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Abstract. It is a well-known conjecture in β-models and in their discrete counterpart
that, generically, external potentials should be “off-critical” (or, equivalently, “regular”).
Exploiting the connection between minimizing measures and thin obstacle problems, we
give a positive answer to this conjecture.

1. Introduction

Given a potential V : R → R, a central question arising both from the theory of Coulomb
gases and the mean-field limit of β-ensembles is to understand the behavior of probability
measures µV minimizing the energy

(1.1) EV (µ) :=
ˆ
R

ˆ
R

(
V (x) + V (y)− log |x− y|

)
dµ(x) dµ(y)

(see, for instance, [25, 27]). The classical case V (x) = x2, which comes from Gaussian
Orthogonal Ensembles, was first studied in [28], and the minimizing probability is known

as the “semicircle law”, since its density dµV
dx = 2

π

√
(x+ 1)(1− x) is, up to a constant, the

graph of the (upper) unit circle.

β-models. Most results on β-models (see, for instance, [2, 7, 14, 8, 4, 18, 6] and the
references therein) rely on the assumption that the semicircle represents the general be-
havior of such minimizing measures. More precisely, given a potential V, the following
assumption (usually called “off-criticality” or “regularity” assumption) is made:
(A) The minimizing probability µV is supported over finitely many disjoint compact in-
tervals and, inside each such interval [a, b], it has the form

(1.2)
dµV
dx

= QV (x)
√
(x− a)(b− x),

for some function QV : R → R satisfying 0 < c ≤ QV (x) ≤ C.
Unfortunately, the property above is known to be false for arbitrary potentials. Still, it

is conjectured to be “generically” true. In the case of analytic potentials, this has indeed
been shown in [20], but up to now, nothing is known in the non-analytic setting (except
for some very special cases).

In this article, we give a positive answer to this conjecture for C2,α potentials. Also,
we show that higher regularity assumptions on V yield higher regularity for the functions
Q. Because it is well-known that the space of regular potential is open, the challenge is
to prove that they are dense.

Here and in the following, given j ∈ N and β ∈ [0, 1], we denoted by Cj,β
loc (R) the space

of functions g : R → R that belong to Cj(R) and whose j-th derivative is locally β-Hölder
continuous, that is

sup
x ̸=y∈[−R,R]

|Djg(x)−Djg(y)|
|x− y|β

<∞ ∀R > 0.

Our first main result is the following (see Theorem 2.3 below for a more precise statement):

Theorem 1.1. Given α ∈ (0, 1), let V ∈ C2,α
loc (R) satisfy lim|x|→+∞

V (x)
log |x| = +∞. Given

γ ∈ R, consider the family of potentials Vs,γ(x) :=
V (sγx)

s , s > 0. Then Vs,γ is regular for
a.e. s > 0.

1
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In particular, the set of potentials for which (A) holds is open and dense in the class

of C2,α
loc potentials that diverge at infinity faster than a logarithm.

Furthermore, if (A) holds and V ∈ C
k+1/2+β
loc (R) for some k ≥ 2 and β ∈ (0, 1),1 then

QV ∈ Ck−1,β
loc (R).

Remark 1.2. In the case of analytic potentials, this result with γ = 1 recovers the one
of [20].

Discrete β-models. A discrete version of the previous problem naturally arises, for
instance, from asymptotics of distributions of discrete β-ensembles or in the study of
orthogonal polynomials of a discrete variable, see [5, 13].

In this case, given N ∈ N and θ > 0, the energy (1.1) is minimized among probability

measures with density bounded above by θ and supported in
⋃N

h=1[ah, bh], where the
previous intervals are disjoint. Also, one prescribes the mass of the admissible measures
µ inside each interval:

(1.3) µ([ah, bh]) = n̂h ≥ 0,

N∑
h=1

n̂h = 1.

Furthermore, the potential V is differentiable inside
⋃N

h=1[ah, bh] and is assumed to satisfy

(1.4) |V ′(x)| ≤ C

(
1 +

N∑
h=1

| log(x− ah)|+ | log(x− bh)|

)
for some constant C > 0.

In analogy to the continuous case, an important assumption on the minimizing measure
is the following (see, for instance, [5]):

(B) The set {0 <
dµV,θ

dx < θ} is a finite union of intervals compactly contained inside⋃N
h=1(ah, bh). In addition, the density

dµV,θ

dx vanishes like a square root near ∂{ψ > 0} and
converges to θ like a square root near ∂{ψ < θ}. More precisely, given p− ∈ ∂{ψ > 0}
(resp. p+ ∈ ∂{ψ < θ}) there exists a uniformly positive bounded function Q− (resp. Q+),
defined in neighborhood of p− (resp. p+), such that

dµV,θ
dx

(x) = Q−
√

|x− p−| for x ∈
{
0 <

dµV,θ

dx < θ
}
, |x− p−| ≪ 1,

(resp.
dµV,θ
dx

= θ −Q+

√
|x− p+| for x ∈

{
0 <

dµV,θ

dx < θ
}
, |x− p+| ≪ 1).

(1.5)

Given N disjoint intervals [ah, bh], j ∈ N, and β ∈ [0, 1], we denote by Cj,β
loc (

⋃
h(ah, bh))

the space of functions g :
⋃

h(ah, bh) → R that belong to Cj (
⋃

h(ah, bh)) and whose j-th
derivative is locally β-Hölder continuous, that is

sup
x ̸=y∈

⋃
h[−ah+r,bh−r]

|Djg(x)−Djg(y)|
|x− y|β

<∞ ∀ r > 0 sufficiently small.

Here is our main result (see Theorem 2.6 below for a more precise statement, in partic-
ular concerning the topology considered for our openness/denseness statement):

Theorem 1.3. Given α ∈ (0, 1), let V ∈ C2,α
loc (

⋃
h(ah, bh)) satisfy (1.4). Consider the

family of potentials Vs(x) :=
V (sx)

s , s > 0. Then Vs is regular for a.e. s > 0.
In particular, the set of potentials for which (B) holds is open and dense in the class of

C2,α
loc potentials satisfying (1.4).

1Here and in the sequel, for convenience of notation, we denote

C
k+1/2+β
loc (R) =

{
C

k,β+1/2
loc (R) if β ≤ 1/2,

C
k+1,β−1/2
loc (R) if β > 1/2.



GENERIC REGULARITY OF EQUILIBRIUM MEASURES 3

Furthermore, if (B) holds and V ∈ C
k+1/2+β
loc (

⋃
h(ah, bh)) for some k ≥ 2 and β ∈

(0, 1),2 then the functions Q± are of class Ck−1,β
loc .

Remark 1.4. Consider the potential

V (x) =
N∑

h=1

[
(x− ah)+ log(x− ah)− (bh − x)+ log(bh − x)

]
.

Then

V (sx)

s
=

N∑
h=1

[(
x−ah

s

)
+

log

(
x−ah

s

)
−
(
bh
s
−x
)

+

log

(
bh
s
−x
)
+
bh − ah

s
log s1[ah,bh](x)

]
.

Since the last term in each addend corresponds to adding an additive constant to the po-
tential inside each interval, it can be neglected due to the mass constraint. So, Theorem 1.3
implies that the family of potentials

x 7→
N∑

h=1

[(
x− ah

s

)
+

log

(
x− ah

s

)
−
(
bh
s

− x

)
+

log

(
bh
s

− x

)]
are regular for a.e. s > 0.

In particular, consider the class of potentials appearing in [5, Equation (122)]. These
potentials depend on 6 parameters (A,B,C, t,D,H). Then, considering as in [5, Section
9.2] the case when these parameters are very large, our result implies that for a.e. choice
of these parameters, the corresponding potentials are regular.

Riesz potentials. One can also consider more general energies of the form

E(µ) =
¨

Rd×Rd

(
g(x− y) + V (x) + V (y)

)
dµ(x) dµ(y),

where

(1.6) g(x) =

{
1
σ |x|

−σ if σ ̸= 0,

− log |x| if σ = 0,
with σ ∈ (d− 2, d).

These energies arise from the study of Riesz gases (see for instance [27] and references
therein). In this context, the analogue of assumption (A) is the following:
(Aσ) The minimizing probability µV is supported over finitely many disjoint compact sets
{Kj}1≤j≤M ⊂ Rd, with ∂Kj a (d− 1)-dimensional manifold of class C1. Also, inside Kj,
it has the form

(1.7)
dµV
dx

= QV (x) dist(x, ∂Kj)
1− d−σ

2 ,

for some function QV : Rd → R satisfying 0 < c ≤ QV (x) ≤ C.
As discussed in Appendix C, our strategy also applies in this case and proves the generic
validity of (Aσ) in low dimensions (see Theorem C.1).

1.1. Comments on the proofs and the structure of the paper. To prove Theo-
rem 1.1, we follow Serfaty’s strategy to associate to µV a solution to the thin obstacle
problem (see [26, 21, 27, 22] and Section 2.1 below). In this way, we may hope to apply
the regularity theory available for generic solutions of the thin obstacle problem [16]. Note
that the latter theory applies only to a strictly monotone family of solutions, so one would
need to find perturbations of V that induce monotone perturbations of the solutions.
While this seems difficult to achieve, we can follow the strategy in [20] where, instead of
changing the potential, we vary the mass constraint. In this way, the associated family of
solutions is monotone (see Proposition 3.2) and the generic regularity theory for the thin

2As before, for convenience of notation, given U ⊂ R open we denote

C
k+1/2+β
loc (U) =

{
C

k,β+1/2
loc (U) if β ≤ 1/2,

C
k+1,β−1/2
loc (U) if β > 1/2.
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obstacle problem applies. Then, using scaling properties for minimizers of EV , we obtain
our result (see Remark 3.1).

While in the case of β-models we can rely on the available theory for the thin obstacle
problem, the discrete case (Theorem 1.3) is much more challenging. More precisely, also
in this case we can relate the regularity of the minimizing measure to the regularity
of a solution of a PDE. However, the additional constraint on the upper bound of the
density of the measure reflects in the fact that the solution will solve a “two-phase” thin
obstacle problem (see Theorem 2.4), for which no generic regularity theory was available.
In addition, now the potential V is not smooth at the boundary of its support, and this
may create singularities in our solutions. These two facts create several challenges that
are addressed in Appendix B.

Since this paper uses and develops nontrivial PDE tools but has applications beyond
the PDE community, we structure the paper as follows: In Section 2, following Serfaty’s
argument, we show the connection between minimizing measures and obstacle problems.
Then, in Sections 3 and 4 we prove our main results, taking for granted the generic
regularity properties of solutions to obstacle problems. Finally, all PDE materials (both
the known theory for the classical thin obstacle problem and the new theory needed for
the case of discrete models) are postponed to Appendices A and B. In Appendix C, we
briefly discuss the case of Riesz potentials.

Acknowledgments: We thank Alice Guionnet for suggesting this problem to us and for
pointing out the connection, due to Sylvia Serfaty, between minimizing measures and
obstacle problems. AF is grateful to the Marvin V. and Beverly J. Mielke Fund for
supporting his stay at IAS Princeton, where part of this work has been done.

2. From minimizing measures to obstacle problems

The goal of this section is to discuss some preliminary facts about measures minimizing
the energy (1.1) and show the connection to the thin obstacle problem. This will allow us
to reformulate our main theorems in a slightly different form, see Theorems 2.3 and 2.6
below. The proofs of these two theorems will then be given in the next two sections.

We begin this section by discussing some preliminary facts about measures minimizing
the energy (1.1).

2.1. From minimizing measures to the thin obstacle problem. Here and in the
sequel, we denote by M1(R) the space of nonnegative probability measures on R. We
begin with the non-discrete case.

Theorem 2.1 ([2, Lemma 2.6.2]). Let V : R → R be a continuous potential satisfying

lim
|x|→∞

V (x)

log |x|
= +∞.

Then there is a unique probability measure µV minimizing

inf{EV (ν) : ν ∈ M1(R)}.

In addition, the measure µV is compactly supported and it is uniquely determined by the
existence of a constant CV such that

(2.1) −
ˆ
R
log |x− t| dµV (t) ≥ CV − V (x) for every x ∈ R, with equality µV -a.e.

To connect minimizing measures to the thin obstacle problem, given the measure µV
minimizing EV in M1(R), consider the function

(2.2) uV (x) = −
(
log | · | ∗ µV

)
(x)− CV , x ∈ R2.
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Then, as discussed for instance in [27, Chapter 2.4], (2.1) is equivalent to asking that uV
solves the thin obstacle problem with obstacle −V (cf. Appendix A):

(2.3)


−∆uV ≥ 0 in R2,

∆uV = 0 in R2 \ ({uV = −V } ∩ {x2 = 0}),
uV ≥ −V in {x2 = 0},
uV (x)
log |x| → −1 as |x| → +∞.

Furthermore, if a solution u of (2.3) is regular in the sense of Definition A.1, then the as-
sociated measure satisfies property (A) in the introduction, namely its support consists of
finitely many intervals and its density satisfies (1.2). This justifies the following definition.

Definition 2.2 (Regular potential). We say that a potential V is regular if:

i) {uV = −V } = suppµV ;
ii) suppµV is a finite union of disjoint compact intervals;
iii) µV ≪ L1 and its density is of the form (1.2) in each interval [a, b] of suppµV .

With this terminology, we can now state a slightly refined version of Theorem 1.1.
However, we first precisely define the topology considered here when talking about an
open and dense set. Define

X :=
{
V ∈ C2,α

loc (R) : lim
|x|→+∞

V (x)

log |x|
= +∞

}
endowed with the distance3

ρ(V,W ) :=
∑
k

2−k
∥V −W∥C2,α(−k,k)

1 + ∥V −W∥C2,α(−k,k)
+
∑
k

2−k |Gk(V )−Gk(W )|
1 + |Gk(V )−Gk(W )|

,

where

Gk : X → R, Gk(V ) := inf
|x|≥k

V (x)

log |x|
.

Notice that ρ(Vk, V ) → 0 if and only if Vk → V in C2,α
loc (R) and lim|x|→+∞

Vk(x)
log |x| = +∞

uniformly in k.
We can now state our result.

Theorem 2.3. Given α ∈ (0, 1), let V ∈ C2+α
loc (R) satisfy lim|x|→+∞

V (x)
log |x| = +∞. Given

γ ∈ R, consider the family of potentials Vs,γ(x) :=
V (sγx)

s , s > 0. Then Vs,γ is regular for
a.e. s > 0 in the sense of Definition 2.2. In particular, the set of regular potentials is an
open and dense subset of (X, ρ).

Furthermore, if V : R → R is regular and belongs to C
k+1/2+β
loc (R) for some k ≥ 2 and

β ∈ (0, 1), then the function QV in (1.2) is of class Ck−1,β
loc (R).

2.2. From minimizing measures to the two-phase thin obstacle problem: the
discrete case. Given K =

⋃N
h=1[ah, bh] a finite union of intervals and nonnegative num-

bers n̂h such that
∑N

h=1 n̂h = 1, define

M1,θ(K) :=
{
ν = ηL1 ∈ M1(R) : 0 ≤ η ≤ θ, supp ν ⊆ K, ν([ah, bh]) = n̂h

}
,

where L1 denoted the Lebesgue measure on R. We will say that the problem is saturated
in one interval [ah, bh] if θ(bh − ah) = n̂h, namely if for every measure ν ∈ M1,θ(K) we

have that ν [ah, bh] = θL1 [ah, bh].
4

Theorem 2.4. For every θ > 0 such that M1,θ(K) ̸= ∅, there exists a unique measure
minimizer of

inf{EV (ν) : ν ∈ M1,θ(K)}.

3In [20], the authors consider an analogous distance but in the space of C3
loc potentials.

4Given a measure ν and a set K ⊂ R, ν K denotes the restriction of the measure ν to K.
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Moreover, if the problem is not saturated in an interval [ah, bh], then a measure µ is
minimizing if and only if there is a constant Ch such that the function

(2.4) uh(x) = −
(
log | · | ∗ (µ [ah, bh])

)
(x)− Ch, x ∈ R2,

solves

(2.5)



∆uh = 0 in R2 \ {x2 = 0, ah ≤ x1 ≤ bh},
−2πθ ≤ ∂2uh ≤ 0 in {x2 = 0, ah ≤ x1 ≤ bh},
∂2uh = 0 in {x2 = 0, ah ≤ x1 ≤ bh} ∩ {uh > −V },
−∂2uh = 2πθ in {x2 = 0, ah ≤ x1 ≤ bh} ∩ {uh < −V },
uh(x)
log |x| → −n̂h as |x| → +∞,

where uh is even in x2 and the value ∂2uh at {x2 = 0} is intended as the limit from the
right, namely

∂2uh(x1, 0) = lim
t→0+

uh(x1, t)− uh(x1, 0)

t
.

Proof. The existence and uniqueness of a minimising probability µ is shown in [5, Lemma
5.1]. The proof of the necessary and sufficient condition (2.5) follows as in [5, Lemma 5.5]
or [13, Theorem 2.1]. □

In analogy to the previous subsection, we now define regular potentials.

Definition 2.5 (Regular potentials, discrete case). Given θ > 0 such that M1,θ(K) ̸= ∅
and the problem is not saturated in any interval, we say that a potential V is regular if,
denoting by ψ the density of the minimising measure, for every 1 ≤ h ≤ N it holds:

i) {uh = −V } = {0 < ψ < θ} ∩ (ah, bh);
ii) {0 < ψ < θ} is a finite union of open intervals and is compactly contained in the

interior of
⋃N

h=1(ah, bh);
iii) ψ (resp., θ − ψ) is of the form (1.5) at each point p− ∈ ∂{ψ > 0} (resp. p+ ∈

∂{ψ < θ}).

To state our refined version of Theorem 1.3, we introduce a topology on the set

X̃ :=
{
(V,K) | K ⊂ R is of the form ∪N

k=1 [ah, bh] and V ∈ C2,α
loc (K) satisfies (1.4)

}
induced by the distance

ρ̃((V,K), (W,C)) := distH
(
graph(V|K ), graph(W|C )

)
+
∑
n∈N

N∑
h=1

∥V −W∥C2,α((K∩C)1/n)

1 + ∥V −W∥C2,α((K∩C)1/n)
,

where distH denotes the Hausdorff distance between two sets, and given E ⊂ R and ρ > 0,
we denote Eρ = {x ∈ E : dist(x,Ec) > ρ}.

Note that ρ̃((Vk,Kk), (V,K)) → 0 if and only if Vk → V in C2,α
loc (K) and the graphs of

Vk on Kk converge in the Hausdorff distance to the graph of V on K.

Theorem 2.6. Given α ∈ (0, 1), let V ∈ C2+α
loc (

⋃
h(ah, bh)) satisfy (1.4). Consider the

family of potentials Vs(x) :=
V (sx)

s , s > 0. Then Vs is regular in the sense of Definition 2.5
for a.e. s > 0. In particular, the set of regular potentials is an open and dense subset of

(X̃, ρ̃).

Furthermore, if V :
⋃

h[ah, bh] → R is regular and belongs to C
k+1/2+β
loc (

⋃
h(ah, bh)) for

some k ≥ 2 and β ∈ (0, 1), then the functions Q± are of class Ck−1,β
loc .

3. Proof of Theorem 2.3

As mentioned in the introduction, the main difficulty is to prove the density of regular
potentials. We will achieve this by showing that, given γ ∈ R and a potential V ∈ C2,α

loc (R)
satisfying lim|x|→+∞

V (x)
log |x| = +∞ and γ ∈ R, the potential Vs,γ := V (sγ ·)

s is regular for a.e.

s > 0.
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Here and in the sequel, we denote by Ms(R) the space of nonnegative measures on R
with total mass s > 0. The following observation, already used in the proof of generic
regularity for analytic potentials in [20] for γ = 0, relates scaling the potential Vs,γ to
rescaling the mass.

Remark 3.1. Given s > 0, denote ρs(x) := sx. Then, for every γ ∈ R and s > 0, a
measure µ minimise {EV (ν) : ν ∈ Ms(R)} if and only if 1

s (ρs−γ )#µ minimises {EVs,γ (ν) :

ν ∈ M1(R)}5.

Given a potential V and γ ∈ R, for every s > 0 let µs be the measure minimizing
{EV (ν) : ν(R) = s},6 and consider the function

(3.1) us(x) = − log | · | ∗ µs(x)− γ log s− sCVs,γ , x ∈ R2,

where CVs,γ is the constant associated to the probability measure minimising EVs,γ in
M1(R). Then, applying Theorem 2.1 with Vs,γ and Remark 3.1, it follows that us solves
the following thin obstacle problem with obstacle −V :

(3.2)


−∆us ≥ 0 in R2,

∆us = 0 in R2 \ {uV = −V } ∩ {x2 = 0},
us ≥ −V in {x2 = 0},
us(x)
log |x| → −s as |x| → +∞.

The following result is crucial for us.

Proposition 3.2. The functions us are decreasing in s, namely us ≥ us′ for any s < s′.
More precisely, they are strictly decreasing in the following sense: for every M > 0 there
is R0 such that for any R ≥ R0 there is a = a(R) > 0 such that

(3.3) us−δ − us > aδ in ∂BR ∩ {|x2| > R/2}

for every 0 < s− δ ≤ s ≤M and R ≥ R0.

A proof of the monotonicity is essentially contained in [9, Theorem 2], using potential
theory. Here we use the comparison principle for (A.1), based on the following remark.

Remark 3.3. We will state the comparison principle for (A.1) allowing for different ob-
stacles, since we will need it later. Let u, v be two solutions of (A.1) in B1 with obstacle
φu, φv. Assume that φu ≤ φv in supp∆u. Then (u− v)+ is subharmonic in B1. Indeed,
∆(u− v) = −∆v ≥ 0 in R2 \ supp(∆u), while u ≤ v in supp(∆u), since for x ∈ supp(∆u)
we have u(x) = φu(x) ≤ φv(x) ≤ v(x). Thus ∆(u− v)+ ≥ 0 in B1.

For convenience of notation, we write u ∼ s log | · | to denote that lim|x|→∞
u(x)

s log |x| → 1.

Proof of Proposition 3.2. Given s < s′, we note that

us(x) ∼ −s log |x| ≫ us′(x) ∼ −s′ log |x| as x→ +∞.

Hence, for any large enough ball BR, we have us′ ≤ us in ∂BR. Thus (us′ − us)+ vanishes
on ∂BR, is nonnegative, and (by Remark 3.3) it is subharmonic in BR. By the maximum
principle, this implies us′ ≤ us in BR. Since R can be taken arbitrarily large, we conclude
that us ≥ us′ in R2.

Let us now show (3.3). Since supp∆us ⊂ {us = −V } and the functions are monotone,
for every M there is R0 such that {us = −V } ⊂ BR0/2 for every s ≤M . Thus we have

∆(us−δ − us) = 0 in R2 \ {x2 = 0, |x1| ≤ R0/2},

5Given measurable spaces X,Y , a measure µ on X, and a measurable function f : X → Y , we denote
by f#µ the push-forward of µ through f , namely the measure on Y defined by f#µ(A) = µ(f−1(A)) for
every measurable set A ⊂ Y .

6Note that Theorem 2.1 applies, with the same proof, to any value of s > 0.



8 GIACOMO COLOMBO AND ALESSIO FIGALLI

us−δ − us ≥ 0 (by the previous step), and us−δ − us ∼ δ log | · | as |x| ∼ +∞. Hence, if η
is a solution of the problem

∆η = 0 in R2 \ [−R0/2, R0/2]× {0},
η = 0 in [−R0/2, R0/2]× {0},
η ∼ log | · | as |x| → +∞,

the maximum principle implies us−δ − us ≥ δη in R2. To conclude, we can take a(R) =
inf∂BR

η, which is positive by the strong maximum principle. □

We can now prove our main result.

Proof of Theorem 2.3. We split the proof into 3 steps.

Step 1: Regular potentials are dense. Given V ∈ C2,α
loc (R) satisfying lim|x|→+∞

V (x)
log |x| =

+∞ and γ ∈ R, we show that the potentials Vs,γ are regular for almost every s > 0, where
we recall that Vs,γ(x) = s−1V (sγx).

For every s > 0 let µs be the measure minimizing EV in Ms(R) given by Theorem 2.1,
and let us be given by (3.1). Then, recalling Remark 3.1, to show that Vγ,s is regular, we
need to prove that us is regular.

By Proposition 3.2 and Theorem 2.1, the functions us defined in (3.1) are a decreasing
family of solutions of (A.1) in R2 with obstacle −V satisfying the strict monotonicity
condition (3.3). Also, as shown in the proof of Proposition 3.2, the contact sets {us = −V }
are contained inside BR/2 for every s ≤M . Hence we can apply Theorem A.3 to the family
{u1/t}t>0 in BR to find that us is regular for almost every s > 0, as desired.

Step 2: Stability of regular potentials. Let Vk → V in C2,α
loc (R), with lim|x|→+∞

Vk(x)
log |x| =

+∞ uniformly in k. We prove that if the potentials Vk are not regular, then also V is not
regular.

Let uk = uVk
and u = uV be defined as in (2.2). We first show that uk → u locally

uniformly in R2. To do this, given δ > 0, consider v±δ solutions of (A.1) with obstacle

−V ± δ and satisfying v±δ ∼ −(1∓ δ) log | · | as |x| → +∞. Since supp(∆v+δ ) is compact,

there exists C0 sufficiently large such that v+δ still solves (A.1) with obstacle

−Ṽδ = max
{
− V + δ,−C0

(
1 + log(1 + |x|)

)}
.

Since Vk → V locally and the potentials diverge at infinity faster than a logarithm, for k
sufficiently large we have

−Vk ≤ −Ṽδ on R and − Vk ≥ −V − δ on supp(∆v−δ ).

We claim that v−δ ≤ uk ≤ v+δ for k ≫ 1. Indeed, for k ≫ 1 the functions uk, v
+
δ solve (A.1)

in BR with ordered obstacles. Moreover, since uk ∼ − logR≪ v+δ in ∂BR for R sufficiently

large, we can apply Remark 3.3 to get uk ≤ v+δ . Analogously, v
−
δ ≤ uk.

Since v±δ → u locally uniformly as δ → 0 we find that uk → u locally uniformly. In
particular, the contact sets {uk = −Vk} are equibounded.

Since Vk are not regular, there is a sequence of points xk ∈ Sing(uk) ⊂ {uk = −Vk}
(see Appendix A for the definition of singular points). Since the contact sets are equi-
bounded, there is an accumulation point x∞, namely xk → x∞ up to a subsequence. Then
Lemma A.4 implies that x∞ ∈ Sing(u), as wanted.

Step 3: Higher order expansion. Since dµV
dx = −∂2uV , we simply need to show the

result for ∂2uV . Since uV = −V ∈ C
k+1/2+α
loc in the interior of suppµV , local C

k−1/2+α

regularity in the interior of suppµV follows from boundary regularity for the Dirichlet
problem.

Let us show the regularity at the boundary of suppψ. Up to a translation and rescaling,
we can assume that u solves in the unit ball B1 the following problem:

∆u = 0 in B1 \ {x2 = 0, x1 ≤ 0},
u = −V in {x2 = 0,−1 < x ≤ 0},
u > −V in {x2 = 0, 0 < x1 < 1}.
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Let P be the k-th order (k + 1-th for α > 1/2) Taylor expansion of −V at 0, and let

P̃ be its unique harmonic extension to R2 which is even in the x2 variable. Define ũ :=
u− (−V + P̃ − P ). Then ũ satisfies{

|∆ũ| ≤ C|x|k+α−3/2 in B1 \ {x2 = 0, x1 ≤ 0},
ũ = 0 in {x2 = 0,−1 < x1 ≤ 0}.

Defining in polar coordinates

U0(ρ, θ) := ρ1/2 cos θ/2,

we can apply Theorem A.5 to find a polynomial Q of degree k such that∣∣ũ−QU0

∣∣ ≤ C|x|k+α+1/2, ∆(QU0) = 0, and Q(0) = 0,

where we used |u| ≤ Cr3/2 in Br to deduce that Q(0) = 0. Recalling the definition of ũ,
this implies

|u− P̃ − U0Q| ≤ Crk+1/2+α in Br,

for some polynomials P̃ with deg P̃ ∈ {k, k + 1} and Q of degree k, with ∂2P̃ ≡ 0 and
Q(0) = 0.

Let us set C := B1 \ (B1/4 ∪ {x2 = 0, x1 ≤ 0}). Then, for every 0 < r < 1, the function

vr :=
u(r ·)− P̃ (r ·)− U0(r ·)Q(r ·)

rk+1/2+α
,

satisfies

∆vr = 0 in C, |vr| ≤ C in C, and ∥vr(·, 0)∥Ck+1/2+α(−1,−1/4) ≤ C,

so elliptic regularity yields

∥vr∥Ck+1/2+α ≤ C in B3/4 \B1/2.

Thus, recalling that ∂2P̃ ≡ 0,

|∂2u− ∂2(U0Q))| ≤ Crk−1/2+α in B3r/4 \Br/2.

By direct computation and recalling that Q(0) = 0 we have ∂2(U0Q)(x1, 0) = (x1)
1/2
− P for

some polynomial P(x1) of degree k − 1. Thus we can rewrite the previous inequality as∣∣∣∣∣∂2u(x1, 0)(x1)
1/2
−

− P(x1)

∣∣∣∣∣ ≤ Crk−1+α for x1 ∈ (−3r/4,−r/2)

for a polynomial P(x1) of degree k − 1. This yields the desired Ck−1,α regularity for QV

at the boundary of suppµV , from which the result follows. □

4. Proof of Theorem 2.6

Given K =
⋃N

h=1[ah, bh] a finite union of intervals and nonnegative numbers n̂h such

that
∑N

h=1 n̂h = 1, define

Ms,θ(K) :=
{
ν = ηL1 : 0 ≤ η ≤ θ, ν(R) = s, supp ν ⊆ K, ν([ah, bh]) = sn̂h

}
.

We say that the problem is saturated in an interval [ah, bh] if θ(bh − ah) = sn̂h, namely if
for every measure ν ∈ Ms,θ(K) we have ν [ah, bh] = θL1 [ah, bh]. The following result
is the natural generalization of Theorem 2.4.

Theorem 4.1. For every s, θ > 0 such that Ms,θ(K) ̸= ∅, there exists a unique measure
minimizing

inf{EV (ν) : ν ∈ Ms,θ(K)}
supported in K. Moreover, if the problem is not saturated in an interval (ah, bh), then a
measure µ is minimizing if and only if there is a constant Ch such that the function

(4.1) uh(x) = − log | · | ∗ (µ (ah, bh))(x)− Ch, x ∈ R2,
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solves

(4.2)



∆uh = 0 in R2 \ {x2 = 0, ah ≤ x1 ≤ bh},
−2πθ ≤ ∂2uh ≤ 0 in {x2 = 0, ah ≤ x1 ≤ bh},
∂2uh = 0 in {x2 = 0, ah ≤ x1 ≤ bh} ∩ {uh > −V },
−∂2uh = 2πθ in {x2 = 0, ah ≤ x1 ≤ bh} ∩ {uh < −V },
uh(x)
log |x| → −sn̂h as |x| → +∞.

The proof of the theorem above is a direct consequence of Theorem 2.4 and the following
observation that relates scalings of the potential to rescalings of the mass.

Remark 4.2. Given a nonnegative bounded function ψ, let ψs := ψ(s ·). Then ψL1 mini-

mizes EV in Ms,θ(K) if and only if ψsL1 minimises EVs in M1,θ(K/s), where Vs =
V (s ·)

s .

Given a potential V , a parameter θ, and s > 0, denote by ψs the density minimizing
{EV (η) : η ∈ Ms,θ(K)}. Moreover, for every 1 ≤ h ≤ N , we denote by uh,s the associated
solution of (4.2) given by (4.1).

Proposition 4.3. For every 1 ≤ h ≤ N the functions uh,s are decreasing in s, namely
uh,s ≥ uh,s′ for any s < s′. More precisely, they are strictly decreasing in the following
sense: for every M > 0 there is R0 such that for any R ≥ R0 there is a = a(R) > 0 such
that

(4.3) uh,s−δ − uh,s > aδ in ∂BR ∩ {|x2| > R/2}

for every 0 < s− δ ≤ s ≤M and R ≥ R0.

The proof is based on the following Remark, which plays the same role as Remark 3.3
in the previous section.

Remark 4.4. We will state the comparison principle for (4.2) allowing for different obsta-
cles, since we will need it later. Let u, v : B2 ⊂ R2 → R be two functions, even in x2,
solving (4.2) (on possibly different intervals [au, bu], [av, bv]). Assume that the obstacles
of u and v are ordered, namely, φu ≥ φv, where we use the convention φ = −∞ outside
[a, b]. Then (v − u)+ is subharmonic in B2.

Indeed, calling ψu, ψv the normal derivatives of u, v respectively at {x2 = 0}, we have
that the distributional Laplacian of v−u is equal to twice the jump of the normal derivaties
across {x2 = 0}, that is,

∆(v − u) = 2(ψv − ψu)H1 {x2 = 0},

where H1 denotes the 1-dimensional Hausdorff measure. So it suffices to check that ψv ≥
ψu in {x2 = 0} ∩ {v > u}.

Given x ∈ {v > u}, we consider two cases: if v(x) ≤ φv(x) then we have u(x) < v(x) ≤
φv(x) ≤ φu(x), hence ψu(x) = −2πθ ≤ ψv(x). If v(x) > φv(x) then ψv(x) = 0 ≥ ψu(x),
as wanted.

Proof of Proposition 4.3. The monotonicity is proved as in the proof of Proposition 3.2,
using Remark 4.4 instead of Remark 3.3. The proof of (4.3) follows exactly that of (3.3).

□

Proof of Theorem 2.6. We split the proof in 3 steps.
Step 1: Regular potentials are dense. Given V ∈ C2,α

loc (R), we want to show that the
potentials Vs are regular for almost every s > 0, where Vs(x) = s−1V (sx).

For this, we can argue for each uh as in the proof of Theorem 2.3, using Proposition 4.3,
Theorem B.7, and Remark 4.2 instead of Proposition 3.2, Theorem A.3, and Remark 3.1,
respectively.
Step 2: Stability of regular potentials. We show that if Vk → V in C2,α

loc (
⋃

h(ah, bh))
and Vk are not regular, then also V is not regular.
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We first show that, for every h, uh,k → uh locally uniformly in R2. Indeed, given δ > 0,

consider v±δ solutions of (2.5) with obstacle −V ±
δ (x) = −V ((1∓δ)x)±ε(δ) and satisfying7

v±δ ∼ −(n̂h ∓ δ) log | · | as |x| → +∞,

where ε(δ) → 0 as δ → 0 and is chosen so that

−V +
δ ≥ −V + δ ≥ −V − δ ≥ −V −

δ .

Since −V −
δ ≤ −Vk ≤ −V +

δ for k ≫ 1, Remark 4.4 implies that v−δ ≤ uh,k ≤ v+δ . Since

v±δ → uh as δ → 0, we find that also uh,k → uh locally uniformly, and in particular, for k
large enough. The contact sets {uh,k(·, 0) = −Vk} are compactly contained in (ah,k, bh,k).
We can then conclude arguing as in the proof of Theorem 2.3, Step 2, using Lemma B.8
instead of Lemma A.4.
Step 3: Higher order expansion. The argument is the same as in Step 3 in the proof
of Theorem 2.3. □

Appendix A. Results from Thin Obstacle Problem

Here we collect useful results from the regularity of the thin obstacle problem, referring
the interested reader to [23, Chapter 9] and the recent survey [17] for more details. To
keep the notation consistent with the rest of the paper, we restrict ourselves to the two-
dimensional setting.

Recall that, given a function φ : [−1, 1] → R, a (two-dimensional) solution of the thin
obstacle problem with obstacle φ is a function u : B1 ⊂ R2 → R satisfying

(A.1)


∆u = 0 in B1 \ {x2 = 0},
∆u ≤ 0 in {x2 = 0} ∩B1

∂x2u = 0 in {x2 = 0} ∩ {u > φ} ∩B1,

u ≥ φ in {x2 = 0} ∩B1.

We will denote the contact set of u by Λ(u) := {u = φ} ∩ {x2 = 0} and the free boundary
by Γ(u) = ∂RΛ(u) (i.e., the topological boundary of Λ(u) as a subset of {x2 = 0} ≃ R). A
point x0 ∈ Γ(u) is regular (x0 ∈ Reg(u)) provided there exists c > 0 such that

|u(x0 + r·)| ≥ cr3/2 in B1, ∀ r < 1,

and it is singular (x0 ∈ Sing(u)) if there exists C > 0 such that

(A.2) |u(x0 + r·)− φ(x0 + r·)| ≤ Cr2 in B1, ∀ r < 1,

where we mean φ(x1, x2) = φ(x1).

Definition A.1. A solution u of (A.1) is regular if there is no point in Γ(u) where (A.2)
holds.

We recall that solutions to the thin obstacle problem are C1,1/2 (see [3, 24]).

Lemma A.2. Let u solve (A.1) in B1 ⊂ R2 with obstacle φ ∈ C1,α([−1, 1]) for some

α > 1
2 . Then u(·, 0) ∈ C

1,1/2
loc (−1, 1).

While singular points may exist, it has been recently proved that, in low dimensions,
the singular set is generically empty. More precisely, consider a continuous 1-parameter
family family of solutions {ut}t∈[−1,1] to (A.1) in B1, strictly increasing in the following
sense: there exists η > 0 such that

(A.3)

{
ut+ε ≥ ut in ∂B1

ut+ε ≥ ut + ηε in ∂B1 ∩ {|x2| > 1
2}

for every ε > 0.

7The existence of these functions can be proved, for instance, using Theorem 4.1 (namely, minimizing
E
V ±
δ

with an upper bound θ on the density and suitable mass constraints).
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Theorem A.3 (Generic regularity for the thin obstacle problem, see [15, 16]). Let φ ∈
C2,α([−1, 1]) for some 0 < α ≤ 1 and let ut : B1 → R be a family of solutions of (A.1)
satisfying (A.3). Then, for a.e. t ∈ [−1, 1],

i) Sing(ut) ∩ [−1/2, 1/2] = ∅;
ii) Γ(ut) ∩ [−1/2, 1/2] is a finite set.

We also recall two useful properties: limits of singular points are singular, and solutions
with smoother obstacles are more regular.

Lemma A.4 (Convergence of singular points, see [15]). Let uk, u solve (A.1) in B1 with
obstacles φk, φ ∈ C1,1([−1, 1]). Assume that

i) uk → u, φk → φ uniformly, and supn ∥φk∥C1,1([−1,1]) < +∞;
ii) there are points xk ∈ Sing(uk) with xk → x ∈ B1/2.

Then x ∈ Sing(u).

Theorem A.5 (Higher order boundary Harnack, see [12, Theorem 2.3]). Let u solve{
|∆u| ≤ C|x|k+α−3/2 in B1 \ {x2 = 0, x1 ≤ 0},
u = 0 in {x2 = 0, x1 ≤ 0}.

for some k ≥ 1 and α > 0.
Then there exist a polynomial Q of degree k and a constant C ′ > 0 such that

sup
Br

|u−QU0| ≤ C ′rk+α+1/2 for all 0 < r < 1,

where U0(ρ, θ) = ρ1/2 cos θ/2.

Appendix B. Generic regularity for the Two-phase Thin Obstacle

Let θ > 0 be a fixed parameter. We will consider differentiable obstacles φ on [−1, 1]
satisfying the analog of (1.4), namely

(B.1) |φ′(x)| ≤ C
(
| log(x+ 1)|+ | log(x− 1)|

)
.

We want to show a generic regularity result for (4.2). To this aim, we will assume K =
[−1, 1] and we consider solutions in B2 of

(B.2)



−∆u = 0 in B2 \ {x2 = 0},
∂2u = θ in {x2 = 0, |x1| > 1},
|∂2u| ≤ θ in {x2 = 0, |x1| ≤ 1},
∂2u = sign(u− φ)θ in {u ̸= φ, |x1| ≤ 1, x2 = 0},
u(x1,−x2) = u(x1, x2) for (x1, x2) ∈ R2,

where where u is even in x2 and the value ∂2u at {x2 = 0} is intended as the limit from
the right, namely

∂2u(x1, 0) = lim
t→0+

u(x1, t)− u(x1, 0)

t
.

We remark that uh solves (2.5) with ah = −1 and bh = 1 if and only if 1
πuh + θ|x2|

solves (B.2). Moreover, note that if u solves (B.2) and u ≥ φ in {x2 = 0} ∩ Br(x0) for
some r > 0 and x0 ∈ {x2 = 0}, then u − θ|x2| solves the classical thin obstacle problem
(cf. Appendix A) in Br(x0).

In this section we will show a generic regularity result for (B.2), see Theorem B.7 below.
To achieve this, the main challenge is proving a phase separation result for solutions
of (B.2); namely, we show that given a point x0 ∈ ∂{u ̸= φ}, either u− θx2 or −θx2 − u
solve the thin obstacle problem in a sufficiently small ball around x0. This allows us to
recover C1,1/2 regularity of the solution and generic regularity for a monotone family of
solutions by applying the results for the thin obstacle problem. We note that a similar
problem was recently studied in [10], but the results and techniques used there do not
apply to our case, so a new argument is needed.



GENERIC REGULARITY OF EQUILIBRIUM MEASURES 13

Observe that the form of the obstacle (B.1) (namely, its low regularity at ±1) allows
for non-Lipschitz solutions at (±1, 0) (see the Remark below), while we will show that the
solutions must be locally Lipschitz near the interior of K, see Lemma B.3 below.

Remark B.1. Considering u = − θ
2π log | · | ∗ χ(−1,1), then u is a non-Lipschitz solution

of (B.2) with φ = u in [−1, 1]. Note that φ satisfies (B.1) in (−1, 1).

We start by showing Lipschitz regularity in the normal direction.

Lemma B.2. Let u solve (B.2). Then there exists a constant C > 0 such that

(B.3) |∂2u| ≤ θ + C|x2| in B1.

Proof. Since u− θ|x2| is harmonic in B2 \B1, elliptic estimates yield

|∇u| ≤ θ + |∇(u− θ|x2|)| ≤ C ′ in ∂B4/3,

while from (B.2) we have |∂2u| ≤ θ in {x2 = 0}. If we denote by w the solution of
∆w = 0 in B4/3 ∩ {x2 > 0},
w = θ in {x2 = 0},
w = C ′ in ∂B4/3 ∩ {x2 > 0},

by boundary regularity there exists C > 0 such that w ≤ θ + C|x2| in B1 ∩ {x2 > 0}.
Thus, since |∂2u| is subharmonic in B4/3∩{x2 > 0}, the maximum principle yields |∂2u| ≤
w ≤ θ + C|x2| in B1 ∩ {x2 ≥ 0}. Recalling that u is even in x2, (B.3) follows. □

B.1. Local regularity. In this subsection we show the separation of phases for (B.2),
i.e., we exclude the possibility of having a point z ∈ ∂{u(·, 0) > φ} ∩ ∂{u(·, 0) < φ}. In

this way, the regularity results for (A.1) will imply local C1,1/2 regularity.
We localise the problem in the interior of [−1, 1], considering solutions in B1 of

(B.4)


−∆u = 0 in B1 \ {x2 = 0},
|∂2u| ≤ θ in {x2 = 0},
∂2u = sign(u− φ)θ in {x2 = 0} ∩ {u ̸= φ},

and we assume that φ ∈ Lip([−1, 1]). We will also always assume that (B.3) is satisfied.
We say that z ∈ (−1/2, 1/2) is a two-phase point if u(z, 0) = φ(z) and

{u(·, 0) > φ} ∩ (z − r, z + r) and{u(·, 0) < φ} ∩ (z − r, z + r) ̸= ∅ for all r > 0.

Lemma B.3. Let u be a solution of (B.4) with φ ∈ Lip([−1, 1];R). Then

(B.5) sup
B1/2

|∂1u| ≤ C∥∇u∥L2(B1) + Lip(φ).

Proof. If u solves (B.4) with obstacle φ, then uh := u(· + he1) + Lip(φ)|h| solves (B.4)
with obstacle φ(·+ he1) + |h|Lip(φ) ≥ φ. Applying Remark 4.4 to uh and u gives

∆

(
u(x)− u(x+ he1)

|h|
− Lip(φ)

)
+

≥ 0,

and the local maximum principle implies

u(x)− u(x+ he1)

|h|
− Lip(φ) ≤ C∥∇u∥L2(B1) for x ∈ B1/2

By the same argument applied to u(·+ he1)− Lip(φ)|h| we also get

u(x+ he1)− u(x)

|h|
− Lip(φ) ≤ C∥∇u∥L2(B1) for x ∈ B1/2

So (B.5) follows. □

This is the main result of this section.

Proposition B.4 (Phase separation). Let u be a solution of (B.4) with φ ∈ C1,1. Then
there are no two-phase points.
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To prove phase separation, we will make use of the following result, which is a scale-
invariant formulation of [10, Proof of Proposition 4.1, Step 2]. This result will also be
useful later.

Lemma B.5. For every c < 1 there is δ > 0 such that the following holds:
Let u solve (B.4) with obstacle φ, and assume that:

i) φ(0) = φ′(0) = 0 and |φ′′| ≤ δ;
ii) u ≤ δ in {x2 = 0} ∩B1, and |∂2u| ≤ θ + δ|x2| in B1;
iii) there is ẑ ∈ (− 1

100 ,
1

100) satisfying u(ẑ, 0) > 0.

Then
∂2u ≥ cθ in

{
x2 =

1
100 , |x1| ≤ 1/2

}
.

Proof. Up to considering u(x)− φ(x1) instead of u, we can assume that u solves
∆u = f(x1) R2 \ {x2 = 0},
|∂2u| ≤ θ {x2 = 0},
∂2u = θ signu {u ̸= 0} ∩ {x2 = 0},

where f(x1) = −φ′′(x1) satisfies |f(x1)| ≤ δ, u(0) = 0, u ≤ 2δ in {x2 = 0} ∩B1, and

(B.6) (−r, r) ∩ {u > 0} ≠ ∅ and (−r, r) ∩ {u < 0} ≠ ∅ for all r > 0.

Given M ≥ 1 we define

V (x1, x2) := u(x1, x2)−Mδ(x1 − ẑ)2 + (M + 1/2)δx22 − (θ − δ)x2,

and let Γ := [−1, 1]× [0, η], where η > 0 is small enough (for instance, η = 1
100 will work).

Since
∆V = ∆u+ δ ≥ 0 in Γ,

by the maximum principle there is (x̄1, x̄2) ∈ ∂Γ such that

(B.7) V (x̄1, x̄2) = max
∂Γ

V = max
Γ

V ≥ V (ẑ, 0) = u(ẑ, 0) > 0.

Step 1. Let us show that x̄2 = η and |x̄1| ≤ 1/2, providedM is (universally) large enough.
We argue by contradiction, splitting the proof into several cases.
• x̄2 = 0. In this case we have

0 ≥ ∂2V (x̄1, 0) = ∂2u(x̄1, 0)− θ + δ,

hence ∂2u(x̄1, 0) ≤ θ− δ < θ. This implies u(x̄1, 0) ≤ 0, which yields V (x̄1, 0) = u(x̄1, 0)−
Mδ(x̄1 − ẑ)2 ≤ 0, contradicting (B.7).
• |x̄1| ≥ 1/2. Since

0 < V (x̄1, x̄2) = u(x̄1, x̄2)−Mδ|x̄1 − ẑ|2 + (M + 1/2)δx̄22 − (θ − δ)x̄2,

recalling that M ≥ 1 and x̄2 ≤ η = 1
100 we have

u(x̄1, x̄2) >
M

5
δ − (M + 1/2)δx̄22 + (θ − δ)x̄2 ≥

M

10
δ + θx̄2.

On the other hand, since |∂2u| ≤ θ + δ|x2| and u ≤ 2δ in {x2 = 0} ∩B1, we get

u(x̄1, x̄2) ≤ u(x̄1, 0) + θx̄2 + δ
x̄22
2

≤ (2 + η2/2)δ + θx̄2,

which is impossible for M large enough.
Step 2. Let us conclude the proof. From Step 1 we have x̄2 = η and |x̄1| ≤ 1/2.
Moreover, (B.7) gives

0 ≤ ∂2V (x̄1, η) = ∂2u(x̄1, η) + 2η(M + 1/2)δ − (θ − δ),

hence

(B.8) θ − ∂2u(x̄1, η) ≤ Cδ.

By assumption the function θ+2δη−∂2u is harmonic and positive in (−1, 1)×(0, 2η). Thus,
by Harnack inequality, there exists C > 0 such that, setting Γ′ = [−1/2, 1/2]× [η/2, 3η/2],
we have

sup
Γ′

(
θ + 2δη − ∂2u

)
≤ C inf

Γ′

(
θ + 2δη − ∂2u

)
.
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Since (x̄1, η) ∈ Γ′, by the equation above and (B.8) we have

sup
Γ′

(
θ + 2δη − ∂2u

)
≤ Cδ,

therefore

∂2u ≥ θ − Cδ > cθ in
{
x2 =

1
100 , |x1| ≤ 1/2

}
for δ small enough, as we wanted. □

Proof of Proposition B.4. We argue by contradiction, assuming that x0 = 0 is a two-phase
point. Up to subtracting φ(0) + φ′(0)x1, we can assume that φ(0) = φ′(0) = 0.
Step 1. Let δ > 0 be given by Lemma B.5 with c = 1/2. Let us show that |u(·, 0)| ≤ rδ
in (−r, r) for all r > 0 small enough.

Assume that the claim does not hold. Then, up to changing the sign of u, there exists
a sequence xk → 0 such that u(xk, 0) ≥ δ|xk|. We can also assume that xk > 0 infinitely
many times.
Step 1a. We show that there is x̄ > 0 such that

(B.9) u(x, 0) ≥ 1

2
δ|x| > φ(x) for 0 < x < x̄.

To show this, first of all notice that

(B.10) ∂11u(·, 0) ≥ −C in {u(·, 0) > φ} and ∂11u(·, 0) ≤ C in {u(·, 0) < φ}.

Indeed, by (B.3) we have |∂2u| ≤ θ + Cx2 with equality in {x2 = 0} ∩ {u > φ}, hence
∂22u ≤ C in {x2 = 0} ∩ {u > φ} and by harmonicity we find ∂11u(·, 0) ≥ −C on this set.
Similarly, ∂11u(·, 0) ≤ C on {u < φ} ∩ {x2 = 0}, thus proving (B.10).

Thus, the function v(x) := u(x, 0)+ C
2 x

2 is convex in {u > φ} for some C > 0. Let 0 ≤
yk < xk be such that u(yk, 0) = φ(yk) but u(·, 0) > φ in (yk, xk). Since φ′(0) = φ(0) = 0
we have φ(x) ≤ δ|x|/4 for |x| small enough, and in particular it is true at yk for k ≫ 1.
Hence, the convexity of v in (yk, xk + h) implies

u(xk + h, 0) +
C

2
(xk + h)2 = v(xk + h) ≥ v(xk) + h

v(xk)− v(yk)

xk − yk

= u(xk, 0) +
C

2
x2k + h

u(xk, 0) +
C
2 x

2
k − φ(yk)− C

2 y
2
k

xk − yk

≥ δxk +
C

2
x2k + h

δxk +
C
2 x

2
k −

δ
4xk −

C
2 y

2
k

xk

≥ δxk +
3

4
hδ ≥ 3

4
δ(xk + h)

for any h > 0. This implies that, for k ≫ 1 and h > 0 universally small, as long as
u(·, 0) > φ we have

u(xk + h, 0) ≥ 3

4
δ(xk + h)− C

2
(xk + h)2 ≥ 1

2
δ(xk + h) > φ(xk + h).

This implies that actually u cannot touch φ again on an interval (xk, xk + h0). Thus,
letting k → ∞ we obtain (B.9) with x̄ = h0.
Step 1b. We show that there are ε, x̄′ > 0 such that

(B.11) u(x, 0) ≤ −ε|x| < φ(x) for − x̄′ < x < 0.

Notice that it is enough to show that there is a sequence yk → 0 (yk < 0 by Step 1)
such that u(yk, 0) < −ε′|yk| for some ε′ > 0, since if this holds then we can argue as in
Step 1 to prove (B.11), using the second inequality in (B.10).

Assume by contradiction that u(·, 0) ≥ −o(x) as x→ 0. Let us show that, up to passing
to a sequence, ur :=

1
ru(r·) → q locally uniformly in R2, where q ∈ Lip(R2) satisfies:

i) q(0) = 0 and q(x, 0) ≥ δ
2x for x > 0;

ii) q − θx2 solves (A.1) in R2 with obstacle φ ≡ 0.
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Notice that if this holds then we have proven Step 1b, since this contradicts the C1

regularity of solutions of the thin obstacle problem (see Lemma A.2).
Since u is Lipschitz in B1/2 (as follows from (B.3) and (B.5)) there is q ∈ Lip(R2) such

that, up to passing to a sequence, ur → q locally uniformly in R2; by uniform convergence
we have q(0) = 0, and since u(x, 0) ≥ −o(x) as x→ 0 we obtain q(·, 0) ≥ 0 in R. Moreover,
ur solve (B.4) in B1/r with obstacle φr := 1

rφ(r·). Since φ(0) = φ′(0) = 0 we have that

φr → 0 locally uniformly in R2.
Let us check that q − θx2 solves (A.1) with obstacle φ ≡ 0. Since ∆(ur − θx2) = 0

in R2 \ {x2 = 0}, the same is true for q − θx2. Moreover, since |∂2ur| ≤ θ + Cr|x2| in
B1/2r, letting r → 0 we find ∂2(q − θx2) ≤ 0 in R2. Finally, if q(x) − θx2 > 0 for some
x ∈ {x2 = 0} then ur > φr in Bδ(x) ∩ {x2 = 0} for r small enough (recall that φr → 0
locally uniformly in R2). Hence ∂2ur = θ in Bδ(x) ∩ {x2 = 0} for r small enough, so that
∂2(q − θx2) = 0, as we wanted. This concludes the proof of Step 1b.
Step 1c. We show that eqs. (B.9) and (B.11) contradict the Lipschitz regularity of u.

From the previous steps there exists r̄ > 0 small such that u(·, 0) > φ in {0 < x < r̄}
and u(·, 0) < φ in {−r̄ < x < 0}. Thus, setting

µ := H1 {x2 = 0, x1 > 0} −H1 {x2 = 0, x1 < 0},

the function ū := 1
r̄u(r̄·) ∈ Lip(B1) solves, in the distributional sense,

∆ū = θµ in B1.

Defining the function

w :=
θ

2π
log | · | ∗ µ,

we have that, for x ∈ R,

w(x, 0) =
θ

2π
log | · | ∗ (χ(0,1) − χ(−1,0))(x),

therefore

(B.12) ∂1w(x, 0) =
θ

2π

(
log | · | ∗ (2δ0 − δ1 − δ−1)

)
(x) =

θ

2π
log

x2

|x− 1||x+ 1|
.

In particular w is not Lipschitz at 0, and since ū ∈ Lip(B1), also w− ū is not Lipschitz at
0. This is however a contradiction, since w − ū is harmonic and hence smooth in B1.
Step 2. We reach a contradiction, thus concluding the proof.

By Step 1 there is r̄ > 0 small enough such that ur := 1
ru(r·) satisfies |ur| ≤ δ in

B1 ∩ {x2 = 0} for all 0 < r < r̄. We can also assume that r is small enough so that
|φ′′

r | ≤ δ and |∂2ur| ≤ θ + δ|x2|. Indeed, since ur solves (B.4) with obstacle φr := 1
rφ(r·),

we can choose r sufficiently small so that |φ′′
r | = |rφ′′(r·)| ≤ δ; also, by (B.3), |∂2ur| ≤

θ + Cr|x2| ≤ θ + δ|x2| for r small enough.
Since we are assuming that 0 is a two phase point for u, there are points ẑ+, ẑ− with

|ẑ+|, |ẑ−| ≤ 1
100 such that ur(ẑ+, 0) > 0 and ur(ẑ−, 0) < 0. Thus we can apply Lemma B.5

to u and −u with c = 1/2 to find

∂2u ≥ θ
2 and ∂2u ≤ − θ

2 in {x2 = 1
100 , |x1| ≤ 1/2},

reaching a contradiction. □

Corollary B.6. Let u be a solution of (B.2) with φ ∈ C1,1
loc (−1, 1). Then u(·, 0) ∈

C
1,1/2
loc (−1, 1).

Proof. Given a point x0 in the interior of K, by Proposition B.4 there is r > 0 such that
either u(·, 0) ≥ φ in (x0 − r, x0 + r) or u(·, 0) ≤ φ in (x0 − r, x0 + r).

With no loss of generality, we can assume that we are in the first case. Then u− θ|x2|
solves (A.1) in Br(x0) with a C1,1 obstacle. This implies u(·, 0) ∈ C1,1/2(x0 − r, x0 + r)

(see Lemma A.2). If u(·, 0) ≤ φ then similarly we find that u(·, 0) ∈ C1,1/2(x0 − r, x0 + r).
This concludes the proof. □
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B.2. Generic regularity. We show generic regularity for a strictly monotone family of
solutions of (B.2). More precisely, we consider a continuous family of solutions {ut}t∈[−1,1]

of (B.2) in B2, strictly increasing in the following sense:

(B.13)

{
ut+ε ≥ ut in ∂B2,

ut+ε ≥ ut + ηε in ∂B2 ∩ {|x2| > 1},

for some η > 0 and every −1 ≤ t < t+ ε ≤ 1.
Given x0 ∈ {u(·, 0) = φ} we say that x0 ∈ Sing+(u) (respectively x0 ∈ Sing−(u)) if

u(·, 0) ≥ 0 (resp. u(·, 0) ≤ 0) in a neighbourhood of x0 and it is a singular point (in the
sense of (A.2)) for the function u− θ|x2| (resp. −u− θ|x2|). We say that x0 ∈ Sing(u) if
x0 ∈ Sing+(u) ∪ Sing−(u), or if x0 ∈ {±1} and u(x0, 0) = φ(x0).

Theorem B.7. Assume φ ∈ C2,α and let ut be a family of solutions of (B.2) satisfy-
ing (B.13). Then, for a.e. t ∈ [−1, 1],

i) Sing(ut) ∩ [−1, 1] = ∅;
ii) ∂{ut(·, 0) ̸= φ} ∩ [−1, 1] is a finite set.

Proof. We divide the proof in 3 steps.
Step 1. We show that there are at most 2 values of t such that {ut = φ} ∩ {±1} ≠ ∅.

More precisely, we show that for each point a ∈ {±1} there is at most one value of t
such that ut(a, 0) = φ(a). Since ∂K is a finite set, this will prove Step 1.

We argue by contradiction, assuming that there are two values t > t′ such that ut(a, 0) =
ut′(a, 0) = φ(a).
We can translate the problem so that a = 0 and the interval [−1, 1] becomes K = [−2, 0].
Since ut ≥ ut′ and both are harmonic in R2 \ K, by the strong maximum principle the
function w := ut − ut′ solves

∆w = 0 in Bδ \ {x2 = 0, x1 ≤ 0},
w ≥ 0 in Bδ,

w > 0 in Bδ \ {x2 = 0, x1 ≤ 0}

and w(0, 0) = 0. It follows that there is ε > 0 sufficiently small such that w ≥ εU0 in Bδ/4,

where U0(ρ, θ) = ρ1/2 cos θ/2.
On the other hand, by (B.3) we have w(0, x2) ≤ Cx2 for x2 small enough. This implies

|x2|1/2 ∼ U0(0, x2) ≤ Cx2 for x2 small enough, which is a contradiction.
Step 2. We show that if ut is a continuous family of solutions of (B.4), there is r̄ > 0
such that for all |t| ≤ 1 and all x0 ∈ Sing+(ut) we have

ut(x, 0) ≥ 0 for all x ∈ (x0 − r̄, x0 + r̄).

We claim that there is r̂ > 0 such that for every x, y such that ut(x, 0) > φ(x) and
ut(y, 0) < φ(y) for some t ∈ [−1, 1], then |x − y| > r̂. Notice that, thanks to regu-
larity for (A.1), this claim yields a priori estimates for ∥∂1u∥C0,1/2 , from which Step 2
immediately follows.

To prove the claim, assume by contradiction there are xk ∈ ∂{utk(·, 0) > φ} with
yk ∈ {utk(·, 0) < φ} such that |yk − xk| < 1/k. Also, up to a subsequence, tk → t0 and
yk, xk → x0.

Consider the rescaled functions utk,r :=
1
rutk(x0+ r·) with r sufficiently small but fixed.

Since this family is compact in the C0
loc topology, for r small enough and k ≫ 1 all the

functions utk,r and −utk,r satisfy the assumptions of Lemma B.5 with c = 1/2. Hence, we
deduce that

∂2utk ≥ θ

2
and ∂2utk ≤ −θ

2
in [−r/2, r/2]×

{
r

100

}
,

for k ≫ 1, a contradiction.
Step 3. We show H1({t : Sing+(ut) ̸= ∅}) = 0.

Firstly, by Step 1 we have ut(·, 0) ̸= φ in {±1} for all but 2 values of t. Thus, it is
sufficient to show the result assuming that

⋃
t{ut(·, 0) = φ} is compactly supported inside

(−1, 1).
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Now, assume by contradiction that H1({t : Sing+(ut) ̸= ∅}) > 0. Then there must be a
point t0 ∈ {t : Sing+(ut) ̸= ∅} with density 1. Given r̄ as in Step 2, Lemma A.4 implies
that ⋃

t0−δ<s<t0+δ

Sing+(us) ⊂ {y : dist(y,Sing+(ut0)) < r̄/2}

for some δ > 0. Since Sing+(ut0) is compact and t0 has density 1, we can find x0 ∈
Sing+(ut0) such that

H1
(
{s ∈ (t0 − δ, t0 + δ) : Sing+(us) ∩ (x0 − r̄/2, x0 + r̄/2) ̸= ∅}

)
> 0.

Since the functions vs := us − θ|x2| are a strictly monotone continuous family of solutions
of (A.1) in Br̄ for s > t0 − δ, we can apply Theorem A.3 to find a contradiction. □

Lemma B.8 (Convergence of singular points). Let uk, u solve (B.4) in B1 with obstacles
φk, φ ∈ C1,1. Assume that:

i) uk → u, φk → φ uniformly, and supn ∥φk∥C1,1(−1,1) < +∞;
ii) there are points xk ∈ Sing(uk) with xk → x∞ ∈ B1/2.

Then x∞ ∈ Sing(u).

Proof. We can assume without loss of generality that xk ∈ Sing+(uk). Arguing as in Step 2
of the proof of Theorem B.7 we find that for k large enough uk(·, 0) ≥ 0 in (x∞− r̄, x∞+ r̄)
for some r̄ independent of k. By uniform convergence the same is true for u. Thus, for
k large enough the functions uk − θ|x2| solve (A.1) in Br̄(x), and Lemma A.4 implies
x∞ ∈ Sing+(u). □

Appendix C. Riesz potentials

Given an integer d ≥ 1 and a potential V : Rd → [−∞,+∞), our strategy also applies
to minimisers of the energies

E(µ) =
¨

Rd×Rd

g(x− y) dµ(x) dµ(y) + 2

ˆ
Rd

V (x) dµ(x),

where g is as in (1.6).
Existence and uniqueness of minimising measures hold under mild assumptions on V ,

see [27, Chapter 2]. Similarly to Section 2.1, given µV the minimizing measure, follow-
ing [27, Proposition 2.15 and Section 2.4] we associate the function

hµV (x) := g ∗ µV (x), x ∈ Rd.

Then, there is a constant c ∈ R such that the function uµV := hµV − c solves

(C.1)


uµV ≥ −V in Rd,

uµV = −V in supp(µV ),

(−∆)
d−σ
2 uµV = cd,σµV in Rd,

for constants cd,σ. The converse is also true, namely a probability measure µ is minimising

if there is a solution uµ of (C.1) with (−∆)
d−σ
2 uµ = cd,σµ.

Also in this context, if uµV is a regular solution of (C.1) (in a sense analogous to
Definition A.1) then µV satisfies condition (Aσ). Thus, thanks to [11, Theorem 1.1] (see
also [15, 16]), the same strategy adopted to prove Theorem 1.1 yields the following:

Theorem C.1. Given an integer d ≥ 1, a real number σ ∈ (d − 2, d), a potential V ∈
C4,α
loc (R

d) for some α ∈ (0, 1), and γ ∈ R, consider the family Vγ,s := sγσ−1V (sγ ·), s > 0.
Let µVγ,s denote the associated minimizing probabilities, and assume that one of these
holds:

(a) d ≤ 2;
(b) d ≤ 3 and σ ≥ d− 1.

Then Vγ,s is regular for a.e. s > 0.
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Remark C.2. Thanks to [19, 1], higher regularity of the potential V yields higher regularity
on the density of µVγ,s and the geometry of the support. More precisely, if V is a regular

potential of class Ck+ d−σ
2

+α(Rd) for k > 2 and α ∈ (0, 1) with α ± d−σ
2

̸∈ N,8 then µV is
supported over finitely many disjoint compact sets {Kj}1≤j≤M ⊂ Rd, with ∂Kj a (d− 1)-

dimensional manifold of class Ck,α. Also, the function QV in (1.7) is of class Ck−1,α(Kj)
in a neighborhood of ∂Kj .
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