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Chapter 1

Set Theory and Logic

We adopt, as most mathematicians do, the naive point of view regarding set theory.
We shall assume that what is meant by a set of objects is intuitively clear, and we shall
proceed on that basis without analyzing the concept further. Such an analysis properly
belongs to the foundations of mathematics and to mathematical logic, and it is not our
purpose to initiate the study of those fields.

Logicians have analyzed set theory in great detail, and they have formulated ax-
ioms for the subject. Each of their axioms expresses a property of sets that mathe-
maticians commonly accept, and collectively the axioms provide a foundation broad
enough and strong enough that the rest of mathematics can be built on them.

It is unfortunately true that careless use of set theory, relying on intuition alone,
can lead to contradictions. Indeed, one of the reasons for the axiomatization of set
theory was to formulate rules for dealing with sets that would avoid these contradic-
tions. Although we shall not deal with the axioms explicitly, the rules we follow in
dealing with sets derive from them. In this book, you will learn how to deal with sets
in an “apprentice” fashion, by observing how we handle them and by working with
them yourself. At some point of your studies, you may wish to study set theory more
carefully and in greater detail; then a course in logic or foundations will be in order.

From Chapter 1 of Topology, Second Edition. James R. Munkres.
Copyright © 2000 by Pearson Education, Inc. All rights reserved.



4 Set Theory and Logic Ch. 1

§1 Fundamental Concepts

Here we introduce the ideas of set theory, and establish the basic terminology and
notation. We also discuss some points of elementary logic that, in our experience, are
apt to cause confusion.

Basic Notation

Commonly we shall use capital letters A, B, ... to denote sets, and lowercase letters
a, b, ... to denote the objects or elements belonging to these sets. If an object a
belongs to a set A, we express this fact by the notation

acA.
If a does not belong to A, we express this fact by writing
a¢A.

The equality symbol = is used throughout this book to mean logical identity. Thus,
when we write a = b, we mean that “a” and “b” are symbols for the same object. This
is what one means in arithmetic, for example, when one writes % = % Similarly, the
equation A = B states that “A” and “B” are symbols for the same set; that is, A and B
consist of precisely the same objects.

If a and b are different objects, we write a # b; and if A and B are different sets,
we write A # B. For example, if A is the set of all nonnegative real numbers, and B
is the set of all positive real numbers, then A # B, because the number 0 belongs to A
and not to B.

We say that A is a subset of B if every element of A is also an element of B; and
we express this fact by writing

A CB.

Nothing in this definition requires A to be different from B; in fact, if A = B, itis true
thatboth A C Band B C A. If A C B and A is different from B, we say that A is a
proper subset of B, and we write

AC B.

The relations C and C are called inclusion and proper inclusion, respectively. If
A C B, we also write B D A, which is read “B contains A.”’

How does one go about specifying a set? If the set has only a few elements, one
can simply list the objects in the set, writing “A is the set consisting of the elements a,
b, and c¢.” In symbols, this statement becomes

A={a,b,c},

where braces are used to enclose the list of elements.
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The usual way to specify a set, however, is to take some set A of objects and some
property that elements of A may or may not possess, and to form the set consisting
of all elements of A having that property. For instance, one might take the set of
real numbers and form the subset B consisting of all even integers. In symbols, this
statement becomes

B = {x | x is an even integer}.

Here the braces stand for the words “the set of,” and the vertical bar stands for the
words “such that.”” The equation is read “B is the set of all x such that x is an even
integer.”

The Union of Sets and the Meaning of “or”

Given two sets A and B, one can form a set from them that consists of all the elements
of A together with all the elements of B. This set is called the union of A and B and
is denoted by A U B. Formally, we define

AUB={x|xe€ Aorx € B}.

But we must pause at this point and make sure exactly what we mean by the statement
“xe Aorx € B”

In ordinary everyday English, the word “or” is ambiguous. Sometimes the state-
ment “P or Q” means “P or Q, or both” and sometimes it means “P or Q, but not
both.” Usually one decides from the context which meaning is intended. For example,
suppose I spoke to two students as follows:

“Miss Smith, every student registered for this course has taken either a course in
linear algebra or a course in analysis.”

“Mr. Jones, either you get a grade of at least 70 on the final exam or you will flunk
this course.”

In the context, Miss Smith knows perfectly well that I mean “everyone has had linear
algebra or analysis, or both,” and Mr. Jones knows I mean “either he gets at least 70
or he flunks, but not both.” Indeed, Mr. Jones would be exceedingly unhappy if both
statements turned out to be true!

In mathematics, one cannot tolerate such ambiguity. One has to pick just one
meaning and stick with it, or confusion will reign. Accordingly, mathematicians have
agreed that they will use the word “or” in the first sense, so that the statement “P or Q”
always means “P or Q, or both.” If one means “P or Q, but not both,” then one has to
include the phrase “but not both” explicitly.

With this understanding, the equation defining A U B is unambiguous; it states that
A U B is the set consisting of all elements x that belong to A or to B or to both.
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The Intersection of Sets, the Empty Set, and the Meaning of “If ... Then”

Given sets A and B, another way one can form a set is to take the common part of A
and B. This set is called the intersection of A and B and is denoted by AN B. Formally,
we define

ANB={x|xe€ Aand x € B}.

But just as with the definition of A U B, there is a difficulty. The difficulty is not in the
meaning of the word “and”; it is of a different sort. It arises when the sets A and B
happen to have no elements in common. What meaning does the symbol A N B have
in such a case?

To take care of this eventuality, we make a special convention. We introduce a
special set that we call the empty set, denoted by &, which we think of as “the set
having no elements.”

Using this convention, we express the statement that A and B have no elements in
common by the equation

ANB=0g.

We also express this fact by saying that A and B are disjoint.

Now some students are bothered by the notion of an “empty set.” “How,” they say,
“can you have a set with nothing in it?” The problem is similar to that which arose
many years ago when the number 0 was first introduced.

The empty set is only a convention, and mathematics could very well get along
without it. But it is a very convenient convention, for it saves us a good deal of
awkwardness in stating theorems and in proving them. Without this convention, for
instance, one would have to prove that the two sets A and B do have elements in
common before one could use the notation A N B. Similarly, the notation

C = {x | x € A and x has a certain property}

could not be used if it happened that no element x of A had the given property. It is
much more convenient to agree that A N B and C equal the empty set in such cases.

Since the empty set & is merely a convention, we must make conventions relating
it to the concepts already introduced. Because & is thought of as “the set with no
elements,” it is clear we should make the convention that for each object x, the relation
x € & does not hold. Similarly, the definitions of union and intersection show that for
every set A we should have the equations

AU =A and ANQZ=U.

The inclusion relation is a bit more tricky. Given a set A, should we agree that
@ C A? Once more, we must be careful about the way mathematicians use the English
language. The expression & C A is a shorthand way of writing the sentence, “Every
element that belongs to the empty set also belongs to the set A.” Or to put it more
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formally, “For every object x, if x belongs to the empty set, then x also belongs to the
set A

Is this statement true or not? Some might say “yes” and others say “no.” You
will never settle the question by argument, only by agreement. This is a statement of
the form “If P, then Q,” and in everyday English the meaning of the “if ... then”
construction is ambiguous. It always means that if P is true, then Q is true also.
Sometimes that is all it means; other times it means something more: that if P is false,
QO must be false. Usually one decides from the context which interpretation is correct.

The situation is similar to the ambiguity in the use of the word “or.” One can refor-
mulate the examples involving Miss Smith and Mr. Jones to illustrate the ambiguity.
Suppose I said the following:

“Miss Smith, if any student registered for this course has not taken a course in
linear algebra, then he has taken a course in analysis.”

“Mr. Jones, if you get a grade below 70 on the final, you are going to flunk this
course.”

In the context, Miss Smith understands that if a student in the course has not had linear
algebra, then he has taken analysis, but if he has had linear algebra, he may or may not
have taken analysis as well. And Mr. Jones knows that if he gets a grade below 70, he
will flunk the course, but if he gets a grade of at least 70, he will pass.

Again, mathematics cannot tolerate ambiguity, so a choice of meanings must be
made. Mathematicians have agreed always to use “if ... then” in the first sense, so
that a statement of the form “If P, then Q” means that if P is true, Q is true also, but
if P is false, Q may be either true or false.

As an example, consider the following statement about real numbers:

Ifx >0, then x> # 0.

It is a statement of the form, “If P, then Q,” where P is the phrase “x > 0” (called
the hypothesis of the statement) and Q is the phrase “x” 7% 07 (called the conclusion
of the statement). This is a true statement, for in every case for which the hypothesis
x > 0 holds, the conclusion x3 # 0 holds as well.

Another true statement about real numbers is the following:

If)c2 < 0, then x = 23;

in every case for which the hypothesis holds, the conclusion holds as well. Of course,
it happens in this example that there are no cases for which the hypothesis holds. A
statement of this sort is sometimes said to be vacuously true.

To return now to the empty set and inclusion, we see that the inclusion & C A
does hold for every set A. Writing & C A is the same as saying, “If x € &, then
x € A,” and this statement is vacuously true.
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Contrapositive and Converse

Our discussion of the “if ... then” construction leads us to consider another point of
elementary logic that sometimes causes difficulty. It concerns the relation between a
statement, its contrapositive, and its converse.

Given a statement of the form “If P, then Q,” its contrapositive is defined to be
the statement “If Q is not true, then P is not true.” For example, the contrapositive of
the statement

Ifx > 0, then x> # 0,
is the statement
Ifx3 = 0, then it is not true that x > 0.
Note that both the statement and its contrapositive are true. Similarly, the statement
Ifx* <0, then x = 23,
has as its contrapositive the statement
If x # 23, then it is not true that x2 <.

Again, both are true statements about real numbers.

These examples may make you suspect that there is some relation between a state-
ment and its contrapositive. And indeed there is; they are two ways of saying precisely
the same thing. Each is true if and only if the other is true; they are logically equiva-
lent.

This fact is not hard to demonstrate. Let us introduce some notation first. As a
shorthand for the statement “If P, then Q,” we write

P =0,
which is read “P implies Q.” The contrapositive can then be expressed in the form
(not Q) = (not P),

where “not Q” stands for the phrase “Q is not true.”

Now the only way in which the statement “P = Q” can fail to be correct is if the
hypothesis P is true and the conclusion Q is false. Otherwise it is correct. Similarly,
the only way in which the statement (not Q) = (not P) can fail to be correct is if
the hypothesis “not Q” is true and the conclusion “not P” is false. This is the same
as saying that Q is false and P is true. And this, in turn, is precisely the situation in
which P = Q fails to be correct. Thus, we see that the two statements are either both
correct or both incorrect; they are logically equivalent. Therefore, we shall accept a
proof of the statement “not Q = not P’ as a proof of the statement “P = Q.”

There is another statement that can be formed from the statement P = Q. It is
the statement

Q=Pr,
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which is called the converse of P = Q. One must be careful to distinguish between a
statement’s converse and its contrapositive. Whereas a statement and its contrapositive
are logically equivalent, the truth of a statement says nothing at all about the truth or
falsity of its converse. For example, the true statement

If x > 0, then X3 # 0,
has as its converse the statement

Ifx3 # 0, then x > 0,
which is false. Similarly, the true statement

Ifx* < 0, then x = 23,
has as its converse the statement

If x = 23, then x*> < 0,

which is false.
If it should happen that both the statement P = @ and its converse Q = P are
true, we express this fact by the notation

P 0,
which is read “P holds if and only if Q holds.”

Negation

If one wishes to form the contrapositive of the statement P = Q, one has to know
how to form the statement “not P,” which is called the negation of P. In many cases,
this causes no difficulty; but sometimes confusion occurs with statements involving the
phrases “for every” and “for at least one.” These phrases are called logical quantifiers.

To illustrate, suppose that X is a set, A is a subset of X, and P is a statement about
the general element of X. Consider the following statement:

() For every x € A, statement P holds.

How does one form the negation of this statement? Let us translate the problem into
the language of sets. Suppose that we let B denote the set of all those elements x
of X for which P holds. Then statement (x) is just the statement that A is a subset
of B. What is its negation? Obviously, the statement that A is not a subset of B; that
is, the statement that there exists at least one element of A that does not belong to B.
Translating back into ordinary language, this becomes

For at least one x € A, statement P does not hold.

Therefore, to form the negation of statement (x), one replaces the quantifier “for every”
by the quantifier “for at least one,” and one replaces statement P by its negation.
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The process works in reverse just as well; the negation of the statement
For at least one x € A, statement Q holds,
is the statement

For every x € A, statement Q does not hold.

The Difference of Two Sets

We return now to our discussion of sets. There is one other operation on sets that is
occasionally useful. It is the difference of two sets, denoted by A — B, and defined as
the set consisting of those elements of A that are not in B. Formally,

A—B={x|xeAandx ¢ B}.

It is sometimes called the complement of B relative to A, or the complement of B in A.
Our three set operations are represented schematically in Figure 1.1.

B B B
A A A
AuUuB ANB A-B

Figure 1.1

Rules of Set Theory

Given several sets, one may form new sets by applying the set-theoretic operations to
them. As in algebra, one uses parentheses to indicate in what order the operations are
to be performed. For example, A U (B N C) denotes the union of the two sets A and
B N C, while (A U B) N C denotes the intersection of the two sets A U B and C. The
sets thus formed are quite different, as Figure 1.2 shows.

B B
A A
c (o4

AU (BN C) (AuB)NC

Figure 1.2
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Sometimes different combinations of operations lead to the same set; when that
happens, one has a rule of set theory. For instance, it is true that for any sets A, B,
and C the equation

ANBUC)=(ANB)UANC)

holds. The equation is illustrated in Figure 1.3; the shaded region represents the set in
question, as you can check mentally. This equation can be thought of as a “distributive
law” for the operations N and U.

c

Figure 1.3

Other examples of set-theoretic rules include the second “distributive law,”
AUBNC)=(AUB)N(AUCQC),
and DeMorgan’s laws,

A—(BUC)=(A—B)N(A—C),
A—(BNC)=(A—B)U(A-C).

We leave it to you to check these rules. One can state other rules of set theory, but
these are the most important ones. DeMorgan’s laws are easier to remember if you
verbalize them as follows:

The complement of the union equals the intersection of the complements.
The complement of the intersection equals the union of the complements.

Collections of Sets

The objects belonging to a set may be of any sort. One can consider the set of all even
integers, and the set of all blue-eyed people in Nebraska, and the set of all decks of
playing cards in the world. Some of these are of limited mathematical interest, we
admit! But the third example illustrates a point we have not yet mentioned: namely,
that the objects belonging to a set may themselves be sets. For a deck of cards is itself
a set, one consisting of pieces of pasteboard with certain standard designs printed on
them. The set of all decks of cards in the world is thus a set whose elements are
themselves sets (of pieces of pasteboard).
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We now have another way to form new sets from old ones. Given a set A, we can
consider sets whose elements are subsets of A. In particular, we can consider the set
of all subsets of A. This set is sometimes denoted by the symbol & (A) and is called
the power set of A (for reasons to be explained later).

When we have a set whose elements are sets, we shall often refer to it as a collec-
tion of sets and denote it by a script letter such as 4 or B. This device will help us
in keeping things straight in arguments where we have to consider objects, and sets of
objects, and collections of sets of objects, all at the same time. For example, we might
use A to denote the collection of all decks of cards in the world, letting an ordinary
capital letter A denote a deck of cards and a lowercase letter a denote a single playing
card.

A certain amount of care with notation is needed at this point. We make a distinc-
tion between the object a, which is an element of a set A, and the one-element set {a},
which is a subset of A. To illustrate, if A is the set {a, b, c}, then the statements

ae€A, fa} C A, and {a}e P(A)

are all correct, but the statements {a} € A and a C A are not.

Arbitrary Unions and Intersections

We have already defined what we mean by the union and the intersection of two sets.
There is no reason to limit ourselves to just two sets, for we can just as well form the
union and intersection of arbitrarily many sets.

Given a collection 4 of sets, the union of the elements of A is defined by the
equation

|J A=1{x|xeAforatleastone A € A).
AeA

The intersection of the elements of .4 is defined by the equation

ﬂ A ={x|x e Aforevery A € A}.
AcA

There is no problem with these definitions if one of the elements of A happens to be
the empty set. But it is a bit tricky to decide what (if anything) these definitions mean
if we allow A to be the empty collection. Applying the definitions literally, we see that
no element x satisfies the defining property for the union of the elements of A. So it is
reasonable to say that

Ja=2

AcA

if 4 is empty. On the other hand, every x satisfies (vacuously) the defining property for
the intersection of the elements of 4. The question is, every x in what set? If one has a

given large set X that is specified at the outset of the discussion to be one’s “universe of
discourse,” and one considers only subsets of X throughout, it is reasonable to let

(1A=x

AeA
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when 4 is empty. Not all mathematicians follow this convention, however. To avoid
difficulty, we shall not define the intersection when A is empty.

Cartesian Products

There is yet another way of forming new sets from old ones; it involves the notion of an
“ordered pair” of objects. When you studied analytic geometry, the first thing you did
was to convince yourself that after one has chosen an x-axis and a y-axis in the plane,
every point in the plane can be made to correspond to a unique ordered pair (x, y) of
real numbers. (In a more sophisticated treatment of geometry, the plane is more likely
to be defined as the set of all ordered pairs of real numbers!)

The notion of ordered pair carries over to general sets. Given sets A and B, we
define their cartesian product A x B to be the set of all ordered pairs (a, b) for which a
is an element of A and b is an element of B. Formally,

Ax B={(a,b)|aecAandb € B}.

This definition assumes that the concept of “ordered pair” is already given. It can be
taken as a primitive concept, as was the notion of “set”; or it can be given a definition in
terms of the set operations already introduced. One definition in terms of set operations is
expressed by the equation

(a,b) = {{a}, {a, b}};

it defines the ordered pair (a, b) as a collection of sets. If a # b, this definition says that
(a, b) is a collection containing two sets, one of which is a one-element set and the other
a two-element set. The first coordinate of the ordered pair is defined to be the element
belonging to both sets, and the second coordinate is the element belonging to only one of
the sets. If a = b, then (a, b) is a collection containing only one set {a}, since {a, b} =
{a, a} = {a} in this case. Its first coordinate and second coordinate both equal the element
in this single set.

I think it is fair to say that most mathematicians think of an ordered pair as a primitive
concept rather than thinking of it as a collection of sets!

Let us make a comment on notation. It is an unfortunate fact that the notation (a, b)
is firmly established in mathematics with two entirely different meanings. One mean-
ing, as an ordered pair of objects, we have just discussed. The other meaning is the
one you are familiar with from analysis; if a and b are real numbers, the symbol (a, b)
is used to denote the interval consisting of all numbers x such thata < x < b. Most of
the time, this conflict in notation will cause no difficulty because the meaning will be
clear from the context. Whenever a situation occurs where confusion is possible, we
shall adopt a different notation for the ordered pair (a, b), denoting it by the symbol

axb

instead.

11
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Exercises

1. Check the distributive laws for U and N and DeMorgan’s laws.

2. Determine which of the following statements are true for all sets A, B, C, and D.
If a double implication fails, determine whether one or the other of the possible
implications holds. If an equality fails, determine whether the statement be-
comes true if the “equals” symbol is replaced by one or the other of the inclusion
symbols C or D.

(@) ACBandACC <& AC(BUC).

(b) ACBorACC & AC(BUC).

(c ACBandACC& AC(BNO).

d ACBorACC&AC(BNO).

(e) A—(A—B)=B.

f) A—-(B—A)=A—-B.

(g AN(B—C)=(ANB)—(ANCQC).

(h) AU(B—C)=(AUB)—(AUQ).

i) (ANB)U(A—B)=A.

G) AcCandBC D= (A x B) C(C x D).

(k) The converse of (j).

(I) The converse of (j), assuming that A and B are nonempty.
(m) (Ax B)U(C x D)=(AUC) x (BUD).

m) (AxB)N(C xD)=(ANC) x (BN D).

(0) AX(B—C)=(AxB)—(AxCQC).

P A=—B)x(C—D)=AxC—-BxC)—AxD.
(@ AxB)—(CxD)y=(A—-C)x(B—-D).

3. (a) Write the contrapositive and converse of the following statement: “If x < O,
then x> — x > 0,” and determine which (if any) of the three statements are
true.

(b) Do the same for the statement “If x > 0, then x> — x > 0.”

4. Let A and B be sets of real numbers. Write the negation of each of the following
statements:
(a) Foreverya € A, itis true that a® € B.
(b) For at least one a € A, it is true that a® € B.
(c) Foreverya € A, it is true that a> ¢ B.
(d) For atleastone a ¢ A, it is true that a? € B.

5. Let A be a nonempty collection of sets. Determine the truth of each of the
following statements and of their converses:
(@) x € Jgeq A = x € Aforatleastone A € A.
(b) x € Uges A= x € Aforevery A € A.
(¢) x €()ges A= x € Aforatleastone A € A.
(d) x € ges A= x € Aforevery A € A.

6. Write the contrapositive of each of the statements of Exercise 5.
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7. Given sets A, B, and C, express each of the following sets in terms of A, B,
and C, using the symbols U, N, and —.

D={x|xeAand(x € Borx € C)},
E={x|(xeAandx € B)orx € C},
F={x|xeAand(x € B= x € O)}.

8. If a set A has two elements, show that #(A) has four elements. How many
elements does & (A) have if A has one element? Three elements? No elements?
Why is & (A) called the power set of A?

9. Formulate and prove DeMorgan’s laws for arbitrary unions and intersections.

10. Let R denote the set of real numbers. For each of the following subsets of R x R,
determine whether it is equal to the cartesian product of two subsets of R.
(a) {(x,y) | x is an integer}.
®) {(x,y)10<y=1}
(© {(x,y) | y>x}
(d) {(x,y) | xis not an integer and y is an integer}.
@© () 1x*+y* <1},

§2 Functions

The concept of function is one you have seen many times already, so it is hardly nec-
essary to remind you how central it is to all mathematics. In this section, we give the
precise mathematical definition, and we explore some of the associated concepts.

A function is usually thought of as a rule that assigns to each element of a set A,
an element of a set B. In calculus, a function is often given by a simple formula such
as f(x) = 3x2 + 2 or perhaps by a more complicated formula such as

o) =) x"
k:1

One often does not even mention the sets A and B explicitly, agreeing to take A to be
the set of all real numbers for which the rule makes sense and B to be the set of all real
numbers.

As one goes further in mathematics, however, one needs to be more precise about
what a function is. Mathematicians think of functions in the way we just described,
but the definition they use is more exact. First, we define the following:

Definition. A rule of assignment is a subset r of the cartesian product C x D of two
sets, having the property that each element of C appears as the first coordinate of at
most one ordered pair belonging to r.

13
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Thus, a subset r of C x D is a rule of assignment if
[(c,d) erand (c,d) er]l = [d =d'].

We think of » as a way of assigning, to the element ¢ of C, the element d of D for
which (¢, d) e r.

Given a rule of assignment r, the domain of r is defined to be the subset of C
consisting of all first coordinates of elements of r, and the image set of r is defined as
the subset of D consisting of all second coordinates of elements of . Formally,

domain r = {c | there exists d € D such that (¢, d) € r},
image r = {d | there exists ¢ € C such that (¢, d) € r}.

Note that given a rule of assignment r, its domain and image are entirely determined.
Now we can say what a function is.

Definition. A function f is arule of assignment r, together with a set B that contains
the image set of . The domain A of the rule r is also called the domain of the
function f; the image set of r is also called the image set of f; and the set B is called
the range of f.

If f is a function having domain A and range B, we express this fact by writing
f:A— B,

which is read “f is a function from A to B,” or “f is a mapping from A into B,” or
simply “ f maps A into B.” One sometimes visualizes f as a geometric transformation
physically carrying the points of A to points of B.

If f: A— Bandifa isanelement of A, we denote by f(a) the unique element
of B that the rule determining f assigns to a; it is called the value of f at a, or
sometimes the image of a under f. Formally, if r is the rule of the function f, then
f (a) denotes the unique element of B such that (a, f(a)) € r.

Using this notation, one can go back to defining functions almost as one did before,
with no lack of rigor. For instance, one can write (letting R denote the real numbers)

“Let f be the function whose rule is {(x, x> + 1) | x € R} and whose
range is R,”

or one can equally well write
“Let f : R — R be the function such that f(x) = x> + 1

Both sentences specify precisely the same function. But the sentence “Let f be the
function f(x) = x> 4 1” is no longer adequate for specifying a function because it
specifies neither the domain nor the range of f.

'I'Analysts are apt to use the word “range” to denote what we have called the “image set” of f.
They avoid giving the set B a name.
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Definition. If f : A — B and if A is a subset of A, we define the restriction of f
to Ag to be the function mapping Ag into B whose rule is

{(a, f(@)) | a € Ao}
It is denoted by f|Ag, which is read “ f restricted to Ag.”

EXAMPLE 1.  Let R denote the real numbers and let ]I_h denote the nonnegative reals.
Consider the functions

f:R—R definedby  f(x) = x2,

g: f&r — R defined by glx) = x2,

h:R— Ry definedby  h(x) = x2,

k:Ry — Ry  definedby  k(x) = x>.

The function g is different from the function f because their rules are different subsets of
R x R; it is the restriction of f to the set R . The function £ is also different from f, even
though their rules are the same set, because the range specified for /4 is different from the
range specified for f. The function k is different from all of these. These functions are
pictured in Figure 2.1.

f g h k

7

7 7

Figure 2.1

Restricting the domain of a function and changing its range are two ways of form-
ing a new function from an old one. Another way is to form the composite of two
functions.

Definition. Given functions f : A — B and g : B — C, we define the composite
go f of fand g as the function go f : A — C defined by the equation (g o f)(a) =
g(f(a)).

Formally, g o f : A — C is the function whose rule is
{(a,c) | Forsome b € B, f(a) = b and g(b) = c}.

We often picture the composite g o f as involving a physical movement of the point a
to the point f(a), and then to the point g( f (a)), as illustrated in Figure 2.2.
Note that g o f is defined only when the range of f equals the domain of g.

15
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\\g,,\-_%(b)u

(o
B

Figure 2.2

EXAMPLE 2. The composite of the function f : R — R given by f(x) = 3x% + 2 and
the function g : R — R given by g(x) = 5x is the function g o f : R — R given by

(g0 NH(x) =g(f(x) = gBx* +2) =5(3x" +2).

The composite f o g can also be formed in this case; it is the quite different function
fog:R — Rgiven by

(f 0@ (x) = f(g(x) = f(5x) =3(5x)* +2.

Definition. A function f : A — B is said to be injective (or one-to-one) if for each
pair of distinct points of A, their images under f are distinct. It is said to be surjective
(or f is said to map A onto B) if every element of B is the image of some element
of A under the function f. If f is both injective and surjective, it is said to be bijective
(or is called a one-to-one correspondence).

More formally, f is injective if
[f(@) = fl@)] = la=d],
and f is surjective if
[b € Bl = [b = f(a)foratleastone a € A].

Injectivity of f depends only on the rule of f; surjectivity depends on the range
of f as well. You can check that the composite of two injective functions is injec-
tive, and the composite of two surjective functions is surjective; it follows that the
composite of two bijective functions is bijective.

If f is bijective, there exists a function from B to A called the inverse of f. It is
denoted by ! and is defined by letting f~!(b) be that unique element a of A for
which f(a) = b. Given b € B, the fact that f is surjective implies that there exists
such an element a € A; the fact that f is injective implies that there is only one such
element a. It is easy to see that if f is bijective, f~! is also bijective.

EXAMPLE 3. Consider again the functions f, g, i, and k of Figure 2.1. The function
f : R — Rgiven by f(x) = x? is neither injective nor surjective. Its restriction g to the
nonnegative reals is injective but not surjective. The function # : R — R obtained from f
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by changing the range is surjective but not injective. The function k : R, — R obtained
from f by restricting the domain and changing the range is both injective and surjective,
so it has an inverse. Its inverse is, of course, what we usually call the square-root function.

A useful criterion for showing that a given function f is bijective is the following,
whose proof is left to the exercises:

Lemma 2.1. Let f : A — B. If there are functions g : B — Aandh : B — A
such that g(f(a)) = a for every a in A and f(h(b)) = b for every b in B, then f is
bijectiveand g = h = f~1.

Definition. Let f : A — B. If Ap is a subset of A, we denote by f(Ag) the set
of all images of points of Ag under the function f; this set is called the image of Ag
under f. Formally,

f(Ag) ={b| b= f(a) for at least one a € Ap}.

On the other hand, if By is a subset of B, we denote by f —1(By) the set of all elements
of A whose images under f lie in Bo; it is called the preimage of By under f (or the
“counterimage,” or the “inverse image,” of By). Formally,

F~Y(Bo) = {a | f(a) € Bo}.

Of course, there may be no points a of A whose images lie in By; in that case, £~ (Bo)
is empty.

Note thatif f : A — B is bijective and By C B, we have two meanings for the
notation 1 (Bp). It can be taken to denote the preimage of By under the function f
or to denote the image of By under the function f~! : B — A. These two meanings
give precisely the same subset of A, however, so there is, in fact, no ambiguity.

Some care is needed if one is to use the f and f~! notation correctly. The opera-
tion f~!, for instance, when applied to subsets of B, behaves very nicely; it preserves
inclusions, unions, intersections, and differences of sets. We shall use this fact fre-
quently. But the operation f, when applied to subsets of A, preserves only inclusions
and unions. See Exercises 2 and 3.

As another situation where care is needed, we note that it is not in general true that
f_1 (f(Ag)) = Ag and f(f_1 (Bo)) = Byp. (See the following example.) The relevant
rules, which we leave to you to check, are the following: If f : A — Bandif Ag C A
and By C B, then

Ao C f7N(f(Ag)) and  f(f'(By)) C Bo.

The first inclusion is an equality if f is injective, and the second inclusion is an equality
if f is surjective.

17
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EXAMPLE 4.  Consider the function f : R — R given by f(x) = 3x* + 2 (Figure 2.3).
Let [a, b] denote the closed interval a < x < b. Then

a1y = 12, 5) = [-1,1],  and
FUN0,51) = £A-1,1D) = [2,5].

Figure 2.3

Exercises

1. Let f: A— B.Let A C Aand By C B.
(a) Show that Ag C f —I( f(Ap)) and that equality holds if f is injective.
(b) Show that f(f ~1(By)) C By and that equality holds if f is surjective.

2. Letf:A— BandletA; C Aand B; C Bfori =0andi = 1. Show that f~!
preserves inclusions, unions, intersections, and differences of sets:
(@) BoC Bi = f~'(Bo) C f~'(By).
(b) f1(BoUB) = f~1(Bo) U f~1(BY).
© f'BonBy) = 1 (Bo) N 1 (BY).
) f~'(Bo— B1) = f1(Bo) — 1 (B).
Show that f preserves inclusions and unions only:
(e) Ag C A1 = f(Ao) C f(AD).
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(f) f(AoUAD = f(Ag) U (A)).
(g) f(ApN A1) C f(Ap) N f(A1); show that equality holds if f is injective.
(h) f(Ag— A1) D f(Ag) — f(A1); show that equality holds if f is injective.
3. Show that (b), (c), (f), and (g) of Exercise 2 hold for arbitrary unions and inter-
sections.

4. let f:A— Bandg: B — C.
(a) If Cy C C, show that (g o )~ (Co) = f~' (g~ (Cop)).
(b) If f and g are injective, show that g o f is injective.
(c) If g o f is injective, what can you say about injectivity of f and g?
(d) If f and g are surjective, show that g o f is surjective.
(e) If g o f is surjective, what can you say about surjectivity of f and g?
(f) Summarize your answers to (b)—(e) in the form of a theorem.

5. In general, let us denote the identity function for a set C by ic. That is, define
ic : C — C to be the function given by the rule ic(x) = x for all x € C.
Given f : A — B, we say that a function g : B — A is a left inverse for f if
go f =iys;andwesaythath : B — A is arightinverse for f if foh =ip.
(a) Show thatif f has a left inverse, f is injective; and if f has a right inverse,

f is surjective.
(b) Give an example of a function that has a left inverse but no right inverse.
(c) Give an example of a function that has a right inverse but no left inverse.
(d) Can a function have more than one left inverse? More than one right inverse?
(e) Show that if f has both a left inverse g and a right inverse %, then f is
bijectiveand g = h = f~ 1.

6. Let f : R — R be the function f(x) = x> — x. By restricting the domain and
range of f appropriately, obtain from f a bijective function g. Draw the graphs
of g and g~!. (There are several possible choices for g.)

§3 Relations

A concept that is, in some ways, more general than that of function is the concept of
a relation. 1In this section, we define what mathematicians mean by a relation, and
we consider two types of relations that occur with great frequency in mathematics:
equivalence relations and order relations. Order relations will be used throughout the
book; equivalence relations will not be used until §22.

Definition. A relation on a set A is a subset C of the cartesian product A x A.

If C is arelation on A, we use the notation xCy to mean the same thing as (x, y) €
C. We read it “x is in the relation C to y.”

A rule of assignment r for a function f : A — A is also a subset of A x A. But it
is a subset of a very special kind: namely, one such that each element of A appears as
the first coordinate of an element of r exactly once. Any subset of A x A is a relation
on A.

19
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EXAMPLE 1. Let P denote the set of all people in the world, and define D C P x P by
the equation

D = {(x, y) | x is a descendant of y}.

Then D is a relation on the set P. The statements “x is in the relation D to y” and “x is
a descendant of y” mean precisely the same thing, namely, that (x, y) € D. Two other
relations on P are the following:

B = {(x, ¥) | x has an ancestor who is also an ancestor of y},
S = {(x, y) | the parents of x are the parents of y}.

We can call B the “blood relation” (pun intended), and we can call S the “sibling relation.”
These three relations have quite different properties. The blood relationship is symmetric,
for instance (if x is a blood relative of y, then y is a blood relative of x), whereas the
descendant relation is not. We shall consider these relations again shortly.

Equivalence Relations and Partitions

An equivalence relation on a set A is a relation C on A having the following three
properties:

(1) (Reflexivity) xCx for every x in A.

(2) (Symmetry) If xCy, then yCx.

(3) (Transitivity) If xCy and yCz, then xCz.

EXAMPLE 2.  Among the relations defined in Example 1, the descendant relation D is
neither reflexive nor symmetric, while the blood relation B is not transitive (I am not a
blood relation to my wife, although my children are!) The sibling relation S is, however,
an equivalence relation, as you may check.

There is no reason one must use a capital letter—or indeed a letter of any sort—
to denote a relation, even though it is a set. Another symbol will do just as well.
One symbol that is frequently used to denote an equivalence relation is the “tilde”
symbol ~. Stated in this notation, the properties of an equivalence relation become

(1) x ~ x for every x in A.

2) If x ~ y, then y ~ x.

(3) Ifx ~yandy ~ z,then x ~ z.
There are many other symbols that have been devised to stand for particular equiva-
lence relations; we shall meet some of them in the pages of this book.

Given an equivalence relation ~ on a set A and an element x of A, we define a
certain subset E of A, called the equivalence class determined by x, by the equation

E={yly~x}

Note that the equivalence class E determined by x contains x, since x ~ x. Equiva-
lence classes have the following property:
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Lemma 3.1. Two equivalence classes E and E’ are either disjoint or equal.

Proof.  Let E be the equivalence class determined by x, and let E be the equivalence
class determined by x’. Suppose that £ N E’ is not empty; let y be a point of E N E’.
See Figure 3.1. We show that E = E’.

E E'

Figure 3.1

By definition, we have y ~ x and y ~ x’. Symmetry allows us to conclude that
x ~ yand y ~ x’; from transitivity it follows that x ~ x’. If now w is any point of E,
we have w ~ x by definition; it follows from another application of transitivity that
w ~ x’. We conclude that E C E’.

The symmetry of the situation allows us to conclude that E/ C E as well, so that
E=E. ]

Given an equivalence relation on a set A, let us denote by & the collection of all
the equivalence classes determined by this relation. The preceding lemma shows that
distinct elements of & are disjoint. Furthermore, the union of the elements of & equals
all of A because every element of A belongs to an equivalence class. The collection &
is a particular example of what is called a partition of A:

Definition. A partition of a set A is a collection of disjoint nonempty subsets of A
whose union is all of A.

Studying equivalence relations on a set A and studying partitions of A are really
the same thing. Given any partition D of A, there is exactly one equivalence relation
on A from which it is derived.

The proof is not difficult. To show that the partition & comes from some equiv-
alence relation, let us define a relation C on A by setting xCy if x and y belong to
the same element of . Symmetry of C is obvious; reflexivity follows from the fact
that the union of the elements of O equals all of A; transitivity follows from the fact
that distinct elements of D are disjoint. It is simple to check that the collection of
equivalence classes determined by C is precisely the collection D.

To show there is only one such equivalence relation, suppose that C; and C; are
two equivalence relations on A that give rise to the same collection of equivalence
classes D. Given x € A, we show that yCx if and only if yCox, from which we
conclude that C; = C,. Let E; be the equivalence class determined by x relative to
the relation Cy; let E; be the equivalence class determined by x relative to the relation
C>. Then E is an element of D, so that it must equal the unique element D of D that
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contains x. Similarly, £, must equal D. Now by definition. £ consists of all y such
that yCx; and E; consists of all y such that yCox. Since E1 = D = Ej3, our result is
proved.

EXAMPLE 3. Define two points in the plane to be equivalent if they lie at the same
distance from the origin. Reflexivity, symmetry, and transitivity hold trivially. The collec-
tion & of equivalence classes consists of all circles centered at the origin, along with the set
consisting of the origin alone.

EXAMPLE 4. Define two points of the plane to be equivalent if they have the same
y-coordinate. The collection of equivalence classes is the collection of all straight lines in
the plane parallel to the x-axis.

EXAMPLE 5.  Let £ be the collection of all straight lines in the plane parallel to the line
y = —x. Then £ is a partition of the plane, since each point lies on exactly one such line.
The partition £ comes from the equivalence relation on the plane that declares the points
(x0, yo) and (x1, y1) to be equivalent if xo 4+ yo = x1 + y1.

EXAMPLE 6.  Let /£ be the collection of all straight lines in the plane. Then £ is not
a partition of the plane, for distinct elements of £’ are not necessarily disjoint; two lines
may intersect without being equal.

Order Relations

A relation C on a set A is called an order relation (or a simple order, or a linear order)
if it has the following properties:

(1) (Comparability) For every x and y in A for which x # y, either xCy or yCx.

(2) (Nonreflexivity) For no x in A does the relation xCx hold.

(3) (Transitivity) If xCy and yCz, then xCz.
Note that property (1) does not by itself exclude the possibility that for some pair of
elements x and y of A, both the relations xCy and yCx hold (since “or”” means “one
or the other, or both”). But properties (2) and (3) combined do exclude this possibil-
ity; for if both xCy and yCx held, transitivity would imply that xCx, contradicting
nonreflexivity.

EXAMPLE 7.  Consider the relation on the real line consisting of all pairs (x, y) of real
numbers such that x < y. It is an order relation, called the “usual order relation,” on the
real line. A less familiar order relation on the real line is the following: Define xCy if
x2 < y%, orif x2 = y2 and x < y. You can check that this is an order relation.

EXAMPLE 8.  Consider again the relationships among people given in Example 1. The
blood relation B satisfies none of the properties of an order relation, and the sibling rela-
tion S satisfies only (3). The descendant relation D does somewhat better, for it satisfies
both (2) and (3); however, comparability still fails. Relations that satisfy (2) and (3) occur
often enough in mathematics to be given a special name. They are called strict partial
order relations; we shall consider them later (see §11).
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As the tilde, ~, is the generic symbol for an equivalence relation, the “less than”
symbol, <, is commonly used to denote an order relation. Stated in this notation, the
properties of an order relation become

(1) If x # y, theneitherx < yory < x.

(2) If x < y,then x # y.

3) Ifx <yandy < z,then x < z.
We shall use the notation x < y to stand for the statement “either x < y or x = y”’;
and we shall use the notation y > x to stand for the statement “x < y.” We write
x <y<ztomean“x < yandy < z.”

Definition. If X is a set and < is an order relation on X, and if a < b, we use the
notation (a, b) to denote the set

{x |a <x <b};

it is called an open interval in X. If this set is empty, we call a the immediate prede-
cessor of b, and we call b the immediate successor of a.

Definition. Suppose that A and B are two sets with order relations <4 and <p
respectively. We say that A and B have the same order type if there is a bijective
correspondence between them that preserves order; that is, if there exists a bijective
function f : A — B such that

ar <aay = f(a1) <p f(a2).

EXAMPLE 9.  The interval (—1, 1) of real numbers has the same order type as the set R
of real numbers itself, for the function f : (—1, 1) — R given by

X
1—x2

fx) =

is an order-preserving bijective correspondence, as you can check. It is pictured in Fig-
ure 3.2.

EXAMPLE 10. The subset A = {0} U (1, 2) of R has the same order type as the subset
0, D={x[0=x<1}
of R. The function f : A — [0, 1) defined by

f0) =0,
fx)=x—-1 forx e (1,2)
is the required order-preserving correspondence.

One interesting way of defining an order relation, which will be useful to us later
in dealing with some examples, is the following:
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y=x/(1-x?)

Figure 3.2

Definition. Suppose that A and B are two sets with order relations <4 and <p
respectively. Define an order relation < on A x B by defining

a1xb1<a2><b2

if a; <4 ap, orif a; = ap and by <p by. It is called the dictionary order relation on
A X B.

Checking that this is an order relation involves looking at several separate cases;
we leave it to you.

The reason for the choice of terminology is fairly evident. The rule defining < is
the same as the rule used to order the words in the dictionary. Given two words, one
compares their first letters and orders the words according to the order in which their
first letters appear in the alphabet. If the first letters are the same, one compares their
second letters and orders accordingly. And so on.

EXAMPLE 11. Consider the dictionary order on the plane R x R. In this order, the
point p is less than every point lying above it on the vertical line through p, and p is less
than every point to the right of this vertical line.

EXAMPLE 12. Consider the set [0, 1) of real numbers and the set Z of positive integers,
both in their usual orders; give Z x [0, 1) the dictionary order. This set has the same order
type as the set of nonnegative reals; the function

fnxt)y=n+1t—1

is the required bijective order-preserving correspondence. On the other hand, the set
[0,1) x Z4 in the dictionary order has quite a different order type; for example, every
element of this ordered set has an immediate successor. These sets are pictured in Fig-
ure 3.3.
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Zex [0:1) [0,1) x Z
d +

Figure 3.3

One of the properties of the real numbers that you may have seen before is the
“least upper bound property.” One can define this property for an arbitrary ordered set.
First, we need some preliminary definitions.

Suppose that A is a set ordered by the relation <. Let Ag be a subset of A. We
say that the element b is the largest element of Ay if b € Ag and if x < b for every
x € Ag. Similarly, we say that a is the smallest element of Agifa € Ag andifa < x
for every x € Ap. It is easy to see that a set has at most one largest element and at
most one smallest element.

We say that the subset Ag of A is bounded above if there is an element b of A such
that x < b for every x € Ap; the element b is called an upper bound for Ay. If the
set of all upper bounds for A has a smallest element, that element is called the least
upper bound, or the supremum, of Ay. It is denoted by sup Agp; it may or may not
belong to Ag. If it does, it is the largest element of Ag.

Similarly, Ag is bounded below if there is an element a of A such that a < x for
every x € Ag; the element a is called a lower bound for Ag. If the set of all lower
bounds for Ag has a largest element, that element is called the greatest lower bound,
or the infimum, of Ag. It is denoted by inf Ag; it may or may not belong to Ag. If it
does, it is the smallest element of Ag.

Now we can define the least upper bound property.

Definition. An ordered set A is said to have the least upper bound property if every
nonempty subset Ag of A that is bounded above has a least upper bound. Analogously,
the set A is said to have the greatest lower bound property if every nonempty subset
Ap of A that is bounded below has a greatest lower bound.

We leave it to the exercises to show that A has the least upper bound property if
and only if it has the greatest lower bound property.

EXAMPLE 13. Consider the set A = (—1, 1) of real numbers in the usual order. As-
suming the fact that the real numbers have the least upper bound property, it follows that
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the set A has the least upper bound property. For, given any subset of A having an upper
bound in A, it follows that its least upper bound (in the real numbers) must be in A. For
example, the subset {—1/2n | n € Z4} of A, though it has no largest element, does have a
least upper bound in A, the number 0.

On the other hand, the set B = (—1, 0) U (0, 1) does not have the least upper bound
property. The subset {—1/2n | n € Z,} of B is bounded above by any element of (0, 1),
but it has no least upper bound in B.

Exercises

Equivalence Relations

1.

Define two points (xg, yg) and (x1, y1) of the plane to be equivalent if yg — xg =

yi— x12. Check that this is an equivalence relation and describe the equivalence
classes.

. Let C be arelation on a set A. If Ag C A, define the restriction of C to Ag to be

the relation C N (Ag x Ag). Show that the restriction of an equivalence relation
is an equivalence relation.

. Here is a “proof” that every relation C that is both symmetric and transitive is

also reflexive: “Since C is symmetric, aCb implies bCa. Since C is transitive,
aCb and bCa together imply aCa, as desired.” Find the flaw in this argument.

. Let f : A — B be a surjective function. Let us define a relation on A by setting

ag ~ ap if
f(ao) = f(ay).

(a) Show that this is an equivalence relation.
(b) Let A* be the set of equivalence classes. Show there is a bijective correspon-
dence of A* with B.

. Let S and S’ be the following subsets of the plane:

S={x,y)|y=x+1and0 <x <2},
S"={(x,y) | y — x is an integer}.

(a) Show that S’ is an equivalence relation on the real line and S” O S. Describe
the equivalence classes of S’.

(b) Show that given any collection of equivalence relations on a set A, their
intersection is an equivalence relation on A.

(c) Describe the equivalence relation 7' on the real line that is the intersection
of all equivalence relations on the real line that contain S. Describe the
equivalence classes of T'.
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Order Relations

6.

10.

11.

12.

13.

14.

15.

Define a relation on the plane by setting

(x0, yo) < (x1, y1)

if either yg — xé <y — x%, or yg — xg =y — xl2 and xo < x;. Show that this
is an order relation on the plane, and describe it geometrically.

Show that the restriction of an order relation is an order relation.

Check that the relation defined in Example 7 is an order relation.

Check that the dictionary order is an order relation.

(a) Show that the map f : (—1, 1) — R of Example 9 is order preserving.
(b) Show that the equation g(y) = 2y/[1 + (1 + 4y2)1/2] defines a function
g : R — (—1, 1) that is both a left and a right inverse for f.

Show that an element in an ordered set has at most one immediate successor and
at most one immediate predecessor. Show that a subset of an ordered set has at
most one smallest element and at most one largest element.
Let Z denote the set of positive integers. Consider the following order relations
onZy X Zy:

(i) The dictionary order.

(i) (xo0, yo) < (x1, y1) if either xg — yo < x1 — y1, 0r xo — yo = x1 — y; and
Yo < 1.
(ii1) (xo, yo) < (x1, y1) if either xo + yo < x1 + y1, or xo + yo = x1 + y and
Yo < Y1
In these order relations, which elements have immediate predecessors? Does the
set have a smallest element? Show that all three order types are different.

Prove the following:

Theorem. If an ordered set A has the least upper bound property, then it has the
greatest lower bound property.

If C is a relation on a set A, define a new relation D on A by letting (b, a) € D
if (a, b) € C.

(a) Show that C is symmetric if and only if C = D.

(b) Show that if C is an order relation, D is also an order relation.

(c) Prove the converse of the theorem in Exercise 13.

Assume that the real line has the least upper bound property.

(a) Show that the sets

0, 1]={x[0=x =1},
0,D={x[0=x<1}
have the least upper bound property.

(b) Does [0, 1] x [0, 1] in the dictionary order have the least upper bound prop-
erty? What about [0, 1] x [0, 1)? What about [0, 1) x [0, 1]?
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§4 The Integers and the Real Numbers

Up to now we have been discussing what might be called the logical foundations for
our study of topology—the elementary concepts of set theory. Now we turn to what
we might call the mathematical foundations for our study—the integers and the real
number system. We have already used them in an informal way in the examples and
exercises of the preceding sections. Now we wish to deal with them more formally.

One way of establishing these foundations is to construct the real number system,
using only the axioms of set theory—to build them with one’s bare hands, so to speak.
This way of approaching the subject takes a good deal of time and effort and is of
greater logical than mathematical interest.

A second way is simply to assume a set of axioms for the real numbers and work
from these axioms. In the present section, we shall sketch this approach to the real
numbers. Specifically, we shall give a set of axioms for the real numbers and shall
indicate how the familiar properties of real numbers and the integers are derived from
them. But we shall leave most of the proofs to the exercises. If you have seen all
this before, our description should refresh your memory. If not, you may want to
work through the exercises in detail in order to make sure of your knowledge of the
mathematical foundations.

First we need a definition from set theory.

Definition. A binary operation on a set A is a function f mapping A x A into A.

When dealing with a binary operation f on a set A, we usually use a notation
different from the standard functional notation introduced in §2. Instead of denoting
the value of the function f at the point (a, a’) by f(a, a’), we usually write the symbol
for the function between the two coordinates of the point in question, writing the value
of the function at (a, a’) as afa’. Furthermore (just as was the case with relations),
it is more common to use some symbol other than a letter to denote an operation.
Symbols often used are the plus symbol +, the multiplication symbols - and o, and the
asterisk *; however, there are many others.

Assumption

We assume there exists a set R, called the set of real numbers, two binary operations +
and - on R, called the addition and multiplication operations, respectively, and an order
relation < on R, such that the following properties hold:

Algebraic Properties
D x+y+z=x+Q+2),
x-y)-z=x-(y-z) forall x, y, zinR.
@ x+y=y+x,
x-y=y-xforalx,yinR.
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(3) There exists a unique element of R called zero, denoted by 0, such that x +0 = x
for all x € R.
There exists a unique element of R called one, different from O and denoted by 1,
such that x - 1 = x forall x € R.

(4) For each x in R, there exists a unique y in R such that x + y = 0.
For each x in R different from 0, there exists a unique y in R such thatx - y = 1.

S x-y+z2)=Cx-y)+(x-z)foralx,y,zeR.

A Mixed Algebraic and Order Property
6) If x > y,thenx +z > y + z.
Ifx>yandz > 0,thenx-z>y-z.

Order Properties
(7) The order relation < has the least upper bound property.
(8) If x < y, there exists an element z such that x < zand z < y.

From properties (1)—(5) follow the familiar “laws of algebra.” Given x, one de-
notes by —x that number y such that x 4+ y = 0; it is called the negative of x. One
defines the subtraction operation by the formula z — x = z 4+ (—x). Similarly, given
x # 0, one denotes by 1/x that number y such that x - y = 1; it is called the reciprocal
of x. One defines the quotient 7 /x by the formula z/x = z - (1/x). The usual laws of
signs, and the rules for adding and multiplying fractions, follow as theorems. These
laws of algebra are listed in Exercise 1 at the end of the section. We often denote x - y
simply by xy.

When one adjoins property (6) to properties (1)—(5), one can prove the usual “laws
of inequalities,” such as the following:

If x>y and z <O, then x-z<y-z.
—1<0and 0 < 1.

The laws of inequalities are listed in Exercise 2.

We define a number x to be positive if x > 0, and to be negative if x < 0. We
denote the positive reals by R and the nonnegative reals (for reasons to be explained
later) by R+. Properties (1)—(6) are familiar properties in modern algebra. Any set
with two binary operations satisfying (1)—(5) is called by algebraists a field; if the field
has an order relation satisfying (6), it is called an ordered field.

Properties (7) and (8), on the other hand, are familiar properties in topology. They
involve only the order relation; any set with an order relation satisfying (7) and (8) is
called by topologists a linear continuum.

Now it happens that when one adjoins to the axioms for an ordered field [proper-
ties (1)—(6)] the axioms for a linear continuum [properties (7) and (8)], the resulting
list contains some redundancies. Property (8), in particular, can be proved as a conse-
quence of the others; given x < y one can show that z = (x 4+ y)/(1 + 1) satisfies
the requirements of (8). Therefore, in the standard treatment of the real numbers,
properties (1)—(7) are taken as axioms, and property (8) becomes a theorem. We have
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included (8) in our list merely to emphasize the fact that it and the least upper bound
property are the two crucial properties of the order relation for R. From these two
properties many of the topological properties of R may be derived, as we shall see in
Chapter 3.

Now there is nothing in this list as it stands to tell us what an integer is. We now
define the integers, using only properties (1)—(6).

Definition. A subset A of the real numbers is said to be inductive if it contains the
number 1, and if for every x in A, the number x+1 is also in A. Let A be the collection
of all inductive subsets of R. Then the set Z of positive integers is defined by the

equation
Zy = () A
A€A

Note that the set R of positive real numbers is inductive, for it contains 1 and
the statement x > O implies the statement x + 1 > 0. Therefore, Z, C Ry, so the
elements of Z are indeed positive, as the choice of terminology suggests. Indeed, one
sees readily that 1 is the smallest element of Z_, because the set of all real numbers x
for which x > 1 is inductive.

The basic properties of Z,., which follow readily from the definition, are the fol-
lowing:

(1) Z4 is inductive.
(2) (Principle of induction). If A is an inductive set of positive integers, then A =
Z+.
We define the set Z of integers to be the set consisting of the positive integers Z.,
the number 0, and the negatives of the elements of Z,. One proves that the sum,
difference, and product of two integers are integers, but the quotient is not necessarily
an integer. The set Q of quotients of integers is called the set of rational numbers.

One proves also that, given the integer n, there is no integer a such thatn < a <
n+ 1.

If n is a positive integer, we use the symbol S, to denote the set of all positive
integers less than n; we call it a section of the positive integers. The set S; is empty,
and S, denotes the set of positive integers between 1 and n, inclusive. We also use
the notation

{1,...,”}: n+1

for the latter set.

Now we prove two properties of the positive integers that may not be quite so
familiar, but are quite useful. They may be thought of as alternative versions of the
induction principle.

Theorem 4.1 (Well-ordering property). Every nonempty subset of Z. has a small-
est element.
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Proof. 'We first prove that, for each n € Z_, the following statement holds: Every
nonempty subset of {1, ..., n} has a smallest element.

Let A be the set of all positive integers n for which this statement holds. Then A
contains 1, since if n = 1, the only nonempty subset of {1, ..., n} is the set {1} itself.
Then, supposing A contains n, we show that it contains n + 1. So let C be a nonempty
subset of the set {1,...,n 4+ 1}. If C consists of the single element n + 1, then that
element is the smallest element of C. Otherwise, consider the set CN{1, ..., n}, which
is nonempty. Because n € A, this set has a smallest element, which will automatically
be the smallest element of C also. Thus A is inductive, so we conclude that A = Z;
hence the statement is true for all n € Z..

Now we prove the theorem. Suppose that D is a nonempty subset of Z_. Choose

an element n of D. Then the set A = D N {1,...,n} is nonempty, so that A has a
smallest element k. The element k is automatically the smallest element of D as well.
|

Theorem 4.2 (Strong induction principle). Let A be a set of positive integers.
Suppose that for each positive integer n, the statement S,, C A implies the statement
neA. Then A=7,.

Proof. If A does not equal all of Z, let n be the smallest positive integer that is not
in A. Then every positive integer less than n is in A, so that S, C A. Our hypothesis
implies that n € A, contrary to assumption. |

Everything we have done up to now has used only the axioms for an ordered field,
properties (1)—(6) of the real numbers. At what point do you need (7), the least upper
bound axiom?

For one thing, you need the least upper bound axiom to prove that the set Z, of
positive integers has no upper bound in R. This is the Archimedean ordering property
of the real line. To prove it, we assume that Z has an upper bound and derive a
contradiction. If Z has an upper bound, it has a least upper bound b. There exists
n € Z4 such that n > b — 1; for otherwise, » — 1 would be an upper bound for Z_
smaller than b. Then n + 1 > b, contrary to the fact that b is an upper bound for Z .

The least upper bound axiom is also used to prove a number of other things
about R. It is used for instance to show that R has the greatest lower bound prop-
erty. It is also used to prove the existence of a unique positive square root ,/x for
every positive real number. This fact, in turn, can be used to demonstrate the existence
of real numbers that are not rational numbers; the number /2 is an easy example.

We use the symbol 2 to denote 1 4 1, the symbol 3 to denote 2 + 1, and so on
through the standard symbols for the positive integers. It is a fact that this procedure
assigns to each positive integer a unique symbol, but we never need this fact and shall
not prove it.

Proofs of these properties of the integers and real numbers, along with a few other
properties we shall need later, are outlined in the exercises that follow.
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Exercises

1. Prove the following “laws of algebra” for R, using only axioms (1)—(5):
(@ Ifx+y=x,theny =0.
(b) 0-x = 0. [Hint: Compute (x + 0) - x.]

(c) —0=0.

(d —(=x) =x.

e x(—y) =—(xy) = (—x)y.
® (—Dx =—x.

(&) x(y —2) =xy—xz.
h) —-x+y)=—x—-yi—x—y)=—x+y.
(i) Ifx#0Oandx-y=x,theny = 1.
G) x/x=1ifx #0.
&) x/1 =x.
1) x#0andy #0= xy #0.
(m) (1/y)(1/z) =1/(y2)if y,z # 0.
(m) (x/y)(w/z) = (xw)/(yz)if y,z #0.
(0) (x/y)+ (w/z) = (xz+wy)/(yz) if y,z #0.
(p) x#0=1/x #0.
(@ 1/(w/z) =z/wif w, z # 0.
™ &/y/(w/z) = (x2)/(yw)if y, w,z #0.
(s) (ax)/y =a(x/y)ify #0.
O (=x)/y=x/(=y) =—(x/y)if y #0.
2. Prove the following “laws of inequalities” for R, using axioms (1)—(6) along with
the results of Exercise 1:
@ x>yandw>z=>x4+w>y+z
(b)) x>0andy >0=x+y>0andx-y > 0.
© x>0 —x <.
d x>y —x < —y.
() x>yandz < 0= xz < yz.
# x 750=>x2 > 0, where x%2 = x - x.
(g -1<0<1.
(h) xy > 0 < x and y are both positive or both negative.
i x>0=1/x>0.
G) x>y>0=1/x <1/y.
K x<y=x<x+y)/2<y.
3. (a) Show that if 4 is a collection of inductive sets, then the intersection of the
elements of »4 is an inductive set.
(b) Prove the basic properties (1) and (2) of Z.

4. (a) Prove by induction that given n € Z., every nonempty subset of {1, ..., n}
has a largest element.

(b) Explain why you cannot conclude from (a) that every nonempty subset of Z .
has a largest element.
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Prove the following properties of Z and Z,

(@) a,b € Zy = a+ b € Z4. [Hint: Show that given a € Z,, the set
X ={x|x €eRanda+ x € Z,} is inductive.]

®) a,beZy =a-bels.

(c) Show thata € Zy = a—1 € Z, U{0}. [Hint: Let X = {x | x € R and
x — 1 € Z4 U {0}; show that X is inductive.]

(d) c,deZ =c+d e Zandc—d e Z. [Hint: Prove it first for d = 1.]

e) c,deZ=c-del.

Let a € R. Define inductively

forn € Zy. (See §7 for a discussion of the process of inductive definition.)
Show that forn,m € Z4 and a, b € R,

anam — an—i—m’
(an)m — anm,
a™b™ = (ab)™.

These are called the laws of exponents. [Hint: For fixed n, prove the formulas
by induction on m.]

. Leta € R and a # 0. Define a® =1, and forn € Zy,a ™ =1/a". Show that

the laws of exponents hold fora, b # 0 and n, m € Z.

(a) Show that R has the greatest lower bound property.

(b) Show thatinf{l/n |n € Z4+} =0.

(c) Show that given a with 0 < a < 1, inf{a" | n € Z,} = 0. [Hint: Let
h = (1 —a)/a, and show that (1 + 2)" > 1 + nh.]

(a) Show that every nonempty subset of Z that is bounded above has a largest
element.

(b) If x ¢ Z, show there is exactly one n € Z such thatn <x <n 4+ 1.

(¢) If x — y > 1, show there is at least one n € Z such that y < n < x.

(d) If y < x, show there is a rational number z such that y < z < x.

Show that every positive number a has exactly one positive square root, as fol-
lows:
(a) Show thatif x > 0and 0 < h < 1, then

(x+h)?<x>+hQx+1),
(x —h)? > x% — h(2x).

(b) Letx > 0. Show that if x2 < a, then (x + h)? < a for some & > 0; and if

x2 > g, then (x — h)? > a for some h > 0.
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(c) Given a > 0, let B be the set of all real numbers x such that x> < a.
Show that B is bounded above and contains at least one positive number.
Let b = sup B; show that b* = a.

(d) Show that if b and ¢ are positive and b? =2, thenb = c.

11. Given m € Z, we say that m is even it m/2 € Z, and m is odd otherwise.

(a) Show that if m is odd, m = 2n + 1 for some n € Z. [Hint: Choose n so that
n<m/2<n+1.]

(b) Show that if p and g are odd, so are p - g and p”, for any n € Z.

(c) Show that if a > 0 is rational, then a = m/n for some m,n € Z, where
not both m and n are even. [Hint: Let n be the smallest element of the set
(x| x€Zyandx -a € Z4}.]

(d) Theorem. ~/2 is irrational.

§5 Cartesian Products

We have already defined what we mean by the cartesian product A x B of two sets.
Now we introduce more general cartesian products.

Definition. Let A be a nonempty collection of sets. An indexing function for A is
a surjective function f from some set J, called the index set, to A. The collection A,
together with the indexing function f, is called an indexed family of sets. Given
a € J, we shall denote the set f(«) by the symbol A,. And we shall denote the
indexed family itself by the symbol

{Aa}aej,

which is read “the family of all A,, as « ranges over J.” Sometimes we write merely
{Aq}, if it is clear what the index set is.

Note that although an indexing function is required to be surjective, it is not re-
quired to be injective. It is entirely possible for A, and Ag to be the same set of A,
even though o # B.

One way in which indexing functions are used is to give a new notation for arbi-
trary unions and intersections of sets. Suppose that f : J — 4 is an indexing function
for A; let Ay denote f(«). Then we define

U Ay = {x | foratleastone o € J, x € Ay},
ael

and

ﬂAa ={x |foreverya € J,x € Ay}.

aelJ
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These are simply new notations for previously defined concepts; one sees at once
(using the surjectivity of the index function) that the first equals the union of all the
elements of A and the second equals the intersection of all the elements of .

Two especially useful index sets are the set {1, ..., n} of positive integers from 1
to n, and the set Z of all positive integers. For these index sets, we introduce some
special notation. If a collection of sets is indexed by the set {1, ..., n}, we denote the
indexed family by the symbol {Ay, ..., A,}, and we denote the union and intersection,
respectively, of the members of this family by the symbols

AjU---UA, and A;N---NA,.

In the case where the index set is the set Z,, we denote the indexed family by the
symbol {A], Ay, ...}, and the union and intersection by the respective symbols

AfUAU ... and AjNAN---.

Definition. Let m be a positive integer. Given a set X, we define an m-tuple of
elements of X to be a function

x:{l,...,m} > X.

If x is an m-tuple, we often denote the value of x at i by the symbol x; rather than x(7)
and call it the ith coordinate of x. And we often denote the function x itself by the
symbol

X1y .y Xm).

Now let {Aq, ..., Ay} be a family of sets indexed with the set {1,...,m}. Let X =
ApU---UA,. We define the cartesian product of this indexed family, denoted by

m
HAi or Ap xX---X A,
i=1

to be the set of all m-tuples (x, ..., x;,) of elements of X such that x; € A; foreach .

EXAMPLE 1. We now have two definitions for the symbol A x B. One definition is,
of course, the one given earlier, under which A x B denotes the set of all ordered pairs
(a,b) such that a € A and b € B. The second definition, just given, defines A x B as
the set of all functions x : {1,2} — A U B such that x(1) € A and x(2) € B. There
is an obvious bijective correspondence between these two sets, under which the ordered
pair (a, b) corresponds to the function x defined by x(1) = a and x(2) = b. Since we
commonly denote this function x in “tuple notation” by the symbol (a, b), the notation
itself suggests the correspondence. Thus for the cartesian product of two sets, the general
definition of cartesian product reduces essentially to the earlier one.

EXAMPLE 2. How does the cartesian product A x B x C differ from the cartesian products
A x (B x C)and (A x B) x C? Very little. There are obvious bijective correspondences
between these sets, indicated as follows:

(a,b,c) <— (a, (b,c)) «<— ((a,b),c).
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Definition. Given a set X, we define an w-fuple of elements of X to be a function
X:Zy — X;

we also call such a function a sequence, or an infinite sequence, of elements of X. If
X is an w-tuple, we often denote the value of x at i by x; rather than x(i), and call it the
ith coordinate of x. We denote x itself by the symbol

(-xla-x27 ) or (xn)n€Z+-

Now let {A, As, ...} be a family of sets, indexed with the positive integers; let X be
the union of the sets in this family. The cartesian product of this indexed family of
sets, denoted by

nA,- or A xXAyx---,

i€Z+

is defined to be the set of all w-tuples (xy, x2, .. .) of elements of X such that x; € A;
for each i.

Nothing in these definitions requires the sets A; to be different from one another.
Indeed, they may all equal the same set X. In that case, the cartesian product A; X
- X Ay, 1s just the set of all m-tuples of elements of X, which we denote by X".
Similarly, the product A; x Ay x --- is just the set of all w-tuples of elements of X,
which we denote by X®.
Later we will define the cartesian product of an arbitrary indexed family of sets.
EXAMPLE 3. If R is the set of real numbers, then R denotes the set of all m-tuples of
real numbers; it is often called euclidean m-space (although Euclid would never recognize

it). Analogously, R? is sometimes called “infinite-dimensional euclidean space”; it is the
set of all w-tuples (xy, x3, .. .) of real numbers, that is, the set of all functions x : Z, — R.

Exercises

1. Show there is a bijective correspondence of A x B with B x A.
2. (a) Show thatif n > 1 there is bijective correspondence of

A x---x A, with  (A] X - X Ap_1) X Ay.

(b) Given the indexed family {A;, A,...}, let B; = A1 X Ajy; for each
positive integer i. Show there is bijective correspondence of A} x Ay X - - -
with By x By X ---.

J.letA=A; xAyx---and B=By X By X ---

(a) Show that if B; C A; for all i, then B C A. (Strictly speaking, if we are
given a function mapping the index set Z into the union of the sets B;, we
must change its range before it can be considered as a function mapping Z
into the union of the sets A;. We shall ignore this technicality when dealing
with cartesian products).
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(b) Show the converse of (a) holds if B is nonempty.

(c) Show that if A is nonempty, each A; is nonempty. Does the converse hold?
(We will return to this question in the exercises of §19.)

(d) What is the relation between the set A U B and the cartesian product of the
sets A; U B;? What is the relation between the set A N B and the cartesian
product of the sets A; N B;?

4. Letm,n € Z4. Let X # O.
(a) If m < n, find an injective map f : X" — X".
(b) Find a bijective map g : X" x X" — X™*",
(c) Find an injective map h : X" — X¢.
(d) Find a bijective map k : X" x X* — X®.
(e) Find a bijective map/ : X¥ x X* — X¢.
(f) If A C B, find an injective map m : X4 — X5,
5. Which of the following subsets of R” can be expressed as the cartesian product
of subsets of R?
(a) {x| x; is an integer for all i}.
(b) {x|x; =i foralli}.
(c) {x| x; is an integer for all i > 100}.
(d) {x[x2=x3}.

§6 Finite Sets

Finite sets and infinite sets, countable sets and uncountable sets, these are types of sets
that you may have encountered before. Nevertheless, we shall discuss them in this
section and the next, not only to make sure you understand them thoroughly, but also
to elucidate some particular points of logic that will arise later on. First we consider
finite sets.

Recall that if n is a positive integer, we use S, to denote the set of positive integers
less than n; it is called a section of the positive integers. The sets S, are the prototypes
for what we call the finite sets.

Definition. A set is said to be finite if there is a bijective correspondence of A with
some section of the positive integers. That is, A is finite if it is empty or if there is a
bijection

f:A—{l,...,n}

for some positive integer n. In the former case, we say that A has cardinality 0; in the
latter case, we say that A has cardinality n.

For instance, the set {1, ..., n} itself has cardinality n, for it is in bijective corre-
spondence with itself under the identity function.
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Now note carefully: We have not yet shown that the cardinality of a finite set is
uniquely determined by the set. It is of course clear that the empty set must have
cardinality zero. But as far as we know, there might exist bijective correspondences
of a given nonempty set A with two different sets {1,...,n} and {1,...,m}. The
possibility may seem ridiculous, for it is like saying that it is possible for two people
to count the marbles in a box and come out with two different answers, both correct.
Our experience with counting in everyday life suggests that such is impossible, and in
fact this is easy to prove when 7 is a small number such as 1, 2, or 3. But a direct proof
when 7 is 5 million would be impossibly demanding.

Even empirical demonstration would be difficult for such a large value of n. One
might, for instance, construct an experiment by taking a freight car full of marbles and
hiring 10 different people to count them independently. If one thinks of the physical
problems involved, it seems likely that the counters would not all arrive at the same
answer. Of course, the conclusion one could draw is that at least one person made a
mistake. But that would mean assuming the correctness of the result one was trying
to demonstrate empirically. An alternative explanation could be that there do exist
bijective correspondences between the given set of marbles and two different sections
of the positive integers.

In real life, we accept the first explanation. We simply take it on faith that our
experience in counting comparatively small sets of objects demonstrates a truth that
holds for arbitrarily large sets as well.

However, in mathematics (as opposed to real life), one does not have to take this
statement on faith. If it is formulated in terms of the existence of bijective correspon-
dences rather than in terms of the physical act of counting, it is capable of mathemat-
ical proof. We shall prove shortly that if n # m, there do not exist bijective functions
mapping a given set A onto both the sets {1, ..., n} and {1, ..., m}.

There are a number of other “intuitively obvious” facts about finite sets that are
capable of mathematical proof; we shall prove some of them in this section and leave
the rest to the exercises. Here is an easy fact to start with:

Lemma 6.1. Letn be a positive integer. Let A be a set; let ap be an element of A.
Then there exists a bijective correspondence f of the set A with the set {1, ...,n+ 1}
if and only if there exists a bijective correspondence g of the set A — {ag} with the set
{1,...,n}.

Proof. There are two implications to be proved. Let us first assume that there is a
bijective correspondence

g:A—{ap} — {1,...,n}
We then define a function f : A — {1, ..., n 4 1} by setting

f(x)=gk) forx e A—{aol,
flao) =n+1.

One checks at once that f is bijective.
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To prove the converse, assume there is a bijective correspondence
f:A—{l,...,n+ 1}

If f maps ag to the number n + 1, things are especially easy; in that case, the restric-
tion f|A — {ag} is the desired bijective correspondence of A — {ap} with {1, ..., n}.
Otherwise, let f(ag) = m, and let a; be the point of A such that f(a;) = n + 1. Then
ay # ag. Define a new function

h:A—{l,...,n+1}
by setting

h(ap) =n—+1,
h(a;) = m,
hix) = f(x) forx e A—{ap}— {a1}.

See Figure 6.1. It is easy to check that £ is a bijection.
Now we are back in the easy case; the restriction 4| A —{ag} is the desired bijection
of A — {ap} with {1, ..., n}. [ |

-C’D
-C )

Figure 6.1

From this lemma a number of useful consequences follow:

Theorem 6.2. Let A be a set; suppose that there exists a bijection f : A — {1, ..., n}
for some n € Z4. Let B be a proper subset of A. Then there exists no bijection
g : B — {1,...,n}; but (provided B # &) there does exist a bijection h : B —
{1,...,m} for somem < n.

Proof. The case in which B = @ is trivial, for there cannot exist a bijection of the
empty set B with the nonempty set {1, ..., n}.

We prove the theorem “by induction.” Let C be the subset of Z, consisting of
those integers n for which the theorem holds. We shall show that C is inductive. From
this we conclude that C = Z,., so the theorem is true for all positive integers 7.

First we show the theorem is true for n = 1. In this case A consists of a single
element {a}, and its only proper subset B is the empty set.
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Now assume that the theorem is true for n; we prove it true for n + 1. Suppose
that f : A — {1,...,n 4 1} is a bijection, and B is a nonempty proper subset of A.
Choose an element ag of B and an element a; of A — B. We apply the preceding
lemma to conclude there is a bijection

g:A—{ap} — {1,...,n}.

Now B — {ag} is a proper subset of A — {ap}, for a; belongs to A — {ag} and not to
B —{ap}. Because the theorem has been assumed to hold for the integer n, we conclude
the following:

(1) There exists no bijection i : B — {ag} — {1,...,n}.

(2) Either B — {ap} = &, or there exists a bijection

k:B—{ag} — {1,...,p} forsome p < n.

The preceding lemma, combined with (1), implies that there is no bijection of B with
{1,...,n+ 1}. This is the first half of what we wanted to proved. To prove the second
half, note that if B — {ap} = O, there is a bijection of B with the set {1}; while if
B — {ag} # @, we can apply the preceding lemma, along with (2), to conclude that
there is a bijection of B with {1, ..., p + 1}. In either case, there is a bijection of B
with {1, ..., m} for some m < n + 1, as desired. The induction principle now shows
that the theorem is true for alln € Z. |

Corollary 6.3. If A is finite, there is no bijection of A with a proper subset of itself.
Proof. Assume that B is a proper subset of A and that f : A — B is a bijection. By
assumption, there is a bijection g : A — {1, ..., n} for some n. The composite go f !
is then a bijection of B with {1, ..., n}. This contradicts the preceding theorem. N
Corollary 6.4. Z. is not finite.
Proof. The function f : Z; — Z4 — {1} defined by f(n) = n + 1 is a bijection
of Z, with a proper subset of itself. [ |
Corollary 6.5. The cardinality of a finite set A is uniquely determined by A.
Proof. Letm < n. Suppose there are bijections

f:A—{1,...,n},

g:A—{1,...,m}.
Then the composite

gof_l AL, ..., n) —{1,...,m}

is a bijection of the finite set {1, ..., n} with a proper subset of itself, contradicting the
corollary just proved. |
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Corollary 6.6. If B is a subset of the finite set A, then B is finite. If B is a proper
subset of A, then the cardinality of B is less than the cardinality of A.

Corollary 6.7. Let B be a nonempty set. Then the following are equivalent:
(1) B is finite.
(2) There is a surjective function from a section of the positive integers onto B.
(3) There is an injective function from B into a section of the positive integers.

Proof. (1) = (2). Since B is nonempty, there is, for some 7, a bijective function
f:{1,...,n} > B.

2)= 3). If f:{1,...,n} - Bissurjective, define g : B — {1,...,n} by
the equation

g(b) = smallest element of £~ ({b}).

Because f is surjective, the set £ ~1{(b)} is nonempty; then the well-ordering property
of Z tells us that g(b) is uniquely defined. The map g is injective, for if b # b/,
then the sets f ~1({b}) and f “Lp'Y) are disjoint, so their smallest elements must be
different.

(3)= (1).Ifg: B — {1, ..., n}isinjective, then changing the range of g gives
a bijection of B with a subset of {1, ..., n}. It follows from the preceding corollary
that B is finite. ]

Corollary 6.8. Finite unions and finite cartesian products of finite sets are finite.

Proof. We first show that if A and B are finite, so is A U B. The result is trivial
if A or B is empty. Otherwise, there are bijections f : {1,...,m} — A and g :
{1,...,n} — B for some choice of m and n. Define a function 4 : {1,...,m +
n} — AU B by setting h(i) = f(@i) fori =1,2,...,mand h(i) = g(i — m) for
i=m+1,...,m+ n. Itis easy to check that & is surjective, from which it follows
that A U B is finite.

Now we show by induction that finiteness of the sets Ay, ..., A, implies finiteness
of their union. This result is trivial for n = 1. Assuming it true for n — 1, we note that
AjU---U A, is the union of the two finite sets A; U---U A,_; and A, so the result
of the preceding paragraph applies.

Now we show that the cartesian product of two finite sets A and B is finite. Given
a € A, the set {a} x B is finite, being in bijective correspondence with B. The set
A x B is the union of these sets; since there are only finitely many of them, A x B is
a finite union of finite sets and thus finite.

To prove that the product A1 x --- x A, is finite if each A; is finite, one proceeds
by induction. |
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Exercises

1.

§7

(a) Make a list of all the injective maps
f:{1,2,3} — {1,2,3,4}.

Show that none is bijective. (This constitutes a direct proof that a set A of
cardinality three does not have cardinality four.)
(b) How many injective maps

fofl,..., 8 — {1,...,10}

are there? (You can see why one would not wish to try to prove directly that
there is no bijective correspondence between these sets.)

. Show that if B is not finite and B C A, then A is not finite.
. Let X be the two-element set {0, 1}. Find a bijective correspondence between

X and a proper subset of itself.

. Let A be a nonempty finite simply ordered set.

(a) Show that A has a largest element. [Hint: Proceed by induction on the
cardinality of A.]
(b) Show that A has the order type of a section of the positive integers.

. If A x B is finite, does it follow that A and B are finite?
. (@) Let A = {1,...,n}. Show there is a bijection of & (A) with the cartesian

product X", where X is the two-element set X = {0, 1}.
(b) Show that if A is finite, then & (A) is finite.

. If A and B are finite, show that the set of all functions f : A — B is finite.

Countable and Uncountable Sets

Just as sections of the positive integers are the prototypes for the finite sets, the set of
all the positive integers is the prototype for what we call the countably infinite sets. In
this section, we shall study such sets; we shall also construct some sets that are neither
finite nor countably infinite. This study will lead us into a discussion of what we mean
by the process of “inductive definition.”

Definition. A set A is said to be infinite if it is not finite. It is said to be countably
infinite if there is a bijective correspondence

f1A— Zq4.

EXAMPLE 1.  The set Z of all integers is countably infinite. One checks easily that the
function f : Z — Z. defined by

2n ifn > 0,

f("):{—2n+1 itn <0

is a bijection.
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EXAMPLE 2.  The product Z, x Z is countably infinite. If we represent the elements of
the product Z x Z, by the integer points in the first quadrant, then the left-hand portion
of Figure 7.1 suggests how to “count” the points, that is, how to put them in bijective
correspondence with the positive integers. A picture is not a proof, of course, but this
picture suggests a proof. First, we define a bijection f : Z4 x Z; — A, where A is the
subset of Z4 x Z4 consisting of pairs (x, y) for which y < x, by the equation

fx, ) =&+y—11y).

Then we construct a bijection of A with the positive integers, defining g : A — Z by the
formula

1
glx,y) = E(x = Dx +y.

We leave it to you to show that f and g are bijections.
Another proof that Z; x Z is countably infinite will be given later.

ao\o ° ° °
NN L o
NN R
R N S

Figure 7.1

Definition. A set is said to be countable if it is either finite or countably infinite. A
set that is not countable is said to be uncountable.

There is a very useful criterion for showing that a set is countable. It is the follow-
ing:

Theorem 7.1. Let B be a nonempty set. Then the following are equivalent:
(1) B is countable.
(2) There is a surjective function f : Z4 — B.
(3) There is an injective functiong : B — 7.

Proof. (1) = (2). Suppose that B is countable. If B is countably infinite, there is
a bijection f : Z4 — B by definition, and we are through. If B is finite, there is a
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bijection 4 : {1,...,n} — B for some n > 1. (Recall that B # &.) We can extend &
to a surjection f : Z, — B by defining

K@) forl <i <n,
FO=101) fori - n.

(2) = (3). Let f : Z+ — B be a surjection. Define g : B — Z by the equation
g(b) = smallest element of f_1 {b}.

Because f is surjective, £~ ({b}) is nonempty; thus g is well defined. The map g is
injective, for if b # b, the sets f~1({b}) and £~ ({b'}) are disjoint, so their smallest
elements are different.

(3) = (1). Let g : B — Z be an injection; we wish to prove B is countable.
By changing the range of g, we can obtain a bijection of B with a subset of Z_.. Thus
to prove our result, it suffices to show that every subset of Z_ is countable. So let C
be a subset of Z..

If C is finite, it is countable by definition. So what we need to prove is that every
infinite subset C of Z_ is countably infinite. This statement is certainly plausible. For
the elements of C can easily be arranged in an infinite sequence; one simply takes the
set Z in its usual order and “erases” all the elements of Z that are not in C'!

The plausibility of this argument may make one overlook its informality. Provid-
ing a formal proof requires a certain amount of care. We state this result as a separate
lemma, which follows. |

Lemma 7.2. If C is an infinite subset of Z, then C is countably infinite.

Proof. 'We define a bijection & : Z, — C. We proceed by induction. Define 4(1) to
be the smallest element of C; it exists because every nonempty subset C of Z has a
smallest element. Then assuming that 2(1), ..., h(n — 1) are defined, define

h(n) = smallest element of [C — h({1,...,n — 1})].

The set C — h({1, ..., n — 1}) is not empty; for if it were empty, then i : {1,...,n —
1} — C would be surjective, so that C would be finite (by Corollary 6.7). Thus h(n)
is well defined. By induction, we have defined A (n) foralln € Z...

To show that % is injective is easy. Given m < n, note that i (m) belongs to the set
h({1,...,n — 1}), whereas h(n), by definition, does not. Hence h(n) # h(m).

To show that & is surjective, let ¢ be any element of C; we show that ¢ lies in the
image set of A. First note that #(Z4) cannot be contained in the finite set {1, ..., c},
because h(Z,) is infinite (since & is injective). Therefore, there is an n in Z, such
that #(n) > c. Let m be the smallest element of Z_ , such that h(m) > c. Then for all

i < m, we must have k(i) < c. Thus, ¢ does not belong to the set 2({1, ..., m — 1}).
Since h(m) is defined as the smallest element of the set C — ({1, ..., m — 1}), we
must have h(m) < c. Putting the two inequalities together, we have h(m) = c, as
desired. |
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There is a point in the preceding proof where we stretched the principles of logic
a bit. It occurred at the point where we said that “using the induction principle” we
had defined the function /4 for all positive integers n. You may have seen arguments
like this used before, with no questions raised concerning their legitimacy. We have
already used such an argument ourselves, in the exercises of §4, when we defined a”.

But there is a problem here. After all, the induction principle states only that if A
is an inductive set of positive integers, then A = Z,. To use the principle to prove a
theorem “by induction,” one begins the proof with the statement “Let A be the set of
all positive integers n for which the theorem is true,” and then one goes ahead to prove
that A is inductive, so that A must be all of Z .

In the preceding theorem, however, we were not really proving a theorem by in-
duction, but defining something by induction. How then should we start the proof?
Can we start by saying, “Let A be the set of all integers n for which the function 74 is
defined”? But that’s silly; the symbol % has no meaning at the outset of the proof. It
only takes on meaning in the course of the proof. So something more is needed.

What is needed is another principle, which we call the principle of recursive defi-
nition. In the proof of the preceding theorem, we wished to assert the following:

Given the infinite subset C of Z, there is a unique function & : Z; — C
satisfying the formula:

h(1) = smallest element of C,

*
(*) h(i) = smallest element of [C — h({1,...,i —1})] foralli > 1.
The formula (x) is called a recursion formula for h; it defines the function 4 in
terms of itself. A definition given by such a formula is called a recursive definition.
Now one can get into logical difficulties when one tries to define something recur-
sively. Not all recursive formulas make sense. The recursive formula

h(i) = smallest element of [C — h({1,...,i + 1})],

for example, is self-contradictory; although /(i) necessarily is an element of the set
h({1,...,i+1}), this formula says that it does not belong to the set. Another example
is the classic paradox:

Let the barber of Seville shave every man of Seville who does not shave himself.
Who shall shave the barber?

In this statement, the barber appears twice, once in the phrase “the barber of Seville”
and once as an element of the set “men of Seville”; this definition of whom the barber
shall shave is a recursive one. It also happens to be self-contradictory.

Some recursive formulas do make sense, however. Specifically, one has the fol-
lowing principle:

Principle of recursive definition. Let A be a set. Given a formula that defines h(1)
as a unique element of A, and fori > 1 defines h(i) uniquely as an element of A
in terms of the values of h for positive integers less than i, this formula determines a
unique function h : Z4 — A.
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This principle is the one we actually used in the proof of Lemma 7.2. You can
simply accept it on faith if you like. It may however be proved rigorously, using the
principle of induction. We shall formulate it more precisely in the next section and
indicate how it is proved. Mathematicians seldom refer to this principle specifically.
They are much more likely to write a proof like our proof of Lemma 7.2 above, a proof
in which they invoke the “induction principle” to define a function when what they are
really using is the principle of recursive definition. We shall avoid undue pedantry in
this book by following their example.

Corollary 7.3. A subset of a countable set is countable.

Proof. Suppose A C B, where B is countable. There is an injection f of B into Z;
the restriction of f to A is an injection of A into Z . [ |

Corollary 7.4. The set Z x 7 is countably infinite.

Proof. In view of Theorem 7.1, it suffices to construct an injective map f : Z4 X
Zy — Z,. We define f by the equation

f(n, m)=2"3",

It is easy to check that f is injective. For suppose that 2”3 = 2P39. If n < p, then
3" = 2P7"34 contradicting the fact that 3" is odd for all m. Therefore, n = p. As
a result, 3" = 39, Then if m < g, it follows that 1 = 397" another contradiction.
Hence m = gq. |

EXAMPLE 3. The set Q4 of positive rational numbers is countably infinite. For we can
define a surjection g : Z4 x Z4 — Q. by the equation

gn,m) =m/n.

Because Z4 x Z4 is countable, there is a surjection f : Z, — Z4 x Zy. Then the
composite g o f : Zy — Q. is a surjection, so that Q4 is countable. And, of course, Q4+
is infinite because it contains Z. .

We leave it as an exercise to show the set Q of all rational numbers is countably infinite.

Theorem 7.5. A countable union of countable sets is countable.

Proof. Let {A,},es be an indexed family of countable sets, where the index set J is
either {1, ..., N} or Z. Assume that each set A, is nonempty, for convenience; this
assumption does not change anything.

Because each A, is countable, we can choose, for each n, a surjective function
fan : Z4+ — A,. Similarly, we can choose a surjective function g : Z; — J. Now
define

h:Z+xZ+—>UAn

neJ
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by the equation

h(k,m) = fou(m).
It is easy to check that A is surjective. Since Z X Z is in bijective correspondence
with Z, the countability of the union follows from Theorem 7.1. [ |
Theorem 7.6. A finite product of countable sets is countable.

Proof.  First let us show that the product of two countable sets A and B is countable.
The result is trivial if A or B is empty. Otherwise, choose surjective functions f :
Zy — Aandg:Zy — B. Then the function & : Z; X Z4 — A x B defined by the
equation h(n, m) = (f(n), g(m)) is surjective, so that A x B is countable.

In general, we proceed by induction. Assuming that A} x --- X A,_1 is countable
if each A; is countable, we prove the same thing for the product A; x --- x A,,. First,
note that there is a bijective correspondence

giAI X XAy — (A1 X - X Ap—1) X Ay
defined by the equation
g(-xla --'a-xn) = ((-xlv ---,xn—l)a-xn)-

Because the set A; x --- X A,_ is countable by the induction assumption and A, is
countable by hypothesis, the product of these two sets is countable, as proved in the
preceding paragraph. We conclude that A; x --- x A, is countable as well. |

It is very tempting to assert that countable products of countable sets should be
countable; but this assertion is in fact not true:

Theorem 7.7. Let X denote the two element set {0, 1}. Then the set X% is uncount-
able.

Proof.  'We show that, given any function
g : 2y — X°,

g is not surjective. For this purpose, let us denote g(n) as follows :

g(n) = (xnl,xnb Xn3s o« Xnmsy « -+ ),
where each x;; is either O or 1. Then we define an elementy = (y1, y2, ..., Y, -..)
of X by letting
0 ifx,, =1,
Yn = .
1 ifx,, =0.
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(If we write the numbers x,,; in a rectangular array, the particular elements x,, appear
as the diagonal entries in this array; we choose y so that its nth coordinate differs from
the diagonal entry x,,,.)

Now y is an element of X, and y does not lie in the image of g; given n, the
point g(n) and the point y differ in at least one coordinate, namely, the nth. Thus, g is
not surjective. [ ]

The cartesian product {0, 1} is one example of an uncountable set. Another is the
set P (Z), as the following theorem implies:

Theorem 7.8. Let A be a set. There is no injective map f : $(A) — A, and there is
no surjective map g : A — P (A).

Proof. In general, if B is a nonempty set, the existence of an injective map f : B —
C implies the existence of a surjective map g : C — B; one defines g(¢) = f(c)
for each ¢ in the image set of f, and defines g arbitrarily on the rest of C.

Therefore, it suffices to prove that given amap g : A — $(A), the map g is not
surjective. For each a € A, the image g(a) of a is a subset of A, which may or may
not contain the point a itself. Let B be the subset of A consisting of all those points a
such that g(a) does not contain a;

B={a|aeA—-ga)}

Now, B may be empty, or it may be all of A, but that does not matter. We assert that B
is a subset of A that does not lie in the image of g. For suppose that B = g(ag) for
some ag € A. We ask the question: Does ag belong to B or not? By definition of B,

ap)€ B <<= ape A—glag) <= ap€ A— B.

In either case, we have a contradiction. [ ]

Now we have proved the existence of uncountable sets. But we have not yet men-
tioned the most familiar uncountable set of all—the set of real numbers. You have
probably seen the uncountability of R demonstrated already. If one assumes that every
real number can be represented uniquely by an infinite decimal (with the proviso that a
representation ending in an infinite string of 9’s is forbidden), then the uncountability
of the reals can be proved by a variant of the diagonal procedure used in the proof of
Theorem 7.7. But this proof is in some ways not very satisfying. One reason is that
the infinite decimal representation of a real number is not at all an elementary conse-
quence of the axioms but requires a good deal of labor to prove. Another reason is
that the uncountability of R does not, in fact, depend on the infinite decimal expansion
of R or indeed on any of the algebraic properties of R; it depends on only the order
properties of R. We shall demonstrate the uncountability of R, using only its order
properties, in a later chapter.
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Exercises

1. Show that Q is countably infinite.
2. Show that the maps f and g of Examples 1 and 2 are bijections.

3. Let X be the two-element set {0, 1}. Show there is a bijective correspondence
between the set 5 (Z. ) and the cartesian product X¢.

4. (a)

(b)

A real number x is said to be algebraic (over the rationals) if it satisfies some
polynomial equation of positive degree

" tap X" tax+ap=0

with rational coefficients @;. Assuming that each polynomial equation has
only finitely many roots, show that the set of algebraic numbers is countable.
A real number is said to be transcendental if it is not algebraic. Assuming
the reals are uncountable, show that the transcendental numbers are uncount-
able. (It is a somewhat surprising fact that only two transcendental numbers
are familiar to us: e and 7. Even proving these two numbers transcendental
is highly nontrivial.)

5. Determine, for each of the following sets, whether or not it is countable. Justify
your answers.

(a)
(b)
(©
(d)
(e)
()

(2)
(h)
(i)
()

The set A of all functions f : {0, 1} — Z.

The set B, of all functions f : {1,...,n} - Z,.

The set C = {U,ez, Bn-

The set D of all functions f : Zy — Z.

The set E of all functions f : Z4 — {0, 1}.

The set F of all functions f : Zy — {0, 1} that are “eventually zero.”
[We say that f is eventually zero if there is a positive integer N such that
f(m)=0foralln > N.]

The set G of all functions f : Z; — Z. that are eventually 1.

The set H of all functions f : Z, — Z that are eventually constant.

The set [ of all two-element subsets of Z .

The set J of all finite subsets of Z .

6. We say that two sets A and B have the same cardinality if there is a bijection
of A with B.

()

Show that if B C A and if there is an injection
f:A— B,

then A and B have the same cardinality. [Hint: Define Ay = A, B; = B,
and forn > 1, A, = f(A,—1) and B, = f(B;—1). (Recursive definition
again!) Note that Ay D B; D A2 D By D Az D ---. Define a bijection
h : A — B by the rule

f(x) ifx € A, — B, for some n,
h(x) = .
otherwise.]
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(b) Theorem (Schroeder-Bernstein theorem). If there are injections f : A —
Candg:C — A, then A and C have the same cardinality.
7. Show that the sets D and E of Exercise 5 have the same cardinality.
8. Let X denote the two-element set {0, 1}; let B be the set of countable subsets of
X“. Show that X® and $B have the same cardinality.

9. (a) The formula

h(l) =1,
() h(2) =2,

h(n) = [h(n + DI* = [h(n — D]*  forn > 2
is not one to which the principle of recursive definition applies. Show that
nevertheless there does exist a function £ : Z — R satisfying this formula.
[Hint: Reformulate (%) so that the principle will apply and require 4 to be
positive.]

(b) Show that the formula (x) of part (a) does not determine % uniquely. [Hint:

If & is a positive function satisfying (x), let f(i) = h(i) fori # 3, and let

fB3)=-h@3).]
(c) Show that there is no function 4 : Z; — R satisfying the formula
h(l) =1,
h(2) =2,

h(n) = [h(n + D + [h(n — D]*  forn > 2.

*§8 The Principle of Recursive Definition

Before considering the general form of the principle of recursive definition, let us first
prove it in a specific case, that of Lemma 7.2. That should make the underlying idea
of the proof much clearer when we consider the general case.

So, given the infinite subset C of Z, let us consider the following recursion for-
mula for a function 2 : Z — C:

) h(1) = smallest element of C,
*
h(i) = smallest element of [C — h({1,...,i —1})] fori > 1.

We shall prove that there exists a unique function z : Z — C satisfying this recursion
formula.

The first step is to prove that there exist functions defined on sections {1, ..., n}
of Z that satisfy (x):

Lemma 8.1. Givenn € Z, there exists a function
fAl,....,n}—>C

that satisfies (x) for all i in its domain.



§8 The Principle of Recursive Definition 53

Proof. The point of this lemma is that it is a statement that depends on n; therefore, it
is capable of being proved by induction. Let A be the set of all n for which the lemma
holds. We show that A is inductive. It then follows that A = Z,..

The lemma is true for n = 1, since the function f : {1} — C defined by the
equation

f (1) = smallest element of C

satisfies (x).

Supposing the lemma to be true for n — 1, we prove it true for n. By hypothesis,
there is a function f’ : {1,...,n — 1} — C satisfying (%) for all i in its domain.
Define f : {1, ..., n} — C by the equations

fi)=f'G) foriefl,...,n—1},
f(n) = smallest element of [C — f'({1,...,n — 1})].

Since C is infinite, f” is not surjective; hence the set C — f'({1, ..., n — 1}) is not
empty, and f(n) is well defined. Note that this definition is an acceptable one; it does
not define f in terms of itself but in terms of the given function f’.

It is easy to check that f satisfies (x) for all i in its domain. The function f
satisfies (%) for i < n — 1 because it equals f’ there. And f satisfies (%) fori = n
because, by definition,

f(n) = smallest element of [C — f'({1,...,n — 1})]

and f'({1,....,n—1}) = f{1,...,n—1}). |

Lemma 8.2. Suppose that f : {1,...,n} — C and g : {l,...,m} — C both
satisty (x) for all i in their respective domains. Then f(i) = g(i) for all i in both
domains.

Proof.  Suppose not. Let i be the smallest integer for which f (i) # g(i). The inte-
ger i is not 1, because

f (1) = smallest element of C = g(1),
by (x). Now for all j < i, we have f(j) = g(j). Because f and g satisfy (),

f (i) = smallest element of [C — f({1,...,i — 1})],
g(i) = smallest element of [C — g({1,...,i — 1})].

Since f({1,...,i —1}) = g({1,...,i — 1}), we have f(i) = g(i), contrary to the
choice of i. u
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Theorem 8.3. There exists a unique function h : Zy — C satistying (x) for all
i€ Z+.

Proof. By Lemma 8.1, there exists for each n a function that maps {1, ..., n} into C
and satisfies (%) for all i in its domain. Given n, Lemma 8.2 shows that this func-
tion is unique; two such functions having the same domain must be equal. Let f;, :
{1,...,n} — C denote this unique function.

Now comes the crucial step. We define a function 2 : Z; — C by defining its
rule to be the union U of the rules of the functions f,. The rule for f; is a subset of
{1, ..., n} x C; therefore, U is a subset of Z, x C. We must show that U is the rule
for a functionh : Zy — C.

That is, we must show that each element i of Z_ appears as the first coordinate of
exactly one element of U. This is easy. The integer i lies in the domain of f; if and
only if n > i. Therefore, the set of elements of U of which i is the first coordinate is
precisely the set of all pairs of the form (i, f,(i)), for n > i. Now Lemma 8.2 tells us
that f,,(i) = fn (i) if n,m > i. Therefore, all these elements of U are equal; that is,
there is only one element of U that has i as its first coordinate.

To show that & satisfies (x) is also easy; it is a consequence of the following facts:

h(i) = fuli)  fori <n,
fn satisfies () for all i in its domain.

The proof of uniqueness is a copy of the proof of Lemma 8.2. |

Now we formulate the general principle of recursive definition. There are no new
ideas involved in its proof, so we leave it as an exercise.

Theorem 8.4 (Principle of recursive definition). Let A be a set; let ay be an el-
ement of A. Suppose p is a function that assigns, to each function f mapping a
nonempty section of the positive integers into A, an element of A. Then there exists a
unique function

h:Z4y —> A
such that

h(1) = ay,

(%) i : .
@)y=pt|{1,...,i—1}) fori > 1.

The formula (x) is called a recursion formula for h. It specifies h(1), and it
expresses the value of 2 at i > 1 in terms of the values of & for positive integers less
than i.

EXAMPLE 1.  Let us show that Theorem 8.3 is a special case of this theorem. Given the
infinite subset C of Z, let ap be the smallest element of C, and define p by the equation

p(f) = smallest element of [C — (image set of f)].
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Because C is infinite and f is a function mapping a finite set into C, the image set of f is
not all of C; therefore, p is well defined. By Theorem 8.4 there exists a function i : Zy —
C such that 4(1) = ag, and fori > 1,

h(i) = phl{l,....i =1}
= smallest element of [C — (image set of A|{1,...,i — 1})]
= smallest element of [C — A({1...,i — 1})],

as desired.

EXAMPLE 2. Given a € R, we “defined” a”, in the exercises of §4, by the recursion
formula

We wish to apply Theorem 8.4 to define a function 2 : Z; — R rigorously such that
h(n) = a". To apply this theorem, let @y denote the element a of R, and define p by the
equation p(f) = f(m)-a, where f : {1,..., m} — R. Then there exists a unique function
h : Z4+ — R such that

h(1) = ao,
h(i)=p(h{l,....i—1}) fori > 1.

This means that #(1) = a, and (i) = h(i — 1) - a fori > 1. If we denote i (i) by a’, we

have
a' =a,
d=da"".q
as desired.
Exercises

1. Let (b1, b, ...) be an infinite sequence of real numbers. The sum ZZ:] by is
defined by induction as follows :

n
Zbkzbl forn=1,
k=1

n n—1
Zbkz(Zbk)—i-bn forn > 1.
k=1 k=1

Let A be the set of real numbers; choose p so that Theorem 8.4 applies to define
this sum rigorously. We sometimes denote the sum ) ;_, bx by the symbol
by +by+---+by.
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2. Let (b1, by, ...) be an infinite sequence of real numbers. We define the product
[Ti— bk by the equations

1
1_[ by = by,
k=1

n n—1
l_[bk = (ku) b, forn> 1.
k=1 k=1

Use Theorem 8.4 to define this product rigorously. We sometimes denote the
product [[;_, bx by the symbol b1b; - - - by.
3. Obtain the definitions of a” and n! for n € Z . as special cases of Exercise 2.

4. The Fibonacci numbers of number theory are defined recursively by the formula

AM=A=1,
A =Au_1+An_p forn > 2.

Define them rigorously by use of Theorem 8.4.

5. Show that there is a unique function 4 : Z; — R satisfying the formula

h(l) =3,
hG) =[hG — 1) +11Y*  fori > 1.

6. (a) Show that there is no function /2 : Z; — R satisfying the formula

h(l) = 3,
h(i) =[h(Gi — 1) — 1]*  fori > 1.

Explain why this example does not violate the principle of recursive defini-
tion.
(b) Consider the recursion formula

h(l) =3,

h(ii —1) —11Y? ifh(i —
niiy = (G D=1 it =D > Ty
5 ihii—1)<1

Show that there exists a unique function / : Z4 — R satisfying this for-
mula.

7. Prove Theorem 8.4.

8. Verity the following version of the principle of recursive definition: Let A be
a set. Let p be a function assigning, to every function f mapping a section S,
of Z, into A, an element p (f) of A. Then there is a unique functionk : Z; — A
such that 2(n) = p(hl|S,) foreachn € Z.
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§9 Infinite Sets and the Axiom of Choice

We have already obtained several criteria for a set to be infinite. We know, for instance,
that a set A is infinite if it has a countably infinite subset, or if there is a bijection of A
with a proper subset of itself. It turns out that either of these properties is sufficient
to characterize infinite sets. This we shall now prove. The proof will lead us into a
discussion of a point of logic we have not yet mentioned—the axiom of choice.

Theorem 9.1. Let A be a set. The following statements about A are equivalent:
(1) There exists an injective function f : Z4 — A.

(2) There exists a bijection of A with a proper subset of itself.

(3) A is infinite.
Proof.  'We prove the implications (1) = (2) = (3) = (1). To prove that (1) = (2),
we assume there is an injective function f : Z, — A. Let the image set f(Z,) be

denoted by Bj; and let f(n) be denoted by a,. Because f is injective, a, # ap, if
n # m. Define

g:A— A—{ay}
by the equations

glay) = ayy1 fora, € B,
gx)=x forx € A — B.

The map g is indicated schematically in Figure 9.1; one checks easily that it is a
bijection.

g
A A A A Qg
[ ] [ ] [ [ ] [ ] e oo [
a, a, a, a, a x
B A-B
Figure 9.1

The implication (2) = (3) is just the contrapositive of Corollary 6.3, so it has
already been proved. To prove that (3) = (1), we assume that A is infinite and
construct “by induction” an injective function f : Z, — A.

First, since the set A is not empty, we can choose a point a; of A; define f(1) to
be the point so chosen.

Then, assuming that we have defined f (1), ..., f(n —1), we wish to define f(n).
Theset A— f ({1, ..., n—1}) is not empty; for if it were empty, themap f : {1, ..., n—
1} — A would be a surjection and A would be finite. Hence, we can choose an
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element of the set A — f({1,...,n — 1}) and define f(n) to be this element. “Using
the induction principle”, we have defined f foralln € Z,..

It is easy to see that f is injective. For suppose that m < n. Then f (m) belongs to
the set f({1,...,n — 1}), whereas f(n), by definition, does not. Therefore, f(n) #

f(m). [ |

Let us try to reformulate this “induction” proof more carefully, so as to make
explicit our use of the principle of recursive definition.

Given the infinite set A, we attempt to define f : Z, — A recursively by the
formula

f) =ay,

*) f (@) = an arbitrary element of [A — f({1,...,i — 1})] fori > 1.

But this is not an acceptable recursion formula at all! For it does not define f (i)
uniquely in terms of f[{1,...,i — 1}.

In this respect this formula differs notably from the recursion formula we consid-
ered in proving Lemma 7.2. There we had an infinite subset C of Z_, and we defined &
by the formula

h(1) = smallest element of C,
h(i) = smallest element of [C — A({1,...,i — 1})] fori > 1.

This formula does define /(i) uniquely in terms of A|{1,...,i — 1}.

Another way of seeing that (x) is not an acceptable recursion formula is to note
that if it were, the principle of recursive definition would imply that there is a unique
function f : Z, — A satisfying (x). But by no stretch of the imagination does ()
specify f uniquely. In fact, this “definition” of f involves infinitely many arbitrary
choices.

What we are saying is that the proof we have given for Theorem 9.1 is not actually
a proof. Indeed, on the basis of the properties of set theory we have discussed up to
now, it is not possible to prove this theorem. Something more is needed.

Previously, we described certain definite allowable methods for specifying sets:

(1) Defining a set by listing its elements, or by taking a given set A and specifying a
subset B of it by giving a property that the elements of B are to satisfy.

(2) Taking unions or intersections of the elements of a given collection of sets, or
taking the difference of two sets.

(3) Taking the set of all subsets of a given set.

(4) Taking cartesian products of sets.
Now the rule for the function f is really a set: a subset of Z; x A. Therefore, to prove
the existence of the function f, we must construct the appropriate subset of Z x A,
using the allowed methods for forming sets. The methods already given simply are not
adequate for this purpose. We need a new way of asserting the existence of a set. So,
we add to the list of allowed methods of forming sets the following:
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Axiom of choice. Given a collection A of disjoint nonempty sets, there exists a set C
consisting of exactly one element from each element of A; that is, a set C such that C
is contained in the union of the elements of A, and for each A € A, the setC N A
contains a single element.

The set C can be thought of as having been obtained by choosing one element
from each of the sets in .

The axiom of choice certainly seems an innocent-enough assertion. And, in fact,
most mathematicians today accept it as part of the set theory on which they base their
mathematics. But in years past a good deal of controversy raged around this particular
assertion concerning set theory, for there are theorems one can prove with its aid that
some mathematicians were reluctant to accept. One such is the well-ordering theorem,
which we shall discuss shortly. For the present we shall simply use the choice axiom
to clear up the difficulty we mentioned in the preceding proof. First, we prove an easy
consequence of the axiom of choice:

Lemma 9.2 (Existence of a choice function). Given a collection 88 of nonempty
sets (not necessarily disjoint), there exists a function

c: B — UB
BeB

such that c(B) is an element of B, for each B € 8.

The function c is called a choice function for the collection B.

The difference between this lemma and the axiom of choice is that in this lemma
the sets of the collection B are not required to be disjoint. For example, one can
allow B to be the collection of all nonempty subsets of a given set.

Proof of the lemma.  Given an element B of 8B, we define a set B’ as follows:
B’ ={(B,x) | x € B}.

That is, B’ is the collection of all ordered pairs, where the first coordinate of the ordered
pair is the set B, and the second coordinate is an element of B. The set B’ is a subset
of the cartesian product

B x U B.

BeB

Because B contains at least one element x, the set B’ contains at least the element
(B, x), so it is nonempty.

Now we claim that if By and B, are two different sets in 8B, then the corresponding
sets B| and B} are disjoint. For the typical element of B] is a pair of the form (B, x1)
and the typical element of Bé is a pair of the form (B, x2). No two such elements can
be equal, for their first coordinates are different. Now let us form the collection

C={B'| Be B}
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it is a collection of disjoint nonempty subsets of

£XUB.

BesB

By the choice axiom, there exists a set ¢ consisting of exactly one element from each
element of C. Our claim is that ¢ is the rule for the desired choice function.
In the first place, c is a subset of
B x U B.

Bes

In the second place, ¢ contains exactly one element from each set B’; therefore, for
each B € B, the set ¢ contains exactly one ordered pair (B, x) whose first coordinate
is B. Thus c is indeed the rule for a function from the collection B to the set | Jz. 5 B.
Finally, if (B, x) € c, then x belongs to B, so that c¢(B) € B, as desired. [ |

A second proof of Theorem 9.1. Using this lemma, one can make the proof of
Theorem 9.1 more precise. Given the infinite set A, we wish to construct an injective
function f : Z4 — A. Let us form the collection B of all nonempty subsets of A. The
lemma just proved asserts the existence of a choice function for 8B; that is, a function

c: B — UB:A
BeB

such that ¢(B) € B for each B € B. Let us now define a function f : Z; — A by the
recursion formula

S(1) =c(A),
fi)=cA— f({l,...,i—1})) fori> I.

Because A is infinite, the set A — f({l,...,i — 1}) is nonempty; therefore, the right
side of this equation makes sense. Since this formula defines f (i) uniquely in terms of
fI{L,...,i — 1}, the principle of recursive definition applies. We conclude that there
exists a unique function f : Zy — A satisfying (x) for all i € Z. Injectivity of f
follows as before. u

(%)

Having emphasized that in order to construct a proof of Theorem 9.1 that is logi-
cally correct, one must make specific use of a choice function, we now backtrack and
admit that in practice most mathematicians do no such thing. They go on with no
qualms giving proofs like our first version, proofs that involve an infinite number of
arbitrary choices. They know that they are really using the choice axiom; and they
know that if it were necessary, they could put their proofs into a logically more sat-
isfactory form by introducing a choice function specifically. But usually they do not
bother.

And neither will we. You will find few further specific uses of a choice function
in this book; we shall introduce a choice function only when the proof would become
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confusing without it. But there will be many proofs in which we make an infinite
number of arbitrary choices, and in each such case we will actually be using the choice
axiom implicitly.

Now we must confess that in an earlier section of this book there is a proof in
which we constructed a certain function by making an infinite number of arbitrary
choices. And we slipped that proof in without even mentioning the choice axiom. Our
apologies for the deception. We leave it to you to ferret out which proof it was!

Let us make one final comment on the choice axiom. There are two forms of
this axiom. One can be called the finite axiom of choice; it asserts that given a finite
collection A of disjoint nonempty sets, there exists a set C consisting of exactly one
element from each element of A. One needs this weak form of the choice axiom
all the time; we have used it freely in the preceding sections with no comment. No
mathematician has any qualms about the finite choice axiom; it is part of everyone’s
set theory. Said differently, no one has qualms about a proof that involves only finitely
many arbitrary choices.

The stronger form of the axiom of choice, the one that applies to an arbitrary col-
lection A of nonempty sets, is the one that is properly called “the axiom of choice.”
When a mathematician writes, “This proof depends on the choice axiom,” it is invari-
ably this stronger form of the axiom that is meant.

Exercises

1. Define an injective map f : Z, — X, where X is the two-element set {0, 1},
without using the choice axiom.

2. Find if possible a choice function for each of the following collections, without
using the choice axiom:
(a) The collection A of nonempty subsets of Z .
(b) The collection B of nonempty subsets of Z.
(c) The collection € of nonempty subsets of the rational numbers Q.
(d) The collection D of nonempty subsets of X, where X = {0, 1}.

3. Suppose that A is a set and { f,},ez, is a given indexed family of injective func-
tions

fo{l,...,n} — A.

Show that A is infinite. Can you define an injective function f : Z, — A
without using the choice axiom?

4. There was a theorem in §7 whose proof involved an infinite number of arbitrary
choices. Which one was it? Rewrite the proof so as to make explicit the use of
the choice axiom. (Several of the earlier exercises have used the choice axiom
also.)
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S.

*8.

(a) Use the choice axiom to show thatif f : A — B is surjective, then f has a
right inverse i : B — A.

(b) Show thatif f : A — B is injective and A is not empty, then f has a left
inverse. Is the axiom of choice needed?

. Most of the famous paradoxes of naive set theory are associated in some way or

other with the concept of the “set of all sets.” None of the rules we have given for

forming sets allows us to consider such a set. And for good reason—the concept

itself is self-contradictory. For suppose that /A denotes the “set of all sets.”

(a) Show that #(A) C +; derive a contradiction.

(b) (Russell’s paradox.) Let B be the subset of A consisting of all sets that are
not elements of themselves;

B={A|AcAand A ¢ A}.

(Of course, there may be no set A such that A € A; if such is the case, then
B = A.) Is B an element of itself or not?

. Let A and B be two nonempty sets. If there is an injection of B into A, but no

injection of A into B, we say that A has greater cardinality than B.

(a) Conclude from Theorem 9.1 that every uncountable set has greater cardinal-
ity than Z .

(b) Show that if A has greater cardinality than B, and B has greater cardinality
than C, then A has greater cardinality than C.

(c) Find a sequence A1, Ay, ... of infinite sets, such that for eachn € Z, the
set A, 41 has greater cardinality than A;,.

(d) Find a set that for every n has cardinality greater than A,,.

Show that P (Z.) and R have the same cardinality. [Hint: You may use the fact
that every real number has a decimal expansion, which is unique if expansions
that end in an infinite string of 9’s are forbidden.]

A famous conjecture of set theory, called the continuum hypothesis, asserts
that there exists no set having greater cardinality than Z, and lesser cardinality
than R. The generalized continuum hypothesis asserts that, given the infinite
set A, there is no set having greater cardinality than A and lesser cardinality
than & (A). Surprisingly enough, both of these assertions have been shown to
be independent of the usual axioms for set theory. For a readable expository
account, see [Sm].

§10 Well-Ordered Sets

One of the useful properties of the set Z, of positive integers is the fact that each of
its nonempty subsets has a smallest element. Generalizing this property leads to the
concept of a well-ordered set.
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Definition. A set A with an order relation < is said to be well-ordered if every
nonempty subset of A has a smallest element.

EXAMPLE 1.  Consider the set {1, 2} x Z, in the dictionary ordering. Schematically, it
can be represented as one infinite sequence followed by another infinite sequence:

ai,a,as,...; by,by, b3, ...

with the understanding that each element is less than every element to the right of it. It is
not difficult to see that every nonempty subset C of this ordered set has a smallest element:
If C contains any one of the elements a,, we simply take the smallest element of the
intersection of C with the sequence ai, az, ...; while if C contains no a,, then it is a
subset of the sequence b1, by, ... and as such has a smallest element.

EXAMPLE 2.  Consider the set Z x Z in the dictionary order. Schematically, it can be
represented as an infinite sequence of infinite sequences. We show that it is well-ordered.
Let X be a nonempty subset of Z x Z. Let A be the subset of Z, consisting of all first
coordinates of elements of X. Now A has a smallest element; call it ag. Then the collection

{blag xbe X}

is a nonempty subset of Z_ ; let by be its smallest element. By definition of the dictionary
order, ag X by is the smallest element of X. See Figure 10.1.

e —> 06— o

o —>
o —> 06 —> 0 —> 0 —>

bo T
[}
a,
Figure 10.1
EXAMPLE 3. The set of integers is not well-ordered in the usual order; the subset

consisting of the negative integers has no smallest element. Nor is the set of real numbers in
the interval 0 < x < 1 well-ordered; the subset consisting of those x for which 0 < x < 1
has no smallest element (although it has a greatest lower bound, of course).

There are several ways of constructing well-ordered sets. Two of them are the
following:

(1) If A is a well-ordered set, then any subset of A is well-ordered in the restricted
order relation.
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(2) If A and B are well-ordered sets, then A x B is well-ordered in the dictionary
order.
The proof of (1) is trivial; the proof of (2) follows the pattern given in Example 2.

It follows that the set Z x (Z4 x Z,) is well-ordered in the dictionary order; it
can be represented as an infinite sequence of infinite sequences of infinite sequences.
Similarly, (Z4)* is well-ordered in the dictionary order. And so on. But if you try to
generalize to an infinite product of Z_ with itself, you will run into trouble. We shall
examine this situation shortly.

Now, given a set A without an order relation, it is natural to ask whether there
exists an order relation for A that makes it into a well-ordered set. If A is finite, any
bijection

f:A—{1,...,n}

can be used to define an order relation on A; under this relation, A has the same order
type as the ordered set {1, ..., n}. In fact, every order relation on a finite set can be
obtained in this way:

Theorem 10.1. Every nonempty finite ordered set has the order type of a section
{1,...,n} of Z4, so it is well-ordered.

Proof. This was given as an exercise in §6; we prove it here. First, we show that
every finite ordered set A has a largest element. If A has one element, this is trivial.
Supposing it true for sets having n — 1 elements, let A have n elements and let ag € A.
Then A — {ag} has a largest element a, and the larger of {ag, a1} is the largest element
of A.

Second, we show there is an order-preserving bijection of A with {1, ..., n} for
some n. If A has one element, this fact is trivial. Suppose that it is true for sets
having n — 1 elements. Let b be the largest element of A. By hypothesis, there is an
order-preserving bijection

fliA—(by — {1,....,n—1).

Define an order-preserving bijection f : A — {1,..., n} by setting
f)=f'(x) forx #b,
f) =n. ]

Thus, a finite ordered set has only one possible order type. For an infinite set,
things are quite different. The well-ordered sets

Z.,,
(,....n} x Z,
Z+ X Z+,

Z+ X (Z+ X Z+)
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are all countably infinite, but they all have different order types, as you can check.

All the examples we have given of well-ordered sets are orderings of countable
sets. It is natural to ask whether one can find a well-ordered uncountable set.

The obvious uncountable set to try is the countably infinite product

X=Z+XZ+X"'=(Z+)w

of Z, with itself. One can generalize the dictionary order to this set in a natural way,
by defining

(ai,az,...) < (b1,by,...)
if for some n > 1,
a; = b;, for i <n and a, < b,.

This is, in fact, an order relation on the set X; but unfortunately it is not a well-ordering.
Consider the set A of all elements x of X of the form

x=(1,...,1,2,1,1,...),

where exactly one coordinate of x equals 2, and the others are all equal to 1. The set A
clearly has no smallest element.

Thus, the dictionary order at least does not give a well-ordering of the set (Z)®.
Is there some other order relation on this set that is a well-ordering? No one has ever
constructed a specific well-ordering of (Z)®. Nevertheless, there is a famous theorem
that says such a well-ordering exists:

Theorem (Well-ordering theorem). If A is a set, there exists an order relation on
A that is a well-ordering.

This theorem was proved by Zermelo in 1904, and it startled the mathematical
world. There was considerable debate as to the correctness of the proof; the lack of
any constructive procedure for well-ordering an arbitrary uncountable set led many to
be skeptical. When the proof was analyzed closely, the only point at which it was found
that there might be some question was a construction involving an infinite number of
arbitrary choices, that is, a construction involving—the choice axiom.

Some mathematicians rejected the choice axiom as a result, and for many years a
legitimate question about a new theorem was: Does its proof involve the choice axiom
or not? A theorem was considered to be on somewhat shaky ground if one had to use
the choice axiom in its proof. Present-day mathematicians, by and large, do not have
such qualms. They accept the axiom of choice as a reasonable assumption about set
theory, and they accept the well-ordering theorem along with it.

The proof that the choice axiom implies the well-ordering theorem is rather long
(although not exceedingly difficult) and primarily of interest to logicians; we shall omit
it. If you are interested, a proof is outlined in the supplementary exercises at the end
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of the chapter. Instead, we shall simply assume the well-ordering theorem whenever
we need it. Consider it to be an additional axiom of set theory if you like!

We shall in fact need the full strength of this assumption only occasionally. Most
of the time, all we need is the following weaker result:

Corollary. There exists an uncountable well-ordered set.

We now use this result to construct a particular well-ordered set that will prove to
be very useful.

Definition. Let X be a well-ordered set. Given a € X, let S, denote the set
Se ={x|xeXandx < «a}.

It is called the section of X by «.

Lemma 10.2. There exists a well-ordered set A having a largest element €2, such that
the section Sq of A by Q is uncountable but every other section of A is countable.

Proof. 'We begin with an uncountable well-ordered set B. Let C be the well-ordered
set {1, 2} x B in the dictionary order; then some section of C is uncountable. (Indeed,
the section of C by any element of the form 2 x b is uncountable.) Let 2 be the
smallest element of C for which the section of C by €2 is uncountable. Then let A
consist of this section along with the element 2. [ |

Note that Sq is an uncountable well-ordered set every section of which is count-
able. Its order type is in fact uniquely determined by this condition. We shall call it a
minimal uncountable well-ordered set. Furthermore, we shall denote the well-ordered
set A = Sq U {Q2} by the symbol Sq (for reasons to be seen later).

The most useful property of the set Sq for our purposes is expressed in the follow-
ing theorem:

Theorem 10.3. If A is a countable subset of Sq, then A has an upper bound in Sg,.

Proof. Let A be a countable subset of Sq. For each a € A, the section S, is count-
able. Therefore, the union B = ucA Sa 18 also countable. Since Sq is uncountable,
the set B is not all of Sg; let x be a point of Sg that is not in B. Then x is an upper
bound for A. For if x < a for some a in A, then x belongs to S, and hence to B,
contrary to choice. |

Exercises

1. Show that every well-ordered set has the least upper bound property.
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(a) Show that in a well-ordered set, every element except the largest (if one
exists) has an immediate successor.

(b) Find a set in which every element has an immediate successor that is not
well-ordered.

Both {1, 2} x Z4 and Z, x {1, 2} are well-ordered in the dictionary order. Do
they have the same order type?

(a) Let Z_ denote the set of negative integers in the usual order. Show that
a simply ordered set A fails to be well-ordered if and only if it contains a
subset having the same order type as Z_.

(b) Show that if A is simply ordered and every countable subset of A is well-
ordered, then A is well-ordered.

Show the well-ordering theorem implies the choice axiom.

. Let Sg be the minimal uncountable well-ordered set.

(a) Show that Sq has no largest element.

(b) Show that for every o € Sgq, the subset {x | « < x} is uncountable.

(c) Let Xq be the subset of Sq consisting of all elements x such that x has no
immediate predecessor. Show that X is uncountable.

Let J be a well-ordered set. A subset Jy of J is said to be inductive if for every
axelJ,

(S C Jo) = a € Jp.

Theorem (The principle of transfinite induction). If J is a well-ordered set
and Jy is an inductive subset of J, then Jy = J.

(a) Let A} and A; be disjoint sets, well-ordered by <; and <, respectively.
Define an order relation on A} U A by letting a < b eitherifa, b € A; and
a < borifa,b e Ay anda <, b,orifa € A and b € A,. Show that this
is a well-ordering.

(b) Generalize (a) to an arbitrary family of disjoint well-ordered sets, indexed
by a well-ordered set.

Consider the subset A of (Z4)® consisting of all infinite sequences of positive in-

tegers X = (x1, X2, ...) that end in an infinite string of 1’s. Give A the following

order: x < yifx, < y, and x; = y; fori > n. We call this the “antidictionary

order” on A.

(a) Show that for every n, there is a section of A that has the same order type as
(Z4)" in the dictionary order.

(b) Show A is well-ordered.

Theorem. Let J and C be well-ordered sets; assume that there is no surjective
function mapping a section of J onto C. Then there exists a unique function
h : J — C satisfying the equation

(%) h(x) = smallest [C — h(Sy)]
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for each x € J, where Sy is the section of J by x.
Proof.

(a) If h and k map sections of J, or all of J, into C and satisfy (x) for all x in
their respective domains, show that 2(x) = k(x) for all x in both domains.

(b) If there exists a function & : S, — C satisfying (x), show that there exists a
function k : Sy U {a} — C satisfying ().

(¢) If K C J and for all @ € K there exists a function h, : Sy — C satisfying
(x), show that there exists a function

kil JSe —C
aekK
satisfying ().

(d) Show by transfinite induction that for every 8 € J, there exists a function
hg : Sg — C satisfying (). [Hint: If B has an immediate predecessor «,
then Sg = Sy U {a}. If not, Sg is the union of all S, with o < f.]

(e) Prove the theorem.

11. Let A and B be two sets. Using the well-ordering theorem, prove that either they
have the same cardinality, or one has cardinality greater than the other. [Hint: If
there is no surjection f : A — B, apply the preceding exercise.]

*$11 The Maximum Principle’

We have already indicated that the axiom of choice leads to the deep theorem that ev-
ery set can be well-ordered. The axiom of choice has other consequences that are even
more important in mathematics. Collectively referred to as “maximum principles,”
they come in many versions. Formulated independently by a number of mathemati-
cians, including F. Hausdorff, K. Kuratowski, S. Bochner, and M. Zorn, during the
years 1914-1935, they were typically proved as consequences of the well-ordering
theorem. Later, it was realized that they were in fact equivalent to the well-ordering
theorem. We consider several of them here.

First, we make a definition. Given a set A, a relation < on A is called a strict
partial order on A if it has the following two properties:

(1) (Nonreflexivity) The relation @ < a never holds.

(2) (Transitivity) If a < band b < ¢, thena < c.

These are just the second and third of the properties of a simple order (see §3); the
comparability property is the one that is omitted. In other words, a strict partial order
behaves just like a simple order except that it need not be true that for every pair of
distinct points x and y in the set, either x < y or y < x.

If < is a strict partial order on a set A, it can easily happen that some subset B
of A is simply ordered by the relation; all that is needed is for every pair of elements
of B to be comparable under <.

This section will be assumed in Chapters 5 and 14.
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Now we can state the following principle, which was first formulated by Hausdorff
in 1914.

Theorem (The maximum principle). Let A be a set; let < be a strict partial order
on A. Then there exists a maximal simply ordered subset B of A.

Said differently, there exists a subset B of A such that B is simply ordered by <
and such that no subset of A that properly contains B is simply ordered by <.

EXAMPLE 1. If A is any collection of sets, the relation “is a proper subset of” is a
strict partial order on 4. Suppose that +4 is the collection of all circular regions (interiors
of circles) in the plane. One maximal simply ordered subcollection of 4 consists of all
circular regions with centers at the origin. Another maximal simply ordered subcollection
consists of all circular regions bounded by circles tangent from the right to the y-axis at the
origin. See Figure 11.1.

Figure 11.1

EXAMPLE 2.  If (xo, yo) and (x1, y1) are two points of the plane R2, define

(x0, yo) < (x1, y1)

if yo = v and x9 < x;. This is a partial ordering of R? under which two points are
comparable only if they lie on the same horizontal line. The maximal simply ordered sets
are the horizontal lines in R2.

One can give an intuitive “proof” of the maximum principle that is rather appeal-
ing. It involves a step-by-step procedure, which one can describe in physical terms as
follows. Suppose we take a box, and put into it some of the elements of A according
to the following plan: First we pick an arbitrary element of A and put it in the box.
Then we pick another element of A. If it is comparable with the element in the box,
we put it in the box too; otherwise, we throw it away. At the general step, we will have
a collection of elements in the box and a collection of elements that have been tossed
away. Take one of the remaining elements of A. If it is comparable with everything
in the box, toss it in the box, too; otherwise, throw it away. Similarly continue. After
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you have checked all the elements of A, the elements you have in the box will be com-
parable with one another, and thus they will form a simply ordered set. Every element
not in the box will be noncomparable with at least one element in the box, for that was
why it was tossed away. Hence, the simply ordered set in the box is maximal, for no
larger subset of A can satisfy the comparability condition.

Now of course the weak point in the preceding “proof” comes when we said,
“After you have checked all the elements of A.” How do you know you ever “get
through” checking all the elements of A? If A should happen to be countable, it is not
hard to make this intuitive proof into a real proof. Let us take the countably infinite
case; the finite case is even easier. Index the elements of A bijectively with the positive
integers, so that A = {aj, a2 ...}. This indexing gives a way of deciding what order
to test the elements of A in, and how to know when one has tested them all.

Now we define a function h : Z; — {0, 1}, by letting it assign the value O to
i if we “put g; in the box,” and the value 1 if we “throw a; away.” This means that
h(1) =0, and for i > 1, we have (i) = 0 if and only if g; is comparable with every
element of the set

{aj | j <iand h(j) = 0}.

By the principle of recursive definition, this formula determines a unique function
h : Zy — {0, 1}. It is easy to check that the set of those a; for which A(j) = 0Ois a
maximal simply ordered subset of A.

If A is not countable, a variant of this procedure will work, if we allow ourselves to
use the well-ordering theorem. Instead of indexing the elements of A with the set Z,
we index them (in a bijective fashion) with the elements of some well-ordered set J, so
that A = {ay | @ € J}. For this we need the well-ordering theorem, so that we know
there is a bijection between A and some well-ordered set J. Then we can proceed as
in the previous paragraph, letting « replace i in the argument. Strictly speaking, you
need to generalize the principle of recursive definition to well-ordered sets as well, but
that is not particularly difficult. (See the Supplementary Exercises.)

Thus, the well-ordering theorem implies the maximum principle.

Although the maximum principle of Hausdorff was the first to be formulated and
is probably the simplest to understand, there is another such principle that is nowadays
the one most frequently quoted. It is popularly called “Zorn’s Lemma,” although Ku-
ratowski (1922) and Bochner (1922) preceded Zorn (1935) in enunciating and proving
versions of it. For a history and discussion of the tangled history of these ideas, see [C]
or [Mo]. To state this principle, we need some terminology.

Definition. Let A be a set and let < be a strict partial order on A. If B is a subset
of A, an upper bound on B is an element ¢ of A such that for every b in B, either
b = corb < c. A maximal element of A is an element m of A such that for no
element a of A does the relation m < a hold.

Zorn’s Lemma. Let A be a set that is strictly partially ordered. If every simply
ordered subset of A has an upper bound in A, then A has a maximal element.



§11 The Maximum Principle 71

Zorn’s lemma is an easy consequence of the maximum principle: Given A, the
maximum principle implies that A has a maximal simply ordered subset B. The hy-
pothesis of Zorn’s lemma tells us that B has an upper bound ¢ in A. The element c is
then automatically a maximal element of A. For if ¢ < d for some element d of A,
then the set B U {d}, which properly contains B, is simply ordered because b < d for
every b € B. This fact contradicts maximality of B.

It is also true that the maximum principle is an easy consequence of Zorn’s lemma.
See Exercises 5-7.

One final remark. We have defined what we mean by a strict partial order on a set,
but we have not said what a partial order itself is. Let < be a strict partial order on a
set A. Suppose that we define a < b if either a < b or a = b. Then the relation < is
called a partial order on A. For example, the inclusion relation C on a collection of
sets is a partial order, whereas proper inclusion is a strict partial order.

Many authors prefer to deal with partial orderings rather than strict partial order-
ings; the maximum principle and Zorn’s lemma are often expressed in these terms.
Which formulation is used is simply a matter of taste and convenience.

Exercises

1. If a and b are real numbers, define a < b if b — a is positive and rational. Show
this is a strict partial order on R. What are the maximal simply ordered subsets?

2. (a) Let < be a strict partial order on the set A. Define a relation on A by letting
a < bifeither a < b or a = b. Show that this relation has the following
properties, which are called the partial order axioms:

(i) a <xaforalla € A.
(i) axbandb<a=—a=0>.
(iii) a <xbandb<c=—a <c.
(b) Let P be arelation on A that satisfies properties (i)—(iii). Define a relation S
on A by letting aSbh if aPb and a # b. Show that S is a strict partial order
on A.

3. Let A be a set with a strict partial order <; let x € A. Suppose that we wish to
find a maximal simply ordered subset B of A that contains x. One plausible way
of attempting to define B is to let B equal the set of all those elements of A that
are comparable with x;

B={y|yeAandeitherx < yory < x}.

But this will not always work. In which of Examples 1 and 2 will this procedure
succeed and in which will it not?

4. Given two points (xg, yo) and (x1, y1) of R2, define

(x0, y0) < (x1, y1)
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if xo < x1 and yo < y;. Show that the curves y = x3 and y = 2 are maximal
simply ordered subsets of R?, and the curve y = x? is not. Find all maximal
simply ordered subsets.

5. Show that Zorn’s lemma implies the following:
Lemma (Kuratowski). Let A be a collection of sets. Suppose that for every
subcollection B of A that is simply ordered by proper inclusion, the union of the
elements of B belongs to A. Then A has an element that is properly contained
in no other element of A.

6. A collection A of subsets of a set X is said to be of finite type provided that a
subset B of X belongs to + if and only if every finite subset of B belongs to .
Show that the Kuratowski lemma implies the following:

Lemma (Tukey, 1940). Let A be a collection of sets. If -4 is of finite type, then
A has an element that is properly contained in no other element of A.

7. Show that the Tukey lemma implies the Hausdorff maximum principle. [Hint:
If < is a strict partial order on A, let A be the collection of all subsets of A that
are simply ordered by <. Show that A is of finite type.]

8. A typical use of Zorn’s lemma in algebra is the proof that every vector space
has a basis. Recall that if A is a subset of the vector space V, we say a vector
belongs to the span of A if it equals a finite linear combination of elements of A.
The set A is independent if the only finite linear combination of elements of A
that equals the zero vector is the trivial one having all coefficients zero. If A is
independent and if every vector in V belongs to the span of A, then A is a basis
for V.

(a) If Aisindependentand v € V does not belong to the span of A, show AU{v}
is independent.

(b) Show the collection of all independent sets in V has a maximal element.

(c) Show that V has a basis.

*Supplementary Exercises: Well-Ordering

In the following exercises, we ask you to prove the equivalence of the choice axiom,
the well-ordering theorem, and the maximum principle. We comment that of these
exercises, only Exercise 7 uses the choice axiom.

1. Theorem (General principle of recursive definition). Let J be a well-ordered
set; let C be a set. Let ¥ be the set of all functions mapping sections of J into C.
Given a function p : ¥ — C, there exists a unique function h : J — C such
that h(a) = p(h|Sy) foreacha € J.

[Hint: Follow the pattern outlined in Exercise 10 of §10.]

2. (a) Let J and E be well-ordered sets; let 4 : J — E. Show the following two
statements are equivalent:

(1) A is order preserving and its image is E or a section of E.
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(i1) h(a) = smallest [E — h(S,)] for all «.
[Hint: Show that each of these conditions implies that 4 (S,) is a section of
E; conclude that it must be the section by h(«).]

(b) If E is a well-ordered set, show that no section of E has the order type of E,
nor do two different sections of E have the same order type. [Hint: Given J,
there is at most one order-preserving map of J into £ whose image is E or
a section of E.]

Let J and E be well-ordered sets; suppose there is an order-preserving map
k : J — E. Using Exercises 1 and 2, show that J has the order type of E or
a section of E. [Hint: Choose ¢y € E. Define h : J — FE by the recursion
formula

h(a) = smallest [E — h(Sy)] if h(Sy) #E,

and h(x) = e otherwise. Show that h(e) < k() for all «; conclude that
h(Sy) # E for all o.]

Use Exercises 1-3 to prove the following:

(a) If A and B are well-ordered sets, then exactly one of the following three
conditions holds: A and B have the same order type, or A has the order type
of a section of B, or B has the order type of a section of A. [Hint: Form
a well-ordered set containing both A and B, as in Exercise 8 of §10; then
apply the preceding exercise.]

(b) Suppose that A and B are well-ordered sets that are uncountable, such that
every section of A and of B is countable. Show A and B have the same order
type.

Let X be a set; let A be the collection of all pairs (A, <), where A is a subset

of X and < is a well-ordering of A. Define

(A, <) < (A, <)

if (A, <) equals a section of (A’, <').

(a) Show that < is a strict partial order on 4.

(b) Let B be a subcollection of »4 that is simply ordered by <. Define B’ to be
the union of the sets B, for all (B, <) € B; and define <’ to be the union
of the relations <, for all (B, <) € B. Show that (B’, <’) is a well-ordered
set.

Use Exercises 1 and 5 to prove the following:
Theorem. The maximum principle is equivalent to the well-ordering theorem.

Use Exercises 1-5 to prove the following:

Theorem. The choice axiom is equivalent to the well-ordering theorem.

Proof. Let X be a set; let ¢ be a fixed choice function for the nonempty subsets
of X. If T is a subset of X and < is arelation on T, we say that (T, <) is a tower
in X if < is a well-ordering of T and if foreachx € T,

x =c(X = 5 (T),
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where S, (T') is the section of T by x.

(a) Let (T1, <1) and (T3, <») be two towers in X. Show that either these two
ordered sets are the same, or one equals a section of the other. [Hint: Switch-
ing indices if necessary, we can assume that 4 : 71 — T3 is order preserving
and 1 (T) equals either 73 or a section of 7. Use Exercise 2 to show that
h(x) = x for all x.]

(b) If (T, <) isatowerin X and T # X, show there is a tower in X of which
(T, <) is a section.

(¢) Let {(Tx, <i)|k € K} be the collection of all towers in X. Let

T = U T, and <= U(<k)-
keK keK

Show that (T, <) is a tower in X. Conclude that 7 = X.

. Using Exercises 1-4, construct an uncountable well-ordered set, as follows. Let

A be the collection of all pairs (A, <), where A is a subset of Z and < is a well-
ordering of A. (We allow A to be empty.) Define (A, <) ~ (A, <) if (A, <)
and (A’, <) have the same order type. It is trivial to show this is an equivalence
relation. Let [(A, <)] denote the equivalence class of (A, <); let E denote the
collection of these equivalence classes. Define

[(A, 9] < [(A, <N]

if (A, <) has the order type of a section of (A’, <’).

(a) Show that the relation « is well defined and is a simple order on E. Note
that the equivalence class [(&, @)] is the smallest element of E.

(b) Show that if @ = [(A, <)] is an element of E, then (A, <) has the same
order type as the section Sy (E) of E by «. [Hint: Defineamap f: A — E
by setting f(x) = [(Sx(A), restriction of <)] for each x € A.]

(c) Conclude that E is well-ordered by <.

(d) Show that E is uncountable. [Hint: If h : E — Z. is a bijection, then &
gives rise to a well-ordering of Z .]

This same argument, with Z, replaced by an arbitrary well-ordered set X,
proves (without use of the choice axiom) the existence of a well-ordered set E
whose cardinality is greater than that of X.

This exercise shows that one can construct an uncountable well-ordered set,
and hence the minimal uncountable well-ordered set, by an explicit construction
that does not use the choice axiom. However, this result is less interesting than it
might appear. The crucial property of Sq, the one we use repeatedly, is the fact
that every countable subset of Sq has an upper bound in Sq. That fact depends,
in turn, on the fact that a countable union of countable sets is countable. And the
proof of that result (if you examine it carefully) involves an infinite number of
arbitrary choices—that is, it depends on the choice axiom.

Said differently, without the choice axiom we may be able to construct the
minimal uncountable well-ordered set, but we can’t use it for anything!



Chapter 2

Topological Spaces
and Continuous Functions

The concept of topological space grew out of the study of the real line and euclidean
space and the study of continuous functions on these spaces. In this chapter, we de-
fine what a topological space is, and we study a number of ways of constructing a
topology on a set so as to make it into a topological space. We also consider some
of the elementary concepts associated with topological spaces. Open and closed sets,
limit points, and continuous functions are introduced as natural generalizations of the
corresponding ideas for the real line and euclidean space.

§12 Topological Spaces

The definition of a topological space that is now standard was a long time in being
formulated. Various mathematicians—Fréchet, Hausdorff, and others—proposed dif-
ferent definitions over a period of years during the first decades of the twentieth cen-
tury, but it took quite a while before mathematicians settled on the one that seemed
most suitable. They wanted, of course, a definition that was as broad as possible,
so that it would include as special cases all the various examples that were useful
in mathematics—euclidean space, infinite-dimensional euclidean space, and function
spaces among them—but they also wanted the definition to be narrow enough that the
standard theorems about these familiar spaces would hold for topological spaces in

From Chapter 2 of Topology, Second Edition. James R. Munkres.
Copyright © 2000 by Pearson Education, Inc. All rights reserved.
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general. This is always the problem when one is trying to formulate a new mathe-
matical concept, to decide how general its definition should be. The definition finally
settled on may seem a bit abstract, but as you work through the various ways of con-
structing topological spaces, you will get a better feeling for what the concept means.

Definition. A fopology on a set X is a collection 7 of subsets of X having the
following properties:

(1) and X arein T .

(2) The union of the elements of any subcollection of ¥ isin 7.

(3) The intersection of the elements of any finite subcollection of 7 is in 7.
A set X for which a topology 7 has been specified is called a topological space.

Properly speaking, a topological space is an ordered pair (X, ) consisting of a
set X and a topology J on X, but we often omit specific mention of 7 if no confusion
will arise.

If X is a topological space with topology 7, we say that a subset U of X is an
open set of X if U belongs to the collection 7. Using this terminology, one can say
that a topological space is a set X together with a collection of subsets of X, called
open sets, such that & and X are both open, and such that arbitrary unions and finite
intersections of open sets are open.

EXAMPLE 1. Let X be a three-element set, X = {a, b, c}. There are many possible
topologies on X, some of which are indicated schematically in Figure 12.1. The diagram
in the upper right-hand corner indicates the topology in which the open sets are X, &,
{a, b}, {b}, and {b, c}. The topology in the upper left-hand corner contains only X and &,
while the topology in the lower right-hand corner contains every subset of X. You can get
other topologies on X by permuting a, b, and c.

9 ) @O

‘

Figure 12.1

From this example, you can see that even a three-element set has many different
topologies. But not every collection of subsets of X is a topology on X. Neither of the
collections indicated in Figure 12.2 is a topology, for instance.
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a°P

Figure 12.2

EXAMPLE 2. If X is any set, the collection of all subsets of X is a topology on X it is
called the discrete topology. The collection consisting of X and & only is also a topology
on X; we shall call it the indiscrete topology, or the trivial topology.

EXAMPLE 3. Let X be a set; let 77 be the collection of all subsets U of X such that X —U
either is finite or is all of X. Then T is a topology on X, called the finite complement
topology. Both X and & are in 7, since X — X is finite and X — @ is all of X. If {Uy} is
an indexed family of nonempty elements of 7, to show that | J Uy is in T, we compute

X—UU =ﬂ(X—Ua).

The latter set is finite because each set X — U, is finite. If Uy, ..., U, are nonempty
elements of 7, to show that O U; isin T, we compute

X—ﬁUi=CJ(X—Ui).
[ =1

i=1 i=

The latter set is a finite union of finite sets and, therefore, finite.

EXAMPLE 4. Let X be a set; let 7, be the collection of all subsets U of X such that
X — U either is countable or is all of X. Then 7. is a topology on X, as you can check.

Definition. Suppose that 7~ and 7/ are two topologies on a given set X. If 7' D T,
we say that 7' is finer than 7; if 7/ properly contains 7, we say that 7' is strictly
finer than 7. We also say that 7~ is coarser than 7', or strictly coarser, in these two
respective situations. We say 7~ is comparable with 7' if either 7' > 7 or 7 D 7.

This terminology is suggested by thinking of a topological space as being some-
thing like a truckload full of gravel—the pebbles and all unions of collections of peb-
bles being the open sets. If now we smash the pebbles into smaller ones, the collection
of open sets has been enlarged, and the topology, like the gravel, is said to have been
made finer by the operation.

Two topologies on X need not be comparable, of course. In Figure 12.1 preced-
ing, the topology in the upper right-hand corner is strictly finer than each of the three
topologies in the first column and strictly coarser than each of the other topologies in
the third column. But it is not comparable with any of the topologies in the second
column.

Other terminology is sometimes used for this concept. If 7/ O 7, some math-
ematicians would say that 7/ is larger than T, and 7 is smaller than 7'. This is
certainly acceptable terminology, if not as vivid as the words “finer” and “coarser.”
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Many mathematicians use the words “weaker” and “stronger” in this context. Un-
fortunately, some of them (particularly analysts) are apt to say that 7' is stronger
than 7 if 7' O 7, while others (particularly topologists) are apt to say that 7' is
weaker than 7 in the same situation! If you run across the terms “strong topology”
or “weak topology” in some book, you will have to decide from the context which
inclusion is meant. We shall not use these terms in this book.

§13 Basis for a Topology

For each of the examples in the preceding section, we were able to specify the topology
by describing the entire collection 7 of open sets. Usually this is too difficult. In
most cases, one specifies instead a smaller collection of subsets of X and defines the
topology in terms of that.

Definition. If X is a set, a basis for a topology on X is a collection B of subsets of X
(called basis elements) such that
(1) For each x € X, there is at least one basis element B containing x.

(2) If x belongs to the intersection of two basis elements B and By, then there is a
basis element B3 containing x such that B3 C B} N Bs.
If B satisfies these two conditions, then we define the topology T generated by B as
follows: A subset U of X is said to be open in X (that is, to be an element of J7) if for
each x € U, there is a basis element B € B such that x € B and B C U. Note that
each basis element is itself an element of 7.

We will check shortly that the collection 7 is indeed a topology on X. But first let
us consider some examples.

EXAMPLE 1.  Let B be the collection of all circular regions (interiors of circles) in the
plane. Then B satisfies both conditions for a basis. The second condition is illustrated in
Figure 13.1. In the topology generated by B, a subset U of the plane is open if every x
in U lies in some circular region contained in U.

x e

Figure 13.1 Figure 13.2
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EXAMPLE 2.  Let B’ be the collection of all rectangular regions (interiors of rectangles)
in the plane, where the rectangles have sides parallel to the coordinate axes. Then B’
satisfies both conditions for a basis. The second condition is illustrated in Figure 13.2; in
this case, the condition is trivial, because the intersection of any two basis elements is itself
a basis element (or empty). As we shall see later, the basis B’ generates the same topology
on the plane as the basis 8B given in the preceding example.

EXAMPLE 3. If X is any set, the collection of all one-point subsets of X is a basis for
the discrete topology on X.

Let us check now that the collection 7 generated by the basis B is, in fact, a
topology on X. If U is the empty set, it satisfies the defining condition of openness
vacuously. Likewise, X is in 7, since for each x € X there is some basis element
B containing x and contained in X. Now let us take an indexed family {Uy}yecy, Oof
elements of 7~ and show that

U=|]JUs

aelJ

belongs to 7. Given x € U, there is an index « such that x € U,. Since Uy, is open,
there is a basis element B such that x € B C U,. Thenx € B and B C U, so that U
is open, by definition.

Now let us take two elements Uj and U; of  and show that U NU; belongs to 7.
Given x € U1 NU,, choose a basis element B containing x such that By C Uj; choose
also a basis element B; containing x such that B, C U,. The second condition for a
basis enables us to choose a basis element B3 containing x such that B3 C B; N B;.
See Figure 13.3. Then x € Bz and B3 C U; N U,, so Uy N U, belongs to 7, by
definition.

Figure 13.3

Finally, we show by induction that any finite intersection U1 N- - -NU,, of elements
of J is in 7. This fact is trivial for n = 1; we suppose it true for n — 1 and prove it
for n. Now

rn---NU)=W0UN---NU,—1) NU,.
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By hypothesis, Uy N --- N U,_1 belongs to 7; by the result just proved, the inter-
section of Uy N --- N Uy,_1 and U, also belongs to 7.

Thus we have checked that collection of open sets generated by a basis B is, in
fact, a topology.

Another way of describing the topology generated by a basis is given in the fol-
lowing lemma:

Lemma 13.1. Let X be a set; let B be a basis for a topology 7 on X. Then T equals
the collection of all unions of elements of 8B.

Proof. Given a collection of elements of B, they are also elements of 7. Because T
is a topology, their union is in 7. Conversely, given U € T, choose for each x € U
an element B, of B such thatx € By C U. Then U = |J, .y Bx, so U equals a union
of elements of $B. |

This lemma states that every open set U in X can be expressed as a union of
basis elements. This expression for U is not, however, unique. Thus the use of the
term “basis” in topology differs drastically from its use in linear algebra, where the
equation expressing a given vector as a linear combination of basis vectors is unique.

We have described in two different ways how to go from a basis to the topology
it generates. Sometimes we need to go in the reverse direction, from a topology to a
basis generating it. Here is one way of obtaining a basis for a given topology; we shall
use it frequently.

Lemma 13.2. Let X be a topological space. Suppose that C is a collection of open
sets of X such that for each open set U of X and each x in U, there is an element C
of C such that x € C C U. Then C is a basis for the topology of X.

Proof. 'We must show that C is a basis. The first condition for a basis is easy: Given
x € X, since X is itself an open set, there is by hypothesis an element C of C such
that x € C C X. To check the second condition, let x belong to C1 N C, where Cy
and C; are elements of C. Since C| and C, are open, so is C1 N Cy. Therefore, there
exists by hypothesis an element C3 in C such that x € C3 C C1 N Ca.

Let 7 be the collection of open sets of X; we must show that the topology
generated by C equals the topology 7. First, note that if U belongs to 7 and if x € U,
then there is by hypothesis an element C of C such that x € C C U. It follows that U
belongs to the topology 7/, by definition. Conversely, if W belongs to the topology 7/,
then W equals a union of elements of C, by the preceding lemma. Since each element
of C belongs to 7 and T is a topology, W also belongs to 7. |

r]'/

When topologies are given by bases, it is useful to have a criterion in terms of the
bases for determining whether one topology is finer than another. One such criterion
is the following:
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Lemma 13.3. Let B and B’ be bases for the topologies T and 7', respectively, on
X. Then the following are equivalent:
(1) 7 is finer than T .
(2) For each x € X and each basis element B € B containing x, there is a basis
element B’ € B’ such that x € B’ C B.

Proof. (2) = (1). Given an element U of 7, we wish to show that U € 7. Let
x € U. Since B generates 7, there is an element B € B such that x € B C U.
Condition (2) tells us there exists an element B’ € B’ such that x € B’ C B. Then
x € B CcU,soU € 7, by definition.

(1) = (2). We are given x € X and B € B, with x € B. Now B belongs to T
by definition and 7 C 7’ by condition (1); therefore, B € 7. Since 7' is generated
by B’, there is an element B’ € B’ such that x € B’ C B. [ ]

Some students find this condition hard to remember. “Which way does the inclu-
sion go?” they ask. It may be easier to remember if you recall the analogy between
a topological space and a truckload full of gravel. Think of the pebbles as the basis
elements of the topology; after the pebbles are smashed to dust, the dust particles are
the basis elements of the new topology. The new topology is finer than the old one,
and each dust particle was contained inside a pebble, as the criterion states.

EXAMPLE 4.  One can now see that the collection B of all circular regions in the plane
generates the same topology as the collection B’ of all rectangular regions; Figure 13.4
illustrates the proof. We shall treat this example more formally when we study metric
spaces.

@B B’ B

Figure 13.4

We now define three topologies on the real line R, all of which are of interest.

Definition. If B is the collection of all open intervals in the real line,
(a,b) ={x]a <x < b},

the topology generated by B is called the standard topology on the real line. Whenever
we consider R, we shall suppose it is given this topology unless we specifically state
otherwise. If B’ is the collection of all half-open intervals of the form

l[a,b) ={x|a <x < b},
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where a < b, the topology generated by B’ is called the lower limit topology on R.
When R is given the lower limit topology, we denote it by R, . Finally let K denote the
set of all numbers of the form 1/n, forn € Z., and let B” be the collection of all open
intervals (a, b), along with all sets of the form (a, b) — K. The topology generated
by B” will be called the K-topology on R. When R is given this topology, we denote
it by Rg.

It is easy to see that all three of these collections are bases; in each case, the
intersection of two basis elements is either another basis element or is empty. The
relation between these topologies is the following:

Lemma 13.4. The topologies of Ry and Rg are strictly finer than the standard topol-
ogy on R, but are not comparable with one another.

Proof. Let T, T/, and 7" be the topologies of R, Ry, and Rk, respectively. Given
a basis element (a, b) for 7 and a point x of (a, b), the basis element [x, b) for 7’
contains x and lies in (a, b). On the other hand, given the basis element [x, d) for 7,
there is no open interval (a, b) that contains x and lies in [x, d). Thus 7 is strictly
finer than 7.

A similar argument applies to Rx. Given a basis element (a, b) for 7 and a
point x of (a, b), this same interval is a basis element for 7" that contains x. On the
other hand, given the basis element B = (—1,1) — K for 7" and the point 0 of B,
there is no open interval that contains O and lies in B.

We leave it to you to show that the topologies of Ry and Rg are not comparable.

|

A question may occur to you at this point. Since the topology generated by a
basis 8 may be described as the collection of arbitrary unions of elements of B8, what
happens if you start with a given collection of sets and take finite intersections of
them as well as arbitrary unions? This question leads to the notion of a subbasis for a
topology.

Definition. A subbasis S for a topology on X is a collection of subsets of X whose
union equals X. The topology generated by the subbasis S is defined to be the collec-
tion 7~ of all unions of finite intersections of elements of §.

We must of course check that 7 is a topology. For this purpose it will suffice to
show that the collection B of all finite intersections of elements of S is a basis, for
then the collection 7 of all unions of elements of B is a topology, by Lemma 13.1.
Given x € X, it belongs to an element of § and hence to an element of 8B; this is the
first condition for a basis. To check the second condition, let

Bi=SnNn---NSy, and Bz:Sim“-mS,;
be two elements of B. Their intersection

BINB,=(S1N---NSu)N(SyN---NS)
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is also a finite intersection of elements of S, so it belongs to B.

Exercises

1.

Let X be a topological space; let A be a subset of X. Suppose that for each x € A
there is an open set U containing x such that U C A. Show that A is open in X.

Consider the nine topologies on the set X = {a, b, ¢} indicated in Example 1
of §12. Compare them; that is, for each pair of topologies, determine whether
they are comparable, and if so, which is the finer.

Show that the collection 7 given in Example 4 of §12 is a topology on the set X.
Is the collection

Too = {U | X — U is infinite or empty or all of X}

a topology on X?

(a) If {74} is a family of topologies on X, show that () 7 is a topology on X.
Is | J 7 a topology on X?

(b) Let {74} be a family of topologies on X. Show that there is a unique small-
est topology on X containing all the collections 7y, and a unique largest
topology contained in all 7.

(c) If X ={a, b, c},let

T1=1{2, X, {a}, {a,b}} and T2 ={0, X, {a}, {b,c}}.

Find the smallest topology containing 77 and 77, and the largest topology
contained in 77 and 73.

Show that if 4 is a basis for a topology on X, then the topology generated by 4
equals the intersection of all topologies on X that contain +A. Prove the same if
A is a subbasis.

Show that the topologies of R, and Rg are not comparable.
Consider the following topologies on R:

he standard topology,

he topology of Rg,

he upper limit topology, having all sets (a, b] as basis,

SUSL S SR
|

t
t
the finite complement topology,
t
t

he topology having all sets (—o0, a) = {x | x < a} as basis.

Determine, for each of these topologies, which of the others it contains.

8. (a) Apply Lemma 13.2 to show that the countable collection

B ={(a,b) | a < b, a and b rational}
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is a basis that generates the standard topology on R.
(b) Show that the collection

C ={[a,b) | a < b, a and b rational}

is a basis that generates a topology different from the lower limit topology
on R.

§14 The Order Topology

If X is a simply ordered set, there is a standard topology for X, defined using the order
relation. It is called the order topology; in this section, we consider it and study some
of its properties.

Suppose that X is a set having a simple order relation <. Given elements a and b
of X such that a < b, there are four subsets of X that are called the intervals deter-
mined by a and b. They are the following :

(a,b) ={x|a <x < b},
(a,bl={x|a <x <b},
[a,D) ={x|a <x < b},

[a,bl={x]|a <x <b}.

The notation used here is familiar to you already in the case where X is the real line,
but these are intervals in an arbitrary ordered set. A set of the first type is called an
open interval in X, a set of the last type is called a closed interval in X, and sets of the
second and third types are called half-open intervals. The use of the term “open” in
this connection suggests that open intervals in X should turn out to be open sets when
we put a topology on X. And so they will.

Definition. Let X be a set with a simple order relation; assume X has more than one
element. Let B be the collection of all sets of the following types:

(1) All open intervals (a, b) in X.

(2) All intervals of the form [ag, b), where ag is the smallest element (if any) of X.

(3) All intervals of the form (a, bg], where by is the largest element (if any) of X.
The collection B is a basis for a topology on X, which is called the order topology.

If X has no smallest element, there are no sets of type (2), and if X has no largest
element, there are no sets of type (3).

One has to check that B satisfies the requirements for a basis. First, note that every
element x of X lies in at least one element of B: The smallest element (if any) lies
in all sets of type (2), the largest element (if any) lies in all sets of type (3), and every
other element lies in a set of type (1). Second, note that the intersection of any two sets
of the preceding types is again a set of one of these types, or is empty. Several cases
need to be checked; we leave it to you.
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EXAMPLE 1. The standard topology on R, as defined in the preceding section, is just the
order topology derived from the usual order on R.

EXAMPLE 2.  Consider the set R x R in the dictionary order; we shall denote the general
element of R x R by x x y, to avoid difficulty with notation. The set R x R has neither a
largest nor a smallest element, so the order topology on R x R has as basis the collection
of all open intervals of the form (a x b, ¢ x d) fora < ¢, and fora = c and b < d. These
two types of intervals are indicated in Figure 14.1. The subcollection consisting of only
intervals of the second type is also a basis for the order topology on R x R, as you can

check.

axb

cxd axb

Figure 14.1

EXAMPLE 3.  The positive integers Z, form an ordered set with a smallest element. The
order topology on Z is the discrete topology, for every one-point set is open: If n > 1,
then the one-point set {n} = (n — 1, n + 1) is a basis element; and if n = 1, the one-point
set {1} = [1, 2) is a basis element.

EXAMPLE 4.  The set X = {1,2} x Z+ in the dictionary order is another example of
an ordered set with a smallest element. Denoting 1 x n by a, and 2 x n by b,, we can
represent X by

al,az,...;bl,bz,....

The order topology on X is not the discrete topology. Most one-point sets are open, but
there is an exception—the one-point set {b1}. Any open set containing b; must contain a
basis element about b1 (by definition), and any basis element containing b contains points
of the a; sequence.

Definition. If X is an ordered set, and a is an element of X, there are four subsets
of X that are called the rays determined by a. They are the following:

(a,+00) ={x | x > a},
< a},
[a, +00) = {x | x = a},

ajl.

(—00,a) ={x | x

(—OO,CI] = {X | X

IA
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Sets of the first two types are called open rays, and sets of the last two types are called
closed rays.

The use of the term “open” suggests that open rays in X are open sets in the order
topology. And so they are. Consider, for example, the ray (a, +00). If X has a largest
element by, then (a, +00) equals the basis element (a, bg]. If X has no largest element,
then (a, +00) equals the union of all basis elements of the form (a, x), for x > a. In
either case, (a, +00) is open. A similar argument applies to the ray (—oo, a).

The open rays, in fact, form a subbasis for the order topology on X, as we now
show. Because the open rays are open in the order topology, the topology they gen-
erate is contained in the order topology. On the other hand, every basis element for
the order topology equals a finite intersection of open rays; the interval (a, b) equals
the intersection of (—oo, b) and (a, +00), while [ag, b) and (a, bg], if they exist, are
themselves open rays. Hence the topology generated by the open rays contains the
order topology.

§15 The Product Topology on X x Y

If X and Y are topological spaces, there is a standard way of defining a topology on
the cartesian product X x Y. We consider this topology now and study some of its
properties.

Definition. Let X and Y be topological spaces. The product topology on X x Y is
the topology having as basis the collection B of all sets of the form U x V, where U
is an open subset of X and V is an open subset of Y.

Let us check that B is a basis. The first condition is trivial, since X x Y is itself
a basis element. The second condition is almost as easy, since the intersection of any
two basis elements U; x V| and U, x V; is another basis element. For

(U1 x V)N Uy x Vo) = U1 NUR) x (VI N V),

and the latter set is a basis element because U1 N U, and V1 N V; are openin X and Y,
respectively. See Figure 15.1.

Note that the collection 8B is not a topology on X x Y. The union of the two
rectangles pictured in Figure 15.1, for instance, is not a product of two sets, so it
cannot belong to B; however, it is openin X x Y.

Each time we introduce a new concept, we shall try to relate it to the concepts that
have been previously introduced. In the present case, we ask: What can one say if the
topologies on X and Y are given by bases? The answer is as follows:

Theorem 15.1. If B is a basis for the topology of X and C is a basis for the topology
of Y, then the collection

D={BxC|BeBandC € C}
is a basis for the topology of X x Y.
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Figure 15.1

Proof. We apply Lemma 13.2. Given an open set W of X x Y and a point x X y
of W, by definition of the product topology there is a basis element U x V such that
x xyeUxV C W. Because B and C are bases for X and Y, respectively, we can
choose an element B of B such that x € B C U, and an element C of C such that
yeCCV.Thenx x y € B x C C W. Thus the collection £ meets the criterion of
Lemma 13.2, so D is a basis for X x Y. [ |

EXAMPLE 1.  We have a standard topology on R: the order topology. The product of
this topology with itself is called the standard topology on R x R = R2. It has as basis
the collection of all products of open sets of R, but the theorem just proved tells us that the
much smaller collection of all products (a, b) x (¢, d) of open intervals in R will also serve
as a basis for the topology of R%. Each such set can be pictured as the interior of a rectangle
in R2. Thus the standard topology on R? is just the one we considered in Example 2 of §13.

It is sometimes useful to express the product topology in terms of a subbasis. To
do this, we first define certain functions called projections.

Definition. Letm; : X X ¥ — X be defined by the equation
mi(x, y) = x;
letmy : X x Y — Y be defined by the equation

7'[2()(, y) =)

The maps 71 and 7, are called the projections of X x Y onto its first and second
factors, respectively.

We use the word “onto” because m; and mp are surjective (unless one of the
spaces X or Y happens to be empty, in which case X x Y is empty and our whole
discussion is empty as well!).

If U is an open subset of X, then the set 77, L) is precisely the set U x Y, which
isopenin X x Y. Similarly, if V is open in Y, then

' (V)=XxV,
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which is also open in X x Y. The intersection of these two sets is the set U x V, as
indicated in Figure 15.2. This fact leads to the following theorem:

Theorem 15.2. The collection
§ = {nl_l(U) | U openin X} U {nz_l(V) | V openinY}

is a subbasis for the product topology on X x Y.

" (U)

v i, (V)

—_—
u

Figure 15.2

Proof. Let T denote the product topology on X x Y; let 7/ be the topology gener-
ated by S. Because every element of § belongs to 7, so do arbitrary unions of finite
intersections of elements of §. Thus 7’ C 7. On the other hand, every basis element
U x V for the topology J is a finite intersection of elements of S, since

UxV=n'U)n= (V).

Therefore, U x V belongs to 77, so that 7 C 7/ as well. [

§16 The Subspace Topology

Definition. Let X be a topological space with topology 7. If Y is a subset of X, the
collection

Ty ={YNU |UeT}

is a topology on Y, called the subspace topology. With this topology, Y is called a
subspace of X; its open sets consist of all intersections of open sets of X with Y.
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It is easy to see that Ty is a topology. It contains & and Y because
g=YN@ and Y=YNX,

where @ and X are elements of 7. The fact that it is closed under finite intersections
and arbitrary unions follows from the equations

U, NY)N---NWU,NY)=U;N---NU,)NY,
U(UaﬂY)z(U U,)NY.

ael ael

Lemma 16.1. If B is a basis for the topology of X then the collection
By ={BNY | B e B}
is a basis for the subspace topology on Y .

Proof. Given U open in X and given y € U NY, we can choose an element B of B
suchthaty e BC U.Theny € BNY C UNY. It follows from Lemma 13.2 that By
is a basis for the subspace topology on Y. |

When dealing with a space X and a subspace Y, one needs to be careful when
one uses the term “open set”. Does one mean an element of the topology of Y or an
element of the topology of X? We make the following definition : If Y is a subspace
of X, we say that a set U is open in Y (or open relative to Y) if it belongs to the
topology of Y; this implies in particular that it is a subset of Y. We say that U is open
in X if it belongs to the topology of X.

There is a special situation in which every set open in Y is also open in X:

Lemma 16.2. LetY be a subspace of X. If U isopen in Y and Y is open in X, then
Uisopenin X.

Proof.  Since U isopenin Y, U = Y N V for some set V open in X. Since ¥ and V
are both openin X,sois Y N V. [ ]

Now let us explore the relation between the subspace topology and the order and
product topologies. For product topologies, the result is what one might expect; for
order topologies, it is not.

Theorem 16.3. If A is a subspace of X and B is a subspace of Y, then the product
topology on A x B is the same as the topology A x B inherits as a subspace of X x Y.

Proof. The set U x V is the general basis element for X x Y, where U is open in X
and V is open in Y. Therefore, (U x V) N (A x B) is the general basis element for the
subspace topology on A x B. Now

(UxV)N(Ax B)=(UNA) x (VN B).
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Since U N A and V N B are the general open sets for the subspace topologies on A
and B, respectively, the set (U N A) x (V N B) is the general basis element for the
product topology on A x B.

The conclusion we draw is that the bases for the subspace topology on A x B and
for the product topology on A x B are the same. Hence the topologies are the same. B

Now let X be an ordered set in the order topology, and let Y be a subset of X. The
order relation on X, when restricted to Y, makes Y into an ordered set. However, the
resulting order topology on Y need not be the same as the topology that Y inherits as
a subspace of X. We give one example where the subspace and order topologies on Y
agree, and two examples where they do not.

ExXAMPLE 1. Consider the subset Y = [0, 1] of the real line R, in the subspace topology.

The subspace topology has as basis all sets of the form (a, b) N'Y, where (a, b) is an open
interval in R. Such a set is of one of the following types:

(a,b) ifaandbarein?,

[0, b) ifonly bisinY,

(a,1] ifonlyaisin?,

Y or@ ifneitheranorbisinY.

(a,b)yny =

By definition, each of these sets is open in Y. But sets of the second and third types are not
open in the larger space R.

Note that these sets form a basis for the order topology on Y. Thus, we see that in the
case of the set ¥ = [0, 1], its subspace topology (as a subspace of R) and its order topology
are the same.

EXAMPLE 2.  Let Y be the subset [0, 1) U {2} of R. In the subspace topology on Y the
one-point set {2} is open, because it is the intersection of the open set ( % %) with Y. Butin
the order topology on Y, the set {2} is not open. Any basis element for the order topology
on Y that contains 2 is of the form

{x|xeYanda < x <2}

for some a € Y; such a set necessarily contains points of Y less than 2.

EXAMPLE 3.  Let I = [0, 1]. The dictionary order on / x [ is just the restriction to
I x I of the dictionary order on the plane R x R. However, the dictionary order topology
on I x [ is not the same as the subspace topology on / x [ obtained from the dictionary
order topology on R x R! For example, the set {1/2} x (1/2, 1] is open in I x I in the
subspace topology, but not in the order topology, as you can check. See Figure 16.1.

The set I x I in the dictionary order topology will be called the ordered square, and
denoted by 12.

The anomaly illustrated in Examples 2 and 3 does not occur for intervals or rays
in an ordered set X. This we now prove.

Given an ordered set X, let us say that a subset Y of X is convex in X if for each
pair of points a < b of Y, the entire interval (a, b) of points of X lies in Y. Note that
intervals and rays in X are convex in X.
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Subspace Order

Figure 16.1

Theorem 16.4. Let X be an ordered set in the order topology; let Y be a subset
of X that is convex in X. Then the order topology on Y is the same as the topology Y
inherits as a subspace of X .

Proof. Consider the ray (a, +00) in X. What is its intersection with Y? If a € Y,
then

(a,4c0)NY ={x | x € Y and x > a};

this is an open ray of the ordered set Y. If a ¢ Y, then « is either a lower bound on Y
or an upper bound on Y, since Y is convex. In the former case, the set (a, +00) N Y
equals all of Y; in the latter case, it is empty.

A similar remark shows that the intersection of the ray (—oo, a) with Y is either
an open ray of Y, or Y itself, or empty. Since the sets (a, +00) NY and (—oco,a) NY
form a subbasis for the subspace topology on Y, and since each is open in the order
topology, the order topology contains the subspace topology.

To prove the reverse, note that any open ray of Y equals the intersection of an open
ray of X with Y, so it is open in the subspace topology on Y. Since the open rays of ¥
are a subbasis for the order topology on Y, this topology is contained in the subspace
topology. |

To avoid ambiguity, let us agree that whenever X is an ordered set in the order
topology and Y is a subset of X, we shall assume that Y is given the subspace topology
unless we specifically state otherwise. If Y is convex in X, this is the same as the order
topology on Y; otherwise, it may not be.

Exercises

1. Show that if Y is a subspace of X, and A is a subset of Y, then the topology A
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10.

inherits as a subspace of Y is the same as the topology it inherits as a subspace
of X.

. If 7 and 7 are topologies on X and 7 is strictly finer than §~, what can you

say about the corresponding subspace topologies on the subset Y of X?

Consider the set Y = [—1, 1] as a subspace of R. Which of the following sets
are open in Y'? Which are open in R?

A={x]z<lkl<1
B={x|3<Ixl<1},
C={xl3=<ll<l
D=i{x|5<Ix|<1},
E={x|0<|x|<land1/x ¢ Z,}.

. Amap f : X — Y is said to be an open map if for every open set U of X, the

set f(U)isopeninY. Showthatw; : X x Y — Xandm : X xY — Y are
open maps.

. Let X and X’ denote a single set in the topologies 7~ and 7/, respectively; let Y

and Y’ denote a single set in the topologies U and U’, respectively. Assume

these sets are nonempty.

(a) Show thatif 7/ D 7 and U’ D U, then the product topology on X’ x Y’ is
finer than the product topology on X x Y.

(b) Does the converse of (a) hold? Justify your answer.

. Show that the countable collection

{(a,b) x (c,d) |a <bandc < d, and a, b, ¢, d are rational}

is a basis for R2.

. Let X be an ordered set. If Y is a proper subset of X that is convex in X, does it

follow that Y is an interval or a ray in X?

If L is a straight line in the plane, describe the topology L inherits as a subspace
of Ry x R and as a subspace of Ry x Ry. In each case it is a familiar topology.

. Show that the dictionary order topology on the set R x R is the same as the

product topology R; x R, where R; denotes R in the discrete topology. Compare
this topology with the standard topology on R2.

Let I = [0, 1]. Compare the product topology on I x I, the dictionary order
topology on I x I, and the topology / x [ inherits as a subspace of R x R in the
dictionary order topology.

§17 Closed Sets and Limit Points

Now that we have a few examples at hand, we can introduce some of the basic concepts
associated with topological spaces. In this section, we treat the notions of closed set,
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