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The main trick



Space Level Light Bulb Theorem

Theorem (Space Level LBT)
For k ≤ d ≥ 1 let M be a compact smooth d-manifold with a pair of smoothly
embedded spheres s : Sk−1 ↪→ ∂M and G : Sd−k ↪→ ∂M, such that G has trivial
normal bundle and G ⋔ s = {pt}.

Then there is an explicit pair of homotopy equivalences

Emb∂(Dk,M) ΩEmbε∂(Dk−1,M ∪νG hd−k+1).
folε

∼
amb

" Note that a dual pair s, G does not exist in an arbitrary ∂M!

• Emb∂(Dk,M) = space of neat embeddings K : Dk ↪→ M with K|∂Dk = s.
Neat = transverse to ∂M and K(X) ∩ ∂M = K(∂X).

• For E = Embε∂(Dk−1,M ∪νG hd−k+1) the boundary condition is u0 := ∂u+
and ΩE = Map∗(S

1, E) is the space of loops based at u+ := s ∩ hd−k+1.

• Supscript ε means each embedded disk is equipped with a “push-off”...

• Codimension increased by one! ( =⇒ right hand side is easier)
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Picture of Space Level LBT

Theorem (Space Level LBT)
For a d-manifold M and s : Sk−1 ↪→ ∂M, G : Sd−k ↪→ ∂M, such that G has trivial
normal bundle and G ⋔ s = {pt}, there is a pair of homotopy equivalences

Emb∂(Dk,M) ΩEmbε∂(Dk−1,M ∪νG hd−k+1).
folε

∼
amb

t = 0

t = 1
2

"

Only a schematic:
for any t ∈ [0, 1], the
time t arc is isotopic

to u+ .

t = 1

folε

∼
amb
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Special cases

k = d : Recovers a theorem (and proof) of Cerf ’68:
Diff+

∂ (D
d) = Emb∂(Dd,Dd) ' ΩEmb∂(Dd−1,Dd).

In particular, π0 Diff+
∂ (D

4) ∼= π1(Emb∂(D3,D4); U).

k = 1 : Emb∂(D1,M) ' ΩSd−1 × Ω(M ∪G hd−1)

d = 2 : “Point-pushing”: isotopy classes of arcs in a
surface M, with endpoints on distinct
components of ∂M, are in bijection with
Z⊕ π1(M ∪G h2).

d = 3 : The classical 3d LBT: isotopy classes of arcs in
M3 with endpoints on distinct components of
∂M, one of which is S2, are in bijection with
π1(M ∪G h3).

k = 2 : Emb∂(D2,M) ' ΩEmbε∂(D1,M ∪G hd−1).

d = 4 : Emb∂ [D2,M] ∼= π1 Embε∂(D1,M ∪G hd−1).

k = 3,d = 4 : π0 Emb∂(D3, S1 × D3) ∼= π1 Emb∂(D2,D4), cf. Budney–Gabai.
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Picture Proof of Space Level LBT

=

K : Dk ↪→ M, with ∂K = s J : Dk ↪→ X := M∪νGhd−k+1, with ∂J = u−∪u+

Can reverse this by removing a tubular neighbourhood of u+ in X, so can show

Emb∂ε(Dk,M) ' Emb∂ε( Dk, X).

Now consider the fibration sequence (due to Cerf):

Emb∂ε( Dk, X) EmbDε
−
( Dk, X) Embε∂ε(Dk−1, X)

K 7→K|Dε+

The total space is contractible (shrink the half-disk to its uε−-collar), so:

ΩEmbε∂ε(Dk−1, X) Emb∂ε( Dk, X)
ambU

∼
folεU

where: ambU is the connecting map (use the family ambient isotopy theorem to extend loops),

folεU(K) is the loop of ε-augmented (k− 1)-disks foliating the sphere −U ∪ K.
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LBT for 2-disks in 4-manifolds



The 4D setting

Let M be an oriented compact smooth 4-manifold together with

• a knot s : S1 ↪→ ∂M,

• an embedded sphere G : S2 ↪→ ∂M,

so that s and G intersect transversely and positively in a single point.

Notation. Let

• m− = s(−i) ∈ M be the basepoint and denote π = π1(M,m−),

• Z[π] be the group ring, and Z[π∖ 1] := {r =
∑

εigi : gi 6= 1} its subgroup,

• σ : Z[π] → Z[π] be the usual involution r =
∑

εigi 7→ σ(r) = r =
∑

εig−1
i ,

• Z[π∖ 1]σ be the subgroup of Z[π∖ 1] of the invariants: those r with r = r,

• λ : π2M× π2M→ Z[π] be the equivariant intersection form of M.

We study the set of isotopy classes Emb∂ [D2,M] := π0 Emb∂(D2,M) of neat
smooth embeddings K : D2 ↪→ M which on ∂D2 agree with s.

By Space Level LBT we have Emb∂ [D2,M] := π1 Embε∂(D1,M ∪νG h3) and we can
compute the latter group.
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LBT for 2-disks

Theorem A. There is an exact sequence of sets

Z[π∖ 1]σ⧸dax(π3M) Emb∂ [D2,M] Map∂ [D
2,M] Z[π∖ 1]⧸〈r− r〉

+ fm(•)G j

Dax

µ2

In detail:

• Wall’s self-intersection invariant µ2 is surjective;

• µ−1
2 (0) = im(j)

⇐⇒ f : D2 → M, ∂f = s, homotopic to an embedding iff µ2(f) = 0;

• j−1[K] = {K+ fm(r)G : r ∈ Z[π∖ 1]σ}

⇐⇒ embeddings homotopic to K : D2 ↪→ M are obtained from K by the action
+ fm(r)G: do finger moves along r, and then Norman tricks;

• Dax(−, K) : j−1[K] → Z[π∖ 1]σ⧸dax(π3M) is the inverse of this action

⇐⇒ the relative Dax invariant, given by a clever count of double point loops
in a homotopy to K, detects the action:

Dax(K+ fm(r)G, K) = [r].
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Picture of LBT for 2-disks

Theorem A. There is an exact sequence of sets

Z[π∖ 1]σ⧸dax(π3M) Emb∂ [D2,M] Map∂ [D
2,M] Z[π∖ 1]⧸〈r− r〉

+ fm(•)G j

Dax

µ2

Note: A similar construction by Gabai in “Self-Referential Discs and the Light Bulb
Lemma”.
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Other results



Special case: spheres with a common dual

Fix an oriented compact smooth 4-manifold N together with

• a framed embedded sphere G : S2 ↪→ N.

Consider the set of isotopy classes
EmbG[S2,N]

of spheres F : S2 ↪→ N which are dual to G, i.e. F and G intersect transversely
and positively in a single point.

Proposition
There is a bijection

• ∪ νxG : Emb∂ [D2,N∖νG]
∼=

↪−→ EmbG[S2,N],

where s = ∂(νxG) : S1 ↪→ ∂(N∖νG) is a meridian circle of G at x ∈ G, and its
dual is a push-off of G into ∂(N∖νG).

Observe: ∂(N∖νG) = ∂N t ∂(νG) and ∂(νG) ∼= S1 × S2. Conversely, if a
4-manifold M has a boundary component S1 × S2, attaching D2 × S2 to it takes
us to the setup of spheres with a fixed dual.
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Other results

Theorem
If M = N∖νG for a framed G : S2 ↪→ N, then 〈r+ r〉 ⊆ dax(π3M).

Moreover, the induced map dax: π3N→ Z[π∖ 1]σ⧸〈r+ r〉

is equal to µ3, Wall’s
self-intersection invariant for 3-spheres in N× I2.

Corollary [Gabai when TN = 0, Schneiderman–Teichner in general]
The set of spheres homotopic to [F] ∈ EmbG[S2,N] ∼= Emb∂ [D2,M] is given by

Z[π∖ 1]σ⧸〈r+ r, µ3(π3N)〉
∼= F2[TN]⧸µ3(π3N).

F2[TM] is the vector space over the field with two elements generated by the set TM of 2-torsion

elements in π = π1N. The above theorem also implies Dax = FQ.

• We also describe some properties of Dax and dax (see e.g. Theorem B in
the preprint).

As a consequence, we exhibit arbitrary finitely generated
abelian group as the kernel Z[π∖ 1]

σ
⧸dax(π3M)

∼= j−1[K] for some M.

• Group structures on sets of isotopy classes, see the next slide.
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Group structures

Theorem
After choosing an arbitrary basepoint U ∈ Emb∂ [D2,M]

this set becomes a
group, with U as the unit and the commutator

[K1, K2] = U + fm(λ̃)G

for K1, K2 ∈ Emb∂ [D2,M] and λ̃ = [λ(−U ∪ K1,−U ∪ K2)] ∈ Z[π∖ 1].

Moreover, the sequence of Theorem A becomes an exact sequence of groups,
with the bijection −U ∪ • : Map∂ [D

2,M] ∼= π2M inducing a nonstandard group
structure ? on π2M:

a1 ? a2 = a1 + a2 − λ(a1, a2)G.

Caution:
disk [K1, K2] is not homotopic to U (but to U#(λ̃− λ̃)G ∈ Map∂ [D

2,M]).

Note:
Emb∂ [D2,M] is almost never abelian (we have seen dax(π3M) ⊂ Z[π∖1]σ and λ

is rarely symmetric, so λ̃ not in the image of dax).

10



Group structures

Theorem
After choosing an arbitrary basepoint U ∈ Emb∂ [D2,M] this set becomes a
group, with U as the unit and the commutator

[K1, K2] = U + fm(λ̃)G

for K1, K2 ∈ Emb∂ [D2,M] and λ̃ = [λ(−U ∪ K1,−U ∪ K2)] ∈ Z[π∖ 1].

Moreover, the sequence of Theorem A becomes an exact sequence of groups,
with the bijection −U ∪ • : Map∂ [D

2,M] ∼= π2M inducing a nonstandard group
structure ? on π2M:

a1 ? a2 = a1 + a2 − λ(a1, a2)G.

Caution:
disk [K1, K2] is not homotopic to U (but to U#(λ̃− λ̃)G ∈ Map∂ [D

2,M]).

Note:
Emb∂ [D2,M] is almost never abelian (we have seen dax(π3M) ⊂ Z[π∖1]σ and λ

is rarely symmetric, so λ̃ not in the image of dax).

10



Group structures

Theorem
After choosing an arbitrary basepoint U ∈ Emb∂ [D2,M] this set becomes a
group, with U as the unit and the commutator

[K1, K2] = U + fm(λ̃)G

for K1, K2 ∈ Emb∂ [D2,M] and λ̃ = [λ(−U ∪ K1,−U ∪ K2)] ∈ Z[π∖ 1].

Moreover, the sequence of Theorem A becomes an exact sequence of groups,
with the bijection −U ∪ • : Map∂ [D

2,M] ∼= π2M inducing a nonstandard group
structure ? on π2M:

a1 ? a2 = a1 + a2 − λ(a1, a2)G.

Caution:
disk [K1, K2] is not homotopic to U (but to U#(λ̃− λ̃)G ∈ Map∂ [D

2,M]).

Note:
Emb∂ [D2,M] is almost never abelian (we have seen dax(π3M) ⊂ Z[π∖1]σ and λ

is rarely symmetric, so λ̃ not in the image of dax).

10



Group structures

Theorem
After choosing an arbitrary basepoint U ∈ Emb∂ [D2,M] this set becomes a
group, with U as the unit and the commutator

[K1, K2] = U + fm(λ̃)G

for K1, K2 ∈ Emb∂ [D2,M] and λ̃ = [λ(−U ∪ K1,−U ∪ K2)] ∈ Z[π∖ 1].

Moreover, the sequence of Theorem A becomes an exact sequence of groups,
with the bijection −U ∪ • : Map∂ [D

2,M] ∼= π2M inducing a nonstandard group
structure ? on π2M:

a1 ? a2 = a1 + a2 − λ(a1, a2)G.

Caution:
disk [K1, K2] is not homotopic to U (but to U#(λ̃− λ̃)G ∈ Map∂ [D

2,M]).

Note:
Emb∂ [D2,M] is almost never abelian (we have seen dax(π3M) ⊂ Z[π∖1]σ and λ

is rarely symmetric, so λ̃ not in the image of dax).

10



Group structures

Theorem
After choosing an arbitrary basepoint U ∈ Emb∂ [D2,M] this set becomes a
group, with U as the unit and the commutator

[K1, K2] = U + fm(λ̃)G

for K1, K2 ∈ Emb∂ [D2,M] and λ̃ = [λ(−U ∪ K1,−U ∪ K2)] ∈ Z[π∖ 1].

Moreover, the sequence of Theorem A becomes an exact sequence of groups,
with the bijection −U ∪ • : Map∂ [D

2,M] ∼= π2M inducing a nonstandard group
structure ? on π2M:

a1 ? a2 = a1 + a2 − λ(a1, a2)G.

Caution:
disk [K1, K2] is not homotopic to U (but to U#(λ̃− λ̃)G ∈ Map∂ [D

2,M]).

Note:
Emb∂ [D2,M] is almost never abelian (we have seen dax(π3M) ⊂ Z[π∖1]σ and λ

is rarely symmetric, so λ̃ not in the image of dax).

10



Thank you!
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