begin with the case N > 4.

Lemma 5.1 (Asymptotic growth of the Generalized Newtonian Potential in dimension
N > 4). Let N > 4, let u be an xx-monotone solution in the sense of Definition 2.8,
and let Vi be the generalized Newtonian potential (as defined in (3.1)) of the coincidence set
C. Then Vg can be written as Ve := We — £ with

wew =ax [( e a ) e=e (axv -2 [ )
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where both integrals are well-defined. Also, there exists a constant C such that

][\Wc(xﬂ dz < CRY? for all R sufficiently large. (5.1)
Br

Proof. Since V¢ is well-defined, it suffices to show that ¢ is well-defined. For this, we need

to prove that ﬁXc € LY(RN).

Thanks to Proposition 4.1, and recalling that N > 4, as ﬁ < yLN we can estimate

[ e .
c lyN! -~ Jentyn<ao) y [N {yn>ao}n{ly’ 2 <voyn} yV!
o0 1 (o ¢]
N-1 N-1)/2+(1-N
§C+/aoH ( ’Tot)tjv_ldtgc<1+/ t(N=1)/24( )dt>

ag
< c<1+/ t_3/2dt> < 00,
ag

which proves that ¢¢(x) is a well-defined linear function.
Now, to prove (5.1), we note that by the mean value theorem,

1 1
|N72

2]

<C
ly|N -1

N for |y| > 2|z|. (5.2)
|z —y| ly

Hence, given x € B with sufficiently large R, we can write

We(@)| < an / ! !

cn{o<yn<a} y|N 2

+ an /
cn{a<yn<2R}
1 1

+OéN/ —5 —
cnfun2myl |z —y[N 2y

Thanks to (5.2) and Proposition 4.1(i), we can estimate

dy

|z —y|V
1 1
N—2 N—2
|z — | |y

dy

dy =: Ji(x) + Ja(z) + J3(x).

J3(z) < Cm\/ HY T ({ly)? < wt})tN%1 dt < CR/ t3/2dt < CRY2.
2R 2R

Also, thanks to Proposition 4.1(ii), it follows that |J1(z)| < C. Finally, for Ja(z) we have

1 2R 3 1
Jo(z) < aN/ N+ C/ HY (B ) Nz
ag

{ly'1?<~oyn }n{0<yn<2R} |T — |

<OCN/ Wdyﬁ-CRl/z
{ly12<270 R}n{0<yn<2R} |T — ¥

Now, for the first term on the right hand side, if we write x = Rz with z € By and we perform
the change of variables y — Ry, we see that

1
/{y'l2<270R}ﬁ{03yNs2R} o — N2 (<30 )nfo<yy<2) o — Ry|"
1

{|y/|2<%}m{0§yz\r§2} |z — y|N_2
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Hence, combining all these bounds, we obtain that

][ We(x)|dz < CRY? + f Jo() dar
Br Br

1
2 Hivie<Thntosyvsay [z —y|

Concerning the last integral we observe that

1
1

Thus, since H|y’|2 < 2%} N{0<yn < 2}‘ < % for N > 4, it follows from Fubini’s Theo-
rem that

][Wc(:c)| dz < CRY? + aNR2/{ dz dy
ly'12<

1
2 ][ 2 — N-2
2 Zednp<v<ay 2 =yl

< CRY? + CR?

2
{w < ;0} N{0 <y < 2}\ < CR'2.
]

We now focus on the three-dimensional case.

Lemma 5.2 (BMO-type estimate in dimension N = 3). Let N = 3, let u be an x n-monotone
solution in the sense of Definition 2.8, and let Vi be the generalized Newtonian potential (as
defined in Definition 3.1) of the coincidence set C. Then, for each R > 0 the affine function
Ag given by

1 1 z-y (Re3+y)- (z+ Red)
AR:C:—a/<—+ - + dy
= U T Ryl TR T RSP
is well-defined. Also, there exists a constant C such that
f‘Vc(x) - Ag(x)‘ dz < CR for all R sufficiently large. (5.5)
Br

Proof. We split the proof into two steps.
Step 1. Ag is well-defined and affine.

Set
1 1 vy (Re3+y) (v+ Red)
R
__ 1 _ 5.6
@y = RE T T P Re¥ + 4 (5.6)
and write
/ P ()| dy < / (2, y)| dy + / ()| dy =: I + L.
¢ Cn{ys<2R} CN{ys>2R}

Since af(z,-) € LL (R3) and C N {y3 < 2R} is bounded (thanks to Lemma 2.10), it follows
that Iy < CR for some constant depending on R. To estimate I3, by a Taylor expansion as
well as the mean value theorem we have that

1 <Re3>~y’ [Re* - (a + Re?)|

R
P (z,y)| < | g — —
e 7= v il W Red + yP
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1 1
Re? T 5.7
+‘( e +2) y(\yIS !Reg+y!3>’ 57
R R(R R(R
coft BB GRETID s ok
[yl |yl [yl
Hence, recalling Proposition 4.1(i), we can estimate
L < CR(R+ \x|)/ 4y < OR(R + |a]) / H2({ly' P < 0t}) 5
cn{ys>2Ry |Vl

gC’R(RJr\x])/ t—th§C(R+]a:\), (5.8)
2R

which proves that Ag is well-defined.
Observe now that the integrand a® in the definition of Ag is integrable (as we have just
seen) and differentiable in z. Also, for each y € C and b := max{ag, R} it holds that

l _ Rty
lyl®  |Red 4 yl3

1
9 d [ sRe’+y
< 2 — | = 7 \(q
< ‘yPXcm{ygsb}(y) + ’/ ds <\3Re3 + y\?’) ’
0

1 R
< C(WXcm{y3<b} (y) + WXcm{ys>b}(y))-

Vaa®(z,y)| =

Xen{ys>b} (Y) (5.9)

Since the right-hand side is integrable in R? (again, thanks to Proposition 4.1), it follows from
dominated convergence that

Re3 +y
VA (x) ag/V a*(z,y)dy = a3 ( |y]3+\Re3+y\3 dy, (5.10)
C

which is constant in R3. This proves that Ag is an affine function.
Step 2. Proof of (5.5). Recall the definition of G(x,y) in Definition 3.1, which implies that

Ve(z) — AB(x)| < a3 / G, y) — (. )| dy
cn{0<ys<2R}

vaa [ [G(ay) ~ aa ) dy = D) + afe).
Cr{ys>2R}
Recalling (3.2) and (5.7), for € B with R > ap we can estimate
Jo(z) < C’RQ/ H2({|y'|? <’yot}) dt < CR (5.11)
(cp. (5.8)). For Ji(z), thanks to Proposition 4.1 it follows that, for R sufficiently large,
CN{ys <2R} C {|y'|” < 2y0R} x {0 < y3 <2R}.

Thus, since

LG y) - al(z,y)),

G(Rzx, Ry) — a®(Rz, Ry) = R[
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if we write x = Rz with z € B; and perform the change of variables y — Ry, we see that

/ Gla,y) — a"(z,y)| dy < / Gla,y) — a"(z,y)| dy
cn{ys<2R} {l¥'[2<2vR}N{0<ys<2R}

|G(Z7y) - al(zay)’ dy

= R? /
{lv12<22 }n{o<ys <2}
(cp. (5.3)). Altogether we proved that

][‘Vc(x) — Ag(az)‘ dz < ][ (Ji(z) + Jo(z)) dz < CR+ ][ Ji(z) dz

Br Bgr Bgr

<CR+ai* f | G(zy) — a'(z,y)| dydz. (5.12)
{lv12<%2 nfo<ys<2)

Concerning the last integral we observe that, on the domain of integration, |e? + y| > 1 and
|z + 63| < 3. Hence, we can estimate

1 1 (e3+y)-(z+¢€3)
2=yl [e?+y 3 +yl?

1

z —al(z =
G(z,y) — a'(z,y) <o

+4.  (5.13)

Thus, since H]y’|2 < 2%} N{0<y3 < 2}‘ < C, it follows from Fubini’s Theorem and (5.4)
that
1

][|Vc(a?)—Ag(l’)‘d$SCR-i-OthQ/ ][( +4> dzdy
g {‘y/|2 2’Yo }ﬁ{0<y3<2} |Z - y’
R

2y
{@/!2 < RO} N{0<ys < 2}' < CR, (5.14)

as desired. O

< CR+ CR?

For later purposes, we will also need the next result.

Lemma 5.3 (Growth of A). Let N =3, let u be an xn-monotone solution in the sense of
Definition 2.8, and let Ag be as in Lemma 5.2. Then there exists a constant C' such that

\V'AE| < C, [0;AF < ClogR, |AE(0)|<CR for all R sufficiently large.
Proof. For the first bound we note that, for y € C,

}V;CLR(Z,y)‘ B AT % = %7 (515)
P> |Re? +y| [yl
where af is the function defined in (5.6). Thanks to Proposition 4.1,

R 1 Y|

‘Vz/a (ac,y)‘dyﬁZ 5 dy +2 T dy
c Cm{y3<a0} lyl? Cnfys>ao} 1Yl

2 /12 (’YO ) 12
<C+2 ’H {1¥'|* < ot}) dt<C+C dt < C.

Recalling (5.10), this proves that |V'Ag| <C.
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For the second bound, we apply (5.9) and Proposition 4.1 to obtain that, for R > ay,

1 1 R
/‘OxsaR(x,y)‘dySC 2dy+0/ 2dy+0/ —=d
c cn{ys<ao} Y| Ccn{ao<ys<R} Y| cn{ys>R} Yl

R 1 0 1
<CoC [ AP <)) e+ CR [ R P < o)) e
R

ao
R1 < ]

<C+C —dt+CR — dt < Clog R.
aot R t

Thus, [05A%| < Clog R.
Finally, in order to estimate AZ(0), recalling (5.6) we write

/ 1”0, )] dy < / 170, )] dy + / 1aR(0, )| dy =t Jy + Jo.
c cn{y3<2R} Cn{ys>2R}

Using (5.8), we immediately get Jo < CR. Concerning Ji, for y € C N {ys < 2R} we can
estimate

R 3

2
R
a*(0,9)]| < —+ 5575 < 5.16
OIS Tt R S 1y (510)
hence
1 1
Jl S 3/ —_ dy + C — dy
cn{ys<ao} Y Cn{ao<ys<2R} Y
R 1 R
gc+3/ W2 ({ly <'yot})tdt§C+C/ dt < OR, (5.17)
aop ao
concluding the proof.
O

6. CONSTRUCTING MATCHING PARABOLOID SOLUTIONS

In this section we construct matching paraboloid solutions (i.e. solutions that have paraboloids
as coincidence sets).

More precisely, given N > 3, we begin by constructing a one-parameter family of paraboloid
solutions with the same asymptotics of second order at infinity as the solution u. For N > 4
we find one fixed paraboloid solution up such that « — up grows sublinearly at infinity. The
critical dimension N = 3, however, requires a more subtle approach: here we construct first
for each R sufficiently large a paraboloid solution up, such that sup Br |lu—up,| < CR where
the constant C' does not depend on R.

Lemma 6.1 (Existence of paraboloid solutions with prescribed asymptotic behavior at in-
finity). Given N > 3, let p = p(z’) be a homogeneous quadratic polynomial as in Defini-
tion 2.8(iv). Then there exists a (unique) ellipsoid

2 2
E = {y’eRN—lzyé+...+y51 gl}cRN—l witha; >0 fori=1,...,N —1,
ay aN-1

such that the following holds.
Define the paraboloid P = Pg = {(y/,yn) € R¥"1 x [0,00) : o/ € \/yNE'}. Then there
exists a global solution up with P as coincidence set and p as quadratic blow-down limit, i.e.

Aup = X{up>0}, up =0 in RV, {up =0} =P and
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up(rx) o
R p(a’)  in Cf(RY) asr— 00, a€(0,1).

Also, for each ~v > 0, the function u,p(x) := ’}/QUP(%) is a global solution with vP as
coincidence set and p as blow-down limit, and it satisfies the potential expansion

uyp=p+Vyp in RN, (6.1)

Proof. We split the proof into three steps.
Step 1. Construction of a suitable sequence of ellipsoids.
Let K denote the fundamental solution of the Laplace operator in R%, namely,

— L log |2| ifd=2
Ky(z) = 2 1 . ’ 6.2
) { aa2B e Hd 23 02

Given p as in the statement, it follows from [4, Equation (5.4)] that there exists a unique
2 2
ellipsoid E' := {y’ RN Y 4 g e < 1} C RV-1  with a; > 0, such that

1 N-1
VAP (2" = VAT (0) — p(a)) for all 2’ € E/,

where VAT denotes the classical (N — 1)-dimensional Newtonian potential of E’, i.e.

VAP (') = /KN_l(m’ —y)dy/ for all 2/ € RV 7L,
E/

Set
(') == p(a’) = VAT (0) + VAT () for all 2/ € RV 1L, (6.3)
Then, it follows from [3, Theorem II] that u/; is a nonnegative global solution to the obstacle
problem in RV~ satisfying {u}, = 0} = E'.
We now complete E' to an N-dimensional ellipsoid approximating a paraboloid in the
following way: for each n € N, set

E™ { eRN g/ e /2 m?VE’} { c RN Nz_l 7295? + Zh <1
=9z Y - — = =47 : D) Ty = :
2 2n o ajn n

From [4, Equation (5.3)] we infer that, for each n € N, there is a homogeneous quadratic
polynomial ¢" such that A¢™ =1 and

NP( \ _ /NP n Fn
Ve (2) = Vg, (0) — ¢" () for all x € E", (6.4)
where

Vé\ip(x) = /KN(!l“—dey for all z € RY.
P

Let us now translate the ellipsoids E™ such that they all touch the origin:

N-1 2
~ 2 _»)2
E":= E" 4 neN = {m eRN . i v =) 1} (6.5)
n

.
I
MR
+
S
S

=2

2 2
:{a:E]RN: —i—xNSZxN}.
n

<o

a
1

<.
I
<o
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Then, recalling (6.4), for all x € E™ we have

VAP () = Vé\fine]v( x) = VEZ\ZLP(m —ne™)
= Vé\flp(O) — ¢"(z — nel) = VAL (ne™) — ¢"(z — ne™).

Step 2. Switching to the obstacle problem and passing to the limit.

Let us now set, for all n € N,

upn(z) = ¢"(x —ne™) — VAL (nel) + VAL (2) for all z € RY.
As before, [3, Theorem II] guaranteess that ug» is a non-negative global solution to the
obstacle problem satisfying {ugn» = 0} = E™.
Since 0 € E™ = {ug» = 0} we deduce from Lemma 2.4(ii) that, passing if necessary to a
subsequence,

ugn — u* in C’lloél(]RN) and  X{upn=0} = X{ur=0} a.C. as n — oo.

On the other hand, by construction (cf. (6.5)),

N— 1332
: N . J _ ! /
XEr — xXp a.e. in RY asn — oo, whereP.—{ i xN}—{:I: ew/xNE},
=1 J

<.

and therefore {u* =0} = P.
Step 3. Identification of the blow-down limit of u* and conclusion.
Let us define the following sequence of rescalings (u})gen:
* k
up(x) == U(L;rx) for z € RY, where z* := (0, k) and r; := Vk.
T
k

Since 0 € {u} = 0}, using Lemma 2.4(ii) once more we deduce that, passing if necessary to a
subsequence,

1
up = uf  in CLSRY)  ask — oo,

where ufj is a non-negative global solution to the obstacle problem. Also, arguing as in Step
2, we see that the coincidence sets of uj converge to E' x R, hence {u§ = 0} = E' x R. This
implies that {u§ = 0} contains the ray {te : t € R}, so it follows from Lemma 2.7 that wjj is
independent of xy, i.e.

ud(z) = uf(z’,0) =: (ug) (z') for all z € RY. (6.6)

Since u’y constructed in Step 1 (cf. (6.3)) is the unique global solution to the obstacle

problem in RV~! with E’ as coincidence set, we deduce that (uj)’ = ul,. Also, since the

classical Newton-potential V¥ (2) has subquadratic growth as |2/| — oo, we have that p(2')

is the blow-down limit of u/;,. Thus, recalling (6.6),
ugox) _ wp(ox')

/ . 1,
22 = .2 —p(z’) in O

(RN as o — 00

w(

On the other hand, since in the limit as o — oo the contact set of “ ggw) has measure zero
(as a consequence of Lemma 2.4(ii)), the blow-down limit of v* is a homogeneous quadratic

polynomial p as well, i.e.

u*(oz) ~ Lo mN
2 = p(x) in C T (RY) as o — oo.

loc
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Hence, we are in the position to apply [6, Lemma B.2] to u* and the sequence of rescalings
(u})ken to deduce that p = p, which proves that p is the blow-down limit of v*. In conclusion,
u* is the desired paraboloid solution.

Finally, the remaining statements follow from Proposition 3.4 and Lemma 3.2. g

In the next result we show that, if N > 4, we can actually find paraboloid solutions with
prescrived behavior up to linear order. Given a € RY, use the notation Uyp—q to denote the
solution that has vP — a as coincidence set. Note that this solution is obtained simply by
translating the solution having yP as coincidence set, namely u,p_o(z) = uyp(x + a).

Lemma 6.2 (Existence of paraboloid solutions with prescribed linear behavior at infinity in
dimension N > 4). Let N > 4, let p = p(z') be a homogeneous quadratic polynomial as in
Definition 2.8(iv), and let P be as in Lemma 6.1. For any b = (b/,by) € RVN~! x (—00,0)
there exist ' € RN"1 and v > 0 such that the following holds: for each o € R,

1
R][ Uy p—(r,0) (@) — p(a’) = b x|dz — 0 as R — oo.
Br

Proof. As noted before, u,p_(. »)(z) = uyp(2z’ + 7’25 + o). Hence, since p is a quadratic
polynomial, recalling Lemma 5.1 we have

Uy ) (@) = P&’ + )+ Vap(a! + 7,25+ 0)
= p(e!) + Vp(a') - + p(r) (6.7)

— (@' + 72y +0)- (aN(N —2) / ?‘JN dy) + Wyp(2' + 7,25 + 0).
yP
Note now that, by symmetry,

aN(N—2)/ LNdy:)\,yeN, where \, := aN(N—Q)/ y—]\]fvdy>0.
7Pyl Pyl

Thus
Uyp_(r 0y (x) = p(2') + Vp(a') - 7" + p(7') = My (zy + 0) + Wyp(@' + 7", 25 + 0).

Recalling that Vp(z') = Qz’ with @ symmetric and invertible, we choose 7/ := Q~'¥ to
ensure that Vp(z') -7/ = b -2/
On the other hand, it follows by monotone convergence that v — A, is continuous and that

)\7—>aN(N—2)/ y—]\]fvdy:jLoo as y — 0o,
RN =1 (0,00) [y

Ay — 0 as v — 0.

Thus, by continuity, there exists v > 0 such that A, = —bx. Hence, with these choices of 7/
and v, we get

Uyp_(rr.0)(2) —p(&') —b-2=p(7') = Mo + Wyp(2' + 7,25 + 0).
Recalling Lemma 5.1 this implies that for sufficiently large R (depending on 7/, 7, and o),

f |ty p—(77.0y(x) — p(a') = b- x| da < [p(7))| + Ay lo| + ][ \Wyp(@' + 7' 2y +0)|da
Br Br
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1
< Ip(T")| 4+ M lo| + / W, p(z)|dz < CRY?,
|Br| JB,x

and the result follows. O

Corollary 6.3. Let N > 4, and let u be an xn-monotone solution in the sense of Definition
2.8. Then there exist a paraboloid P as in Lemma 6.1, v > 0, and 7" € RN~ such that, for
each o € R,

1
R][‘u—uvp(ﬂﬂ)‘dx%o as R — oo.
Br

Proof. Let p be as in Definition 2.8, let C be the coincidence set of u, and let £z be as in
Lemma 5.1, so that u = p — £¢ + We. Define

b= —Vie=—ayn(N - 2)/ Yo dy.
¢ lyl™
Since by = —an(N fc ™ rdy < 0, we can apply Lemmas 6.2 and 5.1 to deduce the

existence of P, v, and 7/ such that, for each o € R,
1 1 1
E ][ ‘u - u,yp,(.,./,g)‘ dex < E ][ |Wc(:L‘)‘ dx + R f ‘uﬂfp,(T/’U) —p(x') —b- :E‘ dex — 0
B

as R — oo. O

In the critical dimension N = 3, the statement of Lemma 6.2 does not hold. The best we
can do in dimension N = 3 is to match on each Bpr the slope of the affine approximation of
Vpy in the e3-direction. Note that Pr depends on R and the slope diverges as R — oo.

Lemma 6.4 (Matching on each ball Br in dimension N = 3). Let N = 3, p = p(a') be the
blow-down polynomial defined in Definition 2.8(iv), and P as in Lemma 6.1. Also, for v > 0,
let Aﬁp be defined as in Lemma 5.2.

Then, given B > 0, there exist yg > 0 and Rp > 1 such that the following holds: For each
B € [0,B] and R > Rp there exists v = (8, R) € [0,vp] such that

03Alt, = —Blog R. (6.8)

Proof. Note that, since u,p is trivially an xy-monotone solution, A,?P is well-defined thanks
to Lemma 5.2. Also, as shown in Step 1 in the proof of Lemma 5.2,

R _ Y3 R+uwys
ouy =aa [ (s + o) (09

~P

We now observe that

Y3 R+ ys3 Y3 R+ ys3
_ B I3 — 1 _
/< )3 + |Re3 +y\3> dy = ;_K% < y3te + |Re? _|_y’3+a> dy

yP
i By
= \ |3+a .p |R3+yPre Y
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. Y3 Y3
— lim — - _ Y3
2% / 3 Y / P

YP\(vP+Re?) YP\(vP+Re?)

where the first equality follows from dominated convergence since the integrand is uniformly
convergent at infinity (see (5.9)), the second equality from the fact that each term in the
integrand is integrable for € > 0, the third equality from a change of variables, and the last
equality from monotone convergence in |y| > 1 and dominated convergence in |y| < 1. This
proves that

93 A%, = —ay / f’% dy < 0, (6.10)
Yy
vP\(vP+Re3)
In particular, since vP + Re® C {y3 > R}, for R > 1 it follows that
93A%, < —ag/ B qy. (6.11)
yPN{RY/2<y3<R} Y|

Note now that, for ¢/ € \/yy3E’ with y3 > R'/? and R'/2 > ~, we have

1/2 1/2
lyl < [y/| + s < Cay2ys"? + ys < Co RV 2 + ys < (Cr + 1)y,

for some constant Cgr depending only on E’. Hence, thanks to (6.11),

R
Qs as ) ’ 1
DAL S—/ —dy < ————— H*(VtE") - dt
o (Cer +1)* [y pa(rv/2<ys<ry Y3 (Ce +1)3 Jpu2 t?
L Ccp/
< —CE/’)// —dt = ——~logR, (6.12)
Ri/2 t 2

where cg > 0 is a constant depending only on FE’.
Hence, given B > 0, set vp := C—;B and Rp := max{y%, 1}. Then, with these choices,

0sA p < —BlogR  forall R > Rp.

On the other hand, recalling (6.9) and (5.9), we can apply dominated convergence to deduce
that v — 83A§P is continuous and

8314513 -0 as vy — 0.

Hence, by continuity, given any 5 € [0, B] and R > Rp there exists v = v(8, R) € [0,vg] such
that (6.8) holds. O

Corollary 6.5. Let N = 3, and let u be an xn-monotone solution in the sense of Definition
2.8. Then there exist a paraboloid P as in Lemma 6.1 as well as constants ¥ > 0, R > 0, and
C' such that the following holds: for any R > R there exists yr € [0,7] such that

1 _
I ][ lu —up,|dz < C, where Pg := yrP. (6.13)
Br
Proof. We begin by noticing that, since C is contained in some paraboloid (see Proposi-

tion 4.1), we can repeat the proof of (6.10) with C in place of P to show that

83A§ = —a3 LN dy
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We now observe that, as a consequence of the monotonicity of the contact set in the e3-
direction (a direct consequence of the monotonicity of u), the right hand side above is strictly
negative. Thus, thanks to Lemma 5.3, there exist R > 1 and B > 0 such that

0> 63Ag > —BlogR for all R > R.

This allows us to apply Lemma 6.4 to deduce that, if we set 7 := vp and R .= max{R, Rp},
then for any R > R there exists yg € (0,74] such that

O3AL. = 03AF <0, where Py := yrP. (6.14)

Using the potential expansion of both u and up;, (cf. Proposition 3.4 and (6.1)), thanks to
(6.14) we find that for all R > R,

][|u—uPRydx= ][vc — Vp,|dz < ][\VC—A§|dx+ ][\VPR — A} |dz
B B

+ ][\Ag(m — AR (0)] dz + ][\V’Ag — V'AE ||z| dz.
Br

Applying Lemmas 5.2 and 5.3 to u, we can estimate

][yvc — Af|dz + ][|A§(0)] dz + ][\V’Agw dz < CR.

Also, since vr € (0,7], the very same arguments used for proving Lemmas 5.2 and 5.3 show
that

][WPR AR \dx+][\A )\dx+][|V’A§RHx|dx§C’7R,

where Cj depends only on P and %4 and is thus independent of R. Combining all these
estimates, we conclude the validity of (6.13). O
7. PROOF OF THEOREM 1.2: THE CASE N >4

Given u an x y-monotone solution as in Definition 2.8, using the ACF monotonicity formula
from Lemma 2.12 we will show that u and the comparison solutions u.p_(/ 5 provided by
Corollary 6.3 are ordered. Thanks to this important fact, the result will follow easily.

In order to simplify notation, we set

Py :=nP —(7',0) and Uy :=tUyp_(r 4) (7.1)
Proposition 7.1 (Ordering in dimension N > 4). Let N > 4. Then, for all 0 € R,
either u <uys n RY  or wu> Uy N RN,

Proof. Thanks to Lemma 2.13(i), we can apply Lemma 2.12(i)-(iii) with v = u—u, to deduce
that, for every r > 0,

1 4
O (u — ug,r) <limsup ®(u — uy, R) < Cy limsup<R ][ lu — uo|> =

R—o0 R—o0

where the last equality follows from Corollary 6.3. Hence, thanks to Lemma 2.12(iv) we
conclude that either v — u, > 0 or u — u, < 0, as desired. OJ
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We can now easily prove our main theorem.

Proof of Theorem 1.2: the case N > 4. Since u is an xy-monotone solution,
u(0) =0, u(—e™) > 0. (7.2)

On the other hand, recalling (7.1), since P is a paraboloid contained in {zx > 0} with tip at
the origin, recalling the definition of P, (see (7.1)) it follows that

0¢ P, for o <0, —eNep, for o > 1,

and therefore
us(0) >0 for o <0, ug(—eN) =0 for o> 1. (7.3)

Combining (7.2), (7.3), and Proposition 7.1, we conclude that
Ug > U for o <0, Uy <u  for o> 1. (7.4)

Now, let us define
o :=inf{oc € R:u, <u}.

Thanks to (7.4), ¢ € R is well-defined. We now claim that u = us.

Indeed, by definition of & there exists a sequence o;, — & such that us, < u, therefore
uz < u. Assume now towards a contradiction that u # uz. Then there exists T € RY such
that uz(Z) < u(z), and by continuity we can find € > 0 such that uz_-(Z) < u(Z). Since u and
ug—e must be ordered (because of Proposition 7.1), we conclude that uz_. < u, contradicting
the definition of &.

Since u = uz we conclude that {u = 0} is a paraboloid®, as desired. O

Remark 7.2. Tt is worth noticing that our argument gives a new proof of the characterization
of global solutions with compact coincidence set for any dimension N > 2. Indeed, when
C = {u = 0} is compact, we can write the expansion (cp. Lemma 5.1 and [8])

ula) = p(o) + Velw) = p(o) ~ - [ Ty + [ (Knte =)~ Knl) dy

where K is the fundamental solution of the Laplacian (see (6.2)). Since C is compact,
all integrals converge and the remainder term (the lastintegral) is sublinear. Also, in this
compact case, p(x) = %xTQx where @ € RV*N is symmetric and positive definite?.

Now, arguing as in Lemma 6.1, we find an ellipsoid E C RY such that ug has p as quadratic
blow-down limit. In addition, since @ is invertible on RY, choosing 7 := Q~'b with b :=
Jo VKN (y) dy, for each v > 0 the function u — uyg_, has sublinear growth at infinity (cp.
Lemma 6.2). Then the ACF monotonicity formula implies that either v < uygp_r or u > uyp_-
(cp. Proposition 7.1), and finally a continuity argument implies the existence of a value ¥ > 0
such that © = usgp_r (cp. Proof of Theorem 1.2: the case N > 4), as desired.

3A posteriori, by the fact that {u = 0} is a convex set contained in {zy > 0} with tip at the origin, the
only possibility is that & = 0 and 7/ = 0. However this information is not relevant for our proof.
4This follows, for instance, from the proof of Theorem 1.1 in Section 9.
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8. PROOF OF THEOREM 1.2: THE CASE N = 3

Let u be an xy-monotone solution as in Definition 2.8, for each R > R let v € [0,7] and
let Pr = yrP be the paraboloid provided by Corollary 6.5, so that (6.13) holds.
To simplify the notation, for each R > R and = € R3 we define

(u — upy)(Rz)
R )
so that (6.13) becomes equivalent to [[vg[/;1p,) < C for all R > R. Hence, thanks to

uniform L'-bound and Lemma 2.13(i), we can apply Lemma 2.12(i)-(iii) to deduce that, for
all 7 € (2R, R),

vr(z) ==

@(u—upR,%) S@(u—upR,g) :<I>(vR,%) < C. (8.1)

Since 0 € {up, = 0} for all R > R, it follows from Lemma 2.4(ii) that, passing if necessary
to a subsequence,

Up, — U in CLY(R?)  as R — oo, (8.2)

loc

where u is a global solution to the obstacle problem. Also, since Pr = ygP with v € [0,7],
it follows that

(oo = 0} = 7P for some 1 € [0,3], P =1{y/ € VunE} (8.3)

(if Yoo = O then us = p).
Thanks to (8.2) and Fatou’s Lemma, it follows from (8.1) that ®(u — us, 5) < C for all
r > 2R. Hence, since ® is non-decreasing in r (see Lemma 2.12(i)), we obtain that

Q(u — Uoo,7) < C for all » > 0. (8.4)

8.1. Linear rescaling and ACF dichotomy. Let us now introduce the linear rescaling

wp(z) = (u — oo ) (ra)

for z € R® and r > 0. (8.5)
T

We prove the following important dichotomy.

Proposition 8.1 (ACF alternative for u — us). Let uoo, Yoo, and P be as in (8.2)-(8.3), and
wy as in (8.5). Then there exists a sequence 1y, — oo such that w,, — w strongly in WH2(By)
as k — oo. Also,
(i) either w has constant sign inside By (i.e. either w >0 a.e. in By or w < 0 a.e. in By);
(ii) or w is a linear function, i.e. there exists b € R3 such that w(x) =b-x a.e. in By.

Proof. We will first prove that the family (w;.),~¢ is bounded in L'(Bs), and use the bound-
edness of the ACF functional to deduce the desired dichotomy.

Step 1. There exists a constant C such that ||w,||p1 g,y < C for all v sufficiently large.

We begin by noticing that, thanks to Lemma 5.2, there exist affine linear functions Ap, Af/m P
such that, for all r sufficiently large,

][|u—p—AE‘dx§Cr and ][‘uoo—p—AzooP‘dngr
B4r B4'r
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(note that, in the case us, = p, the second estimate is trivially satisfied with Al p = 0).
Setting A"(z) := 1(A%(rz) — A"(rz)) it follows that, for all r sufficiently large,
/ oy — AT dz < C. (8.6)
By

Also, applying Lemma 5.3 to both u and us we deduce that [A"(0)| + |[V'A"(0)] < C', and
therefore (8.6) implies that

|wy(z) — apxs| de < C for all r sufficiently large, where o, := 03.A4". (8.7)
By

In particular, it follows from Chebyshev’s inequality that
2C
| By N {|wy — apxs| > |ay|/2}] < — for all r sufficiently large. (8.8)
@

r

Suppose now towards a contradiction that the claim of this step is false. Then there exists
a sequence g — o0 as k — oo such that |lwy, |f1(p,) — +oo. It follows from (8.7) that
lag, | = +00 as k — oo.

We may assume that a,, — +00. Then (8.7) and (8.8) imply that, for sufficiently large k,

1
[{(we,)— =0} N Buf = [{wg, <0} N Ba| 2 S|BaNn{zs <=1/2},  [[(we,)-llL1(3,) = +o0,

1
[{(we,)+ =0} N Buf 2 [{wg, > 03N Ba| 2 5Ban{as > 172}, [(wee)+llL1(my) — +00-

This allows us to apply Poincaré’s inequality to (w,, )+. We obtain that

+00 = [[(wey )£l L1 () = ClIV (wey )£ L1 (8,):

1
||

Since 7 > % inside By, it follows by Holder’s inequality that

Hv<w9k):|:H%1(B4) < C/ ‘V(w@k)i‘de <C ‘:17|
By By
Thus, recalling that N = 3 and the definition of ®, we conclude that
+00 — D(wy,,4) = P(u — Uoo, 40k),

a contradiction to (8.4).
Step 2. Proof of the dichotomy.
Thanks to Step 1 and Lemma 2.12(ii), there exists 7 > 0 such that

2
/W(ﬁ"’)ﬂd:rgC for all » > 7.
B1

This implies the following non-concentration estimate for the ACF integrands: for each €
(0,1) and every r > %

2 2
0< /’V(w’")i‘ dx:(SQ/W(w“s)i' dz < C6°. (8.9)
] Sl
1
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In particular, since I?l\ > 1 inside By, we have that |[Vw,|r2p,) < C for all » > 7. Also,

since |w,| is subharmonic (as a consequence of Lemma 2.13(i)), it follows from Step 1 that
|wr||L2(By) < C for all r > 7. Thus, there exists a sequence 7, — oo such that

wy, —w weakly in Wh?(By) as k — oo.

We now observe that, since the coincidence sets of v and u., satisfy the properties in Propo-
sition 4.1, it follows that 1({u =0} U{ux = 0}) — {se3 : s > 0} as r — oo. Hence, since
Au — uoo) = 0 outside {u = 0} U {uoo = 0}, we deduce that Aw = 0 outside {se3 : s > 0}.
However, because this set has 2-capacity zero in R?, we conclude that Aw = 0 and therefore,
by Lemma 2.15,

wy, — w  strongly in VVI})(?(Bl) as k — oo. (8.10)

Combining the strong convergence (8.10) with the non-concentration estimate (8.9) we con-
clude that, for each g € (0, 1),

lim sup / V( wr’“ i| |vwi| dz| < limsup / [V( wrk d —/ |vwi‘ ‘§C52,
k—o0 k—o0
=) ,
[V(wr )" [V dz as k — oo.
|| ||

4
In particular ®(wy,, Q) — ®(w, p) as k — oo and therefore, by the monotonicity of the ACF
functional as well as (8.4),
00 > P(U — Uso,00) = lim P(u — Uso, Tk0) = hm <I>(wrk, 0) = ®(w, o) for each p € (0,1).

k—o0

Thus ¢ — ®(w, p) is constant on (0, 1), so the result follows from [15, Theorem 2.9], bearing
in mind that w is harmonic in Bj. O

As we shall see later, if we are in Case (i) of Proposition 8.1, then it is easy to conclude. On
the other hand, Case (ii) requires a delicate argument that is performed in the next section.

8.2. Fine adjustment of u,, at large scales. The goal of this section is to show that, if
Case (ii) of Proposition 8.1 occurs, then we can find some fine adjustments of u, at large
scales to cancel the linear function b - x appearing in the blow-down limit.

Proposition 8.2 (Fine adjustment of the matching). Let s, Yoo, and P be as in (8.2)-(8.3),
and assume that

(U - u'YooP)(/rkx) — b
Tk

& strongly in WY2(By),rp — 00 as k — oo. (8.11)

Then there exist 7' € R? and a sequence Vi — Yoo, Yk € [0, + 1] such that, for each o € R,

(U = Uy, p—(+,0)) (TR T)
Tk

— 0 strongly in L*(By) as k — oo. (8.12)

To prove this result, we will need a series of preliminary estimates on the behaviour of
paraboloid solutions under translation and scaling. We collect these in the lemmas below.
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Lemma 8.3 (Translations of paraboloid solutions). Let P be as in (8.3). Then there exists
a constant C = C(P,7) such that, for every v € [0,5 + 1] and every 7 € R3,

][|vvp(x ) = Vop(e)de < CIFIRY for all R > max{]7], 1}.
Br

Proof. Using the fundamental theorem of calculus, for any R > |7| we can estimate

][vvp(x +7) = Vop(a)| dz < O] ][ YV, ()] da.
Bgr Baog

We now apply Holder’s inequality and Lemma 2.13(ii) (note that V,p = u,p — p, where both
u,p and p are solutions to the obstacle problem) to the right-hand side and obtain

][mp(x +7) = Vyp(x)|dz < C|7| ][ IVV,p(z)]? da < (JZ ][ V. p(z)) dz.
Bgr Baor Bur

On the other hand, we know from (3.8) that there exists a constant Cy such that |V, p(z)| <
Cs5(1 4+ |z|)7/4 for all 4 € [0,7 + 1]. Combining these facts we obtain that

][’V,yp(l’ +7) = Vyp(z)|dr < C|7']R3/4 for all R > max{|7]|, 1},
Br

and the result follows. O

Lemma 8.4 (The generalized Newtonian potential of scaled paraboloids). Let uno, Yoo, and
P be as in (8.2)-(8.3), and for v € [0,7 4+ 1] and R > 0 define the affine function

AL () = ATil0) = AR p(a)

1 1 -y (—Re3—y)~($—|—R63)>
=a3 [ |-+ - - XyP = Xy P)(Y) dY-
3/< W TRS WP ke gp )Tl

Then there exists a modulus of continuity w = wpy : [0, +00) — [0, 4+00) such that w(0) =0
and, for all R > 1,

FIVar = Vor = Al do < ol = 2D (8.3
Br

VAR o) Selly=cl)  and ARG ) (O)] S w7 - 1R (3.14)

Proof. As we shall see, the proof of is slight modification of the ones of Lemmas 5.2 and 5.3.
Step 1. Proof of (8.13).

We follow the notation used in the proof of Lemma 5.2. Recalling the definition of G(z,y)
in Definition 3.1 and of a®(z,y) in (5.6), and recalling that AAB denotes the symmetric
difference of two sets A and B, we have

Vip(a) = Vi p(@) = Af o _p)(@)| < Ga.y) — a(z,y)|dy

/(WPAvooP)ﬂ{0<y3 <2R}

n / Glayy) — a"(e, )] dy = Ji(2) + Ja().
(vPAvso P)N{ys>2R}
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Using (3.2) and (5.7), for x € Br we estimate

Jo(z) < CR? /OO 212 ({y € \/i(ﬁE’A\/fyToE’)}) tlgdt

2R
oo 1
=CR’ /2R Iy — %O\HZ(E’);Q dt < Cly — 7| R

(cp. (5.11)). For Ji(x), we write x = Rz with z € By and we perform the change of variables
y — Ry, so that

new < | Glay) — o)l dy
(VP Avoo P)N{ys<2R}
<cr [ Gz.) —a' (2. 9)] dy
{vey/ B (VB &yA=E) Jn{o<ys <2}
(cp. (5.3)). Combining these two bounds, we get

][]vyp(x) V(1) — Al oy ()] < ][ (J1(2) + Jo(x)) da
Br Br
SCW—%OIR+CR2][/ (G (2,y) — a'(z,y)|dy dz
2 HyevE(amam=r) fofosus2)
(cp. (5.12)). Concerning the last integral we note that (5.13) holds on the domain of integra-
tion. Hence, since Hy’ €58 (\ﬁE’A,/%OE’)} N{0<ys < 2}‘ < %, using (5.4) and
Fubini’s Theorem we obtain (8.13) (cp. (5.14)).

Step 2. Proof of (8.14).
For the first bound we note that, for y € vP Uy P, (5.15) holds. Hence

1 /
/ ’meaR(x,y)‘dySZ/ 2dy+2/ %d
(YPAvoo P) (vP Ao P)N{ys<1} Y] (vP Ao P {ys>1} Y]
1

< 2/ T dy
(vP Ao P)N{ys<1} Y]
00 1/2
o [ (o o))
1

1
o i
(7P o P){ya<1} 1Y

By dominated convergence, this proves the existence of a modulus of continuity w such that

VAR byl < wlly — 0]
For the second bound we write

/ 10”0, y)] dy < / 1a7(0, )| dy
(YPAYeo P) (YPAvYso P)N{ys<2R}

<
(YPAyeo P)N{y3>21}

>~ 1
dy+c|7—%o\/1 32 4t

la®(0,y)| dy =: J1 + Jo.

Using (5.7), we immediately get
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Jy < CR? /OO 12 ({y' € Vi(VIE'DVI<E) }) t%dt

2R
2 <1
<CRYy =l [t < Ch -l
2R

(cp. (5.8)). Concerning Ji, using (5.16) we have

R 1 R
Ji < 3/ 242 ({y/ c \/i(\ﬁE’A./TOOE’)}) Edt < Cly— %o|/ dt < C|y — ¥l R
0 0
(cp. (5.17)). This implies that |A@P%op)(0)’ < Cly — Yoo| R, concluding the proof. O

Lemma 8.5. Let P be as in (8.3), and fir v € [0,5 + 1]. Then there exists a constant
C = C(P,7) such that for all R > 1,

C’
agA E

OR
Proof. Recalling (5.10), it follows that

0 <O[f/a _ys Rt dy _a/ Rtys |4

OR =9 [ or\ " 1wP T RS + o 3] |or\[Re* + 4P )| Y
yP

1

1
———=dy < 2 "e A tE' dt
_Clmewy\f’) v<C [T € VIEY G
v

© ¢ c [k | C
<C dt < — tdt +C —dt < —.
= /0 (R+17 _R3/0 + /R R

Proof of Proposition 8.2. We note that, given v € [0,% + 1], we have (cp. (6.7))
Uyp—(+,0)(T) = uyp(z' + 7', 234+ 0) =p(a’ +7') + Vyp(a' + 7' 23 + 0)
=p(z') + Vp(a') - 7" + p(r’) + <V7p(:n' +7 23 +0)— V,Yp(x)>
+ <VvP($) - VwP(I)) +Viop(z)
= (@) + V(') - 7+ (Vap(@) = Vi p(a))
+ [pe) + (Vi + 75 + ) = Vip(a) ) |.

Let b = (b, b3) € R2xR. Recalling that Vp(2') = Qz’ with Q invertible, we choose 7/ := Q¥
so that Vp(z') - 7/ =b" - 2’. Also, for each R > 1,

Vap(2) = Viep(@) = (Vap (@) = Vi (@) = Al _p)(@))
+ AI?yP’y P)(O) + V,A}?YP’Y P) . .'L'/ + 83"4]?)/]3’7 P).'L'g.
Combining all that and applying Lemmas 8.3 and 8.4, we obtain that for x € Bp,

][ ’ UyP—(7',0) () = Uy P(¥) — b a — 83A@P,700P)$3’ dz < C <”7 — Yool R+ R7/8)('8~15)

’ 0
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We now distinguish two cases, depending on whether 75, > 0 or not.
Case 1. 75 > 0.
We note that, by a change of variables, for each A > 0

R+ ys A7Z3 R+ Az3
BAR p= B T g —/\3/ — dz
3N 00 P /( |y|3+yReB+y\3 4 AS\Z|3 |Re3 + Az|3
P

Yoo P Yoo
z3 R/)\ + z3 R/)\
=\ ——5t g o | 42 = A0A] 8.16
/ < |23 + |R/)\e3+z|3) 3 (8.16)
Yoo P
Thus, if we set A := %o
O3AR . p = 05AT, — 5 AT p = N[03A1, — 0547 L]+ (A - 1)3AE 5. (8.17)
Assuming now that ~ is sufficiently close to 7 so that A € [1/2,2], it follows from Lemma 8.5
that
R —
0545, — 9y AT P\</ 9 gyt | dr < op— 1) = L=l
R/A or Vool

Thus, combining (8.15) and (8.17), we obtain

][ ‘u'fo(T’,o) (@) — Uy plx) — b ol — T 33A5mp963‘ dz <C (W — Yoo R+ R7/8> :

o0

We now observe that, as a consequence of Lemma 5.3 and (6.12), there exist constants 0 <
Coo < Cyso such that

—Coo log R > 83A p > —CxlogR for all R sufficiently large.

In particular, for each R sufficiently large we can choose v = yg € |:’Yoo - 'bi‘Zg" R+ Voo T c|:;31|3§o R}

such that %83145/00 p = b3, and with such a choice we have

R
][ ‘uva_(T/’U) () — uy p(z) =0 -2’ — b3CL‘3‘ de < C <logR + R7/8> (8.18)

for sufficiently large R. Choosing R = rj; and vy, = ,,, and combining (8.11) and (8.18), we
obtain (8.12).
Case 2. 75 = 0.
Note that in this case V, _p = 0.

We first claim that b3 < 0. Indeed, from Definition 2.8(ii) we know that u — p is harmonic
in {y3 < 0}, which combined with (8.11) implies that

(u = p)(riz)
Tk

On the other hand, Definition 2.8(ii)-(iv) implies that (u — p)(—te®) > 0 for all ¢t > 0. Thus

— b-z  uniformly in B]_/2<—€3> as k — oo.

(u=p)(=rge?)
Tk

0< —b3 as k — oo,

proving the claim
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Now, if b3 = 0 then the result follows by choosing v = 0. Otherwise we note that, thanks
o (8.16),

O3 AR p) = 05AT = 405 A
Moreover, for each v € (0, 1], we know from Lemma 5.3 and (6.12) that

—Coo log(R/7y) > 8314]]3/7 > —Cxlog(R/7) for all R sufficiently large.

Thus, recalling that b3 < 0, for each R sufficiently large we can find v = v € (O, Cj'ffg‘ R]

such that ’yR@gAg/ "R — p3. Choosing again R = rj, and v, = Yry» We conclude as before. [
8.3. Ordering of solutions and conclusion.

Proposition 8.6 (Ordering in dimension N = 3). Let s, Yoo, and P be as in (8.2)-(8.3).
Then there exists 7' € R? such that for each o € R,

. N . N
either  uw<u, _p (7 nR or U Uy p_(7) MR

Proof. Let w,, and w be as in Proposition 8.1. We distinguish between the two cases in the
dichotomy.

Case 1. Proposition 8.1(i) holds.

In this case we have that either ||(wr,)+||;1p,) = 0 or [[(wr,)—[l[1(p,) = 0 as k — oo. Also,
since

u’YooP(x) - u'yoon(O,o)(x) = u'YooP("B) - u'YooP( T +oe ) V’YOOP( ) VWmP(x+063)’

(u— UOOP (0[7)( )

defining wy, () == Lemma 8.3 yields

||wg, — wkUHLI(B1 ][ Vyop(x) = Vi p(x +oe )\daz<C|1—/‘8%0 as k — oo.

Hence, for each o € R, elther ”(wk70)+“L1(B1) — 0 or H(wkﬂ)—HLl(Bl) — 0 as k — oo.
Therefore, thanks to Lemma 2.12(i)-(iii), for each ¢ € (0,400) it holds

0< @(u—uoo(-—i—ae?’),g) < lim @(u—uoo( + oe?), )

2
kl;rgo @(wkm 1) < ChkmsupH(wka +HL1(31)H(wk,g)_HLl(Bl) =0.

Applying Lemma 2.12(iv) proves the result with 7/ = 0.
Case 2. Proposition 8.1(ii) holds.
(“_“'ykP—(r’,o))(Tkr)

Let v and 7' be as in Proposition 8.2, and define wj (z) := o . Note
that, since 7, — 7o and solutions to the obstacle problems are locally bounded in C*:!

(cf. Lemma 2.4(i)),

1
Uy p—(7/,0) = Unyoe P—(1,0) = Uoo(- + (7',0))  in CL(R?)  as k — oo,
which implies in particular that, given ¢ € (0, +00),
<I>(u — Uy, P—(r,0)5 Q) — <I>(u —Uso(- + (7', 0)), g) as k — oo.
Since ||wy, || z1(B,) — 0, it follows from Lemma 2.12(i)-(iii) that, for each ¢ € (0, +00),

0< <I>(u — U (- + (7, 7)), Q) = kli)ngo q)(u — Uy, P—(r 0)> Q) < limsupq)(u — Uy, P—(r0)5 %’“)

k—o00
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. . 2 2
= limsup ®(w}, 5, §) < CllmsupH(w§€7O_)+HLl(Bl)H(wfw)_HLl(Bl) =0.
k—ro0 k—ro0
Hence, the result follows again from Lemma 2.12(iv). O

We can now prove our main result.

Proof of Theorem 1.2: the case N = 3. The proof is almost identical to the one of Theo-
rem 1.2 for N > 4 given in Section 7, the only difference being the application of Propo-
sition 8.6 instead of Proposition 7.1. O

9. PROOF OF THEOREM 1.1

As explained after the statement of [6, Main Theorem**|, every non-cylindrical solution
with unbounded coincidence set is x-monotone. Hence, to prove Theorem 1.1 for N > 3,
it suffices to characterize xy-monotone solutions for N > 3, which is exactly the result of
Theorem 1.2. For completeness and convenience of the interested reader, we present here an
original alternative argument to explain how Theorem 1.1 follows from Theorem 1.2.

Proof of Theorem 1.1. Let u be a global solution with non-empty coincidence. We can assume
that u is non-cylindrical (see Definition 2.6), as otherwise a restriction of u coincides with a
non-cylindrical global solution v in some lower dimension and it suffices to prove Theorem 1.1
for v. Also, as mentioned in the introduction, Theorem 1.1 has already been proved for N = 2
in [16].

Hence, we assume that u is a non-cylindrical global solution in dimension N > 3, whose
coincidence set C := {u = 0} has non-empty interior (recall that C is convex, see Remark 2.2).

Set u,(z) := “(:233), and define g(x) := lim, o0 ur(x) (cf. Lemma 2.3). We distinguish

several cases.

e Case 1. g is a half-space solution.

By a translation and a rotation we can assume that {u = 0} C {zy < 0} and that 0 € 9{u =
0}. Then, since {u = 0} is convex we deduce that {u, = 0} = {u = 0} C {u = 0} for every
r > 1, and letting r — oo we conclude that {g =0} C {u = 0}.

On the other hand, since g is a half-space solution, {g = 0} is a half-space passing through
the origin.

So the only option is that {g = 0} = {u = 0} = {zx < 0}, from which it follows that
A(u—g) = 0 and (u — g)|{zy<oy = 0. By unique continuation this implies that v = g,
and since ¢ is constant in the directions orthogonal to eV we deduce that u is cylindrical, a
contradiction.

e Case 2. g(z) = %:cTQx s a quadratic polynomial solution with @ positive definite.

Since @ is positive definite, there exists a constant ¢y > 0 such that g > ¢y on 0B;. Hence, it
follows from the local uniform convergence of u, to g that u(z) > £|z|? for sufficiently large
|z|. This implies that the coincidence set {u = 0} is compact, so the result follows from [9]
(see also [8] or Remark 7.2).

e Case 3. g(z) = %JJTQZL‘ is a quadratic polynomial solution with ker(Q) # {0}.

Step 1. u is monotone in the directions of ker(Q).

Let e € 0B1Nker(Q). Then 0.u = 0.(u—g). Also, if we define v, (x) := (uz9)(ra) ur(x)—g(z),

r2
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Holder’s inequality and Lemma 2.13(ii) imply that

2
(][ ]er|dx> < ][\er|2dx < C'][U?,da: — 0 as r — oo.
Bl BQ

By
It follows that

1 1
: ][ Ol da = ][ 9e(u— )| dz = [Bevrllrmy — 0 as 7 — ool (9.1)
B, B;

Thus, thanks to Remark 2.14, (9.1), and Lemma 2.12(iii)-(iv), we deduce that either d.u > 0
or Jeu < 0. Since Jeu Z 0 (as w is non-cylindrical) and d.u is harmonic outside the coincidence
set of u, it follows by the strong maximum principle that

either Jeu > 0 or Jou < 0 inside {u > 0}. (9.2)

Step 2. ker(Q) is one-dimensional.
Indeed, assume by contradiction that there exists a two-dimensional plane IT C ker(Q). Then,
by the argument above we deduce that

for any e € 0B N1, (9.2) holds.

Fix a point £ € {u > 0} and consider a curve [0,1] 2 s — e(s) C 9B; N1I such that
e(0) = —e(1). Then, since Je(oyu(¥) = —0e1yu(Z), it follows by continuity that there exists
s € (0,1) such that J.u(z) = 0. This contradicts (9.2) and proves that ker(Q) is one-
dimensional.

Step 3. u is zx-monotone.

Since ker(Q) is one-dimensional, we may assume that ker(Q) = Re?¥ and that dyu > 0. Thus,
since by assumption C = {u = 0} has non-empty interior, u satisfies Definition 2.8(i)-(iii)-
(iv). Also, up to a translation, we can assume that C C {zxy > 0} and that 0 € 9C, so u is
x y-monotone, as desired. ]
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