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Abstract. To generalize the notion of distribution function to dimension d ≥ 2, in the recent
papers [6, 12] the authors propose a concept of center-outward distribution function based on
optimal transportation ideas, and study the inferential properties of the corresponding center-
outward quantile function. A crucial tool needed in [12] to derive the desired inferential properties
is the continuity and invertibility for the center-outward quantile function outside the origin, as
this ensures the existence of closed and nested quantile contours. The aim of this paper is to
prove such a continuity and invertibility result.
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1. Introduction

Starting with dimension d = 2, the traditional definition of a distribution function, based on
marginal orderings, is unsatisfactory on many counts. Indeed, the ranks induced by its empirical
counterpart do not enjoy the properties that make traditional (univariate) ranks a successful tool
of inference, while the corresponding quantile function—in the Lebesgue-absolutely continuous
case, the inverse of the distribution function—does not exhibit the equivariance behaviour one is
expecting from a quantile; see [7, 12]. This fact, which results from the absence of a canonical
ordering of Rd, has been recognized long ago, and a number of ingenious alternative definitions—
all of them reducing, for dimension d = 1, to the traditional univariate definition—have been
considered in the statistical literature. None of them, however, is preserving the inferential
properties of their univariate counterparts; see [12] for a survey.

Motivated by this lack of a statistically sound definition, first in [6] and then in [12], the
authors proposed a new concept of center-outward distribution function based on optimal trans-
portation ideas. The starting point is the fact that, denoting by F the traditional distribu-
tion function associated with an absolutely continuous distribution P on the real line (namely,
F (z) = P((−∞, z], z ∈ R), then 2F − 1 is pushing P forward to the uniform distribution U1 over
[−1, 1], that one can interpret as the unit ball in R. As the map 2F − 1 is monotone increasing, a
classical result in optimal transportation theory [13] implies that this map is the unique gradient
of a convex function mapping P onto U1. Note that, whereas F (z) = P((−∞, z]) yields the prob-
ability of nested halflines of the form (−∞, z], the map 2F − 1 is related to intervals of the form
[z−, z+] with F (z−) + F (z+) = 1, whence the terminology center-outward distribution function.

The definition of a center-outward distribution function as the unique gradient of function
(denoted as F±) pushing P to the uniform measure over the unit ball readily extends to absolutely
continuous distributions over Rd; here, with the name uniform measure over the unit ball, we mean
the measure Ud obtained by considering the product of the uniform measure over the unit sphere

1



2 A. FIGALLI

and the uniform over the unit interval [0, 1]. In other words, by the change of variable fomula,

(1.1) Ud = ud(x)dx with ud(x) =
cd
|x|d−1

1B1(x),

where cd = 1/Hd−1(Sd−1) is a dimensional normalizing constant (here Hd−1(Sd−1) denotes the
area of the (d− 1)-dimensional unit sphere). The corresponding center-outward quantile function
is then defined as the inverse Q± := F−1± . The properties of F± have been studied, under the
assumption of P being compactly supported, in [6]; such assumption has then been relaxed in [12],
where it is shown that F± and Q± (and their empirical counterparts), contrary to all previous
concepts that have been proposed in the literature, do enjoy the inferential properties expected
from distribution and quantile functions in Rd. We refer to [12] for more details.

It is important to observe that, in order to derive these inferential properties, a fundamental
fact needed in [12] is the fact that Q± is a homeomorphism from B1 \{0} onto its image. Indeed,
this ensures the existence of closed and nested quantile contours, obtained as the images under
Q± of the nested hyperspheres {∂Br}0<r<1. The objective of this paper is to prove this continuity
property needed in [12]. We note that, although several fundamental results have been obtained
in the last 25 years on the regularity of optimal transport maps (see [8, 9] for a survey), the
proof of the above-mentioned property is rather delicate, due to the fact that the density of Ud

is singular at the origin whenever d ≥ 2.
We recall that, given two absolutely continuous probability densities on Rd, there exists a

unique transport map that pushes forward one density onto the other and which coincides almost
everywhere with the gradient of a convex function (see [13]). We shall refer to this map as the
optimal transport map, being implicit that this is the optimal transport map for the quadratic
Euclidean cost (see [8] for more details).

Here is our main result.1

Theorem 1.1. Let Ud be the uniform measure on B1 (see (1.1)), and let P = p(y)dy be a
probability measure on Rd satisfying 0 < λR ≤ p ≤ ΛR inside BR for all R <∞. Let Q± = ∇ϕ :
B1 → Rd be the unique optimal transport map from Ud to P. Then Q± is a homeomorphism from
B1 \ {0} onto Rd \K, where K is a compact convex set of Lebesgue measure zero.

In addition:

(a) If p ∈ Ck,αloc (Rd) for some k ≥ 0 and α ∈ (0, 1), then Q± : B1 \ {0} → Rd \ K is a

diffeomophism of class Ck+1,α
loc inside B1 \ {0}, and

(1.2) det
(
∇Q±(x)

)
=

ud(x)

p
(
Q±(x)

) ∀x ∈ B1 \ {0}.

(b) If p is locally analytic, then Q± : B1 \ {0} → Rd \K is locally an analytic map.
(c) If d = 2 then K = {Q±(0)} and Q± is a homeomorphism from B1 onto R2.

Remark 1.1. When P = p(|y|)dy has a radial density, then also the map Q± is radial (this
follows from the uniqueness of the optimal transport map) and the above result is elementary.
Indeed, in this case one can explicitly write the optimal map in terms of distribution function,
and the explicit formula is given by

Q±(x) = q±(|x|) x
|x|
,

1Here and in the sequel, |E| stands for the Lebesgue measure of a Borel set E. Also, given k ≥ 0 and α ∈ (0, 1),

we say that a function f belongs to Ck,αloc (Rd) if f ∈ Ck(Rd) and its k-th derivative is locally α-Hölder continuous,
namely

∀R > 0, sup
x 6=y, x,y∈BR

|Dkf(x)−Dkf(y)|
|x− y|α <∞.
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where q± : [0, 1]→ [0,∞) is implicitly defined via the identity

s = Hd−1(Sd−1)
∫ q±(s)

0
rd−1p(r) dr ∀ s ∈ (0, 1).

Hence, in this very particular case, the conclusions of Theorem 1.1 hold with K = {0}, as can
easily be checked by direct computations.

Remark 1.2. As shown in point (c) of Theorem 1.1, in the case d = 2 the map Q± is a
homeomorphism up to the origin. It is a well-known fact that the Monge-Ampère equation
behaves better in dimension two than in higher dimensions (see for instance [9, Sections 2.5 and
3.2]), and we do not expect Theorem 1.1(c) to be true in dimension d ≥ 3. However, finding a
counterexample would not be relevant to the problem under investigation (namely, the existence
of quantile contours as the images of the sphere {∂Br}0<r<1 under Q±), so we shall not investigate
this question here.

2. Proof of Theorem 1.1

To prove our main theorem, we first introduce some notation: given a convex function ψ :
Rd → R ∪ {+∞}, the Monge-Ampère measure µψ associated to ψ is defined by

µψ(A) = |∂ψ(A)| for every Borel set A ⊂ Rn,

where

∂ψ(A) :=
⋃
x∈A

∂ψ(x)

and ∂ψ(x) denotes the subdifferential of ψ at x, that is

∂ψ(x) :=
{
p ∈ Rn : ψ(z) ≥ ψ(x) + 〈p, z − x〉 ∀ z ∈ Rn

}
.

Note that ∂ψ(x) is a convex set for any x ∈ Rd. Also, when ψ is of class C2, the Monge-Ampère
measure of ψ is given by det(D2ψ)dx (see [9, Example 2.2]).

Proof of Theorem 1.1. First of all we note that, since the optimal map Q± = ∇ϕ is unique a.e.
inside B1, the function ϕ is unique inside B1 up to an additive constant. In particular, with no
loss of generality we can set ϕ(0) = 0.

Outside B1 we simply extend ϕ to be identically equal to +∞ (note that this preserves the
convexity of ϕ), and we consider the Legendre transform of ϕ, namely

(2.3) ϕ∗(y) := sup
x∈Rn

{
〈y, x〉 − ϕ(x)

}
= sup

x∈B1

{
〈y, x〉 − ϕ(x)

}
∀ y ∈ Rd

(the second equality follows from the fact that ϕ = +∞ on Rn \B1). It is well known that ∇ϕ∗
is the optimal transport map from P onto Ud, and that ∇ϕ∗ = (∇ϕ)−1 a.e. (see for instance [1,
Section 6.2.3 and Remark 6.2.11]). In particular,

(2.4) |∇ϕ∗| ≤ 1 a.e. in Rd.

Note that, because Ud is supported in B1 which is a convex set, it follows by [4] (see also Step 1 in
the proof of [9, Theorem 4.23]) that ϕ∗ is an Alexandrov solution to the Monge-Ampère equation
inside Rd, namely (recall (1.1))

(2.5) µϕ∗(A) =

∫
A

p(y)

ud(∇ϕ∗(y))
dy =

1

cd

∫
A

p(y)|∇ϕ∗(y)|d−1 dy for all A ⊂ Rd Borel.

Let K := ∂ϕ(0), and observe that K is a closed convex. Also, since ϕ is locally Lipschitz in a
neighborhood of the origin (being a finite convex function inside B1), it follows that K is bounded.
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Consider an arbitrary compact set C ⊂ Rd \K. First of all, we note that ∂ϕ∗(C) is a compact
set (see [9, Lemma A.22]). Also, thanks to (2.4) it follows by [9, Corollary A.27] that

(2.6) ∂ϕ∗(C) ⊂ ∂ϕ∗(Rd) ⊂ B1.

Furthermore, because ∂ϕ and ∂ϕ∗ are inverse to each other (see [9, Equation (A.20)]), noticing
that C ∩ ∂ϕ(0) = C ∩K = ∅ we deduce that ∂ϕ∗(C) ∩ {0} = ∅.

In conclusion, this proves that ∂ϕ∗(C) is a compact set satisfying ∂ϕ∗(C) ⊂ B1 \ Bρ, for some
ρ > 0 depending on C. In particular, this implies that ρ ≤ |∇ϕ∗(y)| ≤ 1 for a.e. y ∈ C. Hence,
recalling that p is locally bounded away from zero and infinity, thanks to (2.5) we obtain

(2.7) mC |A| ≤ µϕ∗(A) ≤MC |A| for all A ⊂ C ⊂⊂ Rd \K Borel,

for some constants 0 < mC ≤MC .
In order to apply the regularity theory for the Monge-Ampère equation from [9, Chapter 4],

we first need to prove that ϕ∗ is strictly convex inside Rd \ K. Assume this is false. Then
there exists ŷ ∈ Rd \ K and q̂ ∈ ∂ϕ∗(ŷ) ∈ B1 such that, if we consider the affine function
`(z) := ϕ∗(ŷ) + 〈q̂, z − ŷ〉, the convex set Σ := {ϕ∗ = `} is not a singleton.

Notice that, thanks to (2.7), [9, Theorem 4.10] applies inside any compact subset of Rn \K,
so the convex set Σ cannot have any exposed point in Rd \K. Hence, the only possibilities are
the following:
(a) either Σ contains an infinite half-line L going from K to infinity;
(b) or Σ contains an infinite line.

In case (b), [9, Lemma A.25] yields that ∂ϕ∗(Rd) is contained inside a hyperplane, contradicting
the fact that ∇ϕ∗ transports P onto the measure Ud which is supported on the whole unit ball.

We now need to exclude that case (a) occurs. The argument in this case is inspired by [10].
With no loss of generality, up to a translation and rotation, we can assume that 0 ∈ K and that
L = {te1 : t ≥ 0}. By the monotonicity of the subdifferential of convex functions it follows that,
given two points y1 and y2,

(2.8) 〈q2 − q1, y2 − y1〉 ≥ 0 ∀ qi ∈ ∂ϕ∗(yi), i = 1, 2.

Since ϕ∗ = ` on L, it follows that q̂ = ∇` ∈ ∂ϕ∗(q) for all q ∈ L. Hence, applying (2.8) with
y1 = te1 ∈ L, q1 = q̂, and y2 = y an arbitrary point in Rd, we get

〈q − q̂, y − te1〉 ≥ 0 ∀ y ∈ Rd, q ∈ ∂ϕ∗(y), t ≥ 0.

Letting t→ +∞ in the above inequality we deduce that

〈q − q̂, e1〉 ≤ 0 ∀ y ∈ Rd, q ∈ ∂ϕ∗(y).

Thus, we proved that ∂ϕ∗(Rd) is contained inside the half-space

H := {q : 〈q − q̂, e1〉 ≤ 0}.

Recalling (2.4), this implies that ∇ϕ∗ takes values inside H ∩ B1 a.e. Since (∇ϕ∗)#P = Ud and
ud is strictly positive inside B1, it follows that H ∩ B1 = B1, which is possible if and only if
q̂ = e1 ∈ ∂B1 (recall that q̂ ∈ B1, see (2.6)).

Let θ > 0 small, and consider the cone

Cθ :=
{
y ∈ B1 : |y| ≤ (1 + θ)〈y, q̂〉

}
.

Since 0 ∈ L we have q̂ = ∇` ∈ ∂ϕ∗(0), so applying (2.8) with y1 = 0 and q1 = q̂ ∈ ∂B1, we obtain

〈∇ϕ∗(y)− q̂, y〉 ≥ 0 ∀ y where ϕ∗ is differentiable.

Combining this inequality with the definition of Cθ and (2.4), we deduce that

(2.9) ∇ϕ∗(y) ∈ Dθ :=
{
x ∈ B1 : 〈x− q̂, q̂〉 ≥ −Cdθ|x− q̂|

}
for a.e. y ∈ Cθ,
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where Cd > 0 is a dimensional constant (cp. [10, Figure 1]). Because p ≥ λ1 inside Cθ ⊂ B1 and
ud ≤ 2cd inside Dθ for θ small enough, it follows by the transport condition (∇ϕ∗)#P = Ud and
by (2.9) that

2cd|Dθ| ≥
∫

Dθ

ud(x) dx =

∫
(∇ϕ∗)−1(Dθ)

p(y) dy ≥
∫

Cθ

p(y) dy ≥ λ1|Cθ|.

Since |Cθ| ∼ θn−1 and |Dθ| ∼ θn+1, we obtain a contradiction for θ small enough. This proves
that also case (a) is impossible, thus ϕ∗ is strictly convex inside Rd \K.

Since ϕ∗ is a strictly convex Alexandrov solution of (2.7), it follows by [2, 3, 4] (see also [9,
Corollary 4.21]) that ϕ∗ is of class C1,α inside Rd \ K. In particular, ∇ϕ∗ is continuous inside
Rd \K.2 Since, by the strict convexity of ϕ∗ inside Rd \K, ∇ϕ∗ is an injective continuous map
from Rd \ K onto B1 \ {0}, we deduce that ∇ϕ∗ : Rd \ K → B1 \ {0} is a homeomorphism by
the theorem on the invariance of domain. Recalling that Q± = ∇ϕ = (∇ϕ∗)−1, we conclude that
Q± is a homeomorphism from B1 \ {0} onto Rd \K.

To prove that K has Lebesgue measure zero it suffices to observe that K = (∇ϕ∗)−1({0}), so
by the transport condition (∇ϕ∗)#P = Ud we get∫

K
p(y) dy =

∫
{0}

ud(x) dx = 0.

Since p > 0 we conclude that |K| = 0, as desired.

We now prove the additional statements in the theorem.

• Proof of (a). We note that if p ∈ Ck,αloc (Rd) for some k ≥ 0 and α ∈ (0, 1), then [9,

Remark 4.25] implies that ∇ϕ∗ is a Ck+1,α
loc diffeomorphism from Rd \ K onto B1 \ {0}, hence

Q± : B1 \ {0} → Rd \K is a diffeomophism of class Ck+1,α
loc .

Since Q±|B1\{0} is a C1 diffeomorphim, the validity of (1.2) is classical, and we give here a

short proof for completeness. Since ∇ϕ∗ is of class C1 outside K, it follows by [9, Example 2.2]
and (2.5) that∫

A
det
(
D2ϕ∗(y)

)
dy =

∫
A

p(y)

ud(∇ϕ∗(y))
dy for all A ⊂ (Rd \K) Borel.

By the arbitrariness of A, this yields

det
(
D2ϕ∗(y)

)
=

p(y)

ud(∇ϕ∗(y))
∀ y ∈ Rd \K.

Since Q± = ∇ϕ = (∇ϕ∗)−1, for any x ∈ (∇ϕ)−1(Rd \K) = B1 \ {0} we obtain

det
(
∇Q±(x)

)
= det

(
D2ϕ(x)

)
=

1

det
(
D2ϕ∗(∇ϕ(x))

) =
ud(x)

p(∇ϕ(x))
=

ud(x)

p(Q±(x))
.

This proves (1.2), concluding the proof of (a).

• Proof of (b). It follows by [9, Proposition A.43] that the Monge-Ampère equation is uniformly
elliptic on C2 solutions. Hence, by the classical analytic regularity of solution to uniformly elliptic
PDEs with analytic data [15], if p is locally analytic then so is Q±.

• Proof of (c). We now focus on the case d = 2. In this part we shall use coordinates
x = (x1, x2) and y = (y1, y2) to denote points in R2.

2Actually, since ∂ϕ∗(K) = {0}, it follows by the continuity of the subdifferential (see [9, Equation (A.15)]) that
∇ϕ∗ is continuous on the whole space Rd, with ∇ϕ∗(y) = 0 for all y ∈ K.
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Assume by contradiction that K is not a point. Since K is a compact convex set of Lebesgue
measure zero it must be a segment, say K = [−1, 1] × {0}. With no loss of generality, we can
assume that ϕ(0) = 0. Recalling that K = ∂ϕ(0), this implies that

(2.10) ϕ(x1, x2) ≥ |x1| ∀x = (x1, x2) ∈ R2.

Also, since ϕ : B1 → R is convex, there exists a constant R > 0 such that

(2.11) |∇ϕ(x)| ≤ R ∀x ∈ B1/2.

Now, given δ ∈ (0, 1/4], we define

hδ := ϕ(0, δ), `δ :=
hδ
δ
.

Note that, because ϕ is differentiable in the x2 variable, `δ → 0 as δ → 0.
Given R as in (2.11), we set

Rδ := [−hδ, hδ]× [0, (1 +R)δ].

With this definition, thanks to (2.10) and (2.11) we can apply [11, Lemma 2.3] to deduce that

∂ϕ(Rδ) ⊃ [−1/2, 1/2]×
[
0,

`δ
2(1 +R)

]
.

Since ∇ϕ = Q± is differentiable outside the origin and ∂ϕ(0) = [−1, 1]× {0}, this implies that

(2.12) ∇ϕ(Rδ) ⊃ [−1/2, 1/2]×
(

0,
`δ

2(1 +R)

]
.

Hence, by the transport condition (∇ϕ)#U2 = P and because ∇ϕ(Rδ) ⊂ ∇ϕ(B1/2) ⊂ BR (see
(2.11)), we obtain

(2.13)

∫
Rδ

u2(x) dx ≥
∫ 1/2

−1/2

(∫ `δ
2(1+R)

0
p(y) dy2

)
dy1 ≥

λR`δ
2(1 +R)

,

where we used that p ≥ λR inside BR. Noticing that

u2(x1, x2) =
1

2π

1√
x21 + x22

,

it follows that (recall that hδ
δ = `δ → 0 as δ → 0)∫

Rδ
u2(x) dx =

1

2π

∫ hδ

−hδ
dx1

∫ (1+R)δ

0

dx2√
x21 + x22

=
1

2π

∫ hδ

−hδ
dx1

∫ (1+R) δ
|x1|

0

ds√
1 + s2

≤ CR
∫ hδ

−hδ
log

(
δ

|x1|

)
dx1 = 2CRhδ

(
| log `δ|+ 1

)
,

for some constant CR depending on R. Combining this bound with (2.13), we get

`δ ≤ ĈRhδ| log `δ| ⇒ 1

δ
≤ ĈR| log `δ| = ĈR

∣∣∣∣log
(hδ
δ

)∣∣∣∣ .
Recalling that hδ = ϕ(0, δ) = o(δ), this proves that

ϕ(0, δ) ≤ δe−cR/δ ∀ δ ∈ [0, 1/4],

where cR := 1/ĈR. Analogously, repeating the above argument with hδ = ϕ(0,−δ) we obtain

ϕ(0,−δ) ≤ δe−cR/δ, therefore

ϕ(0, x2) ≤ |x2|e−cR/|x2| ∀x2 ∈ [−1/4, 1/4].
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By the definition of ϕ∗ (see (2.3)), this implies that

ϕ∗(y1, y2) ≥ sup
|x2|≤1/4

{
x2y2 − ϕ(0, x2)

}
≥ sup
|x2|≤1/4

{
x2y2 − |x2|e−cR/|x2|

}
≥ c′R

|y2|∣∣log |y2|
∣∣ ∀ (y1, y2) ∈ R× [−1/2, 1/2]

(2.14)

for some constant c′R > 0.
At this moment one may conclude as follows: by (2.5), the Monge-Ampère measure of ϕ∗ is

bounded from above. So, thanks to (2.14), we can apply [14, Theorem 1.4] to conclude that
K = [−1, 1]×{0} contains the infinite line R×{0}, thus providing the desired contradiction. For
completeness we provide here an alternative self-contained proof, that we believe to have its own
interest.

Consider the sets Uk := [−1/2, 1/2]×[2−(k+1), 2−k] ⊂ R2. By the transport condition (∇ϕ∗)#P =
U2 one has (recall that p ≥ λ1 inside B1)

det
(
D2ϕ∗(y)

)
=

p(y)

u2(∇ϕ∗(y))
= 2π p(y)|∇ϕ∗(y)| ≥ 2πλ1|∇ϕ∗(y)| for a.e. y ∈ Uk.

Hence, arguing as in [5], it follows by the arithmetic-geometric inequality that3

2 · (2πλ1)1/2
∫
Uk
|∇ϕ∗(y)|1/2 dy ≤ 2

∫
Uk

det
(
D2ϕ∗(y)

)1/2
dy

≤
∫
Uk

(
t ∂y1y1ϕ

∗(y) +
1

t
∂y2y2ϕ

∗(y)
)
dy

≤ t
∫
∂Uk

∂y1ϕ
∗(y) ν1 +

1

t

∫
∂Uk

∂y2ϕ
∗(y) ν2 ∀ t > 0,

where ν = (ν1, ν2) is the outer unit normal to ∂Uk. Observe that, since ϕ(0) = 0 and ∂ϕ(0) = K,
it follows that ϕ∗ ≥ 0 and ϕ∗|K = 0. Thus, since K = [−1, 1] × {0} and ϕ∗ is 1-Lipschitz (see
(2.4)),

0 ≤ ϕ∗(y1, y2) ≤ |y2| ∀ y1 ∈ [−1, 1],

and [9, Corollary A.23] applied to the convex function ϕ∗(·, y2) yields

|∂y1ϕ∗(y1, y2)| ≤ 2|y2| ∀ y1 ∈ [−1/2, 1/2].

Thanks to this estimate, since |y2| ≤ 2−k on ∂Uk we can bound∫
∂Uk

∂y1ϕ
∗(y) ν1 ≤ 2 · 2−k

∫
∂Uk
|ν1| = 2−2k,

thus

2 · (2πλ1)1/2
∫
Uk
|∇ϕ∗(y)|1/2 dy ≤ t 2−2k +

1

t

∫
∂Uk

∂y2ϕ
∗(y) ν2 ∀ t > 0.

Note that, by the monotonicity of the gradient of convex functions,

∂y2ϕ
∗(y1, 2

−k) ≥ ∂y2ϕ∗(y1, 2−(k+1)) ∀ y1 ⇒
∫
∂Uk

∂y2ϕ
∗(y) ν2 ≥ 0.

3To rigorously justify the inequalities∫
Uk
∂y1y1ϕ

∗(y) dy ≤
∫
∂Uk

∂y1ϕ
∗(y) ν1,

∫
Uk
∂y2y2ϕ

∗(y) dy ≤
∫
∂Uk

∂y2ϕ
∗(y) ν2,

one can either use that any pointwise pure second derivative of a convex function is bounded from above by
the corresponding distributional derivative, or prove the inequalities for smooth functions and then argue by
approximation.
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Thus, choosing t := 2k
(∫

∂Uk ∂y2ϕ
∗(y)ν2

)1/2
we obtain

(2πλ1)
1/2

∫
Uk
|∇ϕ∗(y)|1/2 dy ≤ 2−k

(∫
∂Uk

∂y2ϕ
∗(y) ν2

)1/2

,

or equivalently
π

2
λ1

(
2k+1

∫
Uk
|∇ϕ∗(y)|1/2 dy

)2

≤
∫
∂Uk

∂y2ϕ
∗(y) ν2.

Summing over k the above inequalities and noticing that the boundary integrals appearing in the
right hand side form a telescopic series, recalling (2.4) we conclude that

(2.15)
π

2
λ1
∑
k≥1

(
2k+1

∫
Uk
|∇ϕ∗(y)|1/2 dy

)2

≤
∫ 1/2

−1/2
∂y2ϕ

∗(y1, 1/2) dy1 ≤ 1.

We now want to obtain a contradiction by showing that the series in the left hand side diverges.
To this aim notice that, by the convexity of ϕ∗ and because ϕ∗|K = 0, (2.14) implies

|∇ϕ∗(y1, y2)| ≥ ∂y2ϕ∗(y1, y2) ≥
ϕ∗(y1, y2)

y2
≥ ĉR
| log y2|

≥ ĉR
k

∀ (y1, y2) ∈ Uk.

Recalling (2.15), we conclude that

1 ≥ π

2
λ1ĉR

∑
k≥1

1

k
= +∞,

a contradiction.
This proves that K = ∂ϕ(0) must be a point, and recalling [9, Lemmata A.21 and A.24] we

obtain that both ∇ϕ and ∇ϕ∗ are continuous, thus Q± : B1 → R2 is a homeomorphism, as
desired. �
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