
Sharp stability of the Brunn-Minkowski inequality

via optimal mass transportation

Alessio Figalli ∗, Peter van Hintum †, Marius Tiba ‡

July 31, 2024

Abstract

The Brunn-Minkowski inequality, applicable to bounded measurable sets A and B in Rd, states that
|A + B|1/d ≥ |A|1/d + |B|1/d. Equality is achieved if and only if A and B are convex and homothetic sets
in Rd. The concept of stability in this context concerns how, when approaching equality, sets A and B are
close to homothetic convex sets. In a recent breakthrough [FvHT23], the authors of this paper proved the
following folklore conjectures on the sharp stability for the Brunn-Minkowski inequality:
(1) A linear stability result concerning the distance from A and B to their respective convex hulls.
(2) A quadratic stability result concerning the distance from A and B to their common convex hull.
As announced in [FvHT23], in the present paper, we leverage (1) in conjunction with a novel optimal
transportation approach to offer an alternative proof for (2).

1 Introduction

Given measurable sets X,Y ⊂ Rn with positive measure, the Brunn-Minkowski inequality says

|X + Y | 1
n ≥ |X| 1

n + |Y | 1
n .

More naturally, for equal sized measurable sets A,B ⊂ Rn and a parameter t ∈ (0, 1) this is equivalent to

|tA+ (1− t)B| ≥ |A|,

with equality for equal convex sets A and B (less a measure zero set). Here, A+B = {a+b | a ∈ A, and b ∈ B}
is the Minkowski sum, tA := {ta : a ∈ A}, and | · | refers to the outer Lebesgue measure. The Brunn-Minkowski
inequality is a fundamental tool in analysis and geometry going back to the 19th century, the importance of
which is expertly documented in [Gar02].

The Brunn-Minkowski inequality is part of a vast body of geometric inequalities, such as the isoperimetric
inequality, the Sobolev inequality, the Prékopa-Leindler inequality, and the Borell-Brascamb-Lieb inequality
(e.g. Figure 1 in [Gar02]). The famous isoperimetric inequality states that, for a given volume, the body
minimizing its perimeter is the ball. The isoperimetric inequality follows from Brunn-Minkowski by taking A
a ball and letting t tend to zero. The Prékopa-Leindler inequality asserts that for t ∈ (0, 1) and functions
f, g, h : Rn → R≥0 with the property that h(tx + (1 − t)y) ≥ f t(x)g1−t(y) for all x, y ∈ Rn and

∫
f =

∫
g,

we have
∫
h ≥

∫
f with equality if and only if f(x) = ag(x − x0) is a log-concave function for some a ∈ R>0

and x0 ∈ Rn. Prékopa-Leindler implies Brunn-Minkowski by taking f and g to be the indicator functions of A
and B. The Prékopa-Leindler inequality in turn is subsumed by the Borell-Brascamb-Lieb inequality. Studying
these inequalities and their stabilities has sparked a fruitful field of research in recent years.

The stability of Brunn-Minkowski asks for the structure of sets A and B which are close to attaining equality
in Brunn-Minkowski. This study goes back to the work of for instance Diskant [Dis73] and Ruzsa [Ruz97]. Two
folklore conjectures concern the stability of Brunn-Minkowski: if we are within a factor of 1 + δ from equality,
then the distance from the sets A and B to a common convex set is Od,t(

√
δ), and furthermore, the distance

from to their individual convex hulls is Od,t(δ). These conjectures have received a lot of attention becoming
central problems in analysis and convex geometry (see e.g. [FMP09, FMP10, Chr12b, Chr12a, EK14, FJ15,
Fig15, FJ17, BJ17, CM17, FJ21, vHST22, vHST23a, vHK23a, vHK23b, vHST23b, FvHT23]). Recently, the
present authors resolved these conjectures in [FvHT23] (stated as Theorem 1.5 and Theorem 1.3 below).
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The stability of the isoperimetric inequality was first explored in 1921 by Bonnesen [Bon21] who settled the
planar case. The optimal result in higher dimensions was established only in 2008 by Fusco, Maggi, and Pratelli
[FMP08]. In a cornerstone paper, Figalli, Maggi, and Pratelli [FMP09, FMP10] used mass transportation
techniques to generalize this to a sharp stability of the anisotropic isoperimetric inequality while simultaneously
proving the following sharp stability for the Brunn-Minkowski inequality for convex sets.

Theorem 1.1 (Figalli, Maggi, and Pratelli [FMP09, FMP10]). For all n ∈ N and t ∈ (0, 1/2], there are
computable constants c1.1n > 0 such that the following holds. Assume that A,B ⊂ Rn, are convex sets with equal
volume so that

|tA+ (1− t)B| ≤ (1 + δ)|A|.
Then, up to translation1,

|A△B| ≤ c1.1n

√
δ

t
|A|.

The aim of this paper is to develop a different mass transportation approach on the stability of the Brunn-
Minkowski problem in order to strengthen the above result to non-convex sets.

Theorem 1.2. For all n ∈ N and t ∈ (0, 1/2], there are computable constants c1.2n , d1.2n,t, g
1.2
n,t > 0 such that the

following holds. Assume δ ∈ [0, d1.2n,t), γ ∈ [0, g1.2n,t), and assume that A,B ⊂ Rn, are measurable sets with equal
volume so that

|tA+ (1− t)B| ≤ (1 + δ)|A| and | co(A) \A|+ | co(B) \B| ≤ γ|A|.

Then, up to translation,

|A△B| ≤ c1.2n

√
δ + γ

t
|A|.

In recent work of the current authors [FvHT23], the following linear stability result to the convex hull of A
and B was established, solving one of the aforementioned conjectures.

Theorem 1.3 ([FvHT23]). For n ∈ N and t ∈ (0, 1/2], there are constants c1.3n,t, d
1.3
n,t > 0 such that the following

holds. Assume δ ∈ [0, d1.3n,t), and assume A,B ⊂ Rn are measurable sets of equal volume so that |tA+(1− t)B| ≤
(1 + δ)|A|, then

| co(A) \A|+ | co(B) \B| ≤ c1.3n,tδ|A|.

A notable application of Theorem 1.2 is that, in combination with Theorem 1.3, it gives the following result.

Corollary 1.4. For all n ∈ N and t ∈ (0, 1/2], there are computable constants c1.4n,t, d
1.4
n,t > 0 such that the

following holds. Assume δ ∈ [0, d1.4n,t) and assume that A,B ⊂ Rn, are measurable sets with equal volume so that
|tA+ (1− t)B| ≤ (1 + δ)|A|. Then, up to translation,

|A△B| ≤ c1.4n,t

√
δ|A|.

This corollary is a weaker instance of the following quadratic stability recently proved by the current authors.

Theorem 1.5 ([FvHT23]). For all n ∈ N, n ≥ 2 and t ∈ (0, 1/2], there are computable constants c1.5n , d1.5n,t > 0
such that the following holds. Assume δ ∈ [0, d1.5n,t) and let A,B ⊂ Rn be measurable sets with equal volume
satisfying

|tA+ (1− t)B| = (1 + δ)|A|.
Then, up to translation2, there is a convex set K ⊃ A ∪B such that

|K \A| = |K \B| ≤ c1.5n

√
δ

t
|A|.

Note that | co(A∪B)\A|
|A△B| ≥ 1/2, but a priori we don’t have any lower bound in terms of n. However, as a

consequence of [FvHT23, Theorem 1.7] these two measures are actually equivalent for near-convex sets A,B, i.e.,
with | co(A) \A|+ | co(B) \B| = On,t(δ)|A|. Hence, the main difference between Theorem 1.5 and Corollary 1.4
is in the t dependence of the stability constant. Actually, even combining Theorem 1.2 with the optimal version
of Theorem 1.3 (see Conjecture 14.1 in [FvHT23]) would still not obtain the optimal t dependence provided by
Theorem 1.5.

1That is, there exists x ∈ Rn so that |(A+ x)△B| ≤ c1.1n

√
δ
t
|A|.

2That is, there exist x, y ∈ Rn so that x+A, y +B ⊂ K and |K \ (x+A)|+ |K \ (y +B)| ≤ t−c1.5n8
δ

1
2 |A|.
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The first contribution to the study of sumset stability was made by Freiman [Fre59] in dimension n = 1.
Freiman’s celebrated 3k−4 Theorem [Fre59, LS95, Sta96] from additive combinatorics, implies a strong version
of Theorem 1.3 in dimension 1. If t ∈ (0, 1/2] and A,B ⊂ R are measurable sets with equal volume such that
|tA + (1 − t)B| ≤ (1 + δ)|A| with δ < t, then | co(A) \ A| ≤ t−1δ|A| and | co(B) \ B| ≤ (1 − t)−1δ|B|, which is
optimal.

Stability in higher dimensions is considerably more difficult; in [Chr12b, Chr12a] Christ showed a qualitative
result: if n ∈ N, t, ε ∈ (0, 1/2] and A,B ⊂ Rn are measurable sets with equal volume such that |tA+(1− t)B| ≤
(1+δ)|A| with δ sufficiently small in terms of t, n, ε, then there exists a convex setK such that, up to translation,
K ⊃ A,B and |K \ A| = |K \ B| ≤ ε|A|. In a cornerstone result, Figalli and Jerison [FJ17] obtained the first

quantitative bounds: |K \ A| = |K \ B| ≤ δ(t/| log(t)|)
exp(O(n)) |A|. A similar result for the Prékopa-Leindler

inequality was recently established by Böröcky, Figalli, and Ramos [BFRar].
Until recently, the only instance of Theorem 1.5 for arbitrary sets was known in two dimensions due to

van Hintum, Spink, and Tiba [vHST23b]. In an independent direction, van Hintum and Keevash [vHK23b]
determined the optimal value dn,t = tn for all values n ∈ N and t ∈ (0, 1/2] with the same bound on the
distance to a common convex set as in the result of Figalli and Jerison.

Even partial results towards Theorem 1.5 for restricted classes of sets A and B have received much attention.
Recall that Figalli, Maggi, and Pratelli [FMP09, FMP10] dealt with the case when A and B are convex. Figalli,
Maggi, and Mooney [FMM18] settled the case when A is a ball and B is arbitrary. Barchiesi and Julin [BJ17]
extended the previous results to A convex and B arbitrary. Despite all these results supporting Theorem 1.5,
a conclusive proof remained wide open and outside the scope of the available techniques for a long time.

The particular case of equal sets A = B in Theorem 1.3 has been thoroughly investigated. Indeed, after
establishing in [FJ15] some quantitative bounds for Theorem 1.3 for A = B in all dimensions, Figalli and
Jerison [FJ21] proved Theorem 1.3 for A = B in dimensions n = 1, 2, 3. Van Hintum, Spink, and Tiba
[vHST22] proved Theorem 1.3 for A = B in all dimensions. Moreover, they determined the optimal dependency
on t. Furthermore, van Hintum, Spink, and Tiba [vHST23a, Theorem 1.1] established the optimal dependency
on d in dimensions d ≤ 4 when A = B is a hypograph of a function over a convex domain. Another closely
related result by van Hintum and Keevash [vHK23a] is that if A ⊂ Rn with |A+A

2 | ≤ (1+ δ)|A| with δ < 1, then
there exists an A′ ⊂ A with |A′| ≥ (1− δ)|A| and | co(A′)| = On,1−δ(|A′|).

For distinct sets A and B, showing Theorem 1.3 has proved much more difficult. Van Hintum, Spink, and
Tiba in [vHST23a, Theorem 1.5], proved Theorem 1.3, when A and B are hypograph of functions over the same
convex domain. The only instance of Theorem 1.3 for arbitrary sets was established by van Hintum, Spink and
Tiba [vHST23b, Section 12] in two dimensions. In spite of these determined efforts, for arbitrary sets in higher
dimensions a proof of Theorem 1.3 was only recently found by the present authors in [FvHT23].

Acknowledgements. AF acknowledges the support of the ERC Grant No.721675 “Regularity and Stability in
Partial Differential Equations (RSPDE)” and of the Lagrange Mathematics and Computation Research Center.

1.1 Notation and conventions.

Before starting our proofs, it is convenient to briefly explain the notation that we will use throughout the
paper. With c > 0, we shall denote a universal constant independent of the dimension, while cn > 0 (and
analogous notations) denote dimensional constants. Saying that the quantity a is controlled by On(b) means
that |a| ≤ cnb, while notation a = Ωn(b) means that a ≥ cn|b|. When a constant also depends on t, we write
cn,t. To distinguish the constants that appear in the different statements, cℓ.m means that the constant c is the
one of Theorem ℓ.m.

Throughout the paper, we fix n ∈ N and either t ∈ (0, 1/2]. We use | · | to denote the outer Lebesgue measure
in Rn.

Given s ∈ R and sets X and Y in Rn, we define sX = {sx : x ∈ X} and X + Y = {x+ y : x ∈ X, y ∈ Y }. A
set X in Rn is convex if for all t ∈ [0, 1] we have tX + (1− t)X ⊂ X. The convex hull co(X) of a set X in Rn

is the intersection of all convex sets containing X. In particular, co(X) is a convex set. Two sets X and Y of
Rn are homothetic if there exist a point z in Rn and a scalar s > 0 such that X = sY + z.

Given a bounded convex set X in Rn, we define X as the closure of X, which is also a convex set. The
vertices of X, denoted by V (X), represent the set V (X) = {x ∈ X : co(X \ {x}) ̸= co(X)}. It follows that
X = co(V (X)).

Measureable sets X1, . . . , Xk in Rn are said to form an essential partition of Rn if | ∩i X
c
i | = 0 and for

j1 ̸= j2, we have |Xj1 ∩Xj2 | = 0. By a basis e1, . . . , en in Rn, we mean an orthogonal set of vectors with unit
length. In light of Proposition 2.8, we can assume that the sets A and B (as well as all parts into which we
subdivide A and B) are compact.
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1.2 Overview of the proof

We now turn to Theorem 1.2. The starting point is the optimal transport approach used in [FMP09] to prove
a sharp stability result for the Brunn-Minkowski inequality on convex sets. In our case, the sets A and B are
only L1-close to being convex, and we want to obtain a final estimate where the gap in volume (i.e., γ) appears
in the stability estimate with the same power as δ. Because the optimal transport between arbitrary sets can
behave very badly in terms of regularity, we consider the optimal transport map sending co(A) to co(B). This
makes the first part of our argument (the first three steps in the outline below) very similar to the one in
[FMP09], but then we immediately face a series of challenges. The key issue is that the optimal transport proof
of Brunn-Minkowski provides a control on the transport map only inside the set A (although this map is defined
in the whole convex hull), while for us it is crucial to obtain some bounds also in the remaining region co(A)\A.
By a series of delicate arguments exploiting the monotonicity of the optimal map (we recall that the optimal
map is the gradient of a convex function) and some interior regularity estimates, we obtain a radial control on
the transport map along all rays emanating from the origin and contained inside co(A). This estimate by itself
would be too weak. Still, the key observation is that we can repeat our argument by replacing the origin with
an arbitrary point o′ inside (1 − ε)CA, and replacing our sets A and B with new sets Q(A) and Q(B), where
Q varies among all affine transformations with ||Q||op, ||Q−1||op ≤ θ for some fixed large constant θ. Averaging
our radial bound over o′ and Q allows us to find a sharp control on | co(A)△ co(B)|, from which the final result
follows. We summarize the steps of the proof in the next subsection.

1.3 Outline of the proof of Theorem 1.2

The proof of Theorem 1.2 follows the following steps.

0. Reduce to the case that A and B are sandwiched between two balls of comparable sizes, and look like
cones centered at the same vertex

1. Let CA ⊃ A and CB ⊃ B be convex sets of size |CA| = |CB | = (1 + γ)|A|, and let T : CA → CB be the
optimal transport map between them.

2. Note that if we let E := T−1(B) ∩A, then

(δ + 2γ)|A| ≥ |tA+ (1− t)B| − |E| ≥
∫
E

(
detD (tId+ (1− t)T )− 1

)
dx,

where D is the Jacobian.

3. Analysing the eigenvalues of D(T ) (cf Lemma 3.11 akin to the methods in [FMP09]), we find that this
implies ∫

E

||D(T − Id)||opdx ≤ On

(√
δ + γ

t

)
|A|.

4. By an elliptic regularity argument (cf Lemma 3.13) this implies ||D(T − Id)(x)||op ≤ On

(√
δ+γ
t

)
for

points x ∈ (1− ε)CA and in particular in some small ball around the origin.

5. Next, we note that CA \ E is small, so when integrating a bounded function, we find∫
CA

xT

||x||2
(D(Id− T )(x))

x

||x||2
dx ≤ On(γ)|A|+

∫
E

||D(Id− T )(x)||opdx ≤ On

(√
δ + γ

t

)
|A|.

(Here, we crucially use that DT is nonnegative definite; in particular, we only control the integral on the
left-hand side from above.)

6. Combining the two previous steps, we find

∫
CA

xT

||x||2 (D(Id− T )(x)) x
||x||2

||x||n−1
2

dx ≤ On

(√
δ + γ

t

)
|A|.
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7. This allows us to integrate radially, giving∫
∂CA

〈
(x− T (x))− (o− T (o)),

x

||x||2

〉
dx ≤ On

(√
δ + γ

t

)
|A|.

8. Up to this point, we only used that B(o,Ω(n)) ∈ (1− ε)CA. So, in fact, for all o′ ∈ (1− 2ε)CA we get∫
∂CA

〈
(x− T (x))− (o′ − T (o′)),

x− o′

||x− o′||2

〉
dx ≤ On

(√
δ + γ

t

)
|A|.

9. Using the fact that A and B look like cones at the same vertex, we find that |o′ − T (o′)| = On

(√
δ+γ
t

)
(see Lemma 3.6).

10. Hence, we find ∫
∂CA

〈
x− T (x),

x− o′

||x− o′||2

〉
dx ≤ On

(√
δ + γ

t

)
|A|.

This is the conclusion of Proposition 3.1.

11. We find the same result (cf Corollary 3.2) if we first apply an affine transformation Q∫
x∈∂CA

〈
Q(x)− TQ(Q(x)),

Q(x)−Q(o′)

||Q(x)−Q(o′)||2

〉
dx ≤ On

(√
δ + γ

t

)
|A|,

12. Proposition 3.4 shows that, considering an appropriately distributed random affine transformation and
random point o′ ∈ (1− ε)CA, then

EQ,o′

[〈
Q(x)− TQ(Q(x)),

Q(x)−Q(o′)

||Q(x)−Q(o′)||2

〉]
≥ Ωn(d(x,CB)).

13. Proposition 3.5 shows that

|CA△CB | ≤ On

(∫
∂CA

d(x,CB)dx

)
.

14. Combining the last three steps gives the desired estimate

|A△B| ≤ |CA△CB |+ 2γ|A| ≤ On

(√
δ + γ

t

)
|A|.

2 Initial reduction

We start with a simple reduction (Proposition 2.8) to allow us to assume that A and B are sandwiched between
two balls of comparable sizes, and look like cones centered at the same vertex (cf Definition 2.7). Much of this
section follows the lines of section 2 in [FvHT23].

2.1 Setup

Definition 2.1. A convex set C ⊂ Rn is called a cone if there exists a hyperplane H not containing the origin
and a bounded convex set P ⊂ H such that

C =
⊔
t≥0

tP.

Definition 2.2. We write Sv0,...,vn for the simplex with vertices v0, . . . , vn ∈ Rn. Assuming that Sv0,...,vn

contains the origin in the interior, construct the family of cones Cv0,...,vn := {Ci : 0 ≤ i ≤ n}, where

Ci =
⊔
t≥0

t co(v0, . . . vi−1, vi+1, . . . , vn).
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Note that the cones in Cv0,...,vn form an essential partition of Rn.

Definition 2.3. Fix vectors e0, . . . , en ∈ Rn such that Se0,...,en is a regular unit volume simplex centered at the
origin. Denote S = Se0,...,en and C = Ce0,...,en .

Definition 2.4. A pair of sets X,Y ⊂ Rn is λ-bounded if there exists an r > 0 so that

rS ⊂ X,Y ⊂ λrS.

Definition 2.5. Given a cone F ⊂ C ′ ∈ C, a pair of sets X,Y ⊂ F is (λ, F )-bounded if there exists an r > 0
so that

r(F ∩ S) ⊂ X,Y ⊂ λr(F ∩ S).

Definition 2.6. A pair of sets X,Y ⊂ Rn is called a η-sandwich if there exists a convex set P such that
o ∈ P ⊂ X,Y ⊂ (1 + η)P .

Note that given a cone F and a λ-bounded η-sandwich X,Y ⊂ Rn, the pair X ∩ F, Y ∩ F is also a (λ, F )-
bounded η-sandwich.

Definition 2.7. Say sets A,B ⊂ Rn are (γ, ℓ, λ, µ) conelike if there exist convex sets CA ⊃ A,CB ⊃ B with
|CA| = |CB | = (1+ γ)|A| = (1+ γ)|B|, a convex set K, and a set S′′ obtained by intersecting a cone with a half
space with the following properties

1. B(o, 1/ℓ) ⊂ CA, CB ⊂ B(o, ℓ),

2. S′′ ⊂ A− z, CA − z,B − z, CB − z ⊂ λS′′, for some z ∈ Rn, and

3. K ⊂ A+ x,CA + x,B + y, CB + y ⊂ (1 + µ)K, for some x, y ∈ Rn.

2.2 Proposition

Proposition 2.8. Assume that for sets A,B ⊂ Rn satisfying the conditions of Theorem 1.2 that are (γ, ℓ, λ, µ)

conelike (for µ sufficiently small in terms of n, t, ℓ, and λ), we have |A△B| ≤ cn,ℓ,λ

√
δ+γ
t |A|. Then Theorem 1.2

is true for all set A,B ⊂ Rn.

2.3 Lemmas

We recall the following result by Michael Christ.

Theorem 2.9 (Christ 2012, [Chr12a]). For all n ∈ N, t ∈ (0, 1) and η > 0, there exist constants d2.9 > 0, so
that for all measurable X,Y ⊂ Rn of equal volume with the property that |tX + (1− t)Y | < (1 + d2.9)|X|, then

min
v∈Rn

| co(X ∪ (v + Y ))| ≤ (1 + η)|X|.

We also use the following three lemmas from [FvHT23]

Lemma 2.10 (Proposition 5.4 in [FvHT23]). Let v0, . . . , vn ⊂ Rn be vectors not contained in a halfspace and
let A,B ⊂ Rn be measurable sets with equal volume. Then there exists a vector v ∈ Rn such that for every cone
C ∈ Cv0,...,vn we have

|A ∩ C| = |(B + v) ∩ C|.

Moreover, for every η, λ > 0, there is a computable constant η′2.10 > 0 such that the following holds. If
{v0, . . . , vn} = {e0, . . . , en} (as in Definition 2.3) and if A,B ⊂ Rn is a λ-bounded η′2.10-sandwich, then A,B+v
is a 2λ-bounded η-sandwich.

We won’t use Theorem 2.9 directly, but only through Lemma 2.11.

Lemma 2.11 (Lemma 2.11 in [FvHT23]). For n ∈ N, t ∈ (0, 1/2] and η > 0, there exist constants c2.11 and
d2.11n,t (η) > 0 so that the following holds. If X,Y ⊂ Rn are measurable sets with |X| = |Y | and |tX +(1− t)Y | =
(1 + δ)|X| with δ ∈ [0, d2.11n,t (η)), then, up to translation, there exist measurable sets X ′, Y ′ ⊂ Rn so that

1. X ′, Y ′ is an η-sandwich,

2. |X ′| = |Y ′| = |X|,
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3. co(X ′) = co(X) and co(Y ′) = co(Y ),

4. |X ′△X|+ |Y ′△Y | ≤ c2.11t−1δ|X|,

5. |tX ′ + (1− t)Y ′| ≤ (1 + δ)|X|.

Moreover, if X ⊂ Y , we additionally find X ′ ⊂ Y ′.

Lemma 2.12 (Lemma 2.12 in [FvHT23]). For n ∈ N, and η > 0 the following holds. If X,Y ⊂ Rn is
an η-sandwich, then there exists v ∈ Rn and there exists a linear transformation θ : Rn → Rn such that
θ(v +X), θ(v + Y ) is a (n2 + n3η)-bounded nη-sandwich.

2.4 Proof of Proposition 2.8

Proof of Proposition 2.8. First note that we may assume |A| = |B| = 1. Let λ = λn := 16n6. Let ℓ′n be minimal,
so that a translate of B(0, 1/ℓ′n) is contained in 1

4n3S ∩ C0, where S and C0 are defined in Definition 2.3. Let
ℓ′′n be minimal, so that 4n3S ∩ C0 is contained in some translate of B(o, ℓ′′n). Let ℓn := 2max{ℓ′n, ℓ′′n}. Find
µ = µn,t := µn,t,ℓn,λn

sufficiently small as required by the assumption. Let η = ηn,t := µ for notational
consistency. Choose η′ to be sufficiently small in terms of η and n, so that the second part of Lemma 2.10
applies with parameters (η′n)

2.10 = η′, η2.10n = η and λ2.10n = 2n3. Choose dn,t smaller than the constant
dn,t(η

′
n,t) in Lemma 2.11. Let cn := (n + 1)cn,ℓn,λn

√
wn + c2.11, where wn = (n + 1)(4n3)n, cn,ℓn,λn

is the
constant from the assumption and c2.11 is the constant from Lemma 2.11.

First, use Lemma 2.11 with parameter η′ to find A1, B1 which form an η′-sandwich. Note that

|A△B| ≤
∣∣A△A1

∣∣+ ∣∣B△B1
∣∣+ ∣∣A1△B1

∣∣ ≤ ∣∣A1△B1
∣∣+ c2.11t−1δ|A|,

so it suffices to show ∣∣A1△B1
∣∣ ≤ cn

√
δ + γ

t
|A1|.

Now apply Lemma 2.12 to A1, B1, to find A2, B2 an n2 + n3η′-bounded η′ sandwich. A2, B2 are just a linear
transformation and a translation away from A1, B1. Note that n2 + n3η′ ≤ 2n3, so, in particular, A2, B2 is a
2n3-bounded η′ sandwich.

We then apply Lemma 2.10 with vectors e0, . . . , en and cones C from Definition 2.3. Let A3 = A2 and B3 be
the translation of B2 given by the lemma. Note that by definition of η′, we find that A3, B3 is a 4n3-bounded
η-sandwich with the property that |A3 ∩ C| = |B3 ∩ C| for all C ∈ C.

Fix a C ∈ C, and let
A′ := A3 ∩ C and B′ := B3 ∩ C.

We will show that A′ and B′ are of the correct form to bound their symmetric difference.
Note that t(A3∩C ′)+(1− t)(B3∩C ′) ⊂ (tA3+(1− t)B3)∩C ′ so that these are disjoint for different C ′ ∈ C.

Hence, by Brunn-Minkowski we find that

(1 + δ)|A| ≥ |tA3 + (1− t)B3| ≥
∑
C′∈C

|t(A3 ∩ C ′) + (1− t)(B3 ∩ C ′)| ≥ |tA′ + (1− t)B′|+
∑

C ̸=C′∈C

|A ∩ C ′|.

In particular, we find |tA′ + (1 − t)B′| ≤ |A′| + δ|A|. Since A3, B3 is 4n3-bounded, there exists some r > 0
so that rS ⊂ A3, B3 ⊂ 4n3rS. Given that |A3| = |A| = 1 and |S| = 1, this implies 1/4n3 ≤ r ≤ 1, and thus
1

4n3S ⊂ A3, B3 ⊂ 4n3S. Since A3, B3 is a η-sandwich, there exists a convex set K ⊂ A3, B3 ⊂ (1 + η)K.
Thus, we find that |A′| ≥

∣∣ 1
4n3S ∩ C

∣∣ = 1
(n+1)(4n3)n |A| for all C ∈ C. For notational convenience, let

wn = (n+ 1)(4n3)n, so that
|tA′ + (1− t)B′| ≤ (1 + wnδ)|A′|.

With this bound on |A′| and |B′| in hand, we are ready to define CA′ and CB′ . Note that co(A′)\A′ ⊂ co(A3)\A3

and | co(A3) \ A3| = | co(A) \ A|, so that | co(A′)| ≤ |A′| +
∣∣co (A3

)
\A3

∣∣ = |A′| + γ|A3| ≤ (1 + wnγ)|A′|, and
analogously | co(B′)| ≤ (1 + wnγ)|B′|. Find convex sets CA′ ⊃ co(A′) and CB′ ⊃ co(B′) so that

CA′ , CB′ ⊂ C ∩ 4n3S ∩ (1 + η)K and |CA′ | = |CB′ | ≤ (1 + wnγ)|A′| = (1 + wnγ)|B′|.

With these in place we check that these sets are conelike (cf Definition 2.7). Recall that 1
4n3S ∩ C ⊂

A′, B′, CA′ , CB′ ⊂ 4n3S ∩ C. It’s easy to see that 1
4n3S ∩ C contains a translate of B(o, 1/ℓ′n) and 4n3S ∩

C is contained in a translate of B(o, ℓ′′n). Hence, we find that A′, B′, CA′ , CB′ satisfy the first condition in
Definition 2.7.
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For the second condition note that S′′ := 1
4n3S ∩ C is indeed a set obtained by intersecting a cone with a

halfspace. Hence, if we recall that λn = (4n3)2, and let y = o, we find that A′, B′, CA′ , CB′ satisfy the second
condition in Definition 2.7.

For the third condition, note that K ∩C ⊂ A′ ⊂ CA′ ⊂ (1+ η)(K ∩C), and analogously for B′, CB′ . Hence,
if we let ηn sufficiently small in terms of n, t, ℓn and λn, set x = y = o, we find that A′, B′, CA′ , CB′ satisfy the
third condition in Definition 2.7.

Hence, A′, B′ are (wnγ, ℓn, λn, µn) conelike, with µn sufficiently small in terms of n, t, ℓn, and λn so that by
the assumption in the proposition, we have∣∣(A3 ∩ C

)
△
(
B3 ∩ C

)∣∣ = |A′△B′| ≤ cn,ℓn,λn

√
wnδ + wnγ

t
|A′| ≤ cn − c2.11

n+ 1

√
δ + γ

t
|A|,

where we recall that cn := (n + 1)cn,ℓn,λn

√
wn + c2.11. We conclude by adding up the contributions from the

different cones C ∈ C.∣∣A1△B1
∣∣ = ∣∣A3△B3

∣∣ = ∑
C∈C

∣∣(A3△B3
)
∩ C

∣∣ ≤ (cn − c2.11)

√
δ + γ

t
|A|.

We conclude with the previous note that

|A△B| ≤ |A1△B1|+ c2.11t−1δ|A| ≤ cn

√
δ + γ

t
|A|.

3 Intermediate propositions

The proof of Theorem 1.2 relies on optimal transport. For the purpose of this paper, we only need to know the
following classical result: given two bounded sets A,B ⊂ Rn of positive volume, there exists a convex function
φ : Rn → R whose gradient sends the normalized indicator function of A onto that of B. More precisely,

if we define T := ∇φ, then T♯

(
1
|A|1A

)
= 1

|B|1B , where T♯ denotes the push-forward through the map T .

Furthermore, this map is unique: If φ1 and φ2 are two convex functions such that Ti := ∇φi sends
1
|A|1A to

1
|B|1B , then T1 = T2 a.e. inside A.

From now on, whenever we say that T is the optimal transport from A to B, we mean the (unique) gradient
of a convex function that sends 1

|A|1A to 1
|B|1B . We refer to [Fig17, Chapter 4.6] for a quick introduction to

this beautiful theory and more references.

3.1 Propositions

Proposition 3.1. For every n ∈ N and all t, ε, λ, ℓ, δ, γ > 0 with δ+γ ≤ t2n−1/2, there exists c3.1n,ε,λ,ℓ, µ
3.1
n,t,ε,ℓ > 0

such that the following holds. Assume that A,B ⊂ Rn are (γ, ℓ, λ, µ3.1
n,t,ε,ℓ) conelike. Moreover, assume that

|tA+ (1− t)B| ≤ (1 + δ)|A|. If T : CA → CB is the optimal transport map from CA to CB , then∫
x∈∂CA

max

{〈
x− T (x),

x− o′

||x− o′||2

〉
, 0

}
dx ≤ c3.1n,ε,λ,ℓ

√
δ + γ

t
|A|,

for any o′ ∈ (1− ε)CA.

Corollary 3.2. In addition, for all θ > 0 there exists cn,ε,λ,ℓ,θ such that the following holds. Let Q : Rn → Rn

be an an affine transformation with ||Q||op, ||Q−1||op ≤ θ. If TQ : Q(CA) → Q(CB) is the optimal transport map
from Q(CA) to Q(CB), then∫

x∈∂CA

max

{〈
Q(x)− TQ(Q(x)),

Q(x)−Q(o′)

||Q(x)−Q(o′)||2

〉
, 0

}
dx ≤ cn,ε,λ,ℓ,θ

√
δ + γ

t
|Q(A)|,

for all o′ ∈ (1− ε)CA.

Definition 3.3. Given a parameter θ, let a random scaling be the random affine transformation Q ∼ Qθ

generated as follows. Sample a uniformly random orthonormal basis e1, . . . , en ∈ Rn and sample θ1, . . . , θn ∈
[θ−1, θ] i.i.d. uniformly. Then, in this basis, let Q be the random transformation given by the diagonal matrix
with entries θi.
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Proposition 3.4. For every n ∈ N, ℓ > 1, there exists constants θ = θn,ℓ, cn,ℓ > 0 such that if

• B(o, 1/ℓ) ⊂ 1
2CA,

1
2CB ⊂ B(o, ℓ) where CA and CB are convex,

• for every affine tranformation Q : Rn → Rn, TQ is a map with TQ(Q(CA)) ⊂ Q(CB),

• Q ∼ Qθ is a random scaling, and

• o′ is chosen uniformly random from B(o, 1/ℓ),

then, for all x ∈ ∂CA,

EQ,o′

[
max

{〈
Q(x)− TQ(Q(x)),

Q(x)−Q(o′)

||Q(x)−Q(o′)||2

〉
, 0

}]
≥ cn,ℓd(x,CB).

Proposition 3.5. For all n ∈ N, ℓ ≥ 1, there exists constants cn,ℓ, so that given two convex sets X,Y ⊂ Rn of
equal volume with B(o, 1/ℓ) ⊂ X,Y ⊂ B(o, ℓ) we have

|X△Y | ≤ cn,ℓ

∫
∂X

d(x, Y )dx.

3.2 Auxiliary Lemmas

Lemma 3.6. For every n ∈ N and λ, ℓ > 0, there exists ε3.6n,λ,ℓ,m
3.6
n,λ,ℓ, r

3.6
n,λ,ℓ, σ

3.6
n,λ,ℓ > 0 such that the following

holds. Say sets A,B ⊂ Rn are (γ, ℓ, λ, µ) conelike. Then for every non-zero y2 ∈ Rn, there exists s ∈ {±1} such
that for every map M : ∂CA ∩ ∂CB → ∂CA ∪ ∂CB the following holds. There exist faces FA of CA and FB of
CB with the same supporting hyperplane H, and there exists w0 ∈ H, such that

Bn(w0, 1/r
3.6
n,λ,ℓ) ∩H ⊂ FA ∩ FB .

Moreover, for every w ∈ Bn(w0, 1/r
3.6
n,λ,ℓ) ∩H there exists a ball Xw ⊂ Rn such that with y1 = M(w) − w we

have

1. Xw ⊂ (1− ε3.6n,λ,ℓ)(CA ∩ CB)

2. |Xw| ≥ m3.6
n,λ,ℓ

3. d(w,Xw) ≥ 1/(4r3.6nλ,ℓ)

4. Px∈Xw

(
⟨y1,x−w⟩
|y1||x−w| ≥ 0

)
≥ 1/2

5. Px∈Xw

(
⟨sy2,x−w⟩
|y2||x−w| ≥ σ3.6

n,λ,ℓ

)
= 1.

Lemma 3.7. For every n ∈ N and λ, ℓ > 0, there exists r3.7n,λ,ℓ > ℓ such that the following holds. Say sets
A,B ⊂ Rn are (γ, ℓ, λ, µ) conelike. Construct simplex S′ = S + z with a vertex at z. Let F0, F1, . . . Fn be the
faces of S′ where F0 is the face opposite vertex z. Then

1. S′ ⊂ CA ∩ CB

2. F1 ∪ · · · ∪ Fn ⊂ ∂CA ∩ ∂CB.

3. B(u, 1/r3.7) ⊂ S′ ⊂ B(u, r3.7) for some u ∈ Rn.

Lemma 3.8. For every n ∈ N and r, σ > 0, there exists k3.8n,r,σ > 0 such that the following holds. Let H be a
hyperplane and let H+ and H− be the two half-spaces determined by H. Let w ∈ H with |w| ≤ r. Let f be the

normal vector of H pointing to H+. Let y1, y2 be two vectors such that ⟨y1,f⟩
|y1||f | ≥ 0 and ⟨y2,f⟩

|y2||f | ≥ σ. Then the ball

X = Bn(w + f/(2r), k),

has the following properties:

1. X ⊂ (1− 1/(8r2))(Bn(w, 1/r) ∩H+)

2. Px∈X

(
⟨y1,x−w⟩
|y1||x−w| ≥ 0

)
≥ 1/2
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3. For all x ∈ X we have ⟨y2,x−w⟩
|y2||x−w| ≥ σ/4

4. For all x ∈ X we have |x− w| ≥ 1/4r.

Lemma 3.9. For every n ∈ N and r > 1, the following holds. Let S′ be a simplex such that Bn(u, 1/r) ⊂ S′ ⊂
Bn(u, r) for some u ∈ Rn. Let F be a facet of S′ and let H be the supporting hyperplane of F . Finally, let H+

and H− be the two half spaces determined by H, such that H+ contains S′ and H− is disjoint from the interior
of S′. Then there exists v ∈ F such that

Bn(v, 1/r) ∩H+ ⊂ S′

and
Bn(v, 1/r) ∩H ⊂ F ⊂ Bn(v, 2r) ∩H

Lemma 3.10. For every n ∈ N and r > 0, there exists σ3.10 = σ3.10
n,r > 0 such that the following holds. Let S′

be a simplex such that Bn(u, 1/r) ⊂ S′ ⊂ Bn(u, r) for some u ∈ Rn. Let f0, f1, . . . , fn be the inward normal
vectors to the faces of S′. Then for every unit vector v ∈ Rn there exists 1 ≤ i ≤ n such that

|⟨fi, v⟩| ≥ σ3.10.

Lemma 3.11. For every n ∈ N, there exists a constant c3.11n > 0 such that the following holds. If 0 < t ≤ 1/2
and λ1, . . . , λn > 0 and λ1 · · ·λn = 1, then√∑

i

(λi − 1)2 ≤ c3.11n t−n

(∏
i

(t+ (1− t)λi)− 1

)
+ c3.11n t−

1
2

√∏
i

(t+ (1− t)λi)− 1.

Lemma 3.12. For every n ∈ N and for all t, ε, ℓ > 0, there exists µ = µn,t,ε,ℓ > 0 such that the following holds.
Assume that A,B ⊂ Rn are (γ, ℓ, λ, µ) conelike. Then

tA+ (1− t)B ⊃ t(1− ε/4)CA + (1− t)CB .

Lemma 3.13. Let CA, CB be two convex sets in Rn with equal volume 1 and satisfying

Bn(o, 1/R) ⊂ CA, CB ⊂ Bn(o,R) for some constant R > 1. (3.1)

Let T = ∇φ denote the optimal transport map from CA to CB. Then, for every ε ∈ (0, 1),

∥D(T − Id)∥L∞((1−ε)CA) ≤ Cn,R,ε∥D(T − Id)∥L1((1−ε/2)CA).

3.3 Proofs of propositions

3.3.1 Proof of Proposition 3.1

Proof of Proposition 3.1. We first observe that, by Caffarelli’s regularity theory [Caf92b, Caf92a], we can write
T = ∇φ, where the function φ : CA → Rn is a smooth strictly convex solution of detD2φ = 1.

Therefore, for x ∈ CA, DT (x) = D2φ(x) is a positive definite symmetric matrix with determinant 1 and its
eigenvalues λ1(x), λ2(x), . . . , λn(x) satisfy

λ1(x), λ2(x), . . . , λn(x) > 0 and λ1(x)λ2(x) · · ·λn(x) = 1. (3.2)

Note that we can write tId+ (1− t)T = ∇( t2 ||x||
2
2 + (1− t)φ) and that the function t

2 ||x||
2
2 + (1− t)φ is also

strictly convex.
Therefore, for x ∈ CA,

D(tId+ (1− t)T )(x) = D2

(
t

2
||x||22 + (1− t)φ

)
(x)

is a positive definite symmetric matrix with eigenvalues

t+ (1− t)λ1(x), t+ (1− t)λ2(x), . . . , t+ (1− t)λn(x).

In particular, the function tId+ (1− t)T : CA → Rn is injective.
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The above discussion shows that for every compact subset E ⊂ CA we have∣∣∣∣ ⋃
x∈E

tx+ (1− t)T (x)

∣∣∣∣ = ∫
E

detD (tId+ (1− t)T ) dx =

∫
E

(∏
i

t+ (1− t)λi

)
dx

Construct the set E := (T−1(B) ∩ A) ∪ (1 − ε/4)CA. By Lemma 3.12, it follows that tA + (1 − t)B ⊃⋃
x∈E tx+ (1− t)T (x). By hypothesis, we have |tA+ (1− t)B| ≤ (1 + δ)|A|.
Combining the last three lines, we get∫

E

(∏
i

t+ (1− t)λi

)
dx ≤ (1 + δ)|A|

By hypothesis, we also have

|CA \A| = |CB \B| = γ|A|, (3.3)

and because T is bijective and measure preserving, we get

|E| ≥ |T−1(B) ∩A| = |A \ T−1(CB \B)| ≥ |A| − |CB \B| ≥ (1− γ)|A|. (3.4)

Combining the last two inequalities, we get∫
E

[∏
i

(t+ (1− t)λi)− 1

]
dx ≤ (δ + γ)|A| (3.5)

Also, Lemma 3.11 together with (3.2) imply that√∑
i

(λi − 1)2 ≤ c3.11n t−n

(∏
i

(t+ (1− t)λi)− 1

)
+ c3.11n t−

1
2

√∏
i

(t+ (1− t)λi)− 1. (3.6)

Therefore, we get∫
E

||D(T − Id)||opdx ≤
∫
E

√∑
i

(λi − 1)2dx

≤
∫
E

c3.11n t−n

(∏
i

(t+ (1− t)λi)− 1

)
+ c3.11n t−

1
2

√∏
i

(t+ (1− t)λi)− 1

 dx

≤ c3.11n t−n(δ + γ)|A|+ c3.11n t−
1
2

∫
E

√∏
i

(t+ (1− t)λi)− 1 dx

≤ c3.11n t−n(δ + γ)|A|+ c3.11n t−
1
2

√
|E|
√∫

E

(∏
i

(t+ (1− t)λi)− 1

)
dx

≤ c3.11n t−n(δ + γ)|A|+ c3.11n t−
1
2

√
δ + γ

√
|E|
√
|A|

≤ c3.11n t−n(δ + γ)|A|+ 2c3.11n t−
1
2

√
δ + γ|A| ≤ 3c3.11n

√
δ + γ

t
|A|.

(3.7)

Here, the first inequality follows from the fact that the operator norm is upper bounded by the Hilbert-Schmidt
norm. The second inequality follows from (3.6). The third inequality follows from (3.5). The fourth inequality

follows from the concavity of the function x
1
2 . The fifth inequality follows again from (3.5). The sixth inequality

follows from the hypothesis |E| ≤ |CA| ≤ 2|A| and the final inequality follows from the hypothesis δ + γ ≤
t2n−1/2.

Thus, Lemma 3.13, together with (3.7) and the fact that E ⊃ (1− ε/4)CA, implies that for x ∈ (1− ε/2)CA

||D(T − Id)(x)||op ≤ c3.13n,ε,ℓ

√
δ + γ

t
(3.8)
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Now, fix o′ ∈ (1−ε)CA and set P = B(o′, ε/2ℓ). Note that as CA ⊃ B(o, ℓ−1), it follows that P ⊂ (1−ε/2)CA ⊂
E. Combining (3.7) and (3.8), we deduce that∫

E

||D(T − Id)||op
||x− o′||n−1

2

dx ≤
∫
P

||D(T − Id)||op
||x− o′||n−1

2

dx+

∫
E\P

||D(T − Id)||op
||x− o′||n−1

2

dx

≤ c3.13n,ε,ℓ

√
δ + γ

t

∫
P

1

||x− o′||n−1
2

dx+

∫
E\P

||D(T − Id)||op
||x− o′||n−1

2

dx

≤ c3.13n,ε,ℓ

√
δ + γ

t

∫
B(o,ε/2ℓ)

1

||x||n−1
2

dx+ (2ℓε−1)n−1

∫
E\P

||D(T − Id)||opdx

≤ c3.13n,ε,ℓ

√
δ + γ

t

ε

2ℓ
|Sn−1(o, 1)|+ (2ℓε−1)n−1

∫
E

||D(T − Id)||opdx

≤ c3.13n,ε,ℓ

√
δ + γ

t

ε

2ℓ
|Sn−1(o, 1)|+ (2ℓε−1)n−13c3.11n

√
δ + γ

t
|A| ≤ c3.9n,ε,ℓ

√
δ + γ

t
|A|.

(3.9)

Here, the first inequality is immediate. The second inequality follows from (3.8) and the fact that P ⊂ (1 −
ε/2)CA. The third inequality follows from the trivial bound that for x ̸∈ P we have ||x− o′||−1

2 ≤ 2ℓε−1. The
fourth inequality follows from a simple change of variables. The fifth inequality follows from (3.7). The final
inequality follows from the hypothesis |A| ≥ 2−1|B(o, ℓ−1)|.

In particular, by definition of the operator norm,

∫
E

max


(x−o′)T

||x−o′||2 (D(Id− T )(x)) x−o′

||x−o′||2

||x− o′||n−1
2

, 0

 dx ≤
∫
E

||D(T − Id)||op
||x− o′||n−1

2

dx ≤ c3.9n,ε,ℓ

√
δ + γ

t
|A|.

Note now that, for x ∈ CA, as the eigenvalues of D(T )(x) are all positive by (3.2), it follows that the eigenvalues
of D(Id− T )(x) are at most 1, which implies that

(x− o′)T

||x− o′||2
(D(Id− T )(x))

x− o′

||x− o′||2
≤ 1.

As P ⊂ (1 − ε/2)CA ⊂ E, it follows that for x ∈ CA \ E we have ||x − o′||2 ≥ ε/2ℓ, which implies that
1

||x−o′||n−1
2

≤ (2ℓε−1)n−1.

Combining the last three inequalities with (3.3) and (3.4), we deduce

∫
CA

max


(x−o′)T

||x−o′||2 (D(Id− T )(x)) x−o′

||x−o′||2

||x− o′||n−1
2

, 0

 dx ≤ (2ℓε−1)n−1|CA \ E|+ c3.9n,ε,ℓ

√
δ + γ

t
|A|

≤ (2ℓε−1)n−12γ|A|+ c3.9n,ε,ℓ

√
δ + γ

t
|A| ≤ c3.10n,ε,ℓ

√
δ + γ

t
|A|.
(3.10)

Now, for a unit vector y ∈ Sn−1(o, 1) define sy := max{s : o′+ sy ∈ CA}. Define the function fy(s) : [0, sy] → R,
by fy(s) := ⟨(o′ + sy)− T (o′ + sy), y⟩. It is easy to check that d

ds (fy)(s) = yT D(Id− T )(o′ + sy) y. Thus, by
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performing the change of variable x(s, y) : R× Sn−1(o, 1) → Rn, x(s, y) = o′ + sy, we get

∫
CA

max


(x−o′)T

||x−o′||2 (D(Id− T )(x)) x−o′

||x−o′||2

||x− o′||n−1
2

, 0

 dx

=

∫
Sn−1(o,1)

∫
0≤s≤sy

max
{
yT D(Id− T )(o′ + sy) y, 0

}
dsdy

≥
∫
Sn−1(o,1)

max

{∫
0≤s≤sy

yT D(Id− T )(o′ + sy) y ds, 0

}
dy

=

∫
Sn−1(o,1)

max

{∫
0≤s≤sy

d

ds
(fy)(s)ds, 0

}
dy

=

∫
Sn−1(o,1)

max {fy(sy)− fy(0), 0} dy

=

∫
Sn−1(o,1)

max {⟨(o′ + syy)− T (o′ + syy), y⟩ − ⟨o′ − T (o′), y⟩, 0} dy

(3.11)

Combining (3.10) and (3.11), it follows that∫
Sn−1(o,1)

max {⟨(o′ + syy)− T (o′ + syy), y⟩ − ⟨o′ − T (o′), y⟩, 0} dy ≤ c3.10n,ε,ℓ

√
δ + γ

t
|A|. (3.12)

Integrating (3.8) between o and o′, and using that o′ ∈ B(o, 2ℓ) we find

|(T (o)− o)− (T (o′)− o′)| =

∣∣∣∣∣
∫ |o−o′|

0

[
D(T − Id)

(
o+ t

o′ − o

|o′ − o|

)]
o′ − o

|o′ − o|
dt

∣∣∣∣∣
≤
∫ |o′−o|

0

∣∣∣∣D(T − Id)

(
o+ t

o′ − o

|o′ − o|

)∣∣∣∣
op

dt

≤ |o− o′|c3.13n,ε,ℓ

√
δ + γ

t
≤ 2ℓc3.13n,ε,ℓ

√
δ + γ

t

(3.13)

Integrating this further over the unit sphere, we find∫
Sn−1(o,1)

max {⟨(T (o)− o)− (T (o′)− o′), y⟩ , 0} dy ≤ |Sn−1(o, 1)|2ℓc3.13n,ε,ℓ

√
δ + γ

t
≤ c3.14n,ε,ℓ

√
δ + γ

t
|A|. (3.14)

Hence, we can adjust (3.12) to give∫
Sn−1(o,1)

max {⟨(o′ + syy)− T (o′ + syy), y⟩ − ⟨o− T (o), y⟩, 0} dy

≤
∫
Sn−1(o,1)

max {⟨(o′ + syy)− T (o′ + syy), y⟩ − ⟨o′ − T (o′), y⟩, 0} dy

+

∫
Sn−1(o,1)

max {⟨(T (o)− o)− (T (o′)− o′), y⟩ , 0} dy

≤ c3.10n,ε,ℓ

√
δ + γ

t
|A|+ c3.14n,ε,ℓ

√
δ + γ

t
|A| = c3.15n,ε,ℓ

√
δ + γ

t
|A|

(3.15)

We aim to evaluate this as an integral over the boundary ∂CA rather than the unit sphere Sn−1(o, 1). Recall
that o′ ∈ (1 − ε)CA so that (1 − ε)o′ + εCA ⊂ CA. In particular, as B(o, 1/ℓ) ⊂ CA ⊂ B(o, ℓ), we have

B(o′, ε/ℓ) ⊂ CA ⊂ B(o′, 2ℓ). Considering the map z : Sn−1(o, 1) → ∂CA; y 7→ o′ + syy, so that y = z−o′

||z−o′|| , then

we find that the Jacobian of this map has determinant bounded by some constant, say k3.16n,ε,ℓ, depending only
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on ε, ℓ, and n. Hence, changing variables, we find∫
∂CA

max

{〈
z − T (z),

z − o′

|z − o′|

〉
−
〈
o− T (o),

z − o′

|z − o′|

〉
, 0

}
dz

≤ k3.16n,ε,ℓ

∫
Sn−1(o,1)

max {⟨(o′ + syy)− T (o′ + syy), y⟩ − ⟨o− T (o), y⟩, 0} dy

≤ k3.16n,ε,ℓc
3.15
n,ε,ℓ

√
δ + γ

t
|A| ≤ c3.16n,ε,ℓ

√
δ + γ

t
|A|.

(3.16)

Note that T−1 : CB → CA is also an optimal transport map. By repeating the entire argument above, we get
that for o⋆ ∈ (1− ε)CB∫

∂CB

max

{〈
w − T−1(w),

w − o⋆

|w − o⋆|

〉
−
〈
o− T−1(o),

w − o⋆

|w − o⋆|

〉
, 0

}
dw ≤ c3.16n,ε,ℓ

√
δ + γ

t
|A|.

We now observe that T−1(o) belongs to (1 − ε)CA. Indeed, Lemma 3.13 applied to T−1 implies that T−1 is
uniformly close to the affine map x + T−1(o) inside (1 − ε)CB . Since T−1((1 − ε)CB) ⊂ CA, this implies that
T−1(o) remains at some uniform positive distance from ∂CA.

Now, integrating (3.8) between o and T−1(o) (both of which are in (1− ε)CA), we get∣∣(T (o)− o)− (o− T−1(o))
∣∣ = ∣∣(T (o)− o)− (T (T−1(o))− T−1(o))

∣∣
=

∣∣∣∣∣
∫ |o−T−1(o)|

0

[
D(T − Id)

(
o+ s

T−1(o)− o

|T−1(o)− o|

)]
T−1(o)− o

|T−1(o)− o|
ds

∣∣∣∣∣
≤
∫ |o−T−1(o)|

0

∣∣∣∣D(T − Id)

(
o+ s

T−1(o)− o

|T−1(o)− o|

)∣∣∣∣
op

ds

≤ |o− T−1(o)|c3.13n,ε,ℓ

√
δ + γ

t
≤ 2ℓc3.13n,ε,ℓ

√
δ + γ

t

Combining the last two equations and using the fact that |∂CB | ≤ |Sn−1(o, ℓ)|, we get that∫
∂CB

max

{〈
w − T−1(w),

w − o⋆

|w − o⋆|

〉
−
〈
T (o)− o,

w − o⋆

|w − o⋆|

〉
, 0

}
dw

≤ c3.16n,ε,ℓ

√
δ + γ

t
|A|+ |Sn−1(o, ℓ)|2ℓc3.13n,ε,ℓ

√
δ + γ

t
≤ c3.17n,ε,ℓ

√
δ + γ

t
|A|.

(3.17)

We apply Lemma 3.6 to the (γ, ℓ, λ, µ) conelike sets A,B, together with the vector y2 = o − T (o) and the
map M = T in the case s = 1 and the map M = T−1 in the case s = −1 (restricted to ∂CA ∩ ∂CB). Thus,
we find faces FA of CA and FB of CB with the same supporting hyperplane H, and we find w0 ∈ H such that
Bn(w0, 1/r

3.6
n,λ,ℓ) ∩ H ⊂ FA ∩ FB . Moreover, for every w ∈ Bn(w0, 1/r

3.6
n,λ,ℓ) ∩ H there exists a ball Xw ⊂ Rn

such that with y1 =M(w)− w we have

1. Xw ⊂ (1− ε3.6n,λ,ℓ)(CA ∩ CB)

2. |Xw| ≥ m3.6
n,λ,ℓ

3. d(w,Xw) ≥ 1/(4r3.6nλ,ℓ)

4. Px∈Xw

(
⟨y1,x−w⟩
|y1||x−w| ≥ 0

)
≥ 1/2

5. Px∈Xw

(
⟨sy2,x−w⟩
|y2||x−w| ≥ σ3.6

n,λ,ℓ

)
= 1.

Consider the case s = 1 and M = T (the other case is analogous). By averaging (3.16) over o′ ∈ (1− ε)CA, we
get

Eo′∈(1−ε)CA

∫
∂CA

max

{〈
z − T (z),

z − o′

|z − o′|

〉
−
〈
o− T (o),

z − o′

|z − o′|

〉
, 0

}
dz ≤ c3.16n,ε,ℓ

√
δ + γ

t
|A|,
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which, by interchanging the integration and the average, is equivalent to∫
∂CA

Eo′∈(1−ε)CA
max

{〈
z − T (z),

z − o′

|z − o′|

〉
−
〈
o− T (o),

z − o′

|z − o′|

〉
, 0

}
dz ≤ c3.16n,ε,ℓ

√
δ + γ

t
|A|.

By restricting our attention to a certain part of the boundary, namely Bn(w0, 1/r
3.6
n,λ,ℓ) ∩ H ⊂ ∂CA, we

deduce∫
Bn(w0,1/r3.6n,λ,ℓ)∩H

Eo′∈(1−ε)CA
max

{〈
z − T (z),

z − o′

|z − o′|

〉
−
〈
o− T (o),

z − o′

|z − o′|

〉
, 0

}
dz ≤ c3.16n,ε,ℓ

√
δ + γ

t
|A|.

For each z ∈ Bn(w0, 1/r
3.6
n,λ,ℓ) ∩H, by conditioning on the event o′ ∈ Xz and using the first two properties

of Xz, namely that Xz ⊂ (1− ε3.6n,λ,ℓ)CA ⊂ (1− ε)CA, and that |Xz| ≥ m3.6
n,λ,ℓ we get∫

Bn(w0,1/r3.6n,λ,ℓ)∩H

Eo′∈Xz
max

{〈
z − T (z),

z − o′

|z − o′|

〉
−
〈
o− T (o),

z − o′

|z − o′|

〉
, 0

}
dz ≤ (m3.6

n,λ,ℓ)
−1c3.16n,ε,ℓ

√
δ + γ

t
|A|.

Now for each z ∈ Bn(w0, 1/r
3.6
n,λ,ℓ) ∩H, by conditioning on the event o′ ∈ Ez, where

Ez :=

{
o′ ∈ Xz :

⟨y1, o′ − z⟩
|y1||o′ − z|

≥ 0 and
⟨y2, o′ − z⟩
|y2||o′ − z|

≥ σ3.6
n,λ,ℓ

}
and using the last two properties of Xz which imply |Ez| ≥ 1

2 |Xz|, we get∫
Bn(w0,1/r3.6n,λ,ℓ)∩H

Eo′∈Ez
max

{〈
z − T (z),

z − o′

|z − o′|

〉
−
〈
o− T (o),

z − o′

|z − o′|

〉
, 0

}
dz ≤ 2(m3.6

n,λ,ℓ)
−1c3.16n,ε,ℓ

√
δ + γ

t
|A|.

For each z ∈ Bn(w0, 1/r
3.6
n,λ,ℓ)∩H and each o′ ∈ Ez, by the definition of Ez, y1 and y2, we have

〈
z − T (z), z−o′

|z−o′|

〉
≥

0 and −
〈
o− T (o), z−o′

|z−o′|

〉
≥ σ3.6

n,λ,ℓ|o− T (o)|.
By combining the last three inequalities, we obtain∣∣Bn(w0, 1/r

3.6
n,λ,ℓ) ∩H

∣∣σ3.6
n,λ,ℓ|o− T (o)| ≤ 2(m3.6

n,λ,ℓ)
−1c3.16n,ε,ℓ

√
δ + γ

t
|A|,

hence

|T (o)− o| ≤ |Bn(w0, 1/r
3.6
n,λ,ℓ) ∩H|−1(σ3.6

n,λ,ℓ)
−12(m3.6

n,λ,ℓ)
−1c3.16n,ε,ℓ

√
δ + γ

t
|A| ≤ c3.18n,λ,ε,ℓ

√
δ + γ

t
. (3.18)

By combining (3.18) with (3.16), we conclude∫
∂CA

max

{〈
z − T (z),

z − o′

|z − o′|

〉
, 0

}
dz

≤
∫
∂CA

max

{〈
z − T (z),

z − o′

|z − o′|

〉
− c3.18n,λ,ε,ℓ

√
δ + γ

t
, 0

}
+ c3.18n,λ,ε,ℓ

√
δ + γ

t
dz

≤ |∂CA|c3.18n,λ,ε,ℓ

√
δ + γ

t
+

∫
∂CA

max

{〈
z − T (z),

z − o′

|z − o′|

〉
−
〈
o− T (o),

z − o′

|z − o′|

〉
, 0

}
dz

≤ |∂CA|c3.18n,λ,ε,ℓ

√
δ + γ

t
+ c3.16n,ε,ℓ

√
δ + γ

t
|A| ≤ cn,λ,ε,ℓ

√
δ + γ

t
|A|.

3.3.2 Proof of Proposition 3.4

Proof of Proposition 3.4. First note that if x ∈ CB , then d(x,CB) = 0, so the inequality trivially holds. Hence-
forth assume x ̸∈ CB . Define

ψ := 0.1, ϕ =
1

4ℓ
, ξ := min

{
1

12
ϕℓ−1,

1

2
ψℓ−1

}
, θ := 2ξ−2ℓ2, ζ :=

1

24
ψθ−2ℓ−2,

α := min

{
1

4
ξ2θ−2ℓ−2(n− 1)−1,

1

482
ψ2nθ−6ℓ−6,

1

2

}
, and η := min

{
1

3
ψθ−1ℓ−1,

1

2
ϕ

}
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Write e1, . . . , en ∈ Rn and θ1, . . . , θn ∈ [θ−1, θ] for the random parameters corresponding to transformation
Q ∼ Qθ.

We first restrict our attention to a controlled set of transformations Q. We condition on the event that

θ1 ≤ θ−1 mini>1{θi} and the event that e1 points roughly in the direction x, viz
〈

x
|x| , e1

〉
≥ 1 − α. As these

events are independent, there exists a constant c3.19n so that

P
(
θ1 ≤ θ−1 min

i>1
{θi} and

〈
x

|x|
, e1

〉
≥ 1− α

)
≥ c3.19n . (3.19)

Henceforth, we condition on these events. We will show that, for these Q, the stated inequality holds. For
notational convenience, rescale by a factor θ−1/θ1, so that we may assume that θ1 = θ−1 and θ2, . . . , θn ∈ [1, θ].

First, note that as ⟨x, e1⟩ ≥ (1− α)|x|, we have ⟨x, ei⟩ ≤
√

1− (1− α)2|x| ≤
√
2αℓ, which implies that

|Q(x)| =
√∑

i

⟨Q(x), ei⟩2 ≤
√
θ−1⟨x, e1⟩2 +

∑
i>1

θ2⟨x, ei⟩2 ≤
√
θ−1ℓ2 + (n− 1)2αθ2ℓ2 ≤ ξ, (3.20)

|Q(x)| ≥ ⟨Q(x), e1⟩ = θ−1⟨x, e1⟩ > 0.9θ−1ℓ−1. (3.21)

Let u :=
Q(x)−TQ(Q(x))
|Q(x)−TQ(Q(x))| . We show that ⟨u, e1⟩ is not very negative.

Claim 3.14. ⟨u, e1⟩ ≥ −ψ.

Proof of claim. Assume for a contradiction ⟨u, e1⟩ < −ψ. Let p be the point where the line through Q(x) and
TQ(Q(x)) intersects the plane spanned by e2, . . . , en. Write p − Q(x) = su for some s ∈ R. Note s > 0 as
⟨Q(x), e1⟩ > 0 and ⟨u, e1⟩ < 0. Since ⟨Q(x), e1⟩ ≤ |Q(x)| ≤ ξ and ⟨u, e1⟩ < −ψ, we find that s ≤ ξ/ψ. By the
triangle inequality, this implies |p| ≤ |p −Q(x)| + |Q(x)| ≤ ξ + ξ/ψ < 1/ℓ. Since, θi ≥ 1 for all i > 1, we have
Bn(o, 1/ℓ) ∩ span(e2, . . . , en) ⊂ Q(Bn(o, 1/ℓ)) ∩ span(e2, . . . , en), so that |p| ≤ 1/ℓ implies p ∈ Q(Bn(o, 1/ℓ)).
Moreover, Q(Bn(o, 1/ℓ)) ⊂ Q(CB), so p ∈ Q(CB). However, this implies Q(x) lies on the line segment between
p and TQ(Q(x)), both of which are in Q(CB). Since affine transformations preserve convexity, this implies
Q(x) ∈ Q(CB), i.e., x ∈ CB , a contradiction.

Let us return to the inner product
〈
Q(x)− TQ(Q(x)), Q(x)−Q(o′)

||Q(x)−Q(o′)||2

〉
= |Q(x)−TQ(Q(x))|

〈
u, Q(x)−o′

||Q(x)−o′||2

〉
,

for some o′ ∈ Q(B(o, 1/ℓ)). Write

O :=

{
o′ ∈ Q(B(o, 1/ℓ)) :

〈
u,

Q(x)− o′

||Q(x)− o′||2

〉
≥ η

}
.

We shall argue |O| ≥ c3.22n |Q(B(o, 1/ℓ))|. Write π for the projection onto the plane spanned by e2, . . . , en, thus〈
u,

Q(x)− o′

||Q(x)− o′||2

〉
=

〈
π(u), π

(
Q(x)− o′

||Q(x)− o′||2

)〉
+

(
⟨u, e1⟩ ·

〈
Q(x)− o′

||Q(x)− o′||2
, e1

〉)
,

and distinguish two cases; either ⟨u, e1⟩ ≥ ψ or ⟨u, e1⟩ ∈ [−ψ,ψ].
In the former case, consider the set

O′ := {o′ ∈ Q(B(o, 1/ℓ)) : ⟨o′, e1⟩ ≤ 0, ||o′|| ≤ ζ}.

Note that as ζ < θ−1ℓ−1, we have that {o′ ∈ Q(B(o, 1/ℓ)) : ||o′|| ≤ ζ} = B(o, ζ), so that using symmetry in the

plane spanned by e2, . . . , en we have |O′| = 1
2 |B(o, ζ)| ≥ ℓnζn

2θn−1 |Q(B(o, 1/ℓ))|.
For points o′ ∈ O′, using Equation (3.21) and a version of Equation (3.20), we get∣∣∣∣〈π(u), π( Q(x)− o′

||Q(x)− o′||2

)〉∣∣∣∣ ≤ ∣∣∣∣π( Q(x)− o′

||Q(x)− o′||2

)∣∣∣∣ ≤ |π (Q(x))|+ |π (o′)|
0.9||Q(x)||2

≤
2
√
(n− 1)2αθℓ

θ−1ℓ−1
+

2ζ

θ−1ℓ−1
.

On the other hand, because ⟨o′, e1⟩ ≤ 0 we have

⟨u, e1⟩ ·
〈

Q(x)− o′

||Q(x)− o′||2
, e1

〉
≥ ψ

〈
Q(x)

||Q(x)− o′||2
, e1

〉
≥ ψθ−1

〈
x

||Q(x)||+ ||o′||
, e1

〉
≥ ψθ−1

ξ + ζ
⟨x, e1⟩ ≥

ψθ−1

ξ + ζ
(1− α)ℓ−1
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Combining these two bounds we find〈
u,

Q(x)− o′

||Q(x)− o′||2

〉
=

(
⟨u, e1⟩ ·

〈
Q(x)− o′

||Q(x)− o′||2
, e1

〉)
+

〈
π(u), π

(
Q(x)− o′

||Q(x)− o′||2

)〉
≥ ψθ−1

ξ + ζ
(1− α)ℓ−1 −

2
√
(n− 1)2αθℓ

θ−1ℓ−1
− 2ζ

θ−1ℓ−1

= θ−1ℓ−1

(
ψ

2
− 4

√
nαθ3ℓ3 − 2ζθ2ℓ2

)
≥ ψ

3θℓ
≥ η.

Hence, we find O′ ⊂ O, so that |O| ≥ |O′| ≥ 1
2 |B(o, ζ)| ≥ ℓnζn

2θn−1 |Q(B(o, 1/ℓ))|.
Now consider the other case, i.e., ⟨u, e1⟩ ∈ [−ψ,ψ]. This implies that |π(u)| ≥

√
1− ψ2 ≥ 1

2 . Write
u′ := π(u)/|π(u)|. We consider the set

O′′ := {o′ ∈ Q(B(o, 1/ℓ)) : ⟨o′, e1⟩ ≥ 0, ||π(o′)|| ∈ (1/2ℓ, 1/ℓ), ⟨π(o′), u′⟩ < −ϕ}.

By symmetry in the plane spanned by e2, . . . , en, we have that

|O′′| = 1

2
|{o′ ∈ Q(B(o, 1/ℓ)) : ||π(o′)|| ∈ (1/2ℓ, 1/ℓ), ⟨π(o′), u′⟩ < −ϕ}|

Consider the transformation Q′ ∼ Qθ with parameters e1, . . . , en ∈ Rn (same as Q) and also θ−1, 1, . . . , 1.

As θ1 = θ−1, θ2, . . . , θn ∈ [1, θ], we get Q′(B(o, 1/ℓ)) ⊂ Q(B(o, 1/ℓ)) and |Q′(B(o,1/ℓ))|
|Q(B(o,1/ℓ))| ≥ θ−n+1. From this

containment and the rotational symmetry of Q′(B(o, 1/ℓ)) around the e1 axis, we deduce

|O′′| ≥ 1

2
|{o′ ∈ Q′(B(o, 1/ℓ)) : ||π(o′)|| ∈ (1/2ℓ, 1/ℓ), ⟨π(o′), u′⟩ < −ϕ}|

≥ 1

2

∣∣∣∣{o′ ∈ Q′(B(o, 1/ℓ)) : ||π(o′)|| ∈ (1/2ℓ, 1/ℓ), ⟨ π(o′)

||π(o′)||
, u′⟩ < −2ℓϕ}

∣∣∣∣
≥ 1

2

cos(−1)(2ℓϕ)

2π
|{o′ ∈ Q′(B(o, 1/ℓ)) : ||π(o′)|| ∈ (1/2ℓ, 1/ℓ)}|

≥ 1

6
|{o′ ∈ Q′(B(o, 1/ℓ)) : ||π(o′)|| ∈ (1/2ℓ, 1/ℓ)}|

≥ 1

12
|{o′ ∈ Q′(B(o, 1/ℓ))}| ≥ 1

12θn−1
|{o′ ∈ Q(B(o, 1/ℓ))}| .

Assume that o′ ∈ O′′. We have∣∣∣∣⟨u, e1⟩ ·〈 Q(x)− o′

||Q(x)− o′||2
, e1

〉∣∣∣∣ ≤ ψ

∣∣∣∣〈 Q(x)

||Q(x)− o′||2
, e1

〉∣∣∣∣ ≤ ψ
||Q(x)||

||o′|| − |Q(x)|
≤ 3ℓψξ,

where the first inequality follows from ⟨o′, e1⟩ ≥ 0, the second inequality follows from the triangle inequality
and |e1| = 1 and the final inequality follows from |Q(x)| ≤ ξ and ||o′|| − |Q(x)| ≥ 1/2ℓ− ξ ≥ 1/3ℓ.

For the other term, we use |Q(x)| ≤ ξ and |o′| ≤
√
|π(o′)|2 + ⟨o′, e1⟩2 ≤

√
1/ℓ2 + 1/ℓ2 ≤ 2/ℓ to find that〈

π(u), π

(
Q(x)− o′

||Q(x)− o′||2

)〉
≥ |π(u)|

||o′||2 + |Q(x)|
(⟨u′, π(−o′)⟩ − |⟨π(Q(x)), u′⟩|) ≥ 1/2

2/ℓ+ ξ
(⟨u′, π(−o′)⟩ − ξ) ≥ ϕ− ξ.

Combining these two inequalities, we find〈
u,

Q(x)− o′

||Q(x)− o′||2

〉
=

(
⟨u, e1⟩ ·

〈
Q(x)− o′

||Q(x)− o′||2
, e1

〉)
+

〈
π(u), π

(
Q(x)− o′

||Q(x)− o′||2

)〉
≥ ϕ− ξ − 3ℓψξ ≥ ϕ/2 ≥ η

This proves that O′′ ⊂ O, hence |O′′| ≤ |O|.
Returning to the two cases ⟨u, e1⟩ ≥ ψ and ⟨u, e1⟩ ∈ [−ψ,ψ], we now find that in both cases

|O| ≥ min{|O′|, |O′′|} ≥ c3.22n |Q(B(o, 1/ℓ))|, (3.22)

where c3.22n > 0 can be found in terms of ζ, θ, ℓ, and n. Note that if o′ ∈ O, then〈
Q(x)− TQ(Q(x)),

Q(x)− o′

||Q(x)− o′||2

〉
= |Q(x)− TQ(Q(x))|

〈
u,

Q(x)− o′

||Q(x)− o′||2

〉
≥ η|Q(x)− TQ(Q(x))|

≥ ηθ−1|x−Q−1(TQ(Q(x)))| ≥ ηθ−1d(x,CB),
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where the first inequality follows from the definition of O, the second inequality follows from |Q−1|op ≤ θ and
the last inequality follows from the fact that Q−1(TQ(Q(x))) ∈ CB .

Now we are ready to conclude using the following Markov bound on the expectation we are trying to control:

EQ,o′

[
max

{〈
Q(x)− TQ(Q(x)),

Q(x)−Q(o′)

||Q(x)−Q(o′)||2

〉
, 0

}]
≥ P

(
θ1 ≤ θ−1 min

i>1
{θi} and

〈
x

|x|
, e1

〉
≥ 1− α

)
P (Q(o′) ∈ O|Q) ηθ−1d(x,CB)

≥ c3.19n c3.22n ηθ−1d(x,CB) ≥ c3.4n d(x,CB).

Here we used that if o′ is chosen uniformly from B(o, 1/ℓ), then Q(o′) is chosen uniformly from Q(B(o, 1/ℓ)).
This concludes the lemma.

3.3.3 Proof of Proposition 3.5

Proof of Proposition 3.5. First note that |X△Y | = 2|X \ Y |, so it suffices to bound |X \ Y |.
Given x ∈ (∂X) \ Y , let yx be the intersection between the line segment ox and ∂Y . We’ll show that

|x− yx| = Oℓ(d(x, Y )) and integrate |x− yx| over x to find the lemma.

Claim 3.15. |x− yx| ≤ ℓ2d(x, Y ).

Proof of claim. Let px be the projection of x onto ∂Y , so that d(x, Y ) = |x− px|. Note that as x, yx, and o are
colinear, x, yx, px and o are coplanar. Restrict attention to this plane, and let L be the ray (line) through px
tangent to B(o, 1/ℓ) so that L intersects the line segment ox. Write y′x for that intersection. Note that because
px ∈ Y and B(o, 1/ℓ) ⊂ Y , we have |x− y′x| ≥ |x− yx|, so it suffices to upper bound |x− y′x|. We show that the
angle ∠L, ox is lower bounded away from 0 in terms of ℓ.

Let t be the tangent point of L to B(0, 1/ℓ), so that ∠L, ox = ∠ty′xo. Using the sin rule in the triangle ty′xo,

we find
sin(∠ty′

xo)
|t−o| =

sin(∠y′
xto)

|y′
x−o| = 1

|y′
x−o| , so that using |y′x − o| ≤ ℓ and |t − o| = 1/ℓ, we find sin(∠ty′xo) ≥ ℓ−2.

Considering the triangle y′xpxx, we find ∠pxy′xx = ∠ty′xo, so that applying the sin rule again, we find |y′x −x| =
sin(∠xpxy

′
x)

sin(∠pxy′
xx)

|x− px| ≤ ℓ2|x− px|. We conclude

|x− yx| ≤ |y′x − x| ≤ ℓ2|x− px| = ℓ2d(x, Y ).

Using this claim, we find ∫
∂X

|x− yx|dx ≤ ℓ2
∫
∂X

d(x, Y )dx.

Note that
⋃

x∈∂X [x, yx] = X \ Y. Let z : Sn−1(o, ℓ) → ∂X be the map taking a direction v ∈ Sn−1(o, ℓ) to the
intersection between R+v and ∂X. Note that∣∣∣∣∣ ⋃

x∈∂X

[x, yx]

∣∣∣∣∣ ≤
∣∣∣∣∣∣

⋃
v∈∂Sn−1(o,ℓ)

[v − (z(v)− yz(v)), v]

∣∣∣∣∣∣ =
∫
0≤s≤ℓ

∣∣∣∣∣∣Sn−1(o, s)
⋂ ⋃

v∈∂Sn−1(o,ℓ)

[v − (z(v)− yz(v)), v]

∣∣∣∣∣∣ ds
=

∫
0≤s≤ℓ

|Sn−1(o, s)|
|Sn−1(o, ℓ)|

∣∣{v ∈ Sn−1(o, ℓ) : |z(v)− yz(v)| ≥ ℓ− s}
∣∣ ds

≤
∫
0≤s≤ℓ

∣∣{v ∈ Sn−1(o, ℓ) : |z(v)− yz(v)| ≥ ℓ− s}
∣∣ ds = ∫

v∈∂Sn−1(o,ℓ)

|z(v)− yz(v)|dv

The first inequality is immediate from the fact that we compress segments inside Bn(o, ℓ) radially outwards
onto the sphere Sn−1(o, ℓ).

As B(o, 1/ℓ) ⊂ X ⊂ B(o, ℓ), we find that the Jacobian of the map z has determinant bounded by some
constant, say kn,ℓ, depending only on ℓ, and n. Hence, we find

|X \ Y | ≤
∫
v∈∂Sn−1(o,ℓ)

|z(v)− yz(v)|dv ≤ kn,ℓ

∫
∂X

|x− yx|dx ≤ kn,ℓℓ
2

∫
∂X

d(x, Y )dx,

which concludes the proof.
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3.4 Proofs of Lemmas

3.4.1 Proof of Lemma 3.6

Proof of Lemma 3.6. Fix r3.6nλ,ℓ = 2r3.7nλ,ℓ, σ
3.6
n,λ,ℓ = σ3.10

n,r3.7nλ,ℓ
/4, m3.6

n,λ,ℓ =

(
k3.8
n,2r3.7nλ,ℓ,σ

3.10

n,r3.7
nλ,ℓ

)n

|Bn(o, 1)|, ε3.6n,λ,ℓ =

1/(32(r3.7nλ,ℓ)
2).

Recall Definition 2.7 and construct simplex S′ = S′′ + z with a vertex at z. Let F0, F1, . . . Fn be the faces
of S′ where F0 is the face opposite vertex z. Then, by Lemma 3.7,

1. S′ ⊂ CA ∩ CB

2. F1 ∪ · · · ∪ Fn ⊂ ∂CA ∩ ∂CB .

3. B(u, 1/r3.7nλ,ℓ) ⊂ S′ ⊂ B(u, r3.7nλ,ℓ) for some u ∈ Rn.

Let f0, f1, . . . , fn be the inward normal vectors to the faces F0, . . . , Fn, respectively. By Lemma 3.10 together

with (3), there exists 1 ≤ i ≤ n such that |⟨fi,y2⟩|
|fi||y2| ≥ σ3.10

n,r3.7nλ,ℓ
. Hence there exists s ∈ {±1} such that

⟨fi, sy2⟩
|fi||sy2|

≥ σ3.10
n,r3.7nλ,ℓ

. (3.23)

Write F = Fi and f = fi. Let H be the supporting hyperplane of F and let H+ and H− be the partition
into half-spaces determined by H with H+ containing S′ and H− disjoint from the interior of S′.

By Lemma 3.9, together with (3), we deduce there exists w0 ∈ F such that Bn(w0, 1/r
3.7
n,λ,ℓ)∩H+ ⊂ S′ and

Bn(w0, 1/r
3.7
n,λ,ℓ) ∩H ⊂ F.

By (1), S′ ⊂ CA, CB . By (2), there exists faces FA of CA and FB of CB such that F ⊂ FA∩FB . Clearly faces
F, FA and FB share the supporting hyperplane H; in particular, F , FA and FB share the same inward normal
vector f . Therefore, we get w0 ∈ H and Bn(w0, 1/r

3.7
nλ,ℓ)∩H+ ⊂ CA ∩CB . and B

n(w0, 1/r
3.7
nλ,ℓ)∩H ⊂ FA ∩FB .

It immediately follows that for every w ∈ Bn(w0, 1/2r
3.7
nλ,ℓ) ∩H, we also have

Bn(w, 1/2r3.7nλ,ℓ) ∩H+ ⊂ CA ∩ CB . (3.24)

Fix w ∈ Bn(w0, 1/2r
3.7
nλ,ℓ) ∩H ⊂ FA ∩ FB . As CA ∪ CB ⊂ Bn(o, ℓ), it follows that

|w| ≤ ℓ. (3.25)

Recall that faces F, FA and FB share the same inward normal vector f . Because w ∈ FA ∩ FB and M(w) ∈
∂CA ∪ ∂CB , by convexity we deduce that y1 =M(w)− w satisfies

⟨y1, f⟩
|y1||f |

≥ 0. (3.26)

By Lemma 3.8, together with (3.23), (3.25) and (3.26), applied with parameters n, 2r3.7nλ,ℓ, σ
3.10
n,r3.7nλ,ℓ

(recall r3.7n,λ,ℓ >

ℓ), the ball Xw = Bn
(
w + f/(4r3.7nλ,ℓ), k

3.8
n,2r3.7nλ,ℓ,σ

3.10

n,r3.7
nλ,ℓ

)
has the following properties:

1. Xw ⊂ (1− 1/(32(r3.7nλ,ℓ)
2))(B(w, 1/2r3.7nλ,ℓ) ∩H+).

2. Px∈Xw

(
⟨y1,x−w⟩
|y1||x−w| ≥ 0

)
≥ 1/2

3. For all x ∈ Xw, we have ⟨sy2,x−w⟩
|sy2||x−w| ≥ σ3.10

n,r3.7nλ,ℓ
/4

4. For all x ∈ Xw, we have |x− w| ≥ 1/8r3.7nλ,ℓ.

By construction, |Xw| =
(
k3.8
n,2r3.7nλ,ℓ,σ

3.10

n,r3.7
nλ,ℓ

)n
|Bn(o, 1)| = m3.6

n,λ,ℓ. By the first property of Xw, together with

(3.24), we get Xw ⊂ (1 − 1/(32(r3.7nλ,ℓ)
2))(CA ∩ CB) = (1 − ε3.6n,λ,ℓ)(CA ∩ CB). The second and third property

of Xw exactly give Px∈Xw

(
⟨y1,x−w⟩
|y1||x−w| ≥ 0

)
≥ 1/2 and Px∈Xw

(
⟨sy2,x−w⟩
|y2||x−w| ≥ σ3.6

n,λ,ℓ

)
= 1. The last property of Xw

is exactly d(w,Xw) ≥ 1/(4r3.6nλ,ℓ). Finally, note that all of these hold for all w ∈ Bn(w0, 1/r
3.6
nλ,ℓ) ∩ H, which

concludes the proof.
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3.4.2 Proof of Lemma 3.7

Proof of Lemma 3.7. Set r3.7 = 2ℓλ. The first two parts follow immediately from Definition 2.7 (2). For the
third part, note that by Definition 2.7 (1) and (2) we have B(o, 1/ℓ) ⊂ CA ⊂ λS′′ + z = λS′ + (1 − λ)z.
After rearranging, we conclude B

(
λ−1
λ z, 1

ℓλ

)
⊂ S′. In addition, z ∈ S′ ⊂ CA ⊂ B(o, ℓ). After rearranging, we

conclude

S′ ⊂ B(o, ℓ) ⊂ B

(
λ− 1

λ
z, ℓ+

λ− 1

λ
|z|
)

⊂ B

(
λ− 1

λ
z, 2ℓ

)
.

3.4.3 Proof of Lemma 3.8

Proof of Lemma 3.8. Set k = (4r)−1σ and ε = 1/(8r)2. As everything is normalized, without loss of generality
we can assume |y1| = |y2| = 1.

For the second part, consider the half-space Y = {x : ⟨y1, x−w⟩ ≥ 0}. We need to show that |X ∩ Y |/|X| ≥
1/2. Because X is a ball and Y is a half-space, it is enough to show that the center of the ball belongs to the half
space. In other words, we need to check ⟨y1, w+f/(2r)−w⟩ ≥ 0, which follows from the hypothesis ⟨y1, f⟩ ≥ 0.

For the rest of the proof fix x ∈ X = Bn(w + f/(2r), k). For the third part, note that we can write
x = w + f/(2r) + αg where g is a unit vector and k ≥ α ≥ 0. Thus we have

⟨y2, x− w⟩
|y2||x− w|

=
⟨y2, f/(2r) + αg⟩
|y2||f/(2r) + αg|

=
(2r)−1⟨y2, f⟩+ α⟨y2, g⟩

|y2||f/(2r) + αg|
≥ (2r)−1σ + α⟨y2, g⟩

|y2||f/(2r) + αg|

≥ (2r)−1σ − α

|y2||f/(2r) + αg|
≥ (4r)−1σ

|y2||f/(2r) + αg|
≥ (4r)−1σ

|y2|(|f/(2r)|+ |αg|)

≥ (4r)−1σ

1/(2r) + α
≥ (4r)−1σ

3/(4r)
≥ σ/4.

Here the first inequality follows from the hypothesis ⟨y2, f⟩ ≥ σ. The second inequality follows from the simple
fact that for unit vectors y2, g ⟨y2, g⟩ ≥ −1. The third inequality follows from the fact that α ≤ k ≤ (4r)−1σ.
The forth inequality is the triangle inequality. The fifth inequality follows from the fact that y2, f, g have norm
1. The sixth inequality follows from the fact that α ≤ k ≤ (4r)−1.

For the forth and first parts, we recall that |x− (w+(f/2r))| ≤ k, |w| ≤ r and |f | = 1 and apply the triangle
inequality.

|x− w| ≥ |w + f/(2r)− w| − |x− (w + f/(2r))| ≥ 1/(2r)− k ≥ 1/(4r).

Here we used the hypothesis k ≤ 1/(4r).

|x− (1− ε)w| ≤ |w + f/(2r)− w|+ |εw|+ |x− (w + f/(2r))| ≤ 1/(2r) + εr + k ≥ 7/(8r) ≤ (1− ε)r.

Here we used the hypothesis k ≤ 1/(4r) and ε ≤ 1/(8r2) ≤ 1/8. Finally, we can again write x = w+f/(2r)+αg
with g a unit vector and 0 ≤ α ≤ k, so that we have

⟨f, x⟩ = ⟨f, w⟩+ ⟨f, f/(2r)⟩+ ⟨f, αg⟩ = 0 + 1/(2r) + α⟨f, g⟩ ≥ 0.

Here we used that 0 ≤ α ≤ k ≤ 1/(2r) and ⟨f, g⟩ ≥ −1. Hence, we find that X ⊂ H+.

3.4.4 Proof of Lemma 3.9

Proof of Lemma 3.9. Let x be the vertex of S′ opposite to F . Let v = xu ∩ F be the intersection of the ray
xu with the face F . Set λ = |xu|/|xv| ≤ 1. Then it is easy to see that (1− λ)x+ λBn(v, 1/r) = Bn(u, λ/r) ⊂
Bn(u, 1/r).

Let F, F1, . . . , Fn be the faces of F and let H,H1, . . . ,Hn be the supporting hyperplanes, respectively. For
each 1 ≤ i ≤ n let H+

i and H−
i be the two half spaces determined by Hi, such that H+

i contains S′ and H−
i is

disjoint from the interior of S′. Then S′ = H+ ∩n
i=1 H

+
i .

For the first part, as Bn(v, 1/r) ∩H+ ⊂ H+, it is enough to show that for 1 ≤ i ≤ n, we have Bn(v, 1/r) ⊂
H+

i . Assume for the sake of contradiction that there exists y ∈ Bn(v, 1/r) ∩H−◦
i . As vertex x belongs to all

faces except F , we have x ∈ Fi ⊂ Hi ⊂ H−
i . Hence, as H−

i is convex, we have (1− λ)x+ λy ⊂ H−◦
i . However,

by the above discussion, we have (1 − λ)x + λy ⊂ Bn(u, 1/r) ⊂ S′ ⊂ H+
i . As H+

i and H−◦
i are disjoint, this

gives the desired contradiction. Thus, we conclude the first part.
For the second part, on the one hand we have Bn(v, 1/r)∩H = Bn(v, 1/r)∩H+ ∩H ⊂ S′ ∩H = F. On the

other hand, F ⊂ H by definition and F ⊂ S′ ⊂ Bn(u, r) ⊂ Bn(v, 2r) by hypothesis. For the last inclusion we
just used the fact that v ∈ F ⊂ S′ ⊂ Bn(u, r). Thus, we conclude the second part.
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3.4.5 Proof of Lemma 3.10

Proof of Lemma 3.10. For a contradiction assume there is a sequence of simplices Si and unit vectors vi so that
max1≤j≤n |⟨f ij , vi⟩| ≤ σi, where σi → 0 as i → ∞. By compactness there exists a converging subsequence so

that vi → v and Si → S′ (each of the vertices of Si converging to the corresponding vertices of S′). S′ has the
property that B(u, 1/r) ⊂ S′ ⊂ B(u, r) and letting fi be the inward normal vectors to the faces of S′, we have
⟨fi, v⟩ = 0 for all 1 ≤ i ≤ n.

Consider the line u+Rv through u. As B(u, 1/r) ⊂ S′, this line goes through the interior of S′, so intersects
the boundary ∂S′ exactly twice, in two distinct faces. In particular, this line intersects some face i with normal
fi with 1 ≤ i ≤ n. However, as ⟨fi, v⟩ = 0 it follows that this line is contained inside face i. However, this line
goes through the interior of S′, contradiction.

3.4.6 Proof of Lemma 3.11

Proof of Lemma 3.11. The statement is equivalent to the following statement. There exists 0 < αn < 1 such
that the following holds. If 0 < t ≤ 1/2 and λ1, . . . , λn > 0 and λ1 . . . λn = 1, then

αn(λ1 − 1)2 ≤ t−1

(∏
i

(t+ (1− t)λi)− 1

)
+ t−2n

(∏
i

(t+ (1− t)λi)− 1

)2

.

It is easy to check that for fixed λ1 > 0, and conditioned on λ1 . . . λn = 1, the right hand side is minimised

when λ2 = · · · = λn = λ
1

1−n

1 . This is because for a, b > 0 we have (t+(1− t)a)(t+(1− t)b) ≥ (t+(1− t)
√
ab)2.

Write λ1 = λ1−n and λ2 = · · · = λn = λ for some λ > 0. Then the inequality becomes

αn(λ
1−n − 1)2 ≤ t−1

(
(t+ (1− t)λ1−n)(t+ (1− t)λ)n−1 − 1

)
+ t−2n

(
(t+ (1− t)λ1−n)(t+ (1− t)λ)n−1 − 1

)2

We first assume that 0 < λ ≤ 1 and note that

(t+(1− t)λ1−n)(t+ (1− t)λ)n−1 − 1 ≥ λ(1−t)(1−n)(t+ (1− t)λ)n−1 − 1 = (tλt−1 + (1− t)λt)n−1 − 1

≥ tλt−1 + (1− t)λt − 1 = t exp(− log(λ)(1− t)) + (1− t) exp(t log(λ))− 1

≥ t(1− log(λ)(1− t) +
1

2
log2(λ)(1− t)2) + (1− t)(1 + t log(λ))− 1 =

t

2
log2(λ)(1− t)2 ≥ t

8
log2(λ).

We now assume that λ ≥ 1 and note that

(t+(1− t)λ1−n)(t+ (1− t)λ)n−1 − 1 ≥ (t+ (1− t)λ1−n)λ(1−t)(n−1) − 1 = tλ(1−t)(n−1) + (1− t)λ−t(n−1) − 1

= t exp(log(λ)(1− t)(n− 1)) + (1− t) exp(−t log(λ)(n− 1))− 1

≥ t
(
1 + log(λ)(1− t)(n− 1) +

1

2
log2(λ)(1− t)2(n− 1)2

)
+ (1− t)

(
1− t log(λ)(n− 1)

)
− 1

=
t

2
log2(λ)(1− t)2(n− 1)2 ≥ t

8
log2(λ).

In both cases (0 < λ ≤ 1 and λ > 1), the first inequality follows from the AM-GM inequality: px + (1 −
p)y ≥ xpy1−p for 0 < p < 1 and 0 < x, y. Also, the penultimate inequality follows from the inequalities

exp(x) ≥ 1 + x+ x2

2 and exp(−x) ≥ 1− x, for x ≥ 0. Combining the two cases, for λ > 0 we get that

(t+ (1− t)λ1−n)(t+ (1− t)λ)n−1 − 1 ≥ t

8
log2(λ).

Therefore, for |λ− 1| ≤ 0.25, using the simple inequality | log(λ)| ≥ |λ−1|
2 , we deduce that

(t+ (1− t)λ1−n)(t+ (1− t)λ)n−1 − 1 ≥ t

25
|λ− 1|2. (3.27)

Moreover, for |λ − 1| ≥ 0.25, using the inequality | log(λ)| ≥ 1/8, we deduce that (t + (1 − t)λ1−n)(t + (1 −
t)λ)n−1 − 1 ≥ t

29 . The last inequality implies that for t/2 < λ ≤ 0.75, we have

t−2n
(
(t+ (1− t)λ1−n)(t+ (1− t)λ)n−1 − 1

)2
≥ t2−2n

218
≥ λ2−2n

216+2n
≥ (λ1−n − 1)2

216+2n
. (3.28)
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It also implies that for 1.25 ≤ λ, we have

t−2n
(
(t+ (1− t)λ1−n)(t+ (1− t)λ)n−1 − 1

)2
≥ t2−2n

218
≥ 1

218
≥ (λ1−n − 1)2

218
. (3.29)

For 0 < λ ≤ t/2, we have the simple bound

(t+ (1− t)λ1−n)(t+ (1− t)λ)n−1 − 1 ≥ (1− t)λ1−ntn−1 − 1 ≥ 3−1λ1−ntn−1,

where the last inequality follows from λ1−ntn−1 ≥ 2n−1 and 0 < t ≤ 1/2. Therefore, for 0 < λ ≤ t/2 we infer

t−2n
(
(t+ (1− t)λ1−n)(t+ (1− t)λ)n−1 − 1

)2
≥ t−2n3−2λ2−2nt2n−2 ≥ 3−2λ2−2n ≥ 3−2(λ1−n − 1)2. (3.30)

where the last inequality follows from λ ≤ 1.
Combining (3.27), (3.28), (3.29) and (3.30), we conclude

(λ1−n − 1)2

218+2n
≤ t−1

(
(t+ (1− t)λ1−n)(t+ (1− t)λ)n−1 − 1

)
+ t−2n

(
(t+ (1− t)λ1−n)(t+ (1− t)λ)n−1 − 1

)2

.

3.4.7 Proof of Lemma 3.12

Proof of Lemma 3.12. Choose maximal 1 ≥ µ > 0 such that (ℓ−2 + 1)−1(1 + µ) ≤ (tε/4)−1(t(1 + µ)ε/4 − µ).
By hypothesis, we have K − x ⊂ A ⊂ CA ⊂ (1 + µ)K − x and K − y ⊂ B ⊂ CB ⊂ (1 + µ)K − y.

Therefore, it is enough to show that t(K−x)+(1−t)(K−y) ⊃ t(1−ε/4)((1+µ)K−x)+(1−t)((1+µ)K−y).
After rearranging, this is equivalent to K − tx− (1− t)y ⊃ (1− tε/4)(1 + µ)K − t(1− ε/4)x− (1− t)y. After
further rearranging, this is equivalent to K ⊃ (1+µ− t(1+µ)ε/4)K+(tε/4) x. Therefore, it is enough to show

x ∈ (tε/4)−1(t(1 + µ)ε/4− µ)K

By hypothesis, we know K ⊂ (1 + µ)K which implies that o ∈ K (assuming wlog K is compact). By
hypothesis, we also know K − x ⊂ B(o, ℓ). Combining the last two inclusions, we get −x ∈ B(o, ℓ) i.e., x ∈
B(o, ℓ). Finally, by hypothesis we have (1 + µ)K − x ⊃ B(o, ℓ−1).

Combining the last two inclusions and rearranging, we get

x ∈ (ℓ−2 + 1)−1(1 + µ)K.

By the choice of parameters, we have (ℓ−2 + 1)−1(1 + µ) ≤ (tε/4)−1(t(1 + µ)ε/4 − µ), from which the
conclusion follows.

3.4.8 Proof of Lemma 3.13

Proof of Lemma 3.13. We first observe that, by Caffarelli’s regularity theory [Caf92b, Caf92a], the function φ
is a strictly convex Alexandrov solution of detD2φ = 1. Also, thanks to (3.1), the modulus of strict convexity
depends only on R and the dimension. Hence, we can apply the interior regularity theory for Alexandrov
solutions (see for instance [Fig17, Theorem 4.42]) to deduce that, for every θ, α ∈ (0, 1), D2φ is uniformly
α-Hölder continuous inside (1− θ)CA. More precisely, there exists a constant Ĉn,R,θ,α > 0 such that

∥D2φ∥C0,α((1−θ)CA) := ∥D2φ∥L∞((1−θ)CA) + sup
x,y∈(1−θ)CA

|D2φ(x)−D2φ(y)|
|x− y|α

≤ Ĉn,R,θ,α (3.31)

(here the choice of the norm for D2φ(x) is irrelevant, since all norms are equivalent up to dimensional constants).
Now, given any affine function ℓ(x) := b · x + c (b ∈ Rn, c ∈ R), consider the second-order polynomial

pℓ(x) :=
|x|2
2 + ℓ(x). Since detD2pℓ = 1, applying [Fig17, Lemma A.1] we write

0 = detD2φ− detD2pℓ =

∫ 1

0

d

dt
det
(
tD2φ+ (1− t)D2pℓ

)
dt

=

n∑
i,j=1

(∫ 1

0

cof
(
tD2φ+ (1− t)Id

)
dt

)
ij

∂ij(φ− pℓ),
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where, given a symmetric matrix A, cof(A) denotes its cofactor matrix. In other words, if we define the functions

aij(x) :=

(∫ 1

0

cof
(
tD2φ(x) + (1− t)Id

)
dt

)
ij

i, j ∈ {1, . . . , n}

and ψℓ := φ− pℓ, then ψℓ solves the equation

n∑
i,j=1

aij∂ijψℓ = 0.

Note that, thanks to (3.31), the matrices (aij(x))
n
i,j=1 are uniformly positive definite and Hölder continuous.

Hence, recalling (3.1), it follows from classical elliptic regularity (see for instance [GT98, Corollary 6.3 and
Theorem 9.20]) and a covering argument that

∥D2ψℓ∥L∞((1−2θ)CA) ≤ C ′
n,R,θ∥ψℓ∥L1((1−θ)CA), (3.32)

where C ′
n,R,θ depends on n, R, and θ only.

Now, set ψ(x) := φ(x)− |x|2
2 and fix ℓ̄(x) = b̄ · x+ c̄ with

b̄ :=
1

|(1− θ)CA|

∫
(1−θ)CA

∇ψ(x) dx, c̄ :=
1

|(1− θ)CA|

∫
(1−θ)CA

(ψ(x)− b̄ · x) dx.

Then, by applying twice the 1-Poincaré inequality (see [GT98, Equation (7.45)] with p = 1) and recalling (3.1),
we have

∥ψℓ̄∥L1((1−θ)CA) ≤ 2nR2n−1∥∇ψℓ̄∥L1((1−θ)CA) ≤ 4nR4n−2∥D2ψℓ̄∥L1((1−θ)CA). (3.33)

Noticing that D2ψℓ̄ = D2ψ, combining (3.32) (with ℓ = ℓ̄) and (3.33) we conclude that

∥D2ψ∥L∞((1−2θ)CA) ≤ 4nR4n−2C ′
n,R,θ∥D2ψ∥L1((1−θ)CA).

Choosing θ = ε/2, this proves the desired estimate with Cn,R,ε = 4nR4n−2C ′
n,R,ε/2.

4 Putting it all together: Proof of Theorem 1.2

Proof of Theorem 1.2. Consider any n, t, ℓ, and λ. Choose gn,t = dn,t := t2n−1/4. Choose θ = θ3.4n,ℓ/2 as

given by Proposition 3.4. Choose ε = 1
2 . Choose µ := µ3.1

n,t,ε,ℓ as given by Proposition 3.1. Choose cn,ℓ,λ :=
c3.5n,ℓc

3.2
n,ε,λ,ℓ,θ

c3.4n,ℓ
θ−n + 2, where c3.5n,ℓ, c

3.2
n,ε,λ,ℓ,θ,and c3.4n,ℓ are the constants from Proposition 3.5, Corollary 3.2 and

Proposition 3.4 respectively.
By Proposition 2.8, we may assume that A,B are (γ, ℓ, λ, µ) conelike with µ sufficiently small in terms of

n, t, ℓ and λ.
By Corollary 3.2, we find that for any affine transformation Q : Rn → Rn, if ||Q||op, ||Q−1||op ≤ θ and if

TQ : Q(CA) → Q(CB) is the optimal transport map from Q(CA) to Q(CB), then∫
x∈∂CA

max

{〈
Q(x)− TQ(Q(x)),

Q(x)−Q(o′)

||Q(x)−Q(o′)||2

〉
, 0

}
dx ≤ c3.2n,ε,λ,ℓ,θ

√
δ + γ

t
|Q(A)|,

for all o′ ∈ (1− ε)CA.
Let Q ∼ Qθ be random scaling, choose o′ uniformly random from B(o, 1/2ℓ). Note that TQ(Q(CA)) ⊂ Q(CB)

and B(o, 1/2ℓ) ⊂ 1
2CA,

1
2CB ⊂ B(o, 2ℓ). Hence, by Proposition 3.4, we have

EQ,o′

[
max

{〈
Q(x)− TQ(Q(x)),

Q(x)−Q(o′)

||Q(x)−Q(o′)||2

〉
, 0

}]
≥ c3.4n,2ℓd(x,CB).

Since we have ||Q||op, ||Q−1||op ≤ θ for every random scaling Q ∼ Qθ, and B(o, 1/2ℓ) ⊂ (1−ε)CA, (1−ε)CB ,
we can combine these two to find:

c3.4n,2ℓ

∫
x∈∂CA

d(x,CB)dx ≤
∫
x∈∂CA

EQ,o′

[
max

{〈
Q(x)− TQ(Q(x)),

Q(x)−Q(o′)

||Q(x)−Q(o′)||2

〉
, 0

}]
dx

= EQ,o′

[∫
x∈∂CA

max

{〈
Q(x)− TQ(Q(x)),

Q(x)−Q(o′)

||Q(x)−Q(o′)||2

〉
, 0

}
dx

]
≤ EQ,o′

[
c3.2n,ε,λ,ℓ,θ

√
δ + γ

t
|Q(A)|

]
≤ c3.2n,ε,λ,ℓ,θ

√
δ + γ

t
EQ [|Q(A)|] ≤ c3.2n,ε,λ,ℓ,θ

√
δ + γ

t
θn|A|,
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where the final inequality follows as every Q ∼ Qθ has determinant at most θn. Applying Proposition 3.5 we
find

|CA△CB | ≤ c3.5n,ℓ

∫
x∈∂CA

d(x,CB)dx ≤
c3.5n,ℓc

3.2
n,ε,λ,ℓ,θ

c3.4n,2ℓ

√
δ + γ

t
θn|A|.

We conclude recalling the definition of CA, CB :

|A△B| ≤ |CA△CB |+ |CA \A|+ |CB \B| ≤
c3.5n,ℓc

3.2
n,ε,λ,ℓ,θ

c3.4n,2ℓ

√
δ + γ

t
θn|A|+ 2γ|A| ≤ cn,ℓ,λ

√
δ + γ

t
|A|.

This concludes the proof of the theorem.
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