A LIGHT BULB THEOREM FOR DISKS

Danica Kosanović (Paris 13), joint with Peter Teichner (MPIM Bonn)
@ Georgia Topology Conference, June 11, 2021
https://arxiv.org/abs/2105.13032

Table of contents

1 The main trick

- Space Level Light Bulb Theorem
- Some special cases
- Picture Proof of Space Level LBT

2 LBT for 2-disks in 4-manifolds

- 4D setting
- LBT for 2-disks

3 Other results

- LBT for 2-spheres, relation to previous work
- Group structures

The main trick

Space Level Light Bulb Theorem

Theorem (Space Level LBT)

For $k \leq d \geq 1$ let M be a compact smooth d-manifold with a pair of smoothly embedded spheres s: $\mathbb{S}^{k-1} \hookrightarrow \partial M$ and $\mathrm{G}: \mathbb{S}^{d-k} \hookrightarrow \partial M$, such that G has trivial normal bundle and $\mathrm{G} \pitchfork \mathrm{s}=\{p t\}$.

\triangle Note that a dual pair s, G does not exist in an arbitrary ∂M !

Space Level Light Bulb Theorem

Theorem (Space Level LBT)

For $k \leq d \geq 1$ let M be a compact smooth d-manifold with a pair of smoothly embedded spheres s: $\mathbb{S}^{k-1} \hookrightarrow \partial M$ and $\mathrm{G}: \mathbb{S}^{d-k} \hookrightarrow \partial M$, such that G has trivial normal bundle and $\mathrm{G} \pitchfork \mathrm{s}=\{p t\}$.

Then there is an explicit pair of homotopy equivalences

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right) \underset{\mathrm{amb}}{\stackrel{\mathrm{fol}^{\varepsilon}}{\leftrightarrows}} \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, M \cup_{\nu G} h^{d-k+1}\right) .
$$

\triangle Note that a dual pair s, G does not exist in an arbitrary ∂M !

Space Level Light Bulb Theorem

Theorem (Space Level LBT)

For $k \leq d \geq 1$ let M be a compact smooth d-manifold with a pair of smoothly embedded spheres s: $\mathbb{S}^{k-1} \hookrightarrow \partial M$ and $\mathrm{G}: \mathbb{S}^{d-k} \hookrightarrow \partial M$, such that G has trivial normal bundle and $G \pitchfork s=\{p t\}$.

Then there is an explicit pair of homotopy equivalences

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right) \underset{\mathfrak{a m b}}{\stackrel{\mathfrak{f o l}^{\varepsilon}}{\leftrightarrows}} \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, M \cup_{\nu G} h^{d-k+1}\right)
$$

- $\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right)=$ space of neat embeddings $K: \mathbb{D}^{k} \hookrightarrow M$ with $\left.K\right|_{\partial \mathbb{D}^{k}}=s$. Neat $=$ transverse to ∂M and $K(X) \cap \partial M=K(\partial X)$.
- For $E=\operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, M \cup_{\nu G} h^{d-k+1}\right)$ the boundary condition is $u_{0}:=\partial u_{+}$ and $\Omega E=\operatorname{Map}_{*}\left(\mathbb{S}^{1}, E\right)$ is the space of loops based at $u_{+}:=\mathrm{s} \cap h^{\mathrm{d}-\mathrm{k}+1}$.

Space Level Light Bulb Theorem

Theorem (Space Level LBT)

For $k \leq d \geq 1$ let M be a compact smooth d-manifold with a pair of smoothly embedded spheres s: $\mathbb{S}^{k-1} \hookrightarrow \partial M$ and $\mathrm{G}: \mathbb{S}^{d-k} \hookrightarrow \partial M$, such that G has trivial normal bundle and $G \pitchfork s=\{p t\}$.
Then there is an explicit pair of homotopy equivalences

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right) \underset{\mathrm{amb}}{\stackrel{\mathrm{fol}^{\varepsilon}}{\leftrightarrows}} \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, M \cup_{\nu G} h^{d-k+1}\right)
$$

- $\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right)=$ space of neat embeddings $K: \mathbb{D}^{k} \hookrightarrow M$ with $\left.K\right|_{\partial \mathbb{D}^{k}}=S$. Neat = transverse to ∂M and $K(X) \cap \partial M=K(\partial X)$.
- For $E=\operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, M \cup_{\nu G} h^{d-k+1}\right)$ the boundary condition is $u_{0}:=\partial u_{+}$ and $\Omega E=\operatorname{Map}_{*}\left(\mathbb{S}^{1}, E\right)$ is the space of loops based at $u_{+}:=s \cap h^{d-k+1}$.
- Supscript ε means each embedded disk is equipped with a "push-off"...

Space Level Light Bulb Theorem

Theorem (Space Level LBT)

For $k \leq d \geq 1$ let M be a compact smooth d-manifold with a pair of smoothly embedded spheres s: $\mathbb{S}^{k-1} \hookrightarrow \partial M$ and $\mathrm{G}: \mathbb{S}^{d-k} \hookrightarrow \partial M$, such that G has trivial normal bundle and $G \pitchfork s=\{p t\}$.

Then there is an explicit pair of homotopy equivalences

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right) \underset{\mathfrak{a m b}}{\stackrel{\text { fol } \mathfrak{l}^{\varepsilon}}{\leftrightarrows}} \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, M \cup_{\nu G} h^{d-k+1}\right)
$$

- $\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right)=$ space of neat embeddings $K: \mathbb{D}^{k} \hookrightarrow M$ with $\left.K\right|_{\partial \mathbb{D}^{k}}=S$. Neat = transverse to ∂M and $K(X) \cap \partial M=K(\partial X)$.
- For $E=\operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, M \cup_{\nu G} h^{d-k+1}\right)$ the boundary condition is $u_{0}:=\partial u_{+}$ and $\Omega E=\operatorname{Map}_{*}\left(\mathbb{S}^{1}, E\right)$ is the space of loops based at $u_{+}:=s \cap h^{d-k+1}$.
- Supscript ε means each embedded disk is equipped with a "push-off"...
- Codimension increased by one! (\Longrightarrow right hand side is easier)

Picture of Space Level LBT

Picture of Space Level LBT

Theorem (Space Level LBT)

For a d-manifold M and $s: \mathbb{S}^{k-1} \hookrightarrow \partial M, G: \mathbb{S}^{d-k} \hookrightarrow \partial M$, such that G has trivial normal bundle and $G \pitchfork s=\{p t\}$, there is a pair of homotopy equivalences

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right) \underset{\mathfrak{a m b}}{\stackrel{\mathfrak{f o l}^{\varepsilon}}{\leftrightarrows}} \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, M \cup_{\nu G} h^{d-k+1}\right)
$$

Picture of Space Level LBT

Theorem (Space Level LBT)

For a d-manifold M and $s: \mathbb{S}^{k-1} \hookrightarrow \partial M, G: \mathbb{S}^{d-k} \hookrightarrow \partial M$, such that G has trivial normal bundle and $G \pitchfork s=\{p t\}$, there is a pair of homotopy equivalences

$$
\operatorname{Emb}_{\partial}\left(\mathbb{D}^{k}, M\right) \underset{\mathfrak{a m b}}{\stackrel{\mathfrak{f o l}^{\varepsilon}}{\leftrightarrows}} \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{k-1}, M \cup_{\nu G} h^{d-k+1}\right)
$$

Special cases

$k=d$: Recovers a theorem (and proof) of Cerf '68:

$$
\operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{d}\right)=\operatorname{Emb}_{\partial}\left(\mathbb{D}^{d}, \mathbb{D}^{d}\right) \simeq \Omega \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-1}, \mathbb{D}^{d}\right) .
$$

In particular, $\pi_{0} \operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{4}\right) \cong \pi_{1}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{3}, \mathbb{D}^{4}\right) ; \mathrm{U}\right)$.

Special cases

$k=d$: Recovers a theorem (and proof) of Cerf '68:

$$
\operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{d}\right)=\operatorname{Emb}_{\partial}\left(\mathbb{D}^{d}, \mathbb{D}^{d}\right) \simeq \Omega \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-1}, \mathbb{D}^{d}\right) .
$$

In particular, $\pi_{0} \operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{4}\right) \cong \pi_{1}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{3}, \mathbb{D}^{4}\right) ; \mathrm{U}\right)$.
$k=1: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, M\right) \simeq \Omega \mathbb{S}^{d-1} \times \Omega\left(M \cup_{G} h^{d-1}\right)$

Special cases

$k=d$: Recovers a theorem (and proof) of Cerf '68:

$$
\operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{d}\right)=\operatorname{Emb}_{\partial}\left(\mathbb{D}^{d}, \mathbb{D}^{d}\right) \simeq \Omega \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-1}, \mathbb{D}^{d}\right) .
$$

In particular, $\pi_{0} \operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{4}\right) \cong \pi_{1}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{3}, \mathbb{D}^{4}\right) ; \mathrm{U}\right)$.
$k=1: \operatorname{Emb}_{\gamma}\left(\mathbb{D}^{1}, M\right) \simeq \Omega \mathbb{S}^{d-1} \times \Omega\left(M \cup_{G} h^{d-1}\right)$
$d=2$: "Point-pushing": isotopy classes of arcs in a surface M, with endpoints on distinct components of ∂M, are in bijection with $\mathbb{Z} \oplus \pi_{1}\left(M \cup_{G} h^{2}\right)$.

Special cases

$k=d$: Recovers a theorem (and proof) of Cerf '68:

$$
\operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{d}\right)=\operatorname{Emb}_{\partial}\left(\mathbb{D}^{d}, \mathbb{D}^{d}\right) \simeq \Omega \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-1}, \mathbb{D}^{d}\right) .
$$

In particular, $\pi_{0} \operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{4}\right) \cong \pi_{1}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{3}, \mathbb{D}^{4}\right) ; \mathrm{U}\right)$.
$k=1: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, M\right) \simeq \Omega \mathbb{S}^{d-1} \times \Omega\left(M \cup_{G} h^{d-1}\right)$
$d=2$: "Point-pushing": isotopy classes of arcs in a surface M, with endpoints on distinct components of ∂M, are in bijection with $\mathbb{Z} \oplus \pi_{1}\left(M \cup_{G} h^{2}\right)$.
$d=3$: The classical 3d LBT: isotopy classes of arcs in M^{3} with endpoints on distinct components of ∂M, one of which is \mathbb{S}^{2}, are in bijection with $\pi_{1}\left(M \cup_{G} h^{3}\right)$.

Special cases

$$
\begin{aligned}
& k=d: \text { Recovers a theorem (and proof) of Cerf '68: } \\
& \qquad \operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{d}\right)=\operatorname{Emb}_{\partial}\left(\mathbb{D}^{d}, \mathbb{D}^{d}\right) \simeq \Omega \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-1}, \mathbb{D}^{d}\right) . \\
& k=1: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, M\right) \simeq \Omega \mathbb{S}^{d-1} \times \Omega\left(M \cup_{G} h^{d-1}\right) \\
& d=2: \text { "Point-pushing": isotopy classes of arcs in a } \\
& \text { surface } M \text {, with endpoints on distinct } \\
& \text { components of } \partial M \text {, are in bijection with } \\
& \mathbb{Z} \oplus \pi_{1}\left(M \cup_{G} h^{2}\right) . \\
& d=3: \text { The classical } 3 d \text { LBT: isotopy classes of arcs in } \\
& M^{3} \text { with endpoints on distinct components of } \\
& \partial M, \text { one of which is } \mathbb{S}^{2}, \text { are in bijection with } \\
& \pi_{1}\left(M \cup_{G} h^{3}\right) .
\end{aligned}
$$

Special cases

$k=d$: Recovers a theorem (and proof) of Cerf '68:

$$
\operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{d}\right)=\operatorname{Emb}_{\partial}\left(\mathbb{D}^{d}, \mathbb{D}^{d}\right) \simeq \Omega \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-1}, \mathbb{D}^{d}\right)
$$

In particular, $\pi_{0} \operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{4}\right) \cong \pi_{1}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{3}, \mathbb{D}^{4}\right) ; \mathrm{U}\right)$.
$k=1: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, M\right) \simeq \Omega \mathbb{S}^{d-1} \times \Omega\left(M \cup_{G} h^{d-1}\right)$
$d=2$: "Point-pushing": isotopy classes of arcs in a surface M, with endpoints on distinct components of ∂M, are in bijection with $\mathbb{Z} \oplus \pi_{1}\left(M \cup_{G} h^{2}\right)$.
$d=3$: The classical 3d LBT: isotopy classes of arcs in M^{3} with endpoints on distinct components of ∂M, one of which is \mathbb{S}^{2}, are in bijection with $\pi_{1}\left(M \cup_{G} h^{3}\right)$.
$k=2: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, M \cup_{G} h^{d-1}\right)$.

$$
d=4: \mathrm{Emb}_{\partial}\left[\mathbb{D}^{2}, M\right] \cong \pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, M \cup_{G} h^{d-1}\right)
$$

Special cases

$$
\begin{aligned}
& k=d \text { : Recovers a theorem (and proof) of Cerf '68: } \\
& \operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{d}\right)=\operatorname{Emb}_{\partial}\left(\mathbb{D}^{d}, \mathbb{D}^{d}\right) \simeq \Omega \operatorname{Emb}_{\partial}\left(\mathbb{D}^{d-1}, \mathbb{D}^{d}\right) . \\
& \text { In particular, } \pi_{0} \operatorname{Diff}_{\partial}^{+}\left(\mathbb{D}^{4}\right) \cong \pi_{1}\left(\operatorname{Emb}_{\partial}\left(\mathbb{D}^{3}, \mathbb{D}^{4}\right) ; \mathrm{U}\right) \text {. } \\
& k=1: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{1}, M\right) \simeq \Omega \mathbb{S}^{d-1} \times \Omega\left(M \cup_{G} h^{d-1}\right) \\
& d=2 \text { : "Point-pushing": isotopy classes of arcs in a } \\
& \text { surface } M \text {, with endpoints on distinct } \\
& \text { components of } \partial M \text {, are in bijection with } \\
& \mathbb{Z} \oplus \pi_{1}\left(M \cup_{G} h^{2}\right) . \\
& d=3 \text { : The classical 3d LBT: isotopy classes of arcs in } \\
& M^{3} \text { with endpoints on distinct components of } \\
& \partial M \text {, one of which is } \mathbb{S}^{2} \text {, are in bijection with } \\
& \pi_{1}\left(M \cup_{G} h^{3}\right) . \\
& k=2: \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, M \cup_{G} h^{d-1}\right) . \\
& d=4: \mathrm{Emb}_{\partial}\left[\mathbb{D}^{2}, M\right] \cong \pi_{1} \mathrm{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, M \cup_{G} h^{d-1}\right) . \\
& k=3, d=4: \pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{3}, \mathbb{S}^{1} \times \mathbb{D}^{3}\right) \cong \pi_{1} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, \mathbb{D}^{4}\right) \text {, cf. Budney-Gabai. }
\end{aligned}
$$

Picture Proof of Space Level LBT

$K: \mathbb{D}^{k} \hookrightarrow M$, with $\partial K=s$
$J: \square^{k} \hookrightarrow X:=M \cup_{\nu G} h^{d-k+1}$, with $\partial J=u_{-} \cup u_{+}$

Picture Proof of Space Level LBT

$$
K: \mathbb{D}^{k} \hookrightarrow M \text {, with } \partial K=s
$$

Can reverse this by removing a tubular neighbourhood of u_{+}in X, so can show

$$
\operatorname{Emb}_{\partial^{\varepsilon}}\left(\mathbb{D}^{\mathrm{k}}, M\right) \simeq \operatorname{Emb}_{\partial^{\varepsilon}}\left(\mathrm{Q}^{\mathrm{k}}, X\right) .
$$

Picture Proof of Space Level LBT

$K: \mathbb{D}^{k} \hookrightarrow M$, with $\partial K=s$

$J: \square^{k} \hookrightarrow X:=M \cup_{\nu G} h^{d-k+1}$, with $\partial J=u_{-} \cup u_{+}$

Can reverse this by removing a tubular neighbourhood of u_{+}in X, so can show

$$
\operatorname{Emb}_{\partial^{\varepsilon}}\left(\mathbb{D}^{\mathrm{k}}, M\right) \simeq \operatorname{Emb}_{\partial^{\varepsilon}}\left(\mathbb{Q}^{\mathrm{k}}, X\right) .
$$

Now consider the fibration sequence (due to Cerf):
$\operatorname{Emb}_{\partial^{\varepsilon}}\left(\mathrm{a}^{\mathrm{k}}, \mathrm{X}\right) \longrightarrow \operatorname{Emb}_{\mathbb{D}_{-}^{\varepsilon}}\left(\mathrm{a}^{k}, X\right) \xrightarrow{\left.K \mapsto K\right|_{\mathbb{D}_{+}^{e}}} \mathrm{Emb}_{\partial^{\varepsilon}}^{\varepsilon}\left(\mathbb{D}^{\mathrm{k}-1}, X\right)$

Picture Proof of Space Level LBT

$K: \mathbb{D}^{k} \hookrightarrow M$, with $\partial K=s$

$J: G^{k} \hookrightarrow X:=M \cup_{\nu G} h^{d-k+1}$, with $\partial J=u_{-} \cup u_{+}$

Can reverse this by removing a tubular neighbourhood of u_{+}in X, so can show

$$
\operatorname{Emb}_{\partial^{\varepsilon}}\left(\mathbb{D}^{\mathrm{k}}, M\right) \simeq \operatorname{Emb}_{\partial^{\varepsilon}}\left(\mathbb{Q}^{\mathrm{k}}, X\right) .
$$

Now consider the fibration sequence (due to Cerf):

$$
\operatorname{Emb}_{\partial^{\varepsilon}}\left(\square^{\mathrm{k}}, X\right) \longrightarrow \operatorname{Emb}_{\mathbb{D}_{-}^{\varepsilon}}\left(\mathrm{a}^{\mathrm{k}}, X\right) \xrightarrow{\left.K \mapsto K\right|_{\mathbb{D}_{+}^{\varepsilon}}} \mathrm{Emb}_{\partial^{\varepsilon}}^{\varepsilon}\left(\mathbb{D}^{\mathrm{k}-1}, X\right)
$$

The total space is contractible (shrink the half-disk to its u_{-}^{ε}-collar), so:

$$
\Omega \operatorname{Emb}_{\partial^{\varepsilon} \varepsilon}^{\varepsilon}\left(\mathbb{D}^{\mathrm{k}-1}, X\right) \underset{\text { fol }_{U}^{\varepsilon}}{\stackrel{\mathrm{amb}_{U}}{\rightleftarrows}} \operatorname{Emb}_{\partial^{\varepsilon}}\left(\square^{\mathrm{k}}, X\right)
$$

where:

Picture Proof of Space Level LBT

$K: \mathbb{D}^{k} \hookrightarrow M$, with $\partial K=s$

$\int: \square^{k} \leadsto X:=M \bigcup_{\nu G} h^{d-k+1}$, with $O \rho=U_{-}=u_{+}$

Can reverse this by removing a tubular neighbourhood of u_{+}in X, so can show

$$
\operatorname{Emb}_{\partial^{\varepsilon}}\left(\mathbb{D}^{\mathrm{k}}, M\right) \simeq \operatorname{Emb}_{\partial^{\varepsilon}}\left(\mathbb{Q}^{\mathrm{k}}, X\right) .
$$

Now consider the fibration sequence (due to Cerf):

$$
\operatorname{Emb}_{\partial^{\varepsilon}}\left(\square^{\mathrm{k}}, X\right) \longrightarrow \operatorname{Emb}_{\mathbb{D}_{-}^{\varepsilon}}\left(\mathrm{a}^{\mathrm{k}}, X\right) \xrightarrow{\left.K \mapsto K\right|_{\mathbb{D}_{+}^{\varepsilon}}} \mathrm{Emb}_{\partial^{\varepsilon}}^{\varepsilon}\left(\mathbb{D}^{\mathrm{k}-1}, X\right)
$$

The total space is contractible (shrink the half-disk to its u_{-}^{ε}-collar), so:

$$
\Omega \operatorname{Emb}_{\partial^{\varepsilon} \varepsilon}^{\varepsilon}\left(\mathbb{D}^{\mathrm{k}-1}, X\right) \underset{\text { fol } 1_{U}^{\varepsilon}}{\stackrel{\text { amb }_{U}}{\rightleftarrows}} \operatorname{Emb}_{\partial^{\varepsilon}}\left(\square^{\mathrm{k}}, X\right)
$$

Where: $\mathfrak{a m b} \mathfrak{b}_{U}$ is the connecting map (use the family ambient isotopy theorem to extend loops), $\mathfrak{f o l} l_{\mathrm{U}}^{\varepsilon}(K)$ is the loop of ε-augmented $(k-1)$-disks foliating the sphere $-\mathrm{U} \cup K$.

LBT for 2-disks in 4-manifolds

The 4D setting

Let M be an oriented compact smooth 4-manifold together with

- a knot s: $\mathbb{S}^{1} \hookrightarrow \partial M$,
- an embedded sphere $G: \mathbb{S}^{2} \hookrightarrow \partial M$,
so that s and G intersect transversely and positively in a single point.

The 4D setting

Let M be an oriented compact smooth 4-manifold together with

- a knot s: $\mathbb{S}^{1} \hookrightarrow \partial M$,
- an embedded sphere $G: \mathbb{S}^{2} \hookrightarrow \partial M$,
so that s and G intersect transversely and positively in a single point.
Notation. Let
- $m_{-}=s(-i) \in M$ be the basepoint and denote $\pi=\pi_{1}\left(M, m_{-}\right)$,
$\cdot \mathbb{Z}[\pi]$ be the group ring, and $\mathbb{Z}[\pi \backslash 1]:=\left\{r=\sum \epsilon_{i} g_{i}: g_{i} \neq 1\right\}$ its subgroup,

The 4D setting

Let M be an oriented compact smooth 4-manifold together with

- a knot s: $\mathbb{S}^{1} \hookrightarrow \partial M$,
- an embedded sphere $G: \mathbb{S}^{2} \hookrightarrow \partial M$,
so that s and G intersect transversely and positively in a single point.
Notation. Let
- $m_{-}=s(-i) \in M$ be the basepoint and denote $\pi=\pi_{1}\left(M, m_{-}\right)$,
$\cdot \mathbb{Z}[\pi]$ be the group ring, and $\mathbb{Z}[\pi \backslash 1]:=\left\{r=\sum \epsilon_{i} g_{i}: g_{i} \neq 1\right\}$ its subgroup,
- $\sigma: \mathbb{Z}[\pi] \rightarrow \mathbb{Z}[\pi]$ be the usual involution $r=\sum \epsilon_{i} g_{i} \mapsto \sigma(r)=\bar{r}=\sum \epsilon_{i} g_{i}^{-1}$,
- $\mathbb{Z}[\pi \backslash 1]^{\sigma}$ be the subgroup of $\mathbb{Z}[\pi \backslash 1]$ of the invariants: those r with $r=\bar{r}$,

The 4D setting

Let M be an oriented compact smooth 4-manifold together with

- a knot s: $\mathbb{S}^{1} \hookrightarrow \partial M$,
- an embedded sphere $G: \mathbb{S}^{2} \hookrightarrow \partial M$,
so that s and G intersect transversely and positively in a single point.
Notation. Let
- $m_{-}=s(-i) \in M$ be the basepoint and denote $\pi=\pi_{1}\left(M, m_{-}\right)$,
$\cdot \mathbb{Z}[\pi]$ be the group ring, and $\mathbb{Z}[\pi \backslash 1]:=\left\{r=\sum \epsilon_{i} g_{i}: g_{i} \neq 1\right\}$ its subgroup,
- $\sigma: \mathbb{Z}[\pi] \rightarrow \mathbb{Z}[\pi]$ be the usual involution $r=\sum \epsilon_{i} g_{i} \mapsto \sigma(r)=\bar{r}=\sum \epsilon_{i} g_{i}^{-1}$,
- $\mathbb{Z}[\pi \backslash 1]^{\sigma}$ be the subgroup of $\mathbb{Z}[\pi \backslash 1]$ of the invariants: those r with $r=\bar{r}$,
- $\lambda: \pi_{2} M \times \pi_{2} M \rightarrow \mathbb{Z}[\pi]$ be the equivariant intersection form of M.

The 4D setting

Let M be an oriented compact smooth 4-manifold together with

- a knot s: $\mathbb{S}^{1} \hookrightarrow \partial M$,
- an embedded sphere $G: \mathbb{S}^{2} \hookrightarrow \partial M$,
so that s and G intersect transversely and positively in a single point.
Notation. Let
- $m_{-}=s(-i) \in M$ be the basepoint and denote $\pi=\pi_{1}\left(M, m_{-}\right)$,
$\cdot \mathbb{Z}[\pi]$ be the group ring, and $\mathbb{Z}[\pi \backslash 1]:=\left\{r=\sum \epsilon_{i} g_{i}: g_{i} \neq 1\right\}$ its subgroup,
- $\sigma: \mathbb{Z}[\pi] \rightarrow \mathbb{Z}[\pi]$ be the usual involution $r=\sum \epsilon_{i} g_{i} \mapsto \sigma(r)=\bar{r}=\sum \epsilon_{i} g_{i}^{-1}$,
- $\mathbb{Z}[\pi \backslash 1]^{\sigma}$ be the subgroup of $\mathbb{Z}[\pi \backslash 1]$ of the invariants: those r with $r=\bar{r}$,
- $\lambda: \pi_{2} M \times \pi_{2} M \rightarrow \mathbb{Z}[\pi]$ be the equivariant intersection form of M.

We study the set of isotopy classes Emba $\left[\mathbb{D}^{2}, M\right]:=\pi_{0} \mathrm{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right)$ of neat smooth embeddings $K: \mathbb{D}^{2} \hookrightarrow M$ which on $\partial \mathbb{D}^{2}$ agree with s.

The 4D setting

Let M be an oriented compact smooth 4-manifold together with

- a knot s: $\mathbb{S}^{1} \hookrightarrow \partial M$,
- an embedded sphere $G: \mathbb{S}^{2} \hookrightarrow \partial M$,
so that s and G intersect transversely and positively in a single point.
Notation. Let
- $m_{-}=s(-i) \in M$ be the basepoint and denote $\pi=\pi_{1}\left(M, m_{-}\right)$,
$\cdot \mathbb{Z}[\pi]$ be the group ring, and $\mathbb{Z}[\pi \backslash 1]:=\left\{r=\sum \epsilon_{i} g_{i}: g_{i} \neq 1\right\}$ its subgroup,
- $\sigma: \mathbb{Z}[\pi] \rightarrow \mathbb{Z}[\pi]$ be the usual involution $r=\sum \epsilon_{i} g_{i} \mapsto \sigma(r)=\bar{r}=\sum \epsilon_{i} g_{i}^{-1}$,
- $\mathbb{Z}[\pi \backslash 1]^{\sigma}$ be the subgroup of $\mathbb{Z}[\pi \backslash 1]$ of the invariants: those r with $r=\bar{r}$,
- $\lambda: \pi_{2} M \times \pi_{2} M \rightarrow \mathbb{Z}[\pi]$ be the equivariant intersection form of M.

We study the set of isotopy classes $\operatorname{Emb}_{\partial}\left[\mathbb{D}^{2}, M\right]:=\pi_{0} \operatorname{Emb}_{\partial}\left(\mathbb{D}^{2}, M\right)$ of neat smooth embeddings $K: \mathbb{D}^{2} \hookrightarrow M$ which on $\partial \mathbb{D}^{2}$ agree with s.

By Space Level LBT we have $\operatorname{Emb}_{2}\left[\mathbb{D}^{2}, M\right]:=\pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{1}, M \cup_{\nu G} h^{3}\right)$ and we can compute the latter group.

LBT for 2-disks

Theorem A. There is an exact sequence of sets
$\mathbb{Z}[\pi \backslash 1]^{\sigma} / \operatorname{dax}\left(\pi_{3} M\right) \underset{\underset{\text { Dax }}{ }}{\stackrel{+\mathrm{fm}(\cdot)^{6}}{ }} \operatorname{Emb}_{\partial}\left[\mathbb{D}^{2}, M\right] \xrightarrow{j} \operatorname{Map}_{\partial}\left[\mathbb{D}^{2}, M\right] \xrightarrow{\mu_{2}} \mathbb{Z}[\pi \backslash 1] /\langle r-\bar{r}\rangle$

In detail:

LBT for 2-disks

Theorem A. There is an exact sequence of sets

In detail:

- Wall's self-intersection invariant μ_{2} is surjective;
- $\mu_{2}^{-1}(0)=\operatorname{im}(j)$
$\cdot j^{-1}[K]=\left\{K+f m(r)^{G}: r \in \mathbb{Z}[\pi \backslash 1]^{\sigma}\right\}$
- $\operatorname{Dax}(-, K): j^{-1}[K] \rightarrow \mathbb{Z}[\pi \backslash 1]^{\sigma} / \operatorname{dax}\left(\pi_{3} M\right)$ is the inverse of this action

LBT for 2-disks

Theorem A. There is an exact sequence of sets

In detail:

- Wall's self-intersection invariant μ_{2} is surjective;
- $\mu_{2}^{-1}(0)=i m(j)$
$\Longleftrightarrow f: \mathbb{D}^{2} \rightarrow M, \partial f=s$, homotopic to an embedding iff $\mu_{2}(f)=0$;
$\cdot j^{-1}[K]=\left\{K+f m(r)^{G}: r \in \mathbb{Z}[\pi \backslash 1]^{\sigma}\right\}$
- $\operatorname{Dax}(-, K): j^{-1}[K] \rightarrow \mathbb{Z}[\pi \backslash 1]^{\sigma} / \operatorname{dax}\left(\pi_{3} M\right)$ is the inverse of this action

LBT for 2-disks

Theorem A. There is an exact sequence of sets

In detail:

- Wall's self-intersection invariant μ_{2} is surjective;
- $\mu_{2}^{-1}(0)=\operatorname{im}(j)$
$\Longleftrightarrow f: \mathbb{D}^{2} \rightarrow M, \partial f=s$, homotopic to an embedding iff $\mu_{2}(f)=0$;
$\cdot j^{-1}[K]=\left\{K+f m(r)^{G}: r \in \mathbb{Z}[\pi \backslash 1]^{\sigma}\right\}$
\Longleftrightarrow embeddings homotopic to $K: \mathbb{D}^{2} \hookrightarrow M$ are obtained from K by the action $+\mathrm{fm}(r)^{G}$: do finger moves along r, and then Norman tricks;
$\left.\cdot \operatorname{Dax}(-, K): j^{-1}[K] \rightarrow \mathbb{Z}^{\mathbb{L}} \pi \backslash 1\right]^{\sigma} / \operatorname{dax}\left(\pi_{3} M\right)$ is the inverse of this action

LBT for 2-disks

Theorem A. There is an exact sequence of sets

In detail:

- Wall's self-intersection invariant μ_{2} is surjective;
- $\mu_{2}^{-1}(0)=\operatorname{im}(j)$
$\Longleftrightarrow f: \mathbb{D}^{2} \rightarrow M, \partial f=s$, homotopic to an embedding iff $\mu_{2}(f)=0$;
$\cdot j^{-1}[K]=\left\{K+\mathrm{fm}(r)^{G}: r \in \mathbb{Z}[\pi \backslash 1]^{\sigma}\right\}$
\Longleftrightarrow embeddings homotopic to $K: \mathbb{D}^{2} \hookrightarrow M$ are obtained from K by the action $+\mathrm{fm}(r)^{G}$: do finger moves along r, and then Norman tricks;
- $\operatorname{Dax}(-, K): j^{-1}[K] \rightarrow \mathbb{Z}[\pi \backslash 1]^{\sigma} / \operatorname{dax}\left(\pi_{3} M\right)$ is the inverse of this action
\Longleftrightarrow the relative Dax invariant, given by a clever count of double point loops in a homotopy to K, detects the action:

$$
\operatorname{Dax}\left(K+\mathrm{fm}(r)^{G}, K\right)=[r] .
$$

Picture of LBT for 2-disks

Theorem A. There is an exact sequence of sets

Picture of LBT for 2-disks

Theorem A. There is an exact sequence of sets

$$
\mathbb{Z}[\pi \backslash 1]^{\sigma} / \operatorname{dax}\left(\pi_{3} M\right) \stackrel{\substack{\mathrm{fm}(\cdot) \\ \stackrel{+\mathrm{Dax}}{6}}}{\operatorname{tmb}}\left[\mathbb{D}^{2}, M\right] \xrightarrow{j} \operatorname{Map}_{\partial}\left[\mathbb{D}^{2}, M\right] \xrightarrow{\mu_{2}} \mathbb{Z}[\pi \backslash 1] /\langle r-\bar{r}\rangle
$$

Note: A similar construction by Gabai in "Self-Referential Discs and the Light Bulb Lemma".

Other results

Special case: spheres with a common dual

Fix an oriented compact smooth 4-manifold N together with

- a framed embedded sphere $G: \mathbb{S}^{2} \hookrightarrow N$.

Special case: spheres with a common dual

Fix an oriented compact smooth 4-manifold N together with

- a framed embedded sphere $G: \mathbb{S}^{2} \hookrightarrow N$.

Consider the set of isotopy classes

$$
\operatorname{Emb}^{G}\left[\mathbb{S}^{2}, N\right]
$$

of spheres $F: \mathbb{S}^{2} \hookrightarrow N$ which are dual to G, i.e. F and G intersect transversely and positively in a single point.

Special case: spheres with a common dual

Fix an oriented compact smooth 4-manifold N together with

- a framed embedded sphere $G: \mathbb{S}^{2} \hookrightarrow N$.

Consider the set of isotopy classes

$$
\operatorname{Emb}^{6}\left[\mathbb{S}^{2}, N\right]
$$

of spheres $F: \mathbb{S}^{2} \hookrightarrow N$ which are dual to G, i.e. F and G intersect transversely and positively in a single point.

Proposition

There is a bijection

$$
\text { - } \cup \nu_{x} G: E m b_{a}\left[\mathbb{D}^{2}, N \backslash \nu G\right] \stackrel{ }{\cong} \operatorname{Emb}^{G}\left[\mathbb{S}^{2}, N\right],
$$

where $s=\partial\left(\nu_{x} G\right): \mathbb{S}^{1} \hookrightarrow \partial(N \backslash \nu G)$ is a meridian circle of G at $x \in G$, and its dual is a push-off of G into $\partial(N \backslash \nu G)$.

Special case: spheres with a common dual

Fix an oriented compact smooth 4-manifold N together with

- a framed embedded sphere $G: \mathbb{S}^{2} \hookrightarrow N$.

Consider the set of isotopy classes

$$
\mathrm{Emb}^{6}\left[\mathbb{S}^{2}, N\right]
$$

of spheres $F: \mathbb{S}^{2} \hookrightarrow N$ which are dual to G, i.e. F and G intersect transversely and positively in a single point.

Proposition

There is a bijection
$\cdot \cup \nu_{x} G: E m b b_{2}\left[\mathbb{D}^{2}, N \backslash \nu G\right] \stackrel{\cong}{\leftrightarrows} \operatorname{Emb}^{G}\left[\mathbb{S}^{2}, N\right]$,
where $s=\partial\left(\nu_{x} G\right): \mathbb{S}^{1} \hookrightarrow \partial(N \backslash \nu G)$ is a meridian circle of G at $x \in G$, and its dual is a push-off of G into $\partial(N \backslash \nu G)$.

Observe: $\partial(N \backslash \nu G)=\partial N \sqcup \partial(\nu G)$ and $\partial(\nu G) \cong \mathbb{S}^{1} \times \mathbb{S}^{2}$. Conversely, if a 4 -manifold M has a boundary component $\mathbb{S}^{1} \times \mathbb{S}^{2}$, attaching $\mathbb{D}^{2} \times \mathbb{S}^{2}$ to it takes us to the setup of spheres with a fixed dual.

Other results

Theorem

If $M=N \backslash \nu G$ for a framed $G: \mathbb{S}^{2} \hookrightarrow N$, then $\langle r+\bar{r}\rangle \subseteq \operatorname{dax}\left(\pi_{3} M\right)$.
Moreover, the induced map dax: $\pi_{3} N \rightarrow \mathbb{Z}[\pi \backslash 1]^{\sigma} /\langle r+\bar{r}\rangle$

Other results

Theorem

If $M=N \backslash \nu G$ for a framed $G: \mathbb{S}^{2} \hookrightarrow N$, then $\langle r+\bar{r}\rangle \subseteq \operatorname{dax}\left(\pi_{3} M\right)$.
Moreover, the induced map dax: $\pi_{3} N \rightarrow \mathbb{Z}^{\mathbb{Z}}\langle\pi \backslash 1]^{\sigma} /\langle r+\bar{r}\rangle$ is equal to μ_{3}, Wall's self-intersection invariant for 3 -spheres in $N \times \mathbb{I}^{2}$.

Other results

Theorem

If $M=N \backslash \nu G$ for a framed $G: \mathbb{S}^{2} \hookrightarrow N$, then $\langle r+\bar{r}\rangle \subseteq \operatorname{dax}\left(\pi_{3} M\right)$. Moreover, the induced map dax: $\pi_{3} N \rightarrow{ }^{\mathbb{Z}}[\pi \backslash 1]^{\sigma} /\langle r+\bar{r}\rangle$ is equal to μ_{3}, Wall's self-intersection invariant for 3 -spheres in $N \times \mathbb{I}^{2}$.

Corollary [Gabai when $T_{N}=0$, Schneiderman-Teichner in general] The set of spheres homotopic to $[F] \in \mathrm{Emb}^{6}\left[S^{2}, N\right] \cong E m b_{\partial}\left[\mathbb{D}^{2}, M\right]$ is given by

$$
\mathbb{Z}[\pi \backslash 1]^{\sigma} /\left\langle r+\bar{r}, \mu_{3}\left(\pi_{3} N\right)\right\rangle \cong \mathbb{F}_{2}\left[T_{N}\right] / \mu_{3}\left(\pi_{3} N\right) .
$$

$\mathbb{F}_{2}\left[T_{M}\right]$ is the vector space over the field with two elements generated by the set T_{M} of 2-torsion elements in $\pi=\pi_{1} N$. The above theorem also implies $\operatorname{Dax}=\mathrm{FQ}$.

Other results

Theorem

If $M=N \backslash \nu G$ for a framed $G: \mathbb{S}^{2} \hookrightarrow N$, then $\langle r+\bar{r}\rangle \subseteq \operatorname{dax}\left(\pi_{3} M\right)$.
Moreover, the induced map dax: $\pi_{3} N \rightarrow{ }^{\mathbb{Z}}[\pi \backslash 1]^{\sigma} /\langle r+\bar{r}\rangle$ is equal to μ_{3}, Wall's self-intersection invariant for 3 -spheres in $N \times \mathbb{I}^{2}$.

Corollary [Gabai when $T_{N}=0$, Schneiderman-Teichner in general] The set of spheres homotopic to $[F] \in \operatorname{Emb}^{G}\left[\mathbb{S}^{2}, N\right] \cong \operatorname{Emb}_{\partial}\left[\mathbb{D}^{2}, M\right]$ is given by

$$
\mathbb{Z}[\pi \backslash 1]^{\sigma} /\left\langle r+\bar{r}, \mu_{3}\left(\pi_{3} N\right)\right\rangle \cong \mathbb{F}_{2}\left[T_{N}\right] / \mu_{3}\left(\pi_{3} N\right)
$$

$\mathbb{F}_{2}\left[T_{M}\right]$ is the vector space over the field with two elements generated by the set T_{M} of 2-torsion elements in $\pi=\pi_{1} N$. The above theorem also implies $\operatorname{Dax}=\mathrm{FQ}$.

- We also describe some properties of Dax and dax (see e.g. Theorem B in the preprint).

Other results

Theorem

If $M=N \backslash \nu G$ for a framed $G: \mathbb{S}^{2} \hookrightarrow N$, then $\langle r+\bar{r}\rangle \subseteq \operatorname{dax}\left(\pi_{3} M\right)$.
Moreover, the induced map dax: $\pi_{3} N \rightarrow{ }^{\mathbb{Z}}[\pi \backslash 1]^{\sigma} /\langle r+\bar{r}\rangle$ is equal to μ_{3}, Wall's self-intersection invariant for 3 -spheres in $N \times \mathbb{I}^{2}$.

Corollary [Gabai when $T_{N}=0$, Schneiderman-Teichner in general] The set of spheres homotopic to $[F] \in \mathrm{Emb}^{6}\left[\mathbb{S}^{2}, N\right] \cong E m b_{\partial}\left[\mathbb{D}^{2}, M\right]$ is given by

$$
\mathbb{Z}[\pi \backslash 1]^{\sigma} /\left\langle r+\bar{r}, \mu_{3}\left(\pi_{3} N\right)\right\rangle \cong \mathbb{F}_{2}\left[T_{N}\right] / \mu_{3}\left(\pi_{3} N\right) .
$$

$\mathbb{F}_{2}\left[T_{M}\right]$ is the vector space over the field with two elements generated by the set T_{M} of 2-torsion elements in $\pi=\pi_{1} N$. The above theorem also implies $\operatorname{Dax}=\mathrm{FQ}$.

- We also describe some properties of Dax and dax (see e.g. Theorem B in the preprint). As a consequence, we exhibit arbitrary finitely generated abelian group as the kernel $\mathbb{Z}[\pi \backslash 1]^{\sigma} / \operatorname{dax}\left(\pi_{3} M\right) \cong j^{-1}[K]$ for some M.

Other results

Theorem

If $M=N \backslash \nu G$ for a framed $G: \mathbb{S}^{2} \hookrightarrow N$, then $\langle r+\bar{r}\rangle \subseteq \operatorname{dax}\left(\pi_{3} M\right)$.
Moreover, the induced map dax: $\pi_{3} N \rightarrow{ }^{\mathbb{Z}}[\pi \backslash 1]^{\sigma} /\langle r+\bar{r}\rangle$ is equal to μ_{3}, Wall's self-intersection invariant for 3 -spheres in $N \times \mathbb{I}^{2}$.

Corollary [Gabai when $T_{N}=0$, Schneiderman-Teichner in general]
The set of spheres homotopic to $[F] \in \mathrm{Emb}^{6}\left[\mathbb{S}^{2}, N\right] \cong E m b_{\partial}\left[\mathbb{D}^{2}, M\right]$ is given by

$$
\mathbb{Z}[\pi \backslash 1]^{\sigma} /\left\langle r+\bar{r}, \mu_{3}\left(\pi_{3} N\right)\right\rangle \cong \mathbb{F}_{2}\left[T_{N}\right] / \mu_{3}\left(\pi_{3} N\right) .
$$

$\mathbb{F}_{2}\left[T_{M}\right]$ is the vector space over the field with two elements generated by the set T_{M} of 2-torsion elements in $\pi=\pi_{1} N$. The above theorem also implies $\operatorname{Dax}=\mathrm{FQ}$.

- We also describe some properties of Dax and dax (see e.g. Theorem B in the preprint). As a consequence, we exhibit arbitrary finitely generated abelian group as the kernel $\mathbb{Z}[\pi \backslash 1]^{\sigma} / \operatorname{dax}\left(\pi_{3} M\right) \cong j^{-1}[K]$ for some M.
- Group structures on sets of isotopy classes, see the next slide.

Group structures

Theorem
After choosing an arbitrary basepoint $U \in \operatorname{Emb}_{2}\left[\mathbb{D}^{2}, M\right]$

Group structures

Theorem

After choosing an arbitrary basepoint $\mathrm{U} \in \mathrm{Emb}_{{ }_{2}}\left[\mathbb{D}^{2}, M\right]$ this set becomes a group, with U as the unit and the commutator

$$
\left[K_{1}, K_{2}\right]=\mathrm{U}+\mathrm{fm}(\tilde{\lambda})^{G}
$$

for $K_{1}, K_{2} \in \operatorname{Emb}_{\partial}\left[\mathbb{D}^{2}, M\right]$ and $\tilde{\lambda}=\left[\lambda\left(-U \cup K_{1},-U \cup K_{2}\right)\right] \in \mathbb{Z}[\pi \backslash 1]$.

Group structures

Theorem

After choosing an arbitrary basepoint $U \in \operatorname{Emb}_{\partial}\left[\mathbb{D}^{2}, M\right]$ this set becomes a group, with U as the unit and the commutator

$$
\left[K_{1}, K_{2}\right]=\mathrm{U}+\mathrm{fm}(\tilde{\lambda})^{G}
$$

for $K_{1}, K_{2} \in \operatorname{Emb}_{3}\left[\mathbb{D}^{2}, M\right]$ and $\tilde{\lambda}=\left[\lambda\left(-U \cup K_{1},-U \cup K_{2}\right)\right] \in \mathbb{Z}[\pi \backslash 1]$.
Moreover, the sequence of Theorem A becomes an exact sequence of groups, with the bijection $-U \cup \bullet: \operatorname{Map}_{d}\left[\mathbb{D}^{2}, M\right] \cong \pi_{2} M$ inducing a nonstandard group structure \star on $\pi_{2} \mathrm{M}$:

$$
a_{1} \star a_{2}=a_{1}+a_{2}-\lambda\left(a_{1}, a_{2}\right) G
$$

Group structures

Theorem

After choosing an arbitrary basepoint $U \in \operatorname{Emb}_{\partial}\left[\mathbb{D}^{2}, M\right]$ this set becomes a group, with U as the unit and the commutator

$$
\left[K_{1}, K_{2}\right]=\mathrm{U}+\mathrm{fm}(\tilde{\lambda})^{G}
$$

for $K_{1}, K_{2} \in \operatorname{Emb}_{3}\left[\mathbb{D}^{2}, M\right]$ and $\tilde{\lambda}=\left[\lambda\left(-U \cup K_{1},-U \cup K_{2}\right)\right] \in \mathbb{Z}[\pi \backslash 1]$.
Moreover, the sequence of Theorem A becomes an exact sequence of groups, with the bijection $-\mathrm{U} \cup \bullet: \operatorname{Map}_{\partial}\left[\mathbb{D}^{2}, M\right] \cong \pi_{2} M$ inducing a nonstandard group structure \star on $\pi_{2} \mathrm{M}$:

$$
a_{1} \star a_{2}=a_{1}+a_{2}-\lambda\left(a_{1}, a_{2}\right) G
$$

Caution:

$\operatorname{disk}\left[K_{1}, K_{2}\right]$ is not homotopic to U (but to $U \#(\tilde{\lambda}-\tilde{\lambda}) G \in \operatorname{Map}_{\partial}\left[\mathbb{D}^{2}, M\right]$).

Group structures

Theorem

After choosing an arbitrary basepoint $U \in \operatorname{Emb}_{3}\left[\mathbb{D}^{2}, M\right]$ this set becomes a group, with U as the unit and the commutator

$$
\left[K_{1}, K_{2}\right]=\mathrm{U}+\mathrm{fm}(\tilde{\lambda})^{G}
$$

for $K_{1}, K_{2} \in \operatorname{Emb}_{3}\left[\mathbb{D}^{2}, M\right]$ and $\tilde{\lambda}=\left[\lambda\left(-U \cup K_{1},-U \cup K_{2}\right)\right] \in \mathbb{Z}[\pi \backslash 1]$.
Moreover, the sequence of Theorem A becomes an exact sequence of groups, with the bijection $-\mathrm{U} \cup \bullet: \operatorname{Map}_{\partial}\left[\mathbb{D}^{2}, M\right] \cong \pi_{2} M$ inducing a nonstandard group structure \star on $\pi_{2} \mathrm{M}$:

$$
a_{1} \star a_{2}=a_{1}+a_{2}-\lambda\left(a_{1}, a_{2}\right) G
$$

Caution:

$\operatorname{disk}\left[K_{1}, K_{2}\right]$ is not homotopic to U (but to $U \#(\tilde{\lambda}-\tilde{\lambda}) G \in \operatorname{Map}_{\partial}\left[\mathbb{D}^{2}, M\right]$).
Note:
$\operatorname{Emb}_{\partial}\left[\mathbb{D}^{2}, M\right]$ is almost never abelian (we have seen $\operatorname{dax}\left(\pi_{3} M\right) \subset \mathbb{Z}[\pi \backslash 1]^{\sigma}$ and λ is rarely symmetric, so $\tilde{\lambda}$ not in the image of dax).

Thank you!

