
ON THE SHAPE OF LIQUID DROPS AND CRYSTALS

IN THE SMALL MASS REGIME
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Abstract. We consider liquid drops or crystals lying in equilibrium under the action of

a potential energy. For small masses, the proximity of the resulting minimizers from the

Wulff shape associated to the surface tension is quantitatively controlled in terms of the

smallness of the mass and with respect to the natural notions of distance induced by the

regularity of the Wulff shape. Stronger results are proved in the two-dimensional case.

For instance, it is shown that a planar crystal undergoing the action of a small exterior

force field remains convex, and admits only small translations parallel to its faces.
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1. Introduction

1.1. The variational problem. Let us consider a liquid drop or a crystal of mass m

subject to the action of a potential. At equilibrium, its shape minimizes (under a volume

constraint) the free energy, that consists of a (possibly anisotropic) interfacial surface

energy plus a bulk potential energy induced by an external force field [11, 27]. Therefore

one is naturally led to consider the variational problem

inf
{

E(E) = F(E) + G(E) : |E| = m
}

. (1.1)

Here, for E ⊂ Rn (n ≥ 2), |E| denotes the Lebesgue measure of E, while F(E) and G(E)

are, respectively, the surface energy and the potential energy of E, that are introduced as

follows.

Surface energy: We are given a surface tension, that is a convex, positively 1-homogeneous

function f : Rn → [0, +∞). Correspondingly we define the surface energy of a set of finite
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perimeter E ⊂ Rn as

F(E) =

∫

∂∗E

f(νE) dHn−1 , (1.2)

where νE is the measure theoretic outer unit normal to E and ∂∗E is its reduced bound-

ary (see section 2.1). The minimization of F under a volume constraint is described in

section 1.2.

Potential energy: The potential is a locally bounded Borel function g : Rn → [0, +∞)

that is coercive on Rn, i.e., we have

g(x) → +∞ as |x| → +∞ . (1.3)

We also assume that

inf
Rn

g = g(0) = 0 . (1.4)

This is done without loss of generality in the study of (1.1), as it amounts to subtract to

the free energy a suitable constant and to translate the origin in the system of coordinates.

The potential energy of E ⊂ Rn is then defined as

G(E) =

∫

E

g(x) dx . (1.5)

Actually one could also allow g to take the value +∞ in order to include a confinement

constraint, since (whenever possible) a minimizer will always avoid the region {g = +∞}.
Observe that, when g is differentiable on the (open) set {g < +∞}, then the energy term

G(E) corresponds to the presence of the force field −∇g acting on E.

In this paper we are concerned with the geometric properties of the minimizers for

the variational problem (1.1), especially in the small mass regime. Our main results are

stated in Theorem 1.1 and Theorem 1.3. We remark that the coercivity assumption (1.3)

excludes from our analysis the gravitational case g(x, y, z) = z in R3 ∩ {z ≥ 0}. We use

this assumption just to trivialize some side issues, such as the existence of minimizers. It

is very likely that our methods could be adapted to also handle the gravitational case,

and other special cases of interest, by exploiting their particular structure.

1.2. Geometric properties of Wulff shapes. In the absence of the potential term (g

constant), volume-constrained minimizers of the surface energy are obtained by transla-

tion and scaling of the open, bounded convex set K known as the Wulff shape of f . The

set K is explicitly given by the formula

K =
⋂

ν∈Sn−1

{x ∈ R
n : (x · ν) < f(ν)} = {x ∈ R

n : f∗(x) < 1} , (1.6)

where we have introduced f∗ : Rn → [0, +∞), defined as

f∗(x) = sup{x · y : f(y) = 1} , x ∈ R
n . (1.7)

The minimality property of K is equivalently expressed by the Wulff inequality

F(E) ≥ n|K|1/n|E|(n−1)/n , (1.8)
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where equality holds if and only if E = x + Kr for some x ∈ Rn. (Here and in the

sequel, we use the notation Kr = rK.) Indeed, the right hand side of (1.8) is equal to

F(Kr) = rn−1F(K), where r = (|E|/|K|)1/n and F(K) = n|K|. It is useful to note that

every open, bounded convex set K containing the origin is, in fact, the Wulff shape for

some surface energy F = FK corresponding to the surface tension f = fK defined as

f(ν) = sup{ν · x : x ∈ K} .

The geometric properties of a Wulff shape are closely related to the analytic properties of

the corresponding surface tension. Two relevant (and somehow complementary) situations

are the following ones:

Uniformly elliptic case: The surface tension f is λ-elliptic, λ > 0, if f ∈ C2(Rn \{0}) and

(∇2f(v)τ) · τ ≥ λ

|v|

∣

∣

∣

∣

τ −
(

τ · v

|v|

)

v

|v|

∣

∣

∣

∣

2

, (1.9)

whenever v, τ ∈ Rn, v 6= 0. Under these hypotheses the boundary of the Wulff shape K is

of class C2 and uniformly convex (see, for instance, [39, page 111]). Moreover, the second

fundamental form ∇νK of K satisfies the identity

∇2f(νK(x))∇νK(x) = IdTx∂K , ∀x ∈ ∂K . (1.10)

(Notice that this makes sense as ∇νK(x)νK(x) = 0 and νK(x) · (∇2f(νK(x))v) = 0 for

every x ∈ ∂K and v ∈ Rn.) This situation includes of course the isotropic case f(ν) = λ|ν|
(λ > 0). Evidently, in the isotropic case the Wulff shape is the Euclidean ball Bλ and the

Wulff inequality reduces to the Euclidean isoperimetric inequality. Isotropic (or smooth,

nearly isotropic) surface energies are used to model liquid drops. Moreover, minima of

the functional (1.1) with f(ν) = λ|ν| appear also in phase transition problems, where

the mean curvature of the interface is related to the pressure or the temperature on it,

represented by g (this is the so-called Gibbs-Thompson relation).

Crystalline case: A surface tension f is crystalline if it is the maximum of finitely many

linear functions, i.e., if there exists a finite set {xj}N
j=1 ⊂ Rn \ {0}, N ∈ N, such that

f(ν) = max
1≤j≤N

(xj · ν) , ∀ ν ∈ Sn−1 . (1.11)

The corresponding Wulff shape is a convex polyhedron. These are the surface tensions

used in studying crystals [48].

1.3. Geometric properties of minimizers. In the presence of the potential term, the

geometric properties of minimizers are much less understood. A noticeable exception to

this claim is the case of sessile/pendant (or otherwise constrained) liquid drops under the

action of gravity. This situation, that has been extensively considered in the literature

(see, for instance, [51, 20, 26]), falls into the variational problem (1.1) for the choice of an

isotropic surface tension energy interacting with a potential g of the form

g(x) = xn if g(x) < +∞ .

However, if we look to (1.1) in its full generality, then the validity of various natural

properties of minimizers is at present unknown. In particular, the following two questions
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were raised by Almgren. The first question is mentioned in [32], while the second one was

communicated to us by Morgan [34].

(Q1) If the potential g is convex (or, more generally, if the sub-level sets {g < t} are

convex), are minimizers convex or, at least, connected?

(Q2) If the surface energy dominates over the potential energy (e.g., if the potential

g is almost constant or if the mass m is sufficiently small), to which extent are

minimizers “close” to Wulff shapes?

Let us point out that a question similar to (Q1) was raised by Almgren and Taylor, asking

whether a crystal lying on a table under gravity is necessarily convex (see [43, Question

8] and also [10, Problem 8.4]).

About the first question, in [6] the authors prove convexity of minimizers in the

two-dimensional case for drops/crystals lying above a table under the action of the grav-

itational potential, while in [49] convexity is used as an assumption for proving (under

additional suitable assumptions) facetting of a minimizing crystal. In [8, 12], by a “level-

sets method” approach combined with convexity results for solutions to elliptic PDEs, the

convexity of minimizers is proved for general convex potentials in the large mass regime.

Finally, in the general planar case, it is shown in [32] that every minimizer is the union of

finitely many connected components lying at mutually positive distance, all having dif-

ferent masses, and each component being convex and minimizing the free energy among

convex sets with its same volume.

With this paper, we mainly aim to stimulate the investigation of the second question,

providing some optimal results, both in the planar case and in general dimension (see,

however, Theorem 4.5, Theorem 4.11 and Appendix B for some results that are not

related to the small mass regime). Our estimates are quantitative, in the sense that we

shall present explicit bounds on the proximity to a Wulff shape in terms of the small mass

m. Moreover, the value of the “critical” mass below, which our estimates hold can be

made completely explicit from our arguments (though there will be no attempt to find

such a explicit expression). Our first main result establishes the connectedness and the

uniform proximity of minimizers to Wulff shapes below a critical mass. This is done for

very general surface and potential energies.

Theorem 1.1. There exist positive constants mc = mc(n, f, g) and C = C(n, f, g) with

the following property: If E is a minimizer in the variational problem (1.1) with mass

|E| = m ≤ mc, then E is connected and uniformly close to a Wulff shape, i.e., there exist

x0 ∈ Rn and r0 > 0, with

r0 ≤ C m1/n2

,

such that

x0 + Ks(m)(1−r0) ⊂ E ⊂ x0 + Ks(m)(1+r0) ,

where we have set

s(m) =

(

m

|K|

)1/n

.
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K

E

Figure 1. In the small mass regime minimizers are connected and uniformly

close to a (properly rescaled and translated) Wulff shape, in terms of the smallness

of the mass. The convexity of these minimizers remains conjectural, with the

exception of the planar case n = 2 and of the λ-elliptic case (in general dimension,

see Theorem 1.3).

If n = 2 then E is a convex set. Moreover, if f is crystalline (or, equivalently, if the Wulff

shape K is a convex polygon), then E is a convex polygon with sides parallel to that of K.

Remark 1.2. The above theorem shows that in the planar crystalline case minimizers

possess a particularly rigid structure. Although our proof cannot be generalized to higher

dimension, this result raises the interesting question whether or not an analogous property

should hold in higher dimension (or at least in the physical case n = 3). The analogous

result in higher dimension should say that, if f is crystalline, then minimizers with suf-

ficiently small mass are polyhedra with sides parallel to that of K. This would show

that a minimizer E can be obtained by K by slightly translating the faces of ∂K, and in

particular the minimization problem (1.1) would reduce to a finite dimensional problem

(the dimension being equal to the number of faces of K).

The main question left open by Theorem 1.1 concerns the convexity of minimizers

at small mass in dimension n ≥ 3. We address this problem in the case of smooth λ-

elliptic surface tensions and of potentials of class C1. In this situation the Wulff shape

turns out to be a uniformly convex set with smooth boundary. Correspondingly we prove

that minimizers at small mass are not merely convex, but that they are in fact uniformly

convex sets with smooth boundary and with principal curvatures uniformly close to that

of a (properly rescaled) Wulff shape. To express this last property we shall make use of

the second order characterization (1.10) of Wulff shapes.

Theorem 1.3. If g ∈ C1
loc(R

n), f ∈ C2,α(Rn\{0}) for some α ∈ (0, 1), and f is λ-elliptic,

then there exist a critical mass m0 = m0(n, g, f) and a constant C = C(n, g, f, α) with

the following property: If E is a minimizer in (1.1) with |E| = m ≤ m0 and if we set

F =

( |K|
m

)1/n

E ,
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then ∂F is of class C2,α and

max
∂F

|∇2f(νF )∇νF − IdTx∂F | ≤ C m2α/(n+2α) . (1.12)

In particular, if m is small enough (the smallness depending on n, f , and g only) then F

(and so E) is a convex set.

Remark 1.4. If g ∈ C1,β
loc (Rn) and f ∈ C3,β(Rn \{0}) for some β > 0, then the conclusion

of Theorem 1.3 can be strengthened to

max
∂F

|∇2f(νF )∇νF − IdTx∂F | ≤ C m2/(n+2) ,

which corresponds to (1.12) with α = 1.

Remark 1.5. At a first sight, Theorem 1.3 could be seen as a slight generalization of the

fact that small liquid drops lying on a table are asymptotically spherical as volume tends

to zero [45], or that in a Riemannian manifold, isoperimetric regions of small volume are

smoothly close to being round balls (this fact was first proved by Kleiner as explained

in [50], see also [29, 38, 35]). However, our result differs from other results of this kind

in the fact of being “quantitative”. Indeed, once uniform C2,α-bounds for minimizers at

small masses are established (see Theorem 4.6), one usually deduces their convexity by a

compactness argument (indeed, as m → 0, minimizers converge to K in the C2-topology,

and the uniform convexity of K entails their convexity). In order to prove Theorem

1.3 one needs a different approach, as the use of compactness arguments rules out the

possibility of finding explicit rates of convergence in terms of m → 0. Observe that also

the constant C appearing in (1.12) is obtained by a constructive method, and so it is a

priori computable.

Remark 1.6. Theorems 1.1 and 1.3 deal with the connectedness and convexity properties

of liquid drops and crystals in the small mass regime. Outside this special regime, one

K

E

Figure 2. In the planar crystalline case, minimizers are convex polygons, with

sides parallel to the polygonal Wulff shape associated with the crystalline surface

tension (picture on the left). The argument used in the proof of this result,

when repeated in three dimensions, seems not sufficient to draw the analogous

conclusions. For example, in the case of a cubic crystal, the two dimensional

argument used in the proof of Theorem 1.1 allows to exclude that a cube with a

rounded vertex is a minimizer, but it is not sufficient to exclude a cube with a

rounded edge (see the picture on the right).
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expects convexity of minimizers provided g is convex (see question (Q1)). As already

mentioned, this was proved in [8, 12] when the mass is large enough. The natural problem

of how to fill the gap in between these two results is open. It seems very likely that new

ideas are needed to deal with this case.

1.4. Organization of the paper. In section 2 we recall some basic definitions about sets

of finite perimeter, and collect some useful facts concerning surface energies and volume

constrained variations.

In section 3 we introduce and study the class of (ε, R)-minimizers of the surface

energy F . Given ε, R > 0, a set of finite perimeter E ⊂ Rn is a (volume constrained)

(ε, R)-minimizer of F provided

F(E) ≤ F(F ) + ε |K|1/n|E|(n−1)/n |E∆F |
|E| , (1.13)

for every set of finite perimeter F ⊂ Rn with

|F | = |E| and F ⊂ IR(E) ,

where IR(E) is the R-neighborhood of E with respect to K, i.e.,

IR(E) = {x ∈ R
n : distK(x, E) < R} , distK(x, E) = inf

y∈E
f∗(x − y) . (1.14)

(In the above definition, neighborhoods are defined in terms of f∗ only to deduce cleaner

estimates.) After discussing the basic regularity properties of (ε, R)-minimizers of F
(Theorem 3.1), we focus on the geometric properties characteristic to the small ε regime.

The L1-proximity (in terms of the smallness of ε) of every (ε, n+1)-minimizer to a properly

rescaled and translated Wulff shape is an almost direct consequence of the main result

in [19] (Theorem 3.2 and Lemma 3.3). In Theorem 3.4 and Corollary 3.5 we pave the way

to the proof of Theorem 1.1 by proving that, in fact, (ε, n + 1)-minimizers are connected

and uniformly close to Wulff shapes. This result may appear to the specialists as a

classical application of standard density estimates combined with the above mentioned

L1-estimate. However, at least to our knowledge, there are no universal density estimates

available for (ε, R)-minimizers, i.e., density estimates independent of the minimizer. This

follows from the fact that, if E is a (ε, R)-minimizer, the class of competitors has to

satisfy the constraint |F | = |E|, and so we are forced to make a mass adjustments which

introduces a dependence on E (see Lemma 2.3 and Theorem 3.1). For this reason the

proof of Theorem 3.4, although it follows the lines of many other proofs of the same kind,

presents some subtle points. This careful approach allows us to show that the uniform

proximity result of Corollary 3.5 holds for every (ε, n+1)-minimizer with ε ≤ ε(n), where

ε(n) depends on the dimension n only, and not on f . In section 3.3 we focus on the

planar case n = 2, and show that (ε, 3)-minimizers are convex (Theorem 3.6), and that,

in the crystalline case, they are convex polygons (Theorem 3.7) provided ε ≤ ε0, where

ε0 is a universal constant independent of f . As a preparatory step towards the proof of

Theorem 1.3, in section 3.4 (see also appendix C) we consider λ-elliptic surface tensions

and apply the regularity theory for almost minimizing rectifiable currents to show that the
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boundaries of (ε, n+1)-minimizers of F satisfy uniform C1,α-estimates for every α ∈ (0, 1)

(Theorem 3.8).

In section 4 we prove our main results on optimal shapes in the variational prob-

lem (1.1). The first step consists in showing that optimal shapes for (1.1) are uniformly

bounded in terms of their mass, the dimension n and the way g grows at infinity. For

small masses, this boundedness result is true for any potential g (Theorem 4.2). Although

it is not needed for the proof of our main results, we thought it conceptually important to

provide these bounds for arbitrary masses. We do this in Theorem 4.5, assuming that g is

locally Lipschitz. As a by-product of the uniform boundedness result in Theorem 4.2, we

immediately see that a minimizer E for (1.1) with |E| = m is also an (ε, n+1)-minimizer

for ε ≤ C m1/n, where C is an (explicitly computable) constant depending on n, f , and

g only. This fact allows us to apply the results of section 3, to deduce Theorem 1.1 as a

corollary. Moreover, when f is λ-elliptic, f ∈ C2,α(Rn \ {0}) and g ∈ C0,α
loc (Rn) for some

α ∈ (0, 1), then the regularity Theorem 3.8 for (ε, n+1)-minimizers can be combined with

the first variation formula for the free energy and with elliptic regularity theory to prove

that the corresponding minimizers satisfy uniform C2,α-estimates (Theorem 4.6). Hence,

in section 4.3 we apply the second variation formula for the free energy to a suitable nor-

mal vector field to show that the second fundamental form of the boundary of a minimizer

E is, up to a dilation taking E into F = (|K|/m)1/nE, L2-close to the second fundamental

form of ∂K (Theorem 4.9). A simple interpolation between C0,α and L2 allows combining

Theorem 4.9 with the estimates from Theorem 4.6 to show the uniform proximity of the

second fundamental form of ∂F to that of ∂K, thus proving Theorem 1.3. Finally, in

section 4.4 we use a variant of the argument in section 3.3 to show that, even outside the

small mass regime, planar crystals have a remarkably rigid structure. More precisely, if

f is crystalline and g is continuous then the boundary of a planar, crystalline minimizer

consists of two pieces, one which is included in some level set {g = ℓ} and the other one

which is polygonal, with normal directions chosen among the normal directions to ∂K.

In appendix A we finally gather the first and second variation formulas of the free

energy, together with a brief description of an useful bootstrap argument. In appendix B

we make a first (small) step towards a positive answer to the convexity question (Q1), by

showing that minimizers in (1.1) corresponding to potentials with convex level sets have

non-negative anisotropic mean curvature (in fact, a stronger global condition is proven

to hold true). Finally, appendix C reviews the regularity theory for almost minimizing

currents, and shows how these kinds of results apply to our setting, to prove uniform

C1,α-regularity for (ε, n + 1)-minimizers.

2. Sets of finite perimeter and volume-constrained variations

2.1. Sets of finite perimeter. In this section we recall some basic definitions and prop-

erties on sets of finite perimeter. We refer to [4] for an extensive introduction to the

subject and for a proof to all the properties stated below. A Borel set E ⊂ Rn is a set of
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finite perimeter in Rn provided

sup

{
∫

E

div T (x) dx : T ∈ C1
c (Rn; B)

}

< +∞ ,

where B = B1 denotes the Euclidean unit ball. If this is the case, the distributional

gradient D1E of the characteristic function 1E of E defines a Radon measure on R
n, with

values in R
n, such that the distributional divergence theorem

∫

E

div T (x) dx = −
∫

Rn

T · d D1E , ∀T ∈ C1
c (R

n; Rn) , (2.1)

holds true. The total variation of D1E is then used to define the perimeter of E relative

to a set A ⊂ Rn on setting

P (E; A) = |D1E|(A) , P (E) = |D1E|(Rn) .

If A is open, an equivalent definition for P (E; A), which turns out to be very useful when

proving lower semicontinuity result, is also given by

P (E; A) = sup

{
∫

E

div T (x) dx : T ∈ C1
c (A; B)

}

. (2.2)

If E is a bounded open set with C1 boundary, then E is a set of finite perimeter in Rn

and D1E = −νE Hn−1
x∂E, where νE is the outer unit normal to E and Hn−1 denotes the

(n − 1)-dimensional Hausdorff measure. In particular,

P (E; A) = Hn−1(A ∩ ∂E) , P (E) = Hn−1(∂E) ,

and (2.1) amounts to the classical divergence theorem. Turning back to generic sets of

finite perimeter, one see that up to modifying E on a set of measure zero (an operation

that leaves D1E unchanged) it can always be assumed that

spt(D1E) = ∂E ,

[25, Proposition 3.1]. The reduced boundary ∂∗E of E is then defined as the set of those

x ∈ ∂E such that the limit

νE(x) = lim
r→0+

D1E(B(x, r))

|D1E|(B(x, r))

exists and belongs to Sn−1. It turns out that ∂∗E is a countably Hn−1-rectifiable set in

R
n and that

D1E = −νE Hn−1
x∂∗E .

In particular, if A ⊂ Rn

P (E; A) = Hn−1(A ∩ ∂∗E) , P (E) = Hn−1(∂∗E) ,

and the distributional divergence theorem (2.1) takes the more appealing form
∫

E

div T (x) dx =

∫

∂∗E

T · νE dHn−1 , ∀T ∈ C1
c (R

n; Rn) . (2.3)
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We also recall the basic lower semicontinuity and approximation results for sets of finite

perimeter. Let us say that Eh → E (resp., Eh
loc→ E) if 1Eh

→ 1E in L1(Rn) (resp.,

L1
loc(R

n)). If A ⊂ R
n is open and Eh

loc→ E then we have

P (E; A) ≤ lim inf
h→∞

P (Eh; A) .

Moreover, given a set of finite perimeter E there always exists a sequence {Eh}h∈N of open

sets with smooth boundaries such that Eh
loc→ E and |D1Eh

| ∗
⇀ |D1E|.

All the relevant properties of sets of finite perimeter are left invariant by modifications

on sets of (Lebesgue) measure zero. The proper notion of connectedness in this framework

is then introduced as follows: a set of finite perimeter E (with finite measure) is said

indecomposable if E = E1 ∪ E2, P (E) = P (E1) + P (E2), and |E| = |E1| + |E2| imply

|E1| |E2| = 0. As a reference for indecomposable set we refer to [5].

2.2. Basic properties of the surface energy. We now gather some basic properties

of the surface energy that will be useful in the sequel. Given A ⊂ Rn we shall define the

surface energy of the set of finite perimeter E ⊂ Rn relative to A as

F(E; A) =

∫

A∩∂∗E

f(νE) dHn−1 ,

where, of course, F(E; Rn) = F(E). From the classical Reshetnyak theorems (see [4,

Theorems 2.38-2.39], or [44] for a simpler proof) and from our basic assumptions on the

surface tension f , we deduce the following lemma about the behavior of the surface energy

under local convergence of sets. (The first part of the following result can be easily proven

using a suitable duality formula for F as in (2.2).)

Lemma 2.1. If A ⊂ Rn is open and Eh
loc→ E then

F(E; A) ≤ lim inf
h→∞

F(Eh; A) .

If, moreover, P (Eh) → P (E), then

F(E; A) = lim
h→∞

F(Eh; A) .

In proving estimates involving the surface tension f we are going to make frequent

use of the quantities 0 < α1 ≤ α2 < +∞ defined as

α1 = min
Sn−1

f , α2 = max
Sn−1

f . (2.4)

In particular,

α1 ≤ ‖∇f‖L∞(Rn;Rn) ≤ α2 . (2.5)

Indeed, by the positive 1-homogeneity and by the convexity of f we immediately see that

f is sub-additive, so that

f(x + t v) − f(x) ≤ f(t v) ≤ tα2
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for every x ∈ Rn, t > 0, and v ∈ Sn−1. On the other hand, if f is differentiable at x ∈ Rn

then ∇f(x) · (x/|x|) = f(x/|x|) ≥ α1. Thus,

α1 ≤ sup{∇f(x) · v : v ∈ Sn−1} = |∇f(x)| ≤ α2 ,

and (2.5) immediately follows. It is also useful to note that the dual function f∗ to f

introduced in (1.7), that is still convex and positively 1-homogeneous, satisfies

inf
Sn−1

f∗ =
1

α2

, sup
Sn−1

f∗ =
1

α1

, (2.6)

1

α2
≤ ‖∇f∗‖L∞(Rn;Rn) ≤

1

α1
. (2.7)

Eventually we notice from (1.6) that Bα1 is the largest Euclidean ball centered at the

origin that is contained in K, while Bα2 is the smallest Euclidean ball centered at the

origin that contains K. Thus,

α1 = sup{r > 0 : Br ⊂ K} , α2 = inf{r > 0 : K ⊂ Br} . (2.8)

Because of (2.4), (2.5), (2.6), (2.7), and (2.8) we shall often produce estimates depending

on the ratio α2/α1. One is usually able to rule out such a dependence by means of the

following lemma.

Lemma 2.2 (A normalization lemma). If K is an open, bounded convex set with 0 ∈ K,

then there exist an affine map L : R
n → R

n with det L = 1 and r = r(n, |K|) > 0, such

that

Br ⊂ L(K) ⊂ Bn r . (2.9)

If fL(K) is the surface tension associated to L(K), then

supSn−1 fL(K)

infSn−1 fL(K)

≤ n , FK(E) = FL(K)(L(E)) , (2.10)

for every set of finite perimeter E ⊂ R
n. Moreover, if g is a bounded Borel function and

we set gL = g ◦ L−1, then
∫

E

g =

∫

L(E)

gL . (2.11)

Proof. By John’s Lemma [28, Theorem III], we may associate to K an affine map L0 :

Rn → Rn such that det L0 > 0 and B1 ⊂ L0(K) ⊂ Bn. Therefore, up to the multiplication

of L by a constant, we can achieve (2.9). Clearly, (2.11) is a trivial consequence of the

fact that det L = 1. Finally, to show (2.10) let us now recall that, if E is a bounded open

set with smooth boundary, then

FK(E) = lim
ε→0+

|E + εK| − |E|
ε

.

Since L is affine with det L = 1,

|L(E) + εL(K)| − |L(E)| = |L(E + εK)| − |E| = |E + εK| − |E| ,
hence FK(E) = FL(K)(L(E)). By a density argument and Lemma 2.1 we immediately

get (2.10). �
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2.3. Volume-constrained variations. In studying minimizers to the variational prob-

lem 1.1, we will often construct suitable comparison sets, that are typically obtained by

a “cut and paste” operation followed by a mass adjustment (usually done by a dilation).

Having in mind to work with the notion of (ε, R)-minimizers introduced in (1.13), we have

to be careful to control the surface energy variation and the L1-distance variation created

in the mass adjustment. We will adjust mass in two ways: either by a first variation

argument (where the surface energy variation depends on the set itself in a quite involved

way), see Lemma 2.3 (this lemma is sometimes referred to as “Almgren’s Lemma”, see

[36, Lemma 13.5]); or by a scaling operation (in this case the surface energy variation is

trivial but the L1-distance variation requires an estimate), see Lemma 2.4. We now prove

these technical lemmas.

Lemma 2.3. If E is a set of finite perimeter in Rn and A is an open set such that

A ∩ ∂∗E is nonempty, then there exist s0 = s0(E, A) and C = C(E, A, α2) such that, for

every s ∈ (−s0, s0), there exists a set of finite perimeter F with the following properties:

E∆F ⊂⊂ A ,

|E| − |F | = s ,

|F(E) − F(F )| ≤ C s .

Proof. Let T ∈ C∞
c (A; Rn) and Φt(x) = x + t T (x), x ∈ Rn. There exists t0 > 0 such that

Φt is a diffeomorphism of Rn whenever |t| < t0. Hence Φt(E) is a set of finite perimeter

for every |t| < t0, with Φt(E)∆E ⊂⊂ A. By the first variation formulae in Appendix A.1

we have

|Φt(E)| = |E| + t

∫

∂∗E

T · νE dHn−1 + O(t2) ,

F(Φt(E)) =

∫

∂∗E

(1 + t div T + O(t2)) f(νE − t(∇T )∗νE + O(t2)) dHn−1 , (2.12)

where, here and in the rest of the proof, we denote by O(s) a function of s such that

|O(s)| ≤ C|s| for a constant C depending on T only. In order to estimate F(Φt(E))−F(E)

we now notice that by (2.5)

|f(νE − t(∇T )∗νE + O(t2)) − f(νE)| ≤ α2(|t||∇T | + O(t)) , (2.13)

while, thanks to (2.4) and the simple inequality

|νE − t(∇T )∗νE + O(t2)| ≤ 1 + |t||∇T | + O(t2) ,

we also have

|t div T + O(t2)| f(νE − t(∇T )∗νE + O(t2)) ≤ α2(|t||∇T | + O(t2)) . (2.14)

By combining (2.12), (2.13), and (2.14), we find that

|F(E) −F(Φt(E))| ≤ 2α2

(

|t|
∫

∂∗E

|∇T |dHn−1 + O(t2)

)

.
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Since A ∩ ∂∗E is non-empty, it is easily seen that there exists T ∈ C∞
c (A; Rn) such that

γ =

∫

∂∗E

T · νE dHn−1 > 0 ,

for instance on setting T = ϕ νE(x0) for x0 ∈ A ∩ ∂∗E and ϕ ∈ C∞
c (A) such that

1B(x,r/2) ≤ ϕ ≤ 1B(x,r) (with r sufficiently small). Therefore, the function t 7→ |Φt(E)| =

|E| + tγ + O(t2) is injective on some open interval (−t0, t0) where

γ

2
|t| ≤ ||E| − |Φt(E)|| ,

|F(E) −F(Φt(F ))| ≤ 4α2|t|
∫

∂∗E

|∇T | dHn−1 .

We conclude by choosing s0 > 0 such that the interval (|E| − s0, |E| + s0) is contained

in the image of (−t0, t0) through t 7→ |Φt(E)|, proving the result with the constant C

defined as

C =
8 α2

γ

∫

∂∗E

|∇T | dHn−1 .

�

Lemma 2.4. There exists a constant C(n) with the following property: If E is a set of

finite perimeter with E ⊂ BR, then

|E∆(λ E)| ≤ C(n)|λ − 1|R P (E) , (2.15)

whenever λ ∈ (1/2, 2).

Proof. If u ∈ C1
c (R

n) and λ ∈ [1/2, 2], then for every x ∈ Rn

|u(x) − u(x/λ)| ≤ 2 |λ − 1||x|
∫ 1

0

|∇u(x + t(1 − 1/λ)x)|dt .

If spt(u) ⊂ BR, then by Fubini theorem we have
∫

Rn

|u(x) − u(x/λ)| dx ≤ |λ − 1|R
∫ 1

0

dt

∫

Rn

|∇u(x + t(1 − 1/λ)x)| dx

≤ |λ − 1|R
(
∫ 1

0

dt

(1 + t(1 − 1/λ))n

)
∫

Rn

|∇u|

≤ C(n) |λ − 1|R
∫

Rn

|∇u| .

We prove (2.15) by testing this inequality on uε = 1E ∗ ρε and letting ε → 0+. �

3. Stability properties of (ε, R)-minimizers

3.1. Basic properties of (ε, R)-minimizers. This section is devoted to the study of

geometric properties of (ε, R)-minimizers. Given ε, R > 0, let us recall that a set of

finite perimeter E ⊂ R
n is a (volume constrained) (ε, R)-minimizer of the surface energy

F = FK provided

F(E) ≤ F(F ) + ε |K|1/n|E|(n−1)/n |E∆F |
|E| ,
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for every set of finite perimeter F ⊂ Rn with |F | = |E| and F ⊂ IR(E), where IR(E)

is defined as the R-neighborhood of E with respect to f∗, see (1.14). Note that (ε, R)-

minimality is formulated to be a scale invariant property with respect to ε. Indeed, if

E is an (ε, R)-minimizer of FK , then for every λ > 0 the rescaled set λ E is an (ε, λ R)-

minimizer of FK , or equivalently an (ε, R)-minimizer of FλK . More in general, if L is

an affine transformation with det L > 0, Lemma 2.2 and the discussion above gives that

L(E) is a (ε, R)-minimizer of FL(K). Of course, the Wulff shape K is an (ε, R)-minimizer

of FK for every ε and R.

Theorem 3.1 (Basic regularity estimates for (ε, R)-minimizers). If E is an (ε, R)-

minimizer of F then Hn−1(∂E \ ∂∗E) = 0 and E is equivalent to its interior. Moreover,

∂E is differentiable at every point of ∂∗E, i.e.,

lim
r→0+

sup

{ |(x − x0) · νE(x0)|
|x − x0|

: x ∈ B(x0, r) ∩ ∂E , x 6= x0

}

= 0 , (3.1)

for every x0 ∈ ∂∗E.

Proof. Step one. As stated in section 2.1, up to modifying E on a set of measure zero, we

can assume that

∂E = spt(D1E) = {x ∈ R
n : 0 < |E ∩ B(x, r)| < ωnr

n for every r > 0} .

We now claim that there exist positive constants κ = κ(n, f, E, R) < 1 and r =

r(n, f, E, R), such that if x ∈ ∂E and r < r, then

Hn−1(B(x, r) ∩ ∂∗E) ≥ κ rn−1 , (3.2)

ωnr
n(1 − κ) ≥ |B(x, r) ∩ E| ≥ κωnr

n . (3.3)

Of course, it will suffice to show that these estimates hold for a.e. r < r. Hence, thanks

to the coarea formula [4, Theorem 2.93] applied with the Lipschitz function x 7→ |x| and

the countably Hn−1-rectifiable set ∂∗E, we may restrict to consider values of r < r such

that

Hn−1(∂B(x, r) ∩ ∂∗E) = 0 . (3.4)

Fix x1 6= x2 ∈ ∂E, and let r0 = r0(E) > 0 be such that

2r0 < α1R , B(x1, 2r0) ∩ B(x2, 2r0) = ∅ ,

(recall that, by definition (2.4) of α1, we have Bα1R ⊂ KR). Let s1, s2 > 0 and C1, C2 be

the constants given by Lemma 2.3 applied to E on the open sets B(x1, r0) and B(x2, r0)

respectively, and notice that sk < |B(xk, r0)| = ωnr
n
0 . We set,

s = min{s1, s2} , C = max{C1, C2} ,

and require r to satisfy

ωnrn < s ,

so that, in particular, r < r0. Since the balls B(x1, 2r0) and B(x2, 2r0) are disjoint, we

can decompose ∂E as M1 ∪ M2, where

Mk = {x ∈ ∂E : B(x, r) ∩ B(xk, r0) = ∅} , k = 1, 2 ,
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so that ∂E \ B(xk, 2r0) ⊂ Mk. We are now in the position to prove (3.2) and (3.3). Let

x ∈ M1 and consider the function

u(r) = |E ∩ B(x, r)| =

∫ r

0

Hn−1(E ∩ ∂B(x, s)) ds .

If we set G = E \ B(x, r) for some r < r such that (3.4) holds true, then we have

0 < |E| − |G| = u(r) < ωnr
n < s .

Since E ∩ B(x2, r0) = G ∩ B(x2, r0), we can apply Lemma 2.3 to find a set of finite

perimeter F such that F∆G ⊂⊂ B(x2, r0), |F | = |G| + (|E| − |G|) = |E|, and

F(F ) ≤ F(G) + C
∣

∣|G| − |F |
∣

∣ = F(G) + C
(

|E| − |G|
)

= F(G) + Cu(r) .

We can now test the (ε, R)-minimality of E against F to find

F(E) ≤ F(G) + Cu(r) + ε |K|1/n |E∆F |
|E|1/n

= F(G) + Cu(r) + 2ε |K|1/n u(r)

|E|1/n
,

where we used that by construction |E∆F | = 2u(r). Moreover, by (3.4), we have that

F(E) − F(G) =

∫

B(x,r)∩∂∗E

f(νE) dHn−1 −
∫

∂B(x,r)∩E1

f(νB(x,r)) dHn−1

≥ α1Hn−1(B(x, r) ∩ ∂∗E) − α2 u′(r) .

Hence we get

P (E; B(x, r)) ≤ C(u′(r) + u(r))

for some constant C = C(E, f). Since P (E ∩B(x, r)) = P (E; B(x, r)) + u′(r), due to the

Euclidean isoperimetric inequality, we also have

nω1/n
n u(r)(n−1)/n ≤ P (E ∩ B(x, r)) ≤ C(u′(r) + u(r)) , (3.5)

for every r < r such that (3.4) holds. Since u(r) ≤ ωnr
n, up to further decrease r

(depending on n and on the constant C appearing in (3.5)), we may assume that

Cu(r) = Cu(r)(n−1)/nu(r)1/n ≤ nω
1/n
n

2
u(r)(n−1)/n ,

whenever r < r, so that (3.5) implies

c u(r)(n−1)/n ≤ u′(r) ,

for a.e. r < r and for some c = c(n, f, E, R). Since u(r) > 0 for every r > 0 we deduce

that (u(r)1/n)′ ≥ c for a.e. r < r. Hence u(r) ≥ c rn for r < r, that is the lower bound

in (3.3). The upper bound in (3.3) follows by an entirely similar argument, where we

consider G = E ∪ B(x, r) instead of G = E \ B(x, r). This remark completes the proof

of (3.3). Now that (3.3) has been proved we can apply the relative isoperimetric inequality

in B(x, r) (see, for instance, [4, Remark 3.45]) to see that

Hn−1(B(x, r) ∩ ∂∗E) ≥ τ(n) min{|E ∩ B(x, r)|, |B(x, r) \ E|}(n−1)/n ≥ τ(n)crn−1 ,

and (3.2) is proved.
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Step two. We now conclude the proof of the theorem. First of all, (3.2) combined

with a standard covering argument (see, e.g., [3, Corollario 4.2.4]) implies that Hn−1(∂E \
∂∗E) = 0, hence that E is equivalent to its interior. To show the differentiability of ∂E

at the points of ∂∗E, let us recall that if x0 ∈ ∂∗E then (see, e.g., [4, Theorem 3.59])

Ex0,r =
E − x0

r

loc→ {x ∈ R
n : νE(x0) · x ≤ 0}

as r → 0+ (recall that the above convergence of sets means that their characteristic

functions converge in L1
loc). We now show that this L1

loc-convergence combined with the

density estimate (3.3) implies that convergence holds in the Hausdorff sence, which is

actually equivalent to (3.1). Indeed, for every σ > 0 we have

lim
r→0+

∣

∣

∣
Ex0,r ∩ {x ∈ B : x · νE(x0) ≥ −σ}

∣

∣

∣
=
∣

∣

∣
{x ∈ B : 0 ≥ x · νE(x0) ≥ −σ}

∣

∣

∣
≤ ωn−1σ ,

so there exists rσ = rσ(E, x0) > 0 such that

|{x ∈ E ∩ B(x0, r) : (x − x0) · νE(x0) ≥ −σr}| ≤ 2ωn−1σrn , (3.6)

for every r < rσ. Let us now chose L = L(n, f, E, R) > 0 such that

κLn > 2ωn−1 , (3.7)

where κ is the constant found in Step one. We claim that if σ > 0 is small enough with

respect to L, then for every r < rσ we have

{x ∈ ∂E ∩ B(x0, r/2) : (x − x0) · νE(x0) ≥ Lσ1/nr} = ∅ . (3.8)

Indeed if (3.8) is not true, then there exists x1 ∈ ∂E such that, provided σ is small

enough,

E ∩ B(x1, Lσ1/nr) ⊂ {x ∈ E ∩ B(x0, r) : νE · (x − x0) ≥ −σr} ,

|E ∩ B(x1, Lσ1/nr)| ≥ κLnσrn ,

where we have also taken (3.3) into account. Since the combination of these two facts

would lead to a contradiction with (3.6) and (3.7), we conclude that (3.8) holds true. By

an analogous argument one proves that, for the same values of L and σ,

{x ∈ ∂E ∩ B(x0, r/2) : (x − x0) · νE(x0) ≤ −Lσ1/nr} = ∅ , (3.9)

whenever r < rσ. On combining (3.8) and (3.9) we conclude that for every σ > 0 there

exists rσ > 0 such that

|(x − x0) · νE(x0)| ≤ Lσ1/n|x − x0| ,

for every x ∈ ∂E ∩ B(x0, rσ/2), so that (3.1) is proved. �
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3.2. Stability properties of (ε, R)-minimizers at small ε. Given a set of finite

perimeter E, we define its Wulff deficit (with respect to F) as

δ(E) =
F(E)

n|K|1/n|E|(n−1)/n
− 1 . (3.10)

By the Wulff inequality (1.8) we have δ(E) ≥ 0, and the characterization of the equality

case gives that δ(E) = 0 if and only if |E∆(x + Kr)| = 0 for some x ∈ Rn and r > 0.

In [19] we have proved the following theorem, that gives a (sharp) strengthened form of

the Wulff inequality (1.8).

Theorem 3.2. If E is a set of finite perimeter in R
n with |E| = |K| then there exists

x0 ∈ Rn such that

δ(E) ≥ C(n)

( |E∆(x0 + K)|
|K|

)2

, (3.11)

or, equivalently,

F(E) ≥ n|K|1/n|E|1/n′

{

1 + C(n)

( |E∆(x0 + K)|
|K|

)2
}

,

where C(n) is a constant depending on the dimension n only.

The above result says that, if δ(E) is small, then E is close in L1-norm to a translation

of K. As the next lemma shows, (ε, n + 1)-minimizers have small deficit for ε sufficiently

small (the choice R = n + 1 comes from the fact that we need all the translations x + K

with E ∩ (x + K) 6= ∅ to be admissible competitors).

Lemma 3.3. If E is an (ε, n + 1)-minimizer of F with |E| = |K| then

δ(E) ≤ C(n) ε2. (3.12)

Moreover, there exists x0 ∈ Rn such that

|E∆(x0 + K)| ≤ C(n)|K|ε , (3.13)

where C(n) is a constant depending on the dimension n only.

Proof. Step one. If L is as in Lemma 2.2, then L(E) is an (ε, n + 1)-minimizer of FL(K),

with δ(E) = δL(K)(L(E)), |E| = |L(E)|, |K| = |L(K)| and |E∆(x+K)| = |L(E)∆(L(x)+

L(K))| for every x ∈ Rn. Therefore we may assume without loss of generality that K

satisfies

Br ⊂ K ⊂ Brn ,

for some r = r(n, |K|). In particular, α2/α1 ≤ n (see (2.4)).

Step two. If E ∩ (x + K) 6= ∅, then x + K ⊂ In+1(E). Indeed, given z ∈ E ∩ (x + K),

y ∈ x + K, and taking into account that K = {f∗ < 1}, then we have

f∗(y − z) ≤ f∗(y − x) + f∗(x − z) ≤ 1 +
α2

α1
f∗(z − x) ≤ 1 + n .
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Therefore, if x ∈ Rn is such that E ∩ (x + K) 6= ∅, then by the (ε, n + 1)-minimality of E

we find

F(E) ≤ F(x + K) + ε |E∆(x + K)| = F(K) + ε|E∆(x + K)| .
Since F(K) = n|K| and |E| = |K|, this implies

δ(E) =
F(E)

n|K| − 1 ≤ |E∆(x + K)|
n|K| ε .

On choosing x = x0 such that (3.11) holds, we deduce (3.13). Next, by inserting (3.13)

in the above estimate, we also find (3.12). �

We now prove an uniform stability estimate together with a connectedness results.

In order to apply this result in the case of minimizers to the variational problem (1.1)

we work with a slightly different notion of minimality rather than (ε, R)-minimality. The

theorem is then applied to (ε, R)-minimizers in Corollary 3.5 below.

Theorem 3.4. There exist constants C(n) and ε(n) with the following property: If 0 <

ε < ε(n) and if E is a set of finite perimeter with |E| = |K|, such that

δ(E) ≤ C(n)ε2 , (3.14)

|E∆K| ≤ C(n)|K|ε , (3.15)

F(E) ≤ F(F ) + ε|E∆F | , (3.16)

whenever |F | = |E|, F \ E ⊂ K3, then E is indecomposable and for some r0 ≤ C(n)ε1/n,

K1−r0 ⊂ E ⊂ K1+r0 .

Corollary 3.5 (Uniform proximity to the Wulff shape). There exist constants C(n) and

ε(n) with the following property: If E is an (ε, n + 1)-minimizer of F with |E| = |K| and

ε < ε(n), then E is connected and there exists x0 ∈ Rn and r0 ≤ C(n)ε1/n such that

x0 + K1−r0 ⊂ E ⊂ x0 + K1+r0 . (3.17)

Proof of Corollary 3.5. It follows immediately from Theorem 3.1, Lemma 3.3, Theo-

rem 3.4, and the fact that an open indecomposable set with Hn−1(∂E \ ∂∗E) = 0 is

connected [5, Theorem 2]. �

Proof of Theorem 3.4. We can apply Lemma 2.2 and assume without loss of generality

that, for a constant ρ = ρ(n, |K|), we have ρ ≤ α1 ≤ α2 ≤ n ρ (see (2.4)). Since ρ−1E

satisfies the minimality condition (3.16) with Fρ−1K and ρ−1K in place of F and K, up

to scale both E and K by the factor 1/ρ, we may work under the additional assumptions

that

B ⊂ K ⊂ Bn , (3.18)

1 ≤ α1 ≤ α2 ≤ n , (3.19)

1

n
≤ ‖∇f∗‖L∞(Rn;Rn) ≤ 1 , (3.20)
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where (3.20) follows from (3.19) and (2.7). We notice that by (3.14) and by taking into

account that F(K) = n|K| ≤ n|Bn| ≤ C(n) we have

F(E) ≤
(

1 + C(n)ε2
)

F(K) ≤ C(n)|K| ≤ C(n) . (3.21)

By [18, 4.2.25], [5, Theorem 1], there are countably many disjoint sets of finite perimeter

{Eh}h∈N such that

E =
⋃

h∈N

Eh , P (E) =
∑

h∈N

P (Eh) ,

and each Eh is indecomposable, in the sense that if F ⊂ Eh is a set of finite perimeter

with P (Eh) = P (F ) + P (Eh \ F ) then |F ||Eh \ F | = 0. In fact, the reduced boundaries

of the Eh’s are pairwise disjoint mod-Hn−1, so that we also have

F(E) =
∑

h∈N

F(Eh) . (3.22)

Without loss of generality we may assume that |E1| ≥ |Eh| for every h ∈ N.

Step one: L1-estimates for E1. We claim that

|E \ E1| ≤ C(n)δ(E)n′

, (3.23)

|E1∆K| ≤ C(n)ε . (3.24)

Since |E1∆K| ≤ |E∆K|+ |E \E1|, (3.24) is an immediate consequence of (3.15), (3.23),

and (3.14). Hence we directly focus on the proof of (3.23). Without loss of generality we

may assume that Eh 6= ∅ for some h > 1. Then for every k ≥ 1 we introduce the sets of

finite perimeter

Fk =
k
⋃

h=1

Eh , Gk =
∞
⋃

h=k+1

Eh .

By (3.22), by the Wulff inequality and by concavity of t1/n′

on t > 0, we find that

F(E) = F(Fk) + F(Gk) ≥ n|K|1/n(|Fk|1/n′

+ |Gk|1/n′

) ≥ n|K|1/n|E|1/n′

,

i.e., by the definition of δ(E) (3.10),

δ(E) ≥
( |Fk|
|E|

)1/n′

+

(

1 − |Fk|
|E|

)1/n′

− 1 .

Observe now that there exists a constant c0(n) > 0 such that

t1/n′

+ (1 − t)1/n′ − 1 ≥ c0(n)t1/n′

, ∀ t ∈ [0, 1/2] .

Hence, if |E1| ≥ |E|/2 and we chose k = 1, then we find

δ(E) ≥ c0

(

1 − |E1|
|E|

)1/n′

,

that is (3.23) as required. Let us now assume on the contrary that |E1| < |E|/2, then

there exists k ≥ 2 such that

|Fk−1| <
|E|
2

, |Gk−1| ≥
|E|
2

, |Fk| ≥
|E|
2

, |Gk| <
|E|
2

.
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Therefore, by the above argument we deduce that

δ(E) ≥ c0

( |Fk−1|
|E|

)1/n′

, δ(E) ≥ c0

( |Gk|
|E|

)1/n′

,

so that

C(n)δ(E)n′ ≥ |Fk−1| + |Gk|
|E| = 1 − |Ek|

|E| ≥ 1 − |E1|
|E| ≥ 1

2
.

Hence, if |E1| < |E|/2, then δ(E) ≥ δ(n) > 0, and this can be excluded by (3.14) provided

ε ≤ ε(n) for ε(n) small enough.

Step two: Uniform outer estimate for E1. We now prove that, if ε(n) is sufficiently small,

then there exists r ∈ (1, 1 + C(n)ε1/n) such that

E1 ⊂ Kr .

We consider the decreasing function u : [0, +∞) → [0, +∞) defined as

u(r) =

∫

E1\Kr

|∇f∗(x)|dx , r > 0 .

By the coarea formula u is absolutely continuous, with

u(r) =

∫ +∞

r

Hn−1((∂Ks) ∩ E1) ds , for every r > 0 ,

u′(r) = −Hn−1((∂Kr) ∩ E1) , for a.e. r > 0 ,

and moreover (using (3.20))

1

n
|E1 \ Kr| ≤ u(r) ≤ |E1 \ Kr| . (3.25)

We define

r1 = sup{r ≥ 1 : u(r) > 0} ,

and prove that

r1 − 1 ≤ C(n)ε1/n . (3.26)

For every r ∈ (1, min{r1, 2}) we have |(E1 ∩ Kr) ∪ (E \ E1)| < |E|, therefore we can find

s = s(r) > 1 such that |F | = |E|, where we have defined

F = s(E1 ∩ Kr) ∪ (E \ E1) .

Set

v(r) = |s(E1 ∩ Kr) ∩ (E \ E1)| , r > 1 .

Observe that, by (3.25) and by (3.24),

u(r) ≤ |E1 \ K| ≤ C(n)ε , (3.27)

while, (3.23) and (3.14) give

v(r) ≤ |E \ E1| ≤ C(n)ε2n′ ≤ C(n)ε . (3.28)

By the definition of F we have that

|E| = |F | = |E \ E1| + |s(E1 ∩ Kr)| − |s(E1 ∩ Kr) ∩ (E \ E1)|
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= |E \ E1| + sn(|E1| − |E1 \ Kr|) − v(r) ,

which by (3.25) gives

|E1| + v(r) ≥ sn(|E1| − n u(r)) .

Taking (3.23) and (3.27) into account, we find that

1 < s ≤ 1 + C(n)
(

u(r) + v(r)
)

. (3.29)

Hence by a suitable choice of ε(n) and by taking (3.18) into account, we can bound s

through (3.29) so to entail F \E ⊂ K3. Observing that |E∆F | = 2|F \E|, the minimality

condition (3.16) implies

F(E) ≤ F(F ) + 2ε|s (Kr ∩ E1) \ E1| . (3.30)

On the one hand, we remark that

F(E) = F(E1) + F(E \ E1)

F(F ) ≤ F(E \ E1) + sn−1F(Kr ∩ E1) − F(s(E1 ∩ Kr) ∩ (E \ E1)),

so that (3.30) gives

F(E1) + F(s(E1 ∩ Kr) ∩ (E \ E1)) ≤ sn−1F(Kr ∩ E1) + 2ε|s (Kr ∩ E1) \ E1| . (3.31)

On the other hand, as r ∈ (1, min{r1, 2}) we have Kr ⊂ B2n, and by Lemma 2.4 we find

|s (Kr ∩ E1) \ E1| ≤ |s(Kr ∩ E1) \ (Kr ∩ E1)| ≤ C(n)(s − 1)F(Kr ∩ E1) . (3.32)

We now combine (3.31) and (3.32): taking also (3.29) into account and applying the Wulff

inequality to s(E1 ∩ Kr) ∩ (E \ E1),

F(E1) + n|K|1/n v(r)1/n′ ≤
(

1 + C(n)
[

u(r) + v(r)
]

)

F(Kr ∩ E1) . (3.33)

We notice that for a.e. r > 0

F(E1) =

∫

(∂E1)\Kr

f(νE) dHn−1 +

∫

(∂E1)∩Kr

f(νE) dHn−1 , (3.34)

F(Kr ∩ E1) =

∫

(∂E1)∩Kr

f(νE) dHn−1 +

∫

(∂Kr)∩E1

f(νKr) dHn−1

≤
∫

(∂E1)∩Kr

f(νE) dHn−1 + n |u′(r)| , (3.35)

(as α2 ≤ n). Moreover, as r ∈ (1, min{r1, 2}), by (3.21)

F(E1 ∩ Kr) ≤ F(E) + F(Kr) ≤ C(n) .

We combine this last estimate with (3.33), (3.34), and (3.35) to obtain
∫

(∂E1)\Kr

f(νE) dHn−1 + c(n)v(r)1/n′ ≤ n |u′(r)| + C(n)(u(r) + v(r)) . (3.36)

By applying Wulff’s inequality on E1 \ Kr, thanks to (3.18) and (3.19) we find

c(n)u(r)1/n′ ≤ n|K|1/n|E1 \ Kr|1/n′ ≤ F(E1 \ Kr)

=

∫

(∂E1)\Kr

f(νE) dHn−1 +

∫

(∂Kr)\E1

f(−νKr) dHn−1
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≤
∫

(∂E1)\Kr

f(νE) dHn−1 + n |u′(r)| ,

that combined with (3.36) leads to

u(r)1/n′

+ v(r)1/n′ ≤ C(n)
{

|u′(r)| +
(

u(r) + v(r)
)

}

, (3.37)

for every r ∈ (1, min{r1, 2}). By (3.27) and (3.28) we can chose ε(n) small enough to

ensure that

v(r)1/n′ ≥ C(n)v(r) , u(r)1/n′ ≥ 2 C(n) u(r) ,

where C(n) is the constant appearing on the right hand side of (3.37). As a consequence,

u(r)1/n′ ≤ C(n) |u′(r)| ,
for every r ∈ (1, min{r1, 2}). Thus,

min{r1, 2} − 1 ≤ C(n)

∫ min{r1,2}

1

−u′(r)

u(r)1/n′
dr = C(n)

(

u(1)1/n − u(min{r1, 2})1/n
)

≤ C(n)u(1)1/n ≤ C(n)ε1/n ,

where in the last step we have applied (3.15). Hence, if ε(n) is chosen sufficiently small,

this last estimate implies r1 ≤ 1 + C(n)ε1/n, that is (3.26), as required.

Step three: Inner estimate. We now set

r0 = sup{r ∈ [0, 1] : |Kr \ E| = 0} ,

and show that

1 − r0 ≤ C(n)ε1/n . (3.38)

To this end we notice that for every r ∈ (r0, 1) we have |(E1∪Kr)∪ (E \E1)| > |E|. Thus

s = s(r) ∈ (0, 1) can be defined with the property that, if we set

F = s(E1 ∪ Kr) ∪ (E \ E1) ,

then |F | = |E|. Since we have proved in Step two that E1 ⊂ K2, we clearly have

F \E ⊂ K3. Hence we can exploit the minimality condition (3.16) to compare E and F ,

and deduce by the very same argument used in Step two that

u(r)1/n′ ≤ C(n)u′(r) , for a.e. r ∈ (r0, 1) .

Of course, now u : [0, +∞) → [0, +∞), is the absolutely continuous, increasing function

defined as

u(r) =

∫

Kr\E
|∇f∗(x)|dx =

∫ r

0

Hn−1((∂Ks) \ E) ds , r > 0 .

We leave the details to the interested reader.

Step four: E is indecomposable. We are going to prove that E = E1. Indeed let us now

set F = s E1 where sn|E1| = |E|. Recalling that E1 ⊂ K2, since |E \E1| ≤ C(n)δ(E)n′ ≤
C(n)ε2n′

and

1 ≤ s ≤ 1 + C(n)|E \ E1| , (3.39)
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if ε(n) is small enough then we clearly have F \ E ⊂ K3. By the minimality condi-

tion (3.16),

F(E1) + F(E \ E1) = F(E) ≤ sn−1F(E1) + ε|(s E1)∆E| ,
so that by (3.39)

F(E \ E1) = (sn−1 − 1)F(E1) + ε|(s E1)∆E|
≤ C(n)|E \ E1|F(E1) + ε|(s E1)∆E| .

As F(E1) ≤ F(E) ≤ C(n) (see (3.21)), by applying the Wulff inequality to E \ E1 and

taking into account that

|(s E1)∆E| ≤ |(s E1)∆E1| + |E \ E1| ,
we have

n|K|1/n|E \ E1|1/n′ ≤ C(n)|E \ E1| + ε|(s E1)∆E1| .
By Lemma 2.4 and since E1 ⊂ K2 ⊂ B2n,

|(s E1)∆E1| ≤ C(n)(s − 1)P (E1) ≤ C(n)(s − 1) ≤ C(n)|E \ E1| .
Hence,

|E \ E1|1/n′ ≤ C(n)|E \ E1| .
By (3.23) this is impossible for ε(n) small enough, unless |E \ E1| = 0. �

3.3. Geometric properties of planar (ε, R)-minimizers at small ε. In this section

we restrict our analysis to the planar case n = 2. This allows us to take advantage of

the fact that the surface energy F does not increase under convexification to show some

strong stability results of (ε, R)-minimizers. Indeed, we will prove that (ε, R)-minimizers

are always convex for ε small enough (Theorem 3.6). Moreover, if the surface tension is

crystalline, then (ε, R)-minimizers enjoy exactly the same crystalline structure of K (see

Theorem 3.7 below).

Theorem 3.6 (Convexity of planar (ε, 3)-minimizers at small ε). Let n = 2. There exists

a positive constant ε0 > 0 such that, if E is an (ε, 3)-minimizer of F with |E| = |K| and

ε ≤ ε0, then E is convex.

Proof. As in the proof of Theorem 3.4, we can assume without loss of generality that

B1 ⊂ K ⊂ B2. By that theorem, provided ε0 is small enough and up to a translation,

we also know that K1−r0 ⊂ E ⊂ K1+r0 , where r0 ≤ C ε1/2. Let now F = co(E) denote

the convex hull of E, and assume by contradiction that δ = |F \ E|/|E| > 0. Since, by

construction, K1−r0 ⊂ F ⊂ K1+r0 , we find that

δ =
|F \ E|
|K| ≤ |K1+r0 \ K1−r0 |

|K| = 2r0 ≤ C ε1/2 . (3.40)

Therefore, if we rescale F and define

F ′ = (1 + δ)−1/2F ,
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then |F ′| = |E| and, provided ε0 is small enough, F ′ ⊂ I3(E). Since F ′ is obtained by a

contraction of the convex set F with respect to 0 ∈ F , we have F ′ ⊂ F . Hence,

|E \ F ′| ≤ |F \ F ′| = |F | − |F ′| =
δ

1 + δ
|F | = δ|E| ,

|F ′ \ E| ≤ |F \ E| = δ|E| .
Moreover, as E ⊂ R2, the convexity of f ensures that F(F ) ≤ F(E) [32, Corollary 2.8].

In conclusion, the (ε, 3)-minimality of E implies that

F(E) ≤ F(F ′) + ε|E∆F ′| ≤ F(E)

(1 + δ)1/2
+ 2ε δ |E|

≤
(

1 − δ

2
+ o(δ)

)

F(E) + 2ε δ |E| .

By the Wulff inequality (1.8), F(E) ≥ 2|E|, hence

δ

2
+ o(δ) ≤ ε δ ,

which combined with (3.40) leads to a contradiction for ε0 small enough. �

Theorem 3.7 (Crystalline structure of (ε, 3)-minimizers at small ε). Let n = 2 and let

f be a crystalline surface tension, so that the Wulff shape K is a convex polygon with

outer unit normals {νi}N
i=1. There exists a positive constant ε0 such that, if E is an

(ε, 3)-minimizer with ε ≤ ε0, then E is a convex polygon with

νE(x) ∈ {νi}N
i=1 for H1-a.e. x ∈ ∂E.

Proof. Every affine transformation L maps a convex polygon K into a convex polygon

L(K), and an (ε, 3)-minimizer E of FK into an (ε, 3)-minimizer L(E) of FL(K). Hence,

thanks to Lemma 2.2 and up to a dilation, we can assume without loss of generality that

B1 ⊂ K ⊂ B2 .

In particular, provided ε0 is sufficiently small and up to a translation, we can apply

Corollary 3.5 to entail

E ⊂ B2(1+r0) ⊂ B4 . (3.41)

We now order the normal directions {νi}N
i=1 in the clockwise direction (see Figure 3), and

write, with abuse of notation, ν1 < ν2 < . . . < νN < ν1 = νN+1. For every j ∈ {1, ..., N},
we see from (1.11) that there exists xj ∈ Rn \ {0} such that

f(ν) = xj · ν , if νj ≤ ν ≤ νj+1. (3.42)

If ε0 is small enough, then by Theorem 3.6 E is a convex open set. In particular, there

exists a continuous injective function γ : [0, 1) → R2 with γ(1−) = γ(0) and γ([0, 1)) =

∂E, such that γ is of class C1 over J = (0, 1)\I, where I consists of at most countably many

points. Correspondingly, the classical outer unit normal νE is defined as a continuous

vector field over γ(J) ⊂ ∂E. We now claim that if t0 ∈ J , x0 = γ(t0), then νE(x0) ∈
{νi}N

i=1. We can argue by contradiction, assuming on the contrary (and without loss of
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x0

ν1

ν2

νN x′

0

x′′

0

x′′′

0

E

Figure 3. The definition of the triangle T , that uses ν1 and ν2 as outer unit

normals. Notice that, provided σ is small enough, γ((t′0, t
′′
0)) = T ∩ ∂E.

generality) that ν1 < ν(x0) < ν2. By the continuity of νE at γ(t0) for every σ > 0 there

exists t′0 , t′′0 ∈ (0, 1) such that |t′0 − t′′0| < σ and

t′0 < t0 < t′′0 , ν1 < νE(x′
0) ≤ νE(x0) ≤ νE(x′′

0) < ν2 , (3.43)

where we have set x′
0 = γ(t′0) and x′′

0 = γ(t′′0). Correspondingly we define the closed

triangle T with vertices at x′
0, x′′

0 and x′′′
0 , where x′′′

0 is uniquely identified by the identity

(x′′′
0 − x′

0) · ν1 = (x′′′
0 − x′′

0) · ν2 ,

see Figure 3. Notice that, as σ → 0, the triangle T shrinks to {x0}. We now claim that

F(E ∪ T ) = F(E) . (3.44)

Indeed, we first remark that

F(E ∪ T ) − F(E) =

∫

∂T\E
f(νT (x)) dH1(x) −

∫

T∩∂E

f(νE(x)) dH1(x) .

Since νT (x) ∈ {ν1, ν2} for x ∈ ∂T \E and ν1 ≤ νE(x) ≤ ν2 for x ∈ T ∩ ∂E, by (3.42) and

by the divergence theorem we find that

F(E ∪ T ) −F(E) =

∫

∂T\E
νT (x) · x1 dH1(x) −

∫

T∩∂E

νE(x) · x1 dH1(x)

=

∫

∂(T\E)

νT\E(x) · x1 dH1(x)

=

∫

T\E
div(x1) dx = 0 ,

as desired. We are now in the position to conclude the proof of the theorem. Indeed, if

we let δ = |T \ E|/|E|, then δ > 0, δ → 0 as σ → 0, and the set

F = (1 + δ)−1/2 (E ∪ T ) ,

satisfies |E| = |F |. If σ is small enough then F ⊂ I3(E) and, by (3.41), E ∪ T ⊂ B5.

Thus by Lemma 2.4 we find

|E∆F | ≤ |F∆(E ∪ T )| + |(E ∪ T )∆E| ≤ Cδ P (E ∪ T ) + |T \ E|
≤ CδF(E ∪ T ) + δ|E| = CδF(E) + δ|E| , (3.45)
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where we applied P (E ∪T ) ≤ F(E ∪T ) (as B ⊂ K) and (3.44). By the (ε, 3)-minimality

of E and by (3.45)

F(E) ≤ F(E ∪ T )

(1 + δ)1/2
+ ε|E∆F | ≤

(

1 − δ

2
+ ε Cδ + o(δ)

)

F(E) + εδ|E| .

By the Wulff inequality F(E) ≥ 2|E| we conclude that

(1 − 2εC)δ + o(δ) ≤ εδ .

If ε0 is small enough, we obtain a contradiction letting σ (and so δ) converge to 0. �

3.4. C1,α-regularity of (ε, R)-minimizers in the uniform elliptic case. In the pre-

vious section we have shown that (ε, n + 1)-minimizers are L∞-close to K. Assume now

that f is λ-elliptic in the sense of (1.9), so that, in particular, ∂K is of class C2. Then

it is not difficult to show that (ε, R)-minimizers of F are “almost minimizers” of an ellip-

tic integrand (see Lemma C.2). Hence, we can combine the L∞-closeness of ∂E to ∂K,

together with standard regularity theory for almost minimal currents, to show uniform

C1,α-bounds on ∂E. More precisely, introduce the orthogonal projections p : Rn → Rn−1

and q : Rn → R so that x = (px,qx), and set

C(r, s) = {x ∈ R
n : |px| < r , |qx| < s} , C(r) = C(r,∞) , D(r) = C(r, 0) .

We have the following result:

Theorem 3.8 (Uniform C1,ᾱ-regularity of (ε, n + 1)-minimizers at small ε). Assume

that f is λ-elliptic. Then for every ᾱ ∈ (0, 1) there exist positive constants η0 = η0(f),

ε = ε(n, f, ᾱ), r0 = r0(n, f, ᾱ), L = L(n, f, ᾱ), and N = N(n, f, ᾱ) ∈ N with the following

property:

If E is an (ε, n + 1)-minimizer of F with |E| = |K|, then there exist ui : Rn−1 → R

and Qi : Rn → Rn (i = 1, . . . , N) such that:

(i) each Qi is an isometry of Rn;

(ii) ‖ui‖C1,ᾱ(D(r0)) ≤ L;

(iii) if we set graph(ui) = {(z, ui(z)) : z ∈ Rn−1}, then

∂E =
N
⋃

i=1

Qi

(

graph(ui) ∩ C(r0, η0)
)

=
N
⋃

i=1

Qi

(

graph(ui) ∩C(r0/2, η0)
)

.

In particular, ∂E is a C1,ᾱ-manifold.

Remark 3.9. Condition (iii) says that ∂E can be covered by the Qi-images of the graphs

of the functions ui’s not only inside the cylinder C(r0, η0), but also inside the smaller

cylinder C(r0/2, η0). This fact is going to play a role in section 4.3, where we shall

apply Theorem 3.8 to the minimizers in (1.1) in the small mass regime. Indeed, when

E is a minimizer then each function ui given by Theorem 3.8 satisfies an elliptic partial

differential equation (determined by f and Qi) inside the disk D(r0). Under the natural

smoothness assumptions on f and g, the bootstrap argument described in Appendix A.2

will then allow us to bound the C2,α-norm of each ui inside D(r0/2), leading thus to

establish uniform C2,α-estimates for ∂E.
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The proof of the above result is well-known to specialists, but we have been unable to

find a precise reference. Since we hope to make this paper accessible to a large audience,

we have decide to provide a complete proof of Theorem 3.8 in Appendix C.

4. Stability properties of minimizers at small mass

We now turn to the study of minimizers in (1.1), with particular emphasis on the

small mass regime. Let us recall that we shall always assume as a minimal requirement

for the potential g : Rn → [0, +∞) to be a locally bounded Borel function such that

g(x) → +∞ as |x| → +∞ , (4.1)

inf
Rn

g = g(0) = 0 . (4.2)

We shall frequently refer to the Borel functions Ψg, Φg : (0, +∞) → [0, +∞) defined as

Ψg(R) = sup
KR

g , Φg(R) = inf
Rn\KR

g , R > 0 .

Note that Ψg and Φg take finite values by the local boundedness of g, and, by (4.1),

lim
R→+∞

Ψg(R) = lim
R→+∞

Φg(R) = +∞ .

Moreover, if g is continuous in a neighborhood of x = 0, then by (4.2) we find

lim
R→0+

Ψg(R) = lim
R→0+

Φg(R) = 0 .

We begin our analysis with a trivial existence result.

Lemma 4.1 (Existence of minimizers). For every m > 0 there exists a minimizer for the

variational problem (1.1).

Proof. Let us consider a minimizing sequence {Eh}h∈N for (1.1), so that in particular

C = sup
h∈N

F(Eh) + G(Eh) < +∞ . (4.3)

By standard lower semicontinuity and compactness theorems for sets of finite perimeter,

the existence of a minimizer is proved by showing that for every ε > 0 there exists R > 0

such that

sup
h∈N

|Eh \ KR| < ε .

This follows easily from the bound

|Eh \ KR|Φg(R) ≤
∫

|Eh\KR|
g(x) dx ≤ G(Eh) ≤ C ,

together with the fact that Φg(R) → +∞ as R → +∞. �
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4.1. Equilibrium shapes as (ε, R)-minimizers. The application of the results of sec-

tion 3 to the minimizers of the variational problem (1.1) requires, roughly speaking, to

prove that for every m0 > 0 there exists t(m0) > 0 such that every minimizer E with

|E| = m ≤ m0 satisfies the confinement E ⊂ {g ≤ t(m0)}. The proof of this property

will be different depending on the size of m0. If m0 is small then we have to exploit

the domination of the surface energy F over the potential energy G in combination with

Theorem 3.4. On the other hand, when the mass m0 increases the potential energy plays

a stronger role and it is the coerciveness of g that prevents minimizers to spread any

mass far away from the origin (recall the normalization (4.2)). The small mass regime is

addressed in Theorem 4.2 and Corollary 4.3, thus leading to the proof of Theorem 1.1.

The complementary case is discussed separately in Section 4.2, Theorem 4.5.

Theorem 4.2. There exist positive constants m0 = m0(n, f, g) > 0 and C = C(n, f, g)

with the following property: If E is a minimizer in (1.1) with mass |E| = m ≤ m0, then

E is connected and there exists x0 ∈ R
n and r0 > 0 with

r0 ≤ C(n, f, g)m1/n2

,

such that

x0 + Ks(m)(1−r0) ⊂ E ⊂ x0 + Ks(m)(1+r0) ,

where we have set

s(m) =

(

m

|K|

)1/n

.

Moreover, either f∗(x0) ≤ n s(m) or

Φg(f∗(x0) − n s(m)) ≤ 2Ψg(s(m)) . (4.4)

Proof. We set for brevity s = s(m), so that |Ks| = m. In the first two steps below, we

assume that Br ⊂ K ⊂ Bn r for some r = r(n, |K|) > 0. Then in Step three we will show

how to remove such assumption.

Step one: Bound on x0. If E is a minimizer for (1.1) at mass m, then, taking also the

Wulff inequality into account, we find

F(E) + G(E) ≤ F(Ks) + G(Ks) ≤ F(E) + G(Ks) .

In particular,

F(E) ≤ F(Ks) + G(Ks), G(E) ≤ G(Ks) .

From the first inequality, recalling the definition of the Wulff deficit δ(E) given in (3.10),

we get

δ(E) ≤ G(Ks)

F(Ks)
=

∫

Ks
g

n |K|1/nm1/n′
≤ Ψg(s) s

n
. (4.5)

Hence, thanks to (3.11), there exists a point x0 ∈ Rn such that

|E∆(x0 + Ks)|
m

≤ C(n)
√

Ψg(s) s . (4.6)
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Let us show that either f∗(x0) ≤ n s or (4.4) holds true. Since Ψg is locally bounded and

s → 0 as m → 0, by (4.5) there exists m0 = m0(n, f, g) > 0 such that, if m < m0, then

|E \ (x0 + Ks)|
m

≤ 1

2
, i.e. |E ∩ (x0 + Ks)| ≥

m

2
.

Moreover, if f∗(x0) > n s then (x0 + Ks) ∩ Kf∗(x0)−n s = ∅ (recall that K = {f∗ < 1} and

that −K ⊂ nK). Thus, when f∗(x0) > n s, we have g ≥ Φg(f∗(x0)−n s) on E∩(x0 +Ks),

and so

m

2
Φg(f∗(x0) − n s) ≤ G(E ∩ (x0 + Ks)) ≤ G(E) ≤ G(Ks) ≤ Ψg(s) m ,

that is (4.4), as required. Since we are assuming that Br ⊂ K ⊂ Bn r, f∗ is comparable

to the euclidean norm, and so this argument implies the existence of a constant R0 =

R0(n, f, g) such that |x0| ≤ R0.

Step two: Connectedness and uniform proximity to x0 + Ks. Let us set

E ′ = s−1 (E − x0) ,

so that |E ′| = |K|. By (4.5) and (4.6), and using that Ψg(s) ≤ Ψg((m0/|K|)1/n) we get

δ(E ′) = δ(E) ≤ C(n, f, g) s , |E ′∆K| ≤ C(n, f, g)
√

s .

We observe that if F is such that |F | = |E ′| and F \E ′ ⊂ K3, then |x0 + s F | = |E| with

(x0 + s F ) \ E ⊂ x0 + K3 s. Hence x0 + K3 s ⊂ KR1 for some R1 = R1(n, f, g), so that

F(E) ≤ F(x0 + s F ) +

∫

(x0+s F )\E
g ≤ F(x0 + s F ) + Ψg(R1)|(x0 + s F )∆E| ,

i.e., since F(x0 + s F ) = sn−1F(F ), F(E ′) = s1−nF(E), and |(x0 + s F )∆E| = sn|F∆E ′|,

F(E ′) ≤ F(F ) + Ψg(R1)s |F∆E ′| = F(F ) + C(n, f, g)s|F∆E ′| .

Therefore, provided m (and so s) is small enough, by Theorem 3.4 we conclude that E ′

is connected, with

K1−r0 ⊂ E ′ ⊂ K1+r0

for some r0 > 0 with r0 ≤ C(n, f, g)s1/n. Thus E is connected and

x0 + Ks(1−r0) ⊂ E ⊂ x0 + Ks(1+r0) ,

as required.

Step three: Renormalization argument. In the two steps above we were assuming that

Br ⊂ K ⊂ Bn r for some r = r(n, |K|) > 0. Let us now consider the general case. By

Lemma 2.2, L(E) is a minimizer for FL(K) + GL at mass m = |L(E)| = |E|. Hence, if

m0 = m0(n, f, g) > 0 is as in Steps one and two above, then L(E) is connected and there

exists x1 ∈ Rn such that

x1 + L(K)s(1−r) ⊂ L(E) ⊂ x1 + L(K)s(1+r) ,
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where r ≤ C(n, f, g)s1/n, s = (|L(E)|/|L(K)|)1/n = (|E|/|K|)1/n, and fL(K),∗(x1) satisfies

the bounds in the statement. Hence, E is also connected and

x0 + Ks1/n(1−r) ⊂ E ⊂ x0 + Ks1/n(1+r) x0 = L−1x1 .

Since fK,∗(x0) = fL(K),∗(x1), this concludes the proof. �

We now apply Theorem 4.2 to prove a confinement result in the small mass regime.

From the confinement property we shall deduce in Corollary 4.4 that minimizers in (1.1)

are (ε, R)-minimizers, with ε small in terms of the mass, eventually proving Theorem 1.1.

Theorem 4.3. Let m0 = m0(n, f, g) as in Theorem 4.2. There exists a locally bounded

increasing function t : (0, +∞) → (0, +∞), that is defined in terms of n, f , and g, with

the property that if E is a minimizer in (1.1) with |E| = m ≤ m0, then

E ⊂ {g < t(m)} .

Moreover, if g is continuous and ωg : [0, +∞) → [0, +∞) denotes a modulus of continuity

for g over the compact set {g ≤ t(m0)}, then

t(m) ≤ ωg

(

Cm1/n
)

,

where C = C(n, f, g). In particular, t(m) → 0 as m → 0+.

Proof. We let Φ̃g : (0, +∞) → (0, +∞) be a locally bounded increasing function such that

Φ̃g(Φg(r)) ≥ r for every r > 0. By Theorem 4.2, the minimizer E has to satisfy

E ⊂ x0 + K(1+C(n,f,g)m1/n2)s(m) , (4.7)

where x0 is such that

f∗(x0) ≤ n s(m) + Φ̃g(2Ψg(s(m))) .

Since Kr = {f∗ < r} and Kr + Ks = Kr+s, we conclude that E ⊂ Kr(m) for

r(m) = n s(m) + Φ̃g(2Ψg(s(m))) + (1 + C(n, f, g)m1/n2

)s(m) .

This shows that the minimizers in (1.1) of mass m are uniformly bounded in Rn, and thus

allows defining t(m) as the infimum of those t > 0 such that every minimizer in (1.1) with

mass m is contained in {g < t}.
Finally, let us assume that g is continuous. As in the Step one of the proof of Theo-

rem 4.2 we have G(E) ≤ G(Ks(m)), so that since g(0) = 0 we get

G(E) ≤ G(Ks(m)) ≤ ωg

(

diam(Ks(m))
)

m ≤ ωg

(

C(f)m1/n
)

m .

Moreover, since E ⊂ {g ≤ t(m0)} and diam(E) ≤
(

1 + C(n, f, g)m1/n2
)

s(m) by (4.7),

we obtain

sup
E

g ≤ ωg(diam(E)) +
G(E)

|E|
≤ ωg

((

1 + C(n, f, g)m1/n2
)

s(m)
)

+ ωg

(

C(f)m1/n
)

≤ ωg

(

C(n, f, g)m1/n
)

,

as desired. �
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Corollary 4.4. Let m0 = m0(n, f, g) be as in Theorem 4.2. For every R > 0 there exists

a constant C = C(n, f, g, R) such that, if E is a minimizer in (1.1) with |E| = m ≤ m0,

then E is a (ε, R)-minimizer for F , with

ε = C(n, f, g, R) m1/n .

In particular

F(E) ≤ F(Ks(m))(1 + C(n, f, g, R)m2/n) , (4.8)

where s(m) = (m/|K|)1/n.

Proof. By Theorem 4.3, E ⊂ {g < t(m)}, where t : (0,∞) → (0,∞) is an increasing

function that depends on n, f , and g only. If now F ⊂ IR(E) and |F | = m, then

F ⊂ IR({g ≤ t(m0)}). Since g is locally bounded and IR({g ≤ t(m0)}) is a bounded set,

we find that

M(n, f, g, R) = sup
IR({g≤t(m0)})

g < ∞ .

Since E(E) ≤ E(F ) and 2|F \ E| = |E∆F | we thus deduce that

F(E) ≤ F(F ) +

∫

F\E
g ≤ F(F ) + M |F \ E|

= F(F ) +
M

2|K|1/n
m1/n|K|1/n |F∆E|

|E|1/n
.

Hence E is a (ε, R)-minimizer with ε = C(n, f, g, R) m1/n and

C(n, f, g, R) =
M(n, f, g, R)

2|K|1/n
.

Then (4.8) is an immediate consequence of (3.12). �

Proof of Theorem 1.1. Let m0 = m0(n, f, g) be the constant of Theorem 4.2. If E is a

minimizer in (1.1) with |E| = m and m ≤ m0, then the first part of the theorem follows

immediately by Theorem 4.2. Let us now assume that n = 2 and let ε0 be a constant

such that Theorem 3.6 and Theorem 3.7 hold true. If C(n, f, g, 3) is the constant of

Corollary 4.4 relative to R = 3 and if m ≤ ε0 C(n, f, g, 3)−n, then E is convex (by

Theorem 3.6) and, provided f is crystalline, E is a convex polygon with sides parallel

to that of K (by Theorem 3.7). The proof of Theorem 1.1 is then completed by setting

mc = min{m0, ε0 C−n}. �

4.2. A general confinement result. Here, we consider the situation for optimal shapes

above the critical mass m0 of Theorem 4.2. It is convenient to introduce a notation for

the infimum in (1.1)

e(m) = inf
{

F(E) + G(E) : |E| = m
}

, m > 0 ,

and for the smallest radius R such that KR contains every minimizer of mass m

R(m) = inf
{

R > 0 : E ⊂ KR for every E ∈ argmin e(m)
}

∈ (0, +∞] .

Under a very mild growth condition on g expressed in (4.9) below, we can prove that

R(m) is locally bounded as a function of m. We notice that (4.9) is trivially satisfied if g
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has locally bounded gradient (for example, if g ∈ C1(Rn)). We also recall that g satisfies

(4.1) and (4.2).

Theorem 4.5 (A uniform bound with the sub-level sets of g). Assume that g is continuous

and that for every R > 0 there exist two constants α0 = α0(R) > 0 and λ0 = λ0(R) > 0,

such that

g((1 + λ)x) ≤ (1 + α0 λ) g(x) + α0 λ , (4.9)

whenever |x| < 2R and 0 ≤ λ < λ0(R). Then for every m̄ > 0 there exists t(m̄) > 0

(depending also on n, f , and g), such that

E ⊂ {g ≤ t(m̄)} ,

for every minimizer E in (1.1) with |E| = m ≤ m̄.

Proof. Step one. Let E be a minimizer in (1.1) with |E| = m and let RE be defined as

RE = inf {R > 0 : E ⊂ KR} ∈ (0, +∞] .

We now prove that, if σ0 = σ0(n, f) > 0 is a suitably small constant which will be fixed

later, and R0 > 0 has the property that

|E \ KR0 | ≤ σ0m , (4.10)

then, either RE ≤ 2R0, or

Φg(RE) ≤ C(n, f, g, R0)

(

1 +
e(m)

m

)

. (4.11)

To this end, we may directly assume that RE ∈ (2 R0, +∞], so that

δ0 =
|E \ K2 R0 |

m
> 0 .

Hence, for every δ ∈ (0, δ0), we can find Rδ ∈ (2 R0, RE) such that

|E ∩ KRδ
| = (1 − δ)m . (4.12)

Let us consider the Lipschitz decreasing function ϕ : [0, +∞) → [0, 1] defined by

ϕ(R) = 1 , for R ∈ (0, R0) , (4.13)

ϕ(R) = 0 , for R ∈ (2 R0, +∞) , (4.14)

ϕ′(R) = − 1

R0
, for R ∈ (R0, 2R0) , (4.15)

and correspondingly define a family of Lipschitz maps Tλ : Rn → Rn (0 < λ < 1), by

setting

Tλ(x) = (1 + λ ϕ(f∗(x)))x , x ∈ R
n .

Notice that Tλ(x) = (1 + λϕ(R))x for every x ∈ ∂KR = {f∗ = R}, so that Tλ(∂KR) =

{f∗ = R(1 + λ ϕ(R))} = ∂KR(1+λ ϕ(R)). If λ ∈ (0, 1/2) then R 7→ R(1 + λ ϕ(R)) is strictly

increasing. Hence, for every λ ∈ (0, 1/2), we have that Tλ is injective on Rn. Also, taking

into account that

Tλ(x) = (1 + λ)x , if x ∈ KR0 , (4.16)
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Tλ(x) = x , if x ∈ Rn \ K2R0 , (4.17)

by the area formula, we find

|Tλ(E ∩ Rδ)| =

∫

E∩Rδ

JTλ(x)dx = (1 + λ)n|E ∩ KR0 | + |E ∩ (KRδ
\ K2R0)|(4.18)

+

∫

E∩(K2R0
\KR0

)

JTλ(x)dx .

We now observe that, by (4.16), (4.17), (4.10), and (4.12),

(1 + λ)n|E ∩ KR0 | + |E ∩ (KRδ
\ K2R0)|

≥ (1 + nλ)(m − |E \ KR0 |) + |E ∩ (KRδ
\ K2R0)|

= (1 + nλ)m − nλ|E \ KR0 | + (|E ∩ (KRδ
\ K2R0)| − |E \ KR0 |)

≥ (1 + n(1 − σ0)λ) m − (|E \ KRδ
| + |E ∩ (K2R0 \ KR0)|)

= (1 + n(1 − σ0)λ − δ) m − |E ∩ (K2R0 \ KR0)| ,
that, combined with (4.18), leads to

|Tλ(E ∩ Rδ)| ≥ (1 + n(1 − σ0)λ − δ)m +

∫

E∩(K2R0
\KR0

)

(JTλ(x) − 1) dx . (4.19)

Now, for every x ∈ Rn, we have

∇Tλ(x) = (1 + λ ϕ(f∗(x)))IdRn + λϕ′(f∗(x))x ⊗∇f∗(x) .

Moreover, (2.6) and (2.7) imply
∣

∣

∣

∣

x

f∗(x)

∣

∣

∣

∣

|∇f∗(x)| ≤ α2

α1
.

Hence, using (4.13), (4.14), and (4.15) we get

|∇Tλ(x) − Id| ≤ λ

{

|IdRn | − α2

α1
ϕ′(f∗(x))f∗(x)

}

≤ C(n, f)λ , (4.20)

and so, in particular,

JTλ − 1 ≥ −C(n, f)λ ,

for all λ ∈ (0, 1/2). Hence, by (4.19) and (4.10) we find

|Tλ(E ∩ Rδ)| ≥ (1 + n(1 − σ0)λ − δ) m − C(n, f)λ|E ∩ (K2R0 \ KR0)|
≥

(

1 +
[

n − (n + C(n, f))σ0

]

λ − δ
)

m =
(

1 +
n

2
λ − δ

)

m ,

provided we set σ0 = σ0(n, f) = n/(2n + 2C(n, f)), with C(n, f) as above. So,

λ >
4 δ

n
⇒ |Tλ(E ∩ KRδ

)| > m ,

while on the other hand

lim
λ→0+

|Tλ(E ∩ KRδ
)| = (1 − δ)m .

By continuity, there exist λ ∈ (0, 4δ/n) such that if we set

F = Tλ(E ∩ KRδ
)
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then |F | = m. We now estimate the free energy of F . By (4.16) and Rδ > 2R0 we have

F(F ; KR0) = (1 + λ)n−1F(E; KR0) , (4.21)

while by (4.17) and again by Rδ > 2R0, we also have

F(F ; Rn \ K2R0) = F(E ∩ KRδ
; Rn \ K2R0) ≤ F(E; Rn \ K2R0) . (4.22)

Moreover, by (4.20) and since Rδ > 2R0,

F(F ; K2R0 \ KR0) ≤ (1 + C(n, f)λ)F(E; K2R0 \ KR0) . (4.23)

Correspondingly, on adding up (4.21), (4.22), and (4.23) we conclude that

F(F ) ≤ (1 + C(n, f) λ)F(E) , (4.24)

for all λ ∈ (0, 1/2). Concerning the potential energy of F , we first notice that
∫

F

g =

∫

E∩Rδ

(g ◦ Tλ) JTλ . (4.25)

Since λ < 4δ/n, by choosing δ > 0 sufficiently small we can ensure that λ < λ0(R0).

Hence by (4.16) and by (4.9) we find
∫

E∩KR0

(g ◦ Tλ) JTλ = (1 + λ)n

∫

E∩KR0

g((1 + λ)x) dx

≤ (1 + C(n)λ)

∫

E∩KR0

[(1 + α0λ)g(x) + α0λ] dx

≤ (1 + C(n, g, R0)λ)

∫

E∩KR0

g(x) dx (4.26)

+C(n, g, R0)λ |E ∩ KR0| ,
where α0 = α0(R0). By (4.17) and by (4.12) we find that

∫

E∩(KRδ
\K2R0

)

(g ◦ Tλ) JTλ =

∫

E\K2R0

g −
∫

E\KRδ

g

≤
∫

E\K2R0

g(x) dx− δΦg(Rδ) m . (4.27)

Eventually, by (4.20) and by (4.9), taking also into account that 0 ≤ ϕ ≤ 1, we conclude

that
∫

E∩(K2R0
\KR0

)

(g ◦ Tλ) JTλ ≤ (1 + C(n, f)λ)

∫

E∩(K2R0
\KR0

)

[(1 + α0λ)g(x) + α0λ] dx

≤ (1 + C(n, f, g, R0)λ)

∫

E∩(K2R0
\KR0

)

g(x) dx (4.28)

+C(n, f, g, R0)λ|E ∩ (K2R0 \ KR0)| .
From (4.25), on adding up (4.26), (4.27), and (4.28), we find

G(F ) ≤ (1 + C(n, f, g, R0)λ)G(E) + C(n, f, g, R0)λ m − δΦg(Rδ)m . (4.29)
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Since E is a minimizer in (1.1), by (4.24) and by (4.29) we get

e(m) ≤ F(F ) + G(F ) ≤ e(m) − m δ Φg(Rδ) + C(n, f, g, R0)λ (e(m) + m) ,

and noticing that λ < 4δ/n we finally obtain

Φg(Rδ) ≤ C(n, f, g, R0)

(

1 +
e(m)

m

)

. (4.30)

By (4.30) we deduce that Rδ is bounded as δ → 0+, and since Rδ → RE as δ → 0+

we conclude that RE < +∞. Moreover, since g is continuous, the function Φg is also

continuous, which proves (4.11).

Step two. We conclude the proof of the theorem. By Theorem 4.3 we can directly

assume that m > m0, and limit ourselves to consider minimizers E such that

m0 ≤ m = |E| < m . (4.31)

If we set s = s(m) = (m/|K|)1/n as in Theorem 4.2, then for every such E we find that

e(m) = F(E) + G(E) ≤ F(Ks) + G(Ks) ≤ n|K|1/nm1/n′

+ Ψg(s) m . (4.32)

In particular, for every R > 0, we have that

|E \ KR| ≤
G(E)

Φg(R)
≤ n|K|1/nm1/n′

+ Ψg(s) m

Φg(R)
,

so that we can define an increasing function R0 = R0(m, n, f, g) (depending on n, f , and

g, but independent from E), such that

|E \ KR0 | ≤ δ0 m , (4.33)

where δ0 = δ0(n, f) was introduced in (4.10) above. By step one (see, in particular, (4.11)),

defining Φ̃g as in the proof of Theorem 4.3, we obtain

R(m) ≤ min

{

2 R0(m, n, f, g) , Φ̃g

(

C(n, f, g, R0(m, n, f, g))

(

e(m)

m
+ 1

))}

. (4.34)

Moreover, (4.31) and (4.32) give

e(m)

m
≤ n|K|1/nm1/n′

+ Ψg(s) m

m
≤ n|K|1/n

m
1/n
0

+ Ψg(s(m̄)) ,

which combined with (4.34) implies

E ⊂ KR(m̄) ,

with R(m̄) ≤ C(n, f, g, m0, m̄) as wanted. �
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4.3. Smoothness and convexity in the uniformly elliptic case. In this section

we consider minimizers for uniformly elliptic surface tensions and address their smooth-

ness and convexity in the small regime, eventually proving Theorem 1.3. On combining

Lemma 4.4 with the results from Section 3.4 we now come to the following theorem.

Theorem 4.6 (C2,α-regularity of minimizers). If α ∈ (0, 1), f is λ-elliptic, f ∈ C2,α(Rn \
{0}), g ∈ C0,α

loc (Rn), then there exist positive constants m0 = m0(n, f, g), η0 = η0(f),

r0 = r0(n, f), N = N(n, f) ∈ N and C = C(n, f, g, α) with the following property:

If E is a minimizer in (1.1) with |E| = m ≤ m0, then there exist Qi : Rn → Rn and

ui : Rn−1 → R, 1 ≤ i ≤ N , such that

(i) each Qi is an isometry of R
n;

(ii) each ui belongs to C1,α(D(r0)) ∩ C2,α(D(r0/2)), with

‖∇′ui‖C1,α(D(r0/2)) ≤
C(n, f, g, α)

m1/n
;

(iii) we have

∂E =

N
⋃

i=1

Qi

(

graph(ui) ∩ C(r0, η0)
)

=

N
⋃

i=1

Qi

(

graph(ui) ∩C(r0/2, η0)
)

.

Remark 4.7. We can write the result of Theorem 4.6 in the more suggestive form

‖∂E‖C2,α ≤ C(n, f, g, α)

m1/n
. (4.35)

Hence, if we set F = (|K|/m1/n)E so that |F | = |K|, then

‖∂F‖C2,α ≤ C(n, f, g, α) . (4.36)

Proof of Theorem 4.6. Let us apply Theorem 3.8 with ᾱ = 1/2, and let η0 = η0(f),

ε = ε(n, f, 1/2), r0 = r0(n, f, 1/2), L = L(n, f, 1/2), and N = N(n, f, 1/2) ∈ N be the

constants provided by that theorem. By Corollary 4.4 applied with R = n + 1, provided

m0 = m0(n, f, g) is small enough, we see that a minimizer E in (1.1) with |E| = m ≤ m0

is, in fact, a (ε, n + 1)-minimizer for F . In particular, by Theorem 3.8, there exist

Qi : Rn → Rn and ui : Rn−1 → R, 1 ≤ i ≤ N , such that properties (i) and (iii) hold true,

and moreover

‖∇′u‖C0,1/2(D(r0)) ≤ L .

As seen in Appendix A.2, Schauder theory gives

‖∇′ui‖C1,α(D(r0/2)) ≤ C(n, r0, L, α)‖hi‖C0,α(D(r0)) , (4.37)

where hi(z) = g(z, ui(z)) − µ, z ∈ R
n−1, and µ satisfies

µ =
(n − 1)F(E) +

∫

∂∗E
g x · νE dHn−1

n|E| , (4.38)

see (A.3). To deduce (ii) from (4.37) we have to provide a bound on µ. To this end we

exploit the minimality of E to see that

F(E) + G(E) ≤ F(E + tv) + G(E + t v) ∀ t ∈ R, v ∈ S
n−1 .
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Since F(E) = F(E + tv), letting t → 0 we obtain that
∫

∂E

g νE · v dHn−1 = 0 ∀ v ∈ S
n−1 ,

i.e.,
∫

∂E

g νE dHn−1 = 0 .

We combine this condition with (4.38) to find that

µ =
(n − 1)F(E) +

∫

∂E
g (x − x0) · νE dHn−1

n|E| , ∀ x0 ∈ R
n . (4.39)

Provided m0 is small enough we can choose x0 as in Theorem 4.3, and thanks to the

Hölder continuity of g we get t(m) ≤ C mα/n, so that
∣

∣

∣

∣

∫

∂E

g (x − x0) · νE dHn−1

∣

∣

∣

∣

≤
(

max
∂E

g
)

2

∫

∂Ks(m)

|x| dHn−1 ≤ C m1+α/n

where s(m) = (m/|K|)1/n. Moreover, Lemma 3.3 gives

F(E) = n |K|1/nm1/n′
(

1 + O(m2/n)
)

,

so that

µ =
n(n − 1) |K|1/nm1/n′

(

1 + O(m2/n)
)

+ O(m1+α/n)

n m
=

(n − 1) |K|1/n

m1/n
+ O(mα/n) .

Combining all together we conclude that

max
1≤i≤N

‖∇′ui‖C1,α(D(r0/2)) ≤
C(n, f, g, α)

m1/n
,

that is (ii), as required. �

4.3.1. Second variation and convexity. As recalled in Appendix A.1, under the assump-

tions of Theorem 4.6, a minimizer E in (1.1) satisfies the stationarity condition

Hf + g = µ on ∂E , (4.40)

where µ is characterized as in (4.38) and where Hf is the anisotropic mean curvature of

∂E, i.e.,

Hf = tr(Hessf(νE)AE) .

Here, and in the following, we let “grad” and “Hess” denote, respectively, the first and

second tangential derivatives with respect to ∂E of a function and let AE be the second

fundamental form of ∂E, and compute the trace operator on Tx∂E (see Appendix A.1

and [13] for more details). To avoid confusion, we remark that Hessf(νE) = Hessf(νE(x))

denotes the Hessian of f restricted to tangent space Tx∂E evaluated at νE(x). When it

is further assumed that g ∈ C1
loc(R

n) one can exploit the non-negativity of the second

variation of the free energy with respect to normal variations to deduce the validity of the

minimality condition
∫

∂E

gradζ · (Hessf(νE)gradζ) − ζ2
[

tr(Hessf(νE)A2
E) − (∇g · νE)

]

dHn−1 ≥ 0 , (4.41)
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on every ζ ∈ C∞
c (Rn) satisfying the constraint

∫

∂E

ζ dHn−1 = 0 . (4.42)

In this section we exploit (4.41) to prove a quantitative bound on the L2-distance of the

second fundamental form of ∂E from that of ∂K. Once this is established, the uniform

C2,α-bound on ∂E of Theorem 4.6 combined with standard interpolation inequalities

allows us to deduce the C0-proximity of the second fundamental form of ∂E to that of

∂K, implying in particular the convexity of E at small mass.

This argument should be clarified by an explanation of its origins. In the fundamental

case that g is constant and f is isotropic, following Barbosa and do Carmo [7] (see

also [52]), one tests (4.41) by means of

ζ(x) = 1 − β(x − x0) · νE(x) , ∀x ∈ ∂E , (4.43)

(where β is determined by (4.42) and x0 is arbitrary), to discover that the principal cur-

vatures of ∂E have to be all equal to each other and constant. In particular, ∂E is forced

to be an Euclidean sphere. If we still keep g constant, but now allow f to be anisotropic

(with the smoothness required by Theorem 4.6), then, following Winklmann [53] (see

also [37]), one sees that the same method applies to prove that E is a Wulff shape. In

this case one has to modify the test function (4.43), and choose instead

ζ(x) = f(νE(x)) − β (x − x0) · νE(x) , ∀x ∈ ∂E , (4.44)

with β and x0 as before. This time (4.41) shall force Hf to be a constant multiple of the

identity, and hence E to be a Wulff shape.

In our situation, due to the small mass regime, we can consider the term ∇g · νE

in (4.41) as a small perturbation and try to gain some information by using (4.41) with

the test function used by Winklmann. Let us observe that, since now g is not constant,

we have to work out the subsequent computations by replacing the constant anisotropic

mean curvature condition Hf = µ with the stationarity condition (4.40). In this way we

will prove that the quantity

1

P (E)

∫

∂E

‖Hessf(νE)AE − µ IdTx∂E‖2 dHn−1 ,

is bounded in terms of n, f , and g only. As we will see, after a proper rescaling, this kind

of bound implies the L2-proximity of the second fundamental form of ∂E to the one of

∂K (see (4.63) below).

We now present the details of this argument. We denote by ∆f the f -Laplace-Beltrami

operator on ∂E, i.e.,

∆fζ = Div
(

Hessf(νE)gradζ) , ζ ∈ C∞
c (∂E) ,

where Div denotes the tangential divergence on ∂E, see also [13, Equation (1.13)]. It is

also convenient to set

Sf = Hessf(νE)AE (so that Hf = tr(Sf)) ,

κf = tr(Hessf(νE)A2
E) .
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With this notation, (4.41) takes the form
∫

∂E

−ζ∆fζ − ζ2 [κf − (∇g · νE)] dHn−1 ≥ 0 . (4.45)

We now prove a lemma that allows computing ∆fζ when ζ is given by (4.44). The

analogous formulas for the case that g is constant appears, of course, in [53, Theorem 3.1]

(we notice however that we use a different convention for the sign of Hf ).

Lemma 4.8. Given x0 ∈ Rn let

h(x) = (x − x0) · νE(x) , x ∈ ∂E . (4.46)

Then the following identities hold true,

∆fνE + κf νE = −gradg , (4.47)

∆fh + κf h = −gradg · (x − x0) + Hf , (4.48)

∆f

(

f(νE)
)

+ κf f(νE) = tr
(

S2
f

)

− gradg · ∇f(νE) . (4.49)

Proof. We observe that [13, Equation (1.19)], written with our notation, reads as

∆fνE +
(

κf − (∇g · νE)
)

νE = −∇g.

By taking into account that

∇g = gradg + (∇g · νE)νE ,

we immediately deduce (4.47). To prove (4.48), we denote by ∇i the i-th tangential

derivative on ∂E, and notice that νE(x) · ∇ix = 0 for every x ∈ ∂E. Thus, adopting

Einstein’s summation convention,

∆fh = ∇i

(

∇2
ijf(νE)(x − x0) · ∇jνE

)

= ∇2
ijf(νE)∇ix · ∇jνE + (x − x0) · ∇i

(

∇2
ijf(νE)∇jνE

)

= ∇2
ijf(νE)(AE)ij + (x − x0) · ∆fνE

= Hf − κf h − gradg · (x − x0),

where in the last step we have applied (4.48). We similarly prove (4.49), as

∆f

(

f(νE)
)

= ∇i

(

∇2
ijf(νE)∇f(νE) · ∇jνE

)

= ∇2
ijf(νE)∇i[∇f(νE)] · ∇jνE + ∇f(νE) · ∆fνE

= ∇2
ijf(νE)∇2

klf(νE)(AE)ik(AE)jl + ∇f(νE) · ∆fνE

= tr
(

S2
f

)

− κf ∇f(νE) · νE − gradg · ∇f(νE) ,

and ∇f(νE) · νE = f(νE) by 1-homogeneity of f . �

Theorem 4.9. If α ∈ (0, 1), f is λ-elliptic, f ∈ C2,α(Rn \ {0}), g ∈ C1
loc(R

n), then

there exist positive constants m0 = m0(n, f, g) and C = C(n, f, g, α) with the following

property: If E is a minimizer in (1.1) with |E| = m ≤ m0, then

1

P (E)

∫

∂E

∥

∥

∥

∥

Hessf(νE)AE − IdTx∂E

s(m)

∥

∥

∥

∥

2

dHn−1 ≤ C , (4.50)
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where s(m) = (m/|K|)1/n.

Proof. The constant m0 is chosen so that Theorem 4.2 and Theorem 4.6 apply. In partic-

ular, we let x0 be the point provided by Theorem 4.2, and correspondingly introduce the

test function ζ = f(νE) − β h, where β is defined as

β =
F(E)

n|E| , (4.51)

and where h is as in (4.46). Let us notice that by Corollary 4.4 and since F(Ks(m)) =

n|K|1/nm1/n′

, we clearly have

β =
F(Ks(m))(1 + O(m2/n))

nm
=

1

s(m)
+ O(m1/n) . (4.52)

Moreover, by the divergence theorem,
∫

∂E

ζ dHn−1 =

∫

∂E

f(νE) dHn−1 − β

∫

∂E

(x − x0) · νE dHn−1 = F(E) − β n|E| = 0 ,

so that that ζ satisfies (4.42). In particular, ζ is an admissible test function for (4.45).

Thus,
∫

∂E

ζ∆fζ + κf ζ2 dHn−1 ≤
∫

∂E

(∇g · νE)ζ2 dHn−1 . (4.53)

We now set for simplicity

fE = f(νE) ,

and apply (4.48) and (4.49) to prove that

∆fζ = ∆ffE − β∆fh

= −κf ζ + tr(S2
f) − gradg · ∇fE + β gradg · (x − x0) − βHf .

Therefore

ζ∆fζ + κfζ
2 = ζ

(

tr
(

S2
f

)

− β Hf − gradg · ∇fE + β gradg · (x − x0)
)

,

and we may deduce from (4.53) that
∫

∂E

(fE − βh)
(

tr
(

S2
f

)

− β Hf

)

dHn−1 ≤
∫

∂E

(fE − βh)2|∇g| dHn−1 (4.54)

+

∫

∂E

|fE − βh||∇g||∇fE| dHn−1

+β

∫

∂E

|fE − βh||∇g||x− x0| dHn−1.

We now divide the proof of (4.50) in two steps.

Step one. We prove that the right hand side of (4.54) is controlled by C P (E), where

C = C(n, f, g, α), so that
∫

∂E

(fE − βh)
(

tr
(

S2
f

)

− β Hf

)

dHn−1 ≤ C P (E) . (4.55)
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To this end, we first notice that by our choice of m0, Theorem 4.2, and by Theorem 4.3

we have the confinement estimates

E ⊂ x0 + Ks(m) , s(m) =

(

m

|K|

)1/n

, (4.56)

and

E ⊂ {g < t(m)} , (4.57)

where t as a locally bounded and increasing function of m depends on n, f , g, and α.

By (4.57) and thanks to the local boundedness of ∇g, we find that

sup
E

|∇g| ≤ C . (4.58)

By (4.8) we have F(E) ≤ C F(Ks(m)) ≤ Cm1/n′

. Hence, by (4.52) and by (4.57),

β max
x∈∂E

|x − x0| ≤
C

m1/n
max

x∈Ks(m)

|x| ≤ C . (4.59)

On combining (4.58) and (4.59) we easily deduce (4.55) from (4.54), as desired.

Step two. We deduce (4.50) from (4.55). We first observe that, if we multiply (4.48)

by fE and (4.49) by h, then we find

fE ∆fh = −κffEh − fE gradg · (x − x0) + fE Hf ,

h ∆ffE = −κffEh + h tr(S2
f) − h(gradg · ∇fE) .

Thus an integration by parts leads to the identity

−
∫

∂E

fE gradg · (x − x0) − fE Hf dHn−1 =

∫

∂E

h tr
(

S2
f

)

− h gradg · ∇fE dHn−1 ,

that by the same argument used in Step one leads to

β

∫

∂E

fE Hf − h tr
(

S2
f

)

dHn−1 ≤ C P (E) .

We combine this estimate with (4.55) to find
∫

∂E

fE tr
(

S2
f

)

− 2β fE Hf + β2h Hf dHn−1 ≤ C P (E) .

We rearrange the terms in the above expression to get
∫

∂E

fE tr
(

S2
f

)

− 2β fE Hf + β2h Hf dHn−1 =

∫

∂E

fE

(

tr
(

S2
f

)

−
H2

f

n − 1

)

dHn−1

+

∫

∂E

fE

(

Hf√
n − 1

− β
√

n − 1

)2

dHn−1 + β2

∫

∂E

(

h Hf − (n − 1) fE

)

dHn−1 .

The last term in the expression above vanishes. Indeed, since Hf + g = µ we have
∫

∂E

(

h Hf − (n − 1) fE

)

dHn−1

=

∫

∂E

h(µ − g) dHn−1 − (n − 1)F(E)
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= n|E|µ − (n − 1)F(E) −
∫

∂E

g (x − x0) · νE dHn−1 = 0 .

where in the last equation we have used the identity (4.39). Taking into account that

fE ≥ α1 (see (2.4)), we have thus proved that

∫

∂E

(

tr
(

S2
f

)

−
H2

f

n − 1

)

+

(

Hf√
n − 1

− β
√

n − 1

)2

dHn−1 ≤ C P (E) . (4.60)

Now, as in the proof of [53, Theorem 1.1], we choose at every point x ∈ ∂E an orthonormal

basis {ei(x)}i=1,...,n−1 for Tx∂E which diagonalize HessfE(x), so that HessfE ei = γiei. In

this way we find Sf(ei) =
∑

j sijγjej, where sij = ej ·(AEei). We now observe the following

two algebraic identities: for any N ∈ N, {λk}N
k=1 ⊂ R, b ∈ R, we have

1

N

(

∑

k

λk

)2

=
∑

k

λ2
k −

1

N

∑

k<h

(λk − λh)
2 , (4.61)

1

N

∑

k<h

(λk − λh)
2 =

∑

k

(λk − b)2 − 1

N

(

∑

k

λk − Nb

)2

. (4.62)

By (4.61) with N = n − 1 and λk = γkskk we get

tr
(

S2
f

)

−
H2

f

n − 1
=

∑

i,j

γiγjs
2
ij −

1

(n − 1)

(

∑

i

γisii

)2

=
∑

i,j

γiγjs
2
ij −

∑

i

(γisii)
2 +

1

(n − 1)

∑

i<j

(γisii − γjsjj)
2

=
∑

i6=j

γiγjs
2
ij +

1

(n − 1)

∑

i<j

(γisii − γjsjj)
2 .

Applying now (4.62) with b = β we find

tr
(

S2
f

)

−
H2

f

n − 1
=

∑

i6=j

γiγjs
2
ij +

∑

i

(γisii − β)2 − 1

n − 1

(

∑

i

γisii − (n − 1)β

)2

= ‖HessfEAE − β IdTx∂E‖2 −
(

Hf√
n − 1

− β
√

n − 1

)2

Thanks to (4.60), we finally conclude
∫

∂E

‖HessfEAE − β IdTx∂E‖2 dHn−1

=

∫

∂E

(

tr
(

S2
f

)

−
H2

f

n − 1

)

+

(

Hf√
n − 1

− β
√

n − 1

)2

dHn−1

≤ C(n, f, g, α)P (E) ,

and we get (4.50) by means of (4.52). �



SHAPES OF LIQUID DROPS AND CRYSTALS AT SMALL MASSES 43

Proof of Theorem 1.3: We consider m0 as in Theorem 4.9 and let F = (|K|/m)1/nE =

s(m)−1E. Since Hessf(νE)AE = ∇2f(νE)∇νE , νF (y) = νE(s(m)y) and Ty∂F = Ts(m)x∂E

for every y ∈ ∂F , by the change of variable x = s(m)y, we deduce that

1

P (E)

∫

∂E

∥

∥

∥

∥

Hessf(νE)AE − IdTx∂E

s(m)

∥

∥

∥

∥

2

dHn−1

=
1

P (F )

∫

∂F

∥

∥

∥

∥

∇2f(νF )
∇νF

s(m)
− IdTx∂E

s(m)

∥

∥

∥

∥

2

dHn−1 .

Hence, by (4.50),

1

P (F )

∫

∂F

∥

∥∇2f(νF )∇νF − IdTx∂F

∥

∥

2
dHn−1 ≤ C m2/n . (4.63)

On the other hand by (4.36) we know that

‖∇νF‖C0,α(∂F ) ≤ C ,

so that, in fact,

[∇2f(νF )∇νF ]C0,α(∂F ) ≤ C .

Now, thanks to the uniform bound (4.36), we can cover ∂F with M = M(n, f, g, α) balls

of radius r0 = r0(n, f, g, α) > 0 and apply Lemma 4.10 below (up to a diffeomorphism

with uniform bi-Lipschitz norm) on each of these balls to get

sup
∂F

∥

∥∇2f(νF )∇νF − IdTx∂F

∥

∥ ≤ Cm2α/(n+2α) .

Provided m is small enough with respect to n, we find that ∇2f(νF )∇νF is positive

definite. In particular, ∇νF is positive definite, so that F is convex. �

Lemma 4.10. Let u ∈ C0,α(B1) ∩ L2(B1). Then

sup
B1/2

|u| ≤ C(n)
(

[u]
n/(n+2α)
C0,α(B1) ‖u‖

2α/(n+2α)
L2(B1) + ‖u‖L2(B1)

)

.

Proof. Given x ∈ B1/2 and y ∈ B1/2(x) ⊂ B1, we write

|u(x)|2 ≤ 2|u(y)− u(x)|2 + 2|u(y)|2 .

We now consider r ∈ (0, 1/2] (to be chosen later) and we integrate the above inequality

with respect to y inside Br(x). Then we get

|u(x)|2 ≤ 2

ωnrn

∫

Br(x)

|u(y) − u(x)|2 dy +
2

ωnrn

∫

Br(x)

|u(y)|2 dy

≤ 2 [u]2C0,α(B1) r2α +
2 ‖u‖2

L2(B1)

ωnrn
.

Now two cases arise, depending on whether or not ‖u‖L2(B1) ≤ [u]C0,α(B1). In the first case

we set

r =
1

2

( ‖u‖L2(B1)

[u]C0,α(B1)

)2/(n+2α)

∈ (0, 1/2] ,

while in the second case we take r = 1/2. Taking the supremum over x ∈ B1/2 finally

leads to desired estimate. �
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4.4. A rigidity result for planar minimizers in the crystalline case. In Theo-

rem 3.7 we proved that if the surface tension f is crystalline and E is an (ε, 3)-minimizer

with ε sufficiently small, then E is a convex polygon with normals coinciding with the

ones of K. In lieu of Corollary 4.4, in the small mass regime the same happens to min-

imizers in (1.1). In this section we prove that, even outside of the small mass regime,

planar crystals have a remarkably rigid structure. More precisely, assuming the continuity

of g we are going to show that if f is crystalline then ∂E consists of two pieces, one of

which is included in some level set {g = ℓ} and the other which is polygonal, with normal

directions chosen among the normal directions to ∂K. We notice that, in this case, E may

well be disconnected. For instance, on constructing an “ad hoc” potential g, we easily see

that E may consist of the disjoint union of two Wulff shapes.

Theorem 4.11. Let n = 2, let f be a crystalline surface tension, so that the Wulff shape

K is a convex polygon with outer unit normals {νi}N
i=1, and let g be continuous. If E is

a minimizer in (1.1), then there exists a constant ℓ > 0 such that ∂E = Γ1 ∪ Γ2, where

Γ1 ⊂ {g = ℓ}, ν(x) ∈ {νi}N
i=1 at H1-a.e. x ∈ Γ2 .

Proof. We use the same notation as in the proof of Theorem 3.7. Let us recall that by

Theorem 3.1, ∂E is differentiable at every point of ∂∗E.

Let x̄ ∈ ∂∗E, and assume that νE(x̄) 6∈ {νi}N
i=1. With no loss of generality, we can

assume that ν1 < ν(x̄) < ν2. Fix ε > 0 small (to be chosen later), and let r0 = r0(x̄, ε) > 0

be sufficiently small so that

∂E ∩ B(x̄, r0) ⊂
{

x : |(x − x̄) · ν(x̄)| ≤ εr0

}

(the existence of such r0 is ensured by the differentiability of ∂E at x̄). We now construct

two possible “perturbations” of E near x̄ as follows:

Perturbation 1 (adding mass): For r ∈ (0, r0), let x+,r ≤ x′
+,r be the two points obtained

by intersecting ∂B(x̄, r) with the line {x : (x− x̄) · ν(x̄) + εr = 0} (the notation ≤ means

that x−,r is to the left of x′
−,r once we rotate the coordinates so that ν(x̄) points upward),

and consider the rhomb

R+(x̄, r) :=
{

x : (x′
+,r − x) · ν1 ≤ 0 ≤ (x+,r − x) · ν1, (x+,r − x) · ν2 ≤ 0 ≤ (x′

+,r − x) · ν2

}

.

With these choices it is not difficult to see that ∂R+(r) \ E is contained inside the lines

{x : (x+,r − x) · ν1 = 0} and {x : (x′
+,r − x) · ν2 = 0}.

Moreover, if ε = ε(ν1, ν2) > 0 is sufficiently small then the set R+(x̄, r) \ E has positive

measure for every r ∈ (0, r0), and by continuity |R+(x̄, r) \ E| can be any number δ ∈
(0, δ0), where δ0 = |R+(x̄, r0) \ E|. Finally, by arguing as in the proof of Theorem 3.7, it

is easily seen that there exists a point xj such that, if ν(x) denotes the exterior normal to

∂(E∪R+(x̄, r)), then f(ν(x)) = ν(x) ·xj for all x ∈ ∂R+(x̄, r)\E while f(ν(x)) ≥ ν(x) ·xj

for all x ∈ ∂E \ R+(r), which implies

F(E ∪ R+(x̄, r)) ≤ F(E).
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Perturbation 2 (removing mass): Let x−,r ≤ x′
−,r be the two points obtained by intersect-

ing ∂B(x̄, r) with the line {x : (x − x̄) · ν(x̄) − εr = 0}, and consider now the rhomb

R−(x̄, r) :=
{

x : (x′
−,r − x) · ν1 ≤ 0 ≤ (x−,r − x) · ν1, (x−,r − x) · ν2 ≤ 0 ≤ (x′

−,r − x) · ν2

}

.

Then we can remove R−(x̄, r) from E, and arguing as above we have

F(E \ R−(x̄, r)) ≤ F(E).

Now, fix two points x1, x2 ∈ ∂∗E, and assume that ν(x1), ν(x2) 6∈ {νi}N
i=1. We want

to show that there is a value λ such that x1, x2 ∈ {g = λ}. By the arbitrariness of x1, x2

this will prove the result.

Fix a small constant δ > 0, and choose r1 > 0 such that Rδ
1,+ = Rδ

+(x1, r1) satisfies

|Rδ
1,+\E| = δ. (This can always be done if δ is sufficiently small.) Similarly, choose r2 > 0

such that Rδ
2,− = Rδ

−(x2, r2) satisfies |E \ Rδ
2,−| = δ. By choosing δ sufficiently small we

can also ensure that Rδ
1,+ ∩ Rδ

2,− = ∅.
Let us compare E with the set F := (E ∪ Rδ

1,+) \ Rδ
2,−. Since |F | = |E| by the

minimality of E, we have

F(E) + G(E) ≤ F(F ) + G(F ).

Moreover, since both F(E∪Rδ
1,+) and F(E \Rδ

2,−) are bounded by F(E), it is easily seen

that F(F ) ≤ F(E), which implies

G(E) ≤ G(F ) = G(E) +

∫

Rδ
1,+\E

g(x) dx−
∫

E\Rδ
2,−

g(x) dx,

that is
∫

Rδ
1,+\E

g(x) dx ≤
∫

E\Rδ
2,−

g(x) dx.

Dividing both sides by δ and letting δ → 0, thanks to the continuity of g we get g(x1) ≤
g(x2). By symmetry we also have g(x2) ≤ g(x1), and the result follows. �

Remark 4.12. The above result can be easily generalized to potentials which may take

the value +∞ on a closed set, and are continuous inside {g < +∞}. In that case, our

result becomes that ∂E = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 ⊂ {g = λ}, ν(x) ∈ {νi}N
i=1 at H1-a.e. x ∈ Γ2, Γ3 ⊂ {g = +∞}.

Appendix A. Variation formulae and higher regularity

A.1. First and second variation formulae. In this section, we show how the energy

F + G changes under infinitesimal transformations. We compute the first variation of

F + G on a set of locally finite perimeter. Next, we recall from [13] the second variation

formula of F + G at a stationary set with smooth boundary.

If E is a set of finite perimeter and Φ : Rn → Rn is a diffeomorphism, then Φ(E) is a

set of finite perimeter, with

νΦ(E) Hn−1
x∂∗Φ(E) = (Φ)#

[

JΦ (∇Φ−1 ◦ Φ)∗νE Hn−1
x∂∗E

]

.
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Given T ∈ C1
c (R

n; Rn) we define a one parameter family of diffeomorphisms {Φt}|t|<ε by

setting

Φt(x) = x + t T (x) , x ∈ R
n ,

so that

F(Φt(E)) =

∫

∂∗E

JΦt f((∇Φ−1
t ◦ Φt)

∗νE) dHn−1 ,

G(Φt(E)) =

∫

E

JΦt(g ◦ Φt) ,

are smooth functions of t in a neighborhood of t = 0. It is well known that

∇Φ−1
t ◦ Φt = (Id + t∇T )−1 = Id − t∇T + t2(∇T )2 + O(t3) ,

JΦt = 1 + t div T +
t2

2

(

(div T )2 − tr(∇T )2
)

+ O(t3)

(see, for instance, [42, Section 9]). Hence,

F(Φt(E)) =

∫

∂∗E

JΦt f((∇Φ−1
t ◦ Φt)

∗νE) dHn−1

=

∫

∂∗E

(1 + t div T ) f(νE − t(∇T )∗νE + O(t2)) dHn−1 + O(t2)

=

∫

∂∗E

(1 + t div T ) (f(νE) − t∇f(νE) · (∇T )∗νE) dHn−1 + O(t2)

= F(E) + t

∫

∂∗E

(f(νE) div T −∇f(νE) · (∇T )∗νE) dHn−1 + O(t2) ,

i.e.,

δF(E; T ) =

∫

∂∗E

(f(νE) div T −∇f(νE) · (∇T )∗νE) dHn−1 .

Analogously

δG(E; T ) =

∫

∂∗E

g T · νE dHn−1 . (A.1)

By a standard argument based on these first order Taylor expansions, for every minimizer

E of F + G with volume constraint, there exists µ ∈ R such that

0 = δF(E; T ) + δG(E; T ) − µ δV(E; T ) . (A.2)

We now characterize µ: consider the family of transformations given by t 7→ Φt(E)

with Φt(x) = x + tx, i.e., Φt(E) = (1 + t)nE and T = id is the identity map. Then

F(Φt(E)) = (1 + t)n−1F(E), V(Φt(E)) = (1 + t)nV(E), and by (A.1) and (A.2) we get

0 = δF(E; id) + δG(E; id) − µ δV(E; id)

= (n − 1)F(E) +

∫

∂∗E

g x · νE dHn−1 − µ n |E| ,

that is

µ =
(n − 1)F(E) +

∫

∂∗E
g x · νE dHn−1

n|E| . (A.3)
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Let us remark again that thus far we have just assumed to work with a generic set of

finite perimeter. Let us now assume that E is an open set with smooth boundary, and

let us restrict to consider normal variations T of the form

T = ζ N ,

where ζ ∈ C∞
c (Rm) and N is the gradient of the signed distance function from ∂E. In

particular, N is a smooth extension of νE in a neighborhood of ∂E, and A = ∇N is

a field of symmetric tensors that extends the second fundamental form AE of ∂E to a

neighborhood of ∂E, with the property that AN = 0 and N · (Av) = 0 for every v ∈ R
n.

Correspondingly, the first variation of F along ζ N takes the form

δF(E; ζ N) =

∫

∂E

ζtr(Hessf(νE)AE) dHn−1 .

Hence, if E is stationary for F + G under a volume constraint, then (A.2) takes the form

tr(Hessf(νE)AE) + g = µ , on ∂E, (A.4)

where Hessf(νE) denotes the Hessian of f restricted to the tangent space of ∂E evaluated

at νE (see [13, Equation (1.10)]). Under (A.4), the second variation is given by

δ2(F+G)(E; ζ N) =

∫

∂E

gradζ ·(Hessf(νE)gradζ)−ζ2
[

tr(Hessf(νE)A2
E) − (∇g · νE)

]

dHn−1

(see [13, Corollary 4.2]), where gradζ is the tangential gradient on ∂E of the function ζ .

Hence we have

δ2(F + G)(E; ζ N) ≥ 0 ,

whenever ζ ∈ C∞
c (Rn) is such that

∫

∂E
ζ dHn−1 = 0.

A.2. Euler-Lagrange equations on graphs and higher regularity. We decompose

Rn as Rn−1×R and let p : Rn → Rn−1 and q : Rn → R denote the coordinate projections.

We define f# : Rn−1 → (0, +∞) on setting

f#(z) = f(−z, 1) , z ∈ R
n−1 .

If u : R
n−1 → R is a Lipschitz function such that, for some x ∈ ∂E, η0 > 0 and r > 0,

Cx(r, η0) ∩ ∂∗E = {(z, u(z)) : z ∈ D(px, r)} ,

Cx(r, η0) ∩ E = {(z, t) : z ∈ D(px, r) ,−η0 < t < u(z)} ,

then (see, for example, [4, Proposition 2.85])

νE(z, u(z)) =
(−∇′u(z), 1)
√

1 + |∇′u(z)|2
, z ∈ D(px, r) ,

where ∇′ denotes the gradient operator on Rn−1. In particular,

F(E;C(x, r)) =

∫

D(px,r)

f#(∇′u(z))dz .
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If now E is a volume-constrained local minimizer for F + G in C(x, r), and if we set

G(z, t) =
∫ t

0
g(z, s) ds for (z, t) ∈ Rn, then it is easily seen that u is a local minimizer for

the non-parametric functional
∫

D(px,r)

f#(∇′v(z)) + G(z, v(z)) dz ,

among Lipschitz functions v : Rn−1 → R satisfying the mass constraint
∫

D(px,r)

v(z) dz =

∫

D(px,r)

u(z) dz .

As a direct consequence of (A.2), one sees that u satisfies the Euler-Lagrange equation
∫

D(px,r)

∇′ϕ(z) · (∇′f#(∇′u(z))) + ϕ(z) [g(z, u(z)) − µ] dz = 0 , ∀ϕ ∈ C∞
c (D(px, r)) ,

with µ given by (A.3). If we now further assume that f is λ-elliptic with f ∈ C2,α(Rn\{0})
for some α ∈ (0, 1), then we readily check that

∇′f#(z) = −∇′f(−z, 1) , (∇′)2f#(z) = (∇′)2f(−z, 1) .

In particular, f# ∈ C2,α(Rn−1), with (∇′)2f#(z) uniformly elliptic as z lies in a given

bounded set. Thus, by a classical argument (based on incremental ratios and on the

Caccioppoli inequality) we find that u ∈ W 2,2
loc (D(px, r)), with

div ′(∇′f#(∇′u(z))
)

= g(z, u(z)) − µ ,

a.e. in D(px, r). Since

div ′(∇′f#(∇′u(z))
)

=

n−1
∑

i,j=1

aij(z)∂2
zizj

u(z) ,

where

aij(z) = [(∇′)2f#]ij ◦ (∇′u(z)) ,

on taking into account the boundedness of ∇′u, we have thus proved that u solves a

linear second order elliptic equation with bounded measurable coefficients. If, moreover,

u ∈ C1,ᾱ(D(px, r)), then the coefficients are of class C0,αᾱ (being obtained as the compo-

sition of a C0,α function with a C0,ᾱ function), and u solves an elliptic partial differential

equations in non-divergence form with (αᾱ)-Hölder continuous coefficients. By Schauder

theory (see for instance [24, Theorem 6.2]) the C2,αᾱ-norm of u inside D(x, r/2) is bounded

by a constant times the C0,α-norm of g(z, u(z)) − µ inside D(x, r), where the constant

depends on r, f#, and the C1,ᾱ-norm of u inside D(x, r). The C2-regularity of u shows

now that the coefficients aij are actually C0,α, and applying Schauder theory again we

find

‖u‖C2,α(D(x,r/2)) ≤ C
(

r, f#, ‖u‖C1,ᾱ(D(x,r)), α
)

‖g(z, u(z)) − µ‖C0,α(D(x,r)) . (A.5)

Moreover, if f and g are smoother, then higher regularity of u follows easily.
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Appendix B. A remark about Question (Q1)

In this section we assume that the convexity of the sub-level sets of the potential

energy g, i.e., we assume that the sets {g ≤ t} are convex for all t ≥ 0. Under this

assumption we prove the following result, that may be seen as a first step in the direction

of answering the convexity question (Q1) stated in the introduction.

Proposition B.1. If the sub-level sets of g has convex, then every minimizer E in (1.1)

satisfies

F(E) ≤ F(E ∪ F ) , (B.1)

whenever |F ∩ E| = 0.

Proof. Let F be such that |F ∩ E| = 0, |F | > 0, and consider the smallest value t > 0

such that

|E| ≤ |(E ∪ F ) ∩ {g ≤ t}| .
Since by definition of t we have

|E| ≥ |(E ∪ F ) ∩ {g < t}| ,

we can find a convex set G such that

{g < t} ⊂ G ⊂ {g ≤ t} , |E| = |(E ∪ F ) ∩ G| .

(Of course, if |E| = |(E ∪F )∩{g ≤ t}|, then we set G = {g ≤ t}.) In particular, we have

g ≤ t on G , g ≥ t on R
n \ G . (B.2)

By the convexity of G one has

F((E ∪ F ) ∩ G) ≤ F(E ∪ F ) .

Moreover,

|E ∩ (Rn \ G)| = |F ∩ G| .
Hence, by minimality of E and using (B.2) we get

F(E) + G(E) ≤ F((E ∪ F ) ∩ G) + G((E ∪ F ) ∩ G)

≤ F(E ∪ F ) +

∫

E∩G

g dx +

∫

F∩G

g dx

≤ F(E ∪ F ) +

∫

E∩G

g dx + t |F ∩ G|

= F(E ∪ F ) +

∫

E∩G

g dx + t |E ∩ (Rn \ G)|

≤ F(E ∪ F ) +

∫

E∩G

g dx +

∫

E∩(Rn\G)

g dx

= F(E ∪ F ) + G(E) ,

as desired. �
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Let us point out that the condition found above implies, in particular, that the surface

energy increase if we infinitesimally enlarge E. Hence, by the first variation formula for F
(see appendix A.1) we deduce that the anisotropic mean curvature of ∂E is non-negative.

In two dimension this is sufficient to show that every connected component of E is convex.

On the other hand, though non-negative mean curvature is not sufficient for convexity,

condition (B.1) is global and stronger, and we may expect that it could be useful to prove

that E is convex for small masses.

Appendix C. Almost minimal currents and C1,α-regularity of

(ε, n + 1)-minimizers

In this section we discuss the C1,α-regularity of (ε, R)-minimizers of F as a conse-

quence of the standard regularity theory for rectifiable currents that are “almost mini-

mizers” of an elliptic integrand [1, 9, 40, 41]. We refer to [42, 30, 36] for an introduction

to the theory of currents. Let us recall that the surface tension f defines a functional F

on the set Rn−1(R
n) of (n − 1)-dimensional integer multiplicity rectifiable currents T ,

T (ω) =

∫

MT

θT 〈−→T , ω〉 dHn−1 , ω ∈ Dn−1(R
n) ,

(here, Dn−1(R
n) is the space of the (n − 1)-dimensional compactly supported smooth

forms on Rn, MT is a countably (n− 1)-rectifiable set,
−→
T is an orientation of MT , and θT

is an integer valued function on MT ) by setting

F(T ) =

∫

MT

θT f(∗−→T ) dHn−1 ,

where ∗ denotes the Hodge star-operation. Note that the choice f(ν) = |ν| leads to define

the mass of the current T ,

M(T ) =

∫

MT

θT dHn−1 .

Thus, if we associate to the set of finite perimeter E the current TE defined by

TE(ω) =

∫

∂∗E

〈∗νE, ω〉 dHn−1 (C.1)

then we find

F(E) = F(TE) , P (E) = Hn−1(∂∗E) = M(TE) .

Regularity results for F-minimizing currents are valid when the surface tension f is λ-

elliptic in the sense defined in section 1.2, i.e., f ∈ C2(Rn \{0}) and (1.9) holds. We recall

that if f is λ-elliptic then

F(T ) − F(S) ≥ λ(M(T ) − M(S))

whenever T , S ∈ Rn−1(R
n) with ∂T = ∂S, and S corresponds to a (n − 1)-dimensional

disk with constant orientation (see [40, Section 1.1]).
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D(r)

r

0

T

C(r)

Figure 4. The statement of Theorem C.1 is depicted in the figure above: Let

T be an almost minimizer of F in the sense of (C.2) such that: (C.3), T contains

0; (C.4), T is contained in the open cylinder C(r); (C.5), the boundary of T (de-

picted by black squares) is contained in ∂C(r); (C.6), the vertical push-forward of

T amounts to the (canonically) oriented integration over the (n− 1)-dimensional

disk D(r), the cross section of C(r) (note in particular that T may contain mul-

tiple sheets over D(r) but with opposite orientations, so that they cancel under

p#); (C.7), the cylindrical excess of T in C(r), i.e. the deviation from 1 of the

ratio between the mass of T and Hn−1(D(r)), is small enough. Then TxC(r/2)

is representable as the graph of C1,α-function from D(r/2) to R.

We now introduce the regularity theorem we are going to apply. Let us recall that

p : Rn → Rn−1 and q : Rn → R denote the canonical projections, so that x = (px,qx),

and we set

C(r, s) = {x ∈ R
n : |px| < r , |qx| < s} , C(r) = C(r,∞) , D(r) = C(r, 0) .

We define the cylindrical excess of the current T over C(r),

e(T,C(r)) =
M(TxC(r)) − M(p#(TxC(r)))

ωn−1rn−1
,

where p#(TxC(r)) denotes the push-forward of the current TxC(r) through the map p.

The following theorem is a particular case of a more general result proved in [16, Lemma

2.2 and Theorem 6.1].

Theorem C.1. Let f be λ-elliptic, with Λ = supSn−1 |∇2f |. Given ᾱ ∈ (0, 1) and β > 0,

there exist σ = σ(n, λ, Λ, ᾱ, β) and L = L(n, λ, Λ, ᾱ, β) with the following property: If

T ∈ Rn−1(R
n) is such that

F(T ) ≤ F(T + X) + β rM(TxK + X) , (C.2)

whenever X ∈ Rn−1(R
n), ∂X = 0 and K = spt(X) is contained in a ball of radius r, and

if, moreover,

0 ∈ spt T , (C.3)

TxC(r) = T , (C.4)

∂TxC(r) = 0 , (C.5)
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p#T (ω) =

∫

D(r)

〈ω, ∗en〉 dHn−1 , ∀ ω ∈ Dn−1(R
n) , (C.6)

e(T,C(r)) ≤ σ , (C.7)

then TxC(r/2) is represented by the graph of a C1,ᾱ-function u : D(r/2) → R such that

|u(z)| ≤ L e(T,C(r))1/(2n) ,

|∇u(z) −∇u(z′)| ≤ L|z − z′|ᾱ ,

for every z, z′ ∈ D(r/2).

Having in mind the minimality condition (C.2), we now prove that (ε, n+1)-minimizers

satisfy a perturbed local F -minimality condition, with no volume constraint.

Lemma C.2. There exist positive constants ε0 = ε0(n), β = β(n, |K|), and r1 =

r1(n, |K|) with the following property: If E is a (ε, n+1)-minimizer for F with |E| = |K|
and ε < ε(n), then

F(E) ≤ F(F ) + β r P (E∆F ) , (C.8)

whenever E∆F is compactly contained in a ball of radius r < r1.

Remark C.3. It is well-known that volume-constrained minimizers (like our (ε, R)-

minimizers) satisfy local minimality conditions like (C.8). This is usually shown by using

Lemma 2.3. In the present situation this strategy would present the drawback of pro-

ducing a value of r1 depending on E. We can instead use the proximity of E to a Wulff

shape (Corollary 3.5) together with Lemma 2.4 to prove (C.8) with r1 = r1(n, K). The

fact that r1 does not depend on E played a key role in section 4.3.

Proof of Lemma C.2. By applying Lemma 2.2 we can directly assume that B ⊂ K ⊂ Bn.

Let now F be such that E∆F is compactly contained in some ball of radius r < r1. If this

ball is disjoint from ∂E then F(F ) ≥ F(E) and (C.8) is trivially valid. If this is not the

case then, provided r1 is small enough we can assume that F ⊂ In(E). Hence, thanks to

Corollary 3.5, up to a translation and to suitably choosing the value of ε0, we can assume

that K1/2 ⊂ E ⊂ K2. Let now s > 0 be such that |s E| = |F |, so that

|s − 1| ≤ |sn − 1| ≤ |E∆F |
|E| =

|E∆F |
|K| , (C.9)

and, in particular,

|s − 1| ≤ ωnr
n
1

|K| . (C.10)

By the isoperimetric inequality and since E∆F is contained in a ball of radius r,

|E∆F | ≤ |E∆F |1/n|E∆F |1/n′ ≤ ω1/n
n r

P (E∆F )

nω
1/n
n

=
r

n
P (E∆F ) . (C.11)

Thus, on combining (C.11) with (C.9), we have

|s − 1| ≤ β(n, |K|) r P (E∆F ) . (C.12)
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K

x

r

s Cx(r, s)

∂H(x)

Figure 5. A cylinder Cx(r, s).

We now notice that s E is a (ε, s(n + 1))-minimizer of F . Since F ⊂ In(E), choosing r1

sufficiently small by (C.10) we have F ⊂ Is(n+1)(s E). Therefore,

F(s E) ≤ F(F ) + ε |K|1/n |(s E)∆F |
|s E|1/n

≤ F(F ) +
ε

s
|(s E)∆F |

≤ F(F ) + β(n, |K|)|(s E)∆F | , (C.13)

where in the last step we have applied (C.10). We now notice that by Lemma 2.4,

by (C.12), and since E ⊂ K2 ⊂ B2n and B ⊂ K,

|(s E)∆E| ≤ C(n)|s − 1|P (E) ≤ C(n)|s − 1|F(E) ≤ β(n, |K|) r P (E∆F ) , (C.14)

where we have also taken into account that

F(E) ≤ F(K) + ε|E∆K| = (n + 2 ε0)|K| .

By a similar argument we have

|F(E) − F(s E)| ≤ C(n)|s − 1|F(E) ≤ β(n, |K|) r P (E∆F ) . (C.15)

On combining (C.14), (C.15), and (C.11) with (C.13) we finally obtain the validity

of (C.8). �

We are now in the position to prove the C1,α-regularity of (ε, n+1)-minimizers of any

F corresponding to a λ-elliptic surface tension.

Proof of Theorem 3.8. Given x ∈ ∂K we denote by π(x) the tangent plane to ∂K at x, and

by H(x) the supporting half-space to K at x that contains K (note that ∂H(x) = x+π(x)).

We denote by px : Rn → π(x) and by qx : Rn → π(x)⊥ the projections of Rn onto π(x)

and the line π(x)⊥, respectively. We also consider the cylinders

Cx(r, s) =
{

y ∈ R
n : |px(y − x)| < r , |qx(y − x)| < s

}

, r, s ∈ [0, +∞] ,

so that Cx(r) = Cx(r,∞) denotes a cylinder of infinite height and (n − 1)-dimensional

cross section Dx(r) = {y ∈ ∂H(x) : |y − x| < r}. We let η0 > 0 be such that for every

x ∈ ∂K,

K ∩ Cx(
√

η0, η0) =
{

y ∈ Cx(
√

η0, η0) : qx(y − x) < vx(px(y − x))
}

,
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for some concave function vx : π(x) → (−∞, 0]. Then the regularity of K implies the

existence of a constant c = c(f) ∈ (0, 1), such that

Nη(∂K) ∩ Cx(c
√

η, η0) ⊂ N2η(∂H(x)) , ∀ η ∈
(

0,
η0

2

)

, (C.16)

where Nµ(A) denotes the (Euclidean) open µ-neighborhood of a set A, i.e., Nµ(A) =

{y : dist(y, A) < µ}, see Figure C. Given η ∈ (0, η0/2) we can choose ε so that, by

Corollary 3.5,

K1−η ⊂ E ⊂ K1+η , ∂E ⊂ Iη(∂K) . (C.17)

Moreover, by Lemma C.2 there exists β = β(n, |K|) > 0, such that

F(E) ≤ F(F ) + β r P (E∆F ) (C.18)

whenever E∆F compactly contained into some ball of radius r < r1 = r1(n, |K|). We

now consider the (n−1)-dimensional current TE associated to E by (C.1), and then show

that Theorem C.1 applies (up to a small vertical translation of size η to ensure (C.3)) to

the current

T = TExCx(c
√

η, η0) ,

inside the cylinder Cx(c
√

η), provided we choose η ∈ (0, η0/2) (and, correspondingly, ε)

small enough, depending on n, λ, Λ, and α, but independent of the point x ∈ ∂K. Once

this fact will be established, the statement of the theorem will follow easily by covering

∂K with cylinders {Cx(c
√

η/4, η0)}x∈∂K and using the compactness of ∂K. So we only

need to show that, given x ∈ ∂K and defined T as above, the assumptions in Theorem C.1

are satisfied (up to a rigid motion) by T . Observe that by (C.16) and (C.17), the uniform

bound

sptT ⊂ N3η(∂H(x)) , ∀ η ∈
(

0,
η0

2

)

, (C.19)

holds true.

c
√

η

2η I2η(∂H(x))

Iη(∂K)

Cx(c
√

η, η0)

Figure 6. Decomposing the boundary of K.
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Step one. We prove that for every η ∈ (0, η0/3), the current T = TExCx(c
√

η, η0),

i.e.,

T (ω) =

∫

Cx(c
√

η,η0)∩∂∗E

〈ω, ∗νE〉 dHn−1 , ω ∈ Dn−1(R
n) ,

satisfies the following properties:

TxCx(c
√

η) = T , (C.20)

∂TxCx(c
√

η) = 0 , (C.21)

(px)#T (ω) =

∫

Dx(c
√

η)

〈ω, ∗νK(x)〉dHn−1 , ∀ω ∈ Dn−1(R
n) , (C.22)

F(T ) ≤ F(T + X) + β r M(TxK + X) , (C.23)

whenever X ∈ Rn−1(R
n), ∂X = 0, and K = sptX is contained in a ball of radius r < r0.

First of all, we observe that if η is such that

Hn−1
(

∂∗E ∩ ∂Cx(c
√

η, η0)
)

= 0 ,

then (C.20) holds true. Since ∂TE = 0 we check the validity of (C.21). By (C.19)

∂E ∩ Cx(c
√

η, η0) ⊂ I3η(∂H(x)) , ∀ η ∈
(

0,
η0

2

)

,

so that by connectedness

|{y ∈ Cx(c
√

η, η0) ∩ E : qx(y − x) > 3η}| = 0 ,

|{y ∈ Cx(c
√

η, η0) \ E : qx(y − x) < −3η}| = 0 .

Thus by a standard application of the the divergence theorem we find that for every

ϕ ∈ C∞
c (π(x)),
∫

Dx(c
√

η)

ϕ(y − x) dHn−1(y) =

∫

Cx(c
√

η,η0)∩∂∗E

ϕ(px(y))(νE(y) · νK(x)) dHn−1(y) ,

that is (C.22). Finally, to check the validity of (C.23), we write X = ∂U for some

U ∈ Rn(Rn) (recall that ∂X = 0). By [30, Theorem 7.5.5] there exists a disjoint family

of sets of finite perimeter {Ai}i∈Z such that U =
∑

i∈Z
i χAi

. If we define

A+ =
⋃

i>0

Ai \ E , A− =
⋃

i<0

Ai ∩ E ,

then (C.18) gives

F(E) ≤ F((E ∪ A+) \ A−) + β r [P (A+) + P (A−)],

and it is easily checked that

F((E ∪ A+) \ A−) + β r [P (A+) + P (A−)] ≤ F(T + X) + β r M(TxK + X),

which proves (C.23).

Step two. We now show that if η ≤ η0/3 is small enough then

e(T,Cx(c
√

η)) =
Hn−1(Cx(c

√
η, η0) ∩ ∂∗E)

ωn−1(c
√

η)n−1
− 1 ≤ σ .
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c
√

η

3η T
∂H(x)

K

E

S

Figure 7. The current P matches T and S, so that ∂(−T + S − P ) = 0, and

is carried by a subset MP (represented with bold lines) of ∂Cx(c
√

η) ∩
∂Cx(c

√
η, 3η).

Let us consider the (n − 1)-dimensional rectifiable current

S(ω) =

∫

Dx(c
√

η)

〈∗νK(x), ω〉 dHn−1 ,

corresponding to the integration over the disk Dx(c
√

η) oriented by νK(x), and let P be the

(n−1)-dimensional rectifiable current with MP ⊂ ∂Cx(c
√

η)∩∂Cx(c
√

η, 3η) (see (C.19))

such that

∂(T + P ) = ∂S .

Since spt(−T + S − P ) is contained in ball of radius controlled by C(n, f)
√

η and since

Hn−1(MP ) ≤ C(n, f)η1+(n−2)/2 , (C.24)

by (C.23), we find that

F(T ) − F(S − P ) ≤ C(n, f) η1+(n−1)/2 .

We now notice that

F(T ) − F(S − P ) =

∫

∂∗E∩Cx(c
√

η,3η)

f(νE) dHn−1 − f(νK(x))ωn−1(c
√

η)n−1

+

∫

MP

f(±νCx(c
√

η,3η)) dHn−1 ,

where
∫

MP
f(±νCx(c

√
η,3η)) dHn−1 ≤ α2Hn−1(MP ) (see (2.4)), hence

∫

∂∗E∩Cx(c
√

η,3η)

f(νE) dHn−1 − f(νK(x))ωn−1(c
√

η)n−1 ≤ C(n, f)η1+(n−2)/2 . (C.25)

On the other hand we have

F(T + P ) − F(S) =

∫

∂∗E∩Cx(c
√

η,η0)

f(νE) dHn−1

+

∫

MP

f(±νCx(c
√

η,η0)) dHn−1 − f(νK(x))ωn−1(c
√

η)n−1 ,

M(T + P ) − M(S) = Hn−1(∂∗E ∩ Cx(c
√

η, η0)) + Hn−1(MP ) − ωn−1(c
√

η)n−1 ,
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and since F(T + P ) − F(S) ≥ λ(M(T + P ) − M(S)), taking again (C.24) into account,

we find that
∫

∂∗E∩Cx(c
√

η,η0))

f(νE) dHn−1 − f(νK(x))ωn−1(c
√

η)n−1 (C.26)

≥ λ
(

Hn−1(∂∗E ∩ Cx(c
√

η, η0))) − ωn−1(c
√

η)n−1
)

− λC(n, f)η1+(n−2)/2 .

Combining (C.25) and (C.26) we find that

Hn−1(∂∗E ∩Cx(c
√

η, η0))) − ωn−1(c
√

η)n−1 ≤ C(n, f)η1+(n−2)/2 ,

that immediately gives

e(T,Cx(c
√

η)) ≤ C(n, f)
√

η ,

and concludes the proof. �
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[46] J. E. Taylor, Existence and structure of solutions to a class of nonelliptic variational problems. Sym-

posia Mathematica, Vol. XIV (Convegno di Teoria Geometrica dell’Integrazione e Varietà Minimali,

INDAM, Roma, Maggio 1973), pp. 499-508. Academic Press, London, 1974.

[47] J. E. Taylor, Unique structure of solutions to a class of nonelliptic variational problems. Differential

geometry (Proc. Sympos. Pure. Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 1,

pp. 419-427. Amer. Math. Soc., Providence, R.I., 1975.

[48] J. E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), no. 4, 568-588.

[49] J. E. Taylor, Is there gravity-induced facetting in crystals?, Astérisque 118 (1984), 243-255.
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