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Theorem (Space Level LBT)

For k < d > 1let M be a compact smooth d-manifold with a pair of smoothly
embedded spheres s: S*~' < M and G: SY~* < M, such that G has trivial
normal bundle and G th s = {pt}.

Then there is an explicit pair of homotopy equivalences

Embs(Df, M) == QEmbj(D*",MU,c h?=7).

arnb
- Emba (D", M) = space of neat embeddings K: D* < M with K|,pr = s.
Neat = transverse to 9M and K(X) N OM = K(9X).

- For E = Emb5(D"~", M U, h%= ") the boundary condition is uo := du
and QF = Map, (S, £) is the space of loops based at u, :=snh? 1,

* Supscript e means each embedded disk is equipped with a “push-off”...

- Codimension increased by one! ( == right hand side is easier)
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Theorem (Space Level LBT)

For a d-manifold M and s: S*=" < dM, G: S?* < aM, such that G has trivial
normal bundle and Gh s = {pt} there is a pair of homotopy equivalences

Emba (D, M) == QEmbs(D*",MU,c h?=F").
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t=20
R A Only a schematic:
% t=1
P

foranyt € [0, 1], the
time t arc is isotopic
to u;.




k = d : Recovers a theorem (and proof) of Cerf '68:
Diff} (DY) = Embs(D?, DY) ~ Q Emby (D™, DY).

In particular, mo Diff 5 (D*) & 7 (Emby (D?, D*); U).



k = d : Recovers a theorem (and proof) of Cerf '68:
Diff 5 (D) = Embs(D?, DY) ~ Q Emby (D™, D).
In particular, mo Diff 5 (D*) & 7 (Emby (D?, D*); U).
kR=1: Emby(D",M) ~ QS"~" x Q(M Ug h?™)



k = d : Recovers a theorem (and proof) of Cerf '68:
Diff} (DY) = Embs(D?, DY) ~ Q Emby (D™, DY).
In particular, mo Diff 5 (D*) & 7 (Emby (D?, D*); U).
kR=1: Emby(D",M) ~ QS"~" x Q(M Ug h?™)
d =2 : “Point-pushing”: isotopy classes of arcs in a
surface M, with endpoints on distinct

components of OM, are in bijection with
Z @ m(M Ug h?).



k = d : Recovers a theorem (and proof) of Cerf '68:
Diff} (DY) = Embs(D?, DY) ~ Q Emby (D™, DY).
In particular, mo Diff 5 (D*) & 7 (Emby (D?, D*); U).
kR=1: Emby(D",M) ~ QS"~" x Q(M Ug h?™)

d =2 : “Point-pushing”: isotopy classes of arcs in a
surface M, with endpoints on distinct
components of OM, are in bijection with
YAS) 7T1(/V| Ug hz).

d =3: The classical 3d LBT: isotopy classes of arcs in
M? with endpoints on distinct components of
M, one of which is S?, are in bijection with
7T1(M Ug h3)



k = d : Recovers a theorem (and proof) of Cerf '68:
Diff} (DY) = Embs(D?, DY) ~ Q Emby (D™, DY).
In particular, mo Diff 5 (D*) & 7 (Emby (D?, D*); U).
kR=1: Emby(D",M) ~ QS"~" x Q(M Ug h?™)

d =2 : “Point-pushing”: isotopy classes of arcs in a
surface M, with endpoints on distinct
components of OM, are in bijection with
YAS) 7T1(/V| Ug hz).

d =3: The classical 3d LBT: isotopy classes of arcs in
M? with endpoints on distinct components of
M, one of which is S?, are in bijection with
7T1(M Ug h3)

kR =2: Emba(D?* M) ~ QEmb% (D', M Us h%").



k = d : Recovers a theorem (and proof) of Cerf '68:
Diff} (DY) = Embs(D?, DY) ~ Q Emby (D™, DY).
In particular, mo Diff 5 (D*) & 7 (Emby (D?, D*); U).
k=1: Emba(D',M) ~ QS x Q(M U h?™")

d =2 : “Point-pushing”: isotopy classes of arcs in a
surface M, with endpoints on distinct
components of OM, are in bijection with
YAS) 7T1(/V| Ug hz).

d =3: The classical 3d LBT: isotopy classes of arcs in
M? with endpoints on distinct components of
M, one of which is S?, are in bijection with
7T1(M Ug h3)

kR =2: Emba(D?* M) ~ QEmb% (D', M Us h%").
d = 4 : Emba[D? M] 2 7 Embg(D', M Ug h?™").



k = d : Recovers a theorem (and proof) of Cerf '68:
Diff} (DY) = Embs(D?, DY) ~ Q Emby (D™, DY).
In particular, mo Diff 5 (D*) & 7 (Emby (D?, D*); U).
kR=1: Emby(D",M) ~ QS"~" x Q(M Ug h?™)

d =2 : “Point-pushing”: isotopy classes of arcs in a
surface M, with endpoints on distinct
components of OM, are in bijection with
Z @ m(MUg hz).

d =3: The classical 3d LBT: isotopy classes of arcs in
M? with endpoints on distinct components of
M, one of which is S?, are in bijection with
m1(M Ug h3)A

kR =2: Emba(D?* M) ~ QEmb% (D', M Us h%").

d = 4 : Emba[D? M] 2 7 Embg(D', M Ug h?™").

k=3,d==4: 1 Embs(D?,S" x D*) 2 m; Emby(D?, D*), cf. Budney-Gabai.
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F ey M, with 9K = s J: Q% = X = MU,ch! " with §) = u_Uu,
Can reverse this by removing a tubular neighbourhood of uy in X, so can show

Embge (D, M) ~ Embyp= (0%, X). J

Now consider the fibration sequence (due to Cerf):

K—K|pe
Embgs (0%, X) «———— Embpe (0%, X) ——— Embj: (D", X)
The total space is contractible (shrink the half-disk to its u® -collar), SO

ambyy
QEmbge (D" ", X) = Embs-(0*,X) J

foly

where: amby is the connecting map (use the family ambient isotopy theorem to extend loops),

ol (K) is the loop of e-augmented (k — 1)-disks foliating the sphere —U U K. O
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Let M be an oriented compact smooth 4-manifold together with
- aknots:S'— oM,
- an embedded sphere G: §? < oM,
so that s and G intersect transversely and positively in a single point.
Notation. Let
- m_ = s(—i) € M be the basepoint and denote 7 = m(M, m_),
- Z[n] be the group ring, and Z[r\1] := {r = >_ €ig; : g; # 1} its subgroup,
« 0: Z[r] — Z[r) be the usual involution r = 3" €igi = o(r) =T = > &g,
- Z[m\1]? be the subgroup of Z[x\ 1] of the invariants: those r with r =T,
- \: mM x mM — Z[r] be the equivariant intersection form of M.

We study the set of isotopy classes Embg[D?, M] := mo Emby(ID*, M) of neat
smooth embeddings K: D? < M which on D? agree with s.

By Space Level LBT we have Emb,[D?, M] := 7 Embj (D', M U,¢ h”) and we can
compute the latter group.
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Theorem A. There is an exact sequence of sets

+fm(-)G
2N ooty o> EmbolD?, M) — Mapo[D?, M) =2 21T o

In detail:
- Wall's self-intersection invariant yu, is surjective;
p7'(0) = im(j)
<= f:D? = M, 9f = s, homotopic to an embedding iff 1,(f) = 0;
JTK = {K +fm(n° : r € Z[x\1]7}

<= embeddings homotopic to K: D> < M are obtained from K by the action
—|—fm(r)6: do finger moves along r, and then Norman tricks;

- Dax(—,K): j7'[K] = Z[ﬁ\’l]ﬁ/dax(ﬁ’g/\//) is the inverse of this action

<= the relative Dax invariant, given by a clever count of double point loops
in a homotopy to K, detects the action:

Dax(K + fm(r)%, K) = [1].
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Theorem A. There is an exact sequence of sets

+fm(
PN bl G- EmbalD?, M) > Mapy[?, ] 2 2T\

Note: A similar construction by Gabai in “Self-Referential Discs and the Light Bulb
Lemma”.
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Special case: spheres with a common dual

Fix an oriented compact smooth 4-manifold N together with
- a framed embedded sphere G: §? < N.

Consider the set of isotopy classes
Emb°[S?, N]

of spheres F: $? < N which are dual to G, i.e. F and G intersect transversely
and positively in a single point.
Proposition
There is a bijection

«UuG: Embs[D?, N\vG] — Emb°[S?, N],
where s = 9(1«G): S' < A(N\vG) is a meridian circle of G at x € G, and its
dual is a push-off of G into J(N\ vG).

Observe: 9(N\vG) = ON LI 9(vG) and d(vG) = S' x S%. Conversely, if a
4-manifold M has a boundary component S' x §?, attaching D? x S? to it takes
us to the setup of spheres with a fixed dual.
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M the induced map dax: mN — M\ 7 ) to 1z:, Wall
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Corollary [Gabai when Ty = 0, Schneiderman-Teichner in general]
The set of spheres homotopic to [F] € Emb®[S?, N] = Embs[D?, M] is given by

2Nty 2P

F,[Tu] is the vector space over the field with two elements generated by the set Ty of 2-torsion

elements in m = mN. The above theorem also implies Dax = FQ.

- We also describe some properties of Dax and dax (see e.g. Theorem B in
the preprint). As a consequence, we exhibit arbitrary finitely generated
abelian group as the kernel Z[m\ 1]U/dax(71'3/\/l) = j7'[K] for some M.

- Group structures on sets of isotopy classes, see the next slide.
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Group structures

Theorem
After choosing an arbitrary basepoint U € Embs[D?, M] this set becomes a
group, with U as the unit and the commutator

[Ki, K] = U 4 fm(})°
for ki, K € Embs[D?,M] and X = [A\(~U U Ki, —~U U Ky)] € Z[x\1].
Moreover, the sequence of Theorem A becomes an exact sequence of groups,
with the bijection —U U+: Map,[D? M] = mM inducing a nonstandard group

structure x on mM:
a1 x 0, = a1 + A, — A(a1, a2)G.

Caution:
disk [Ki, K»] is not homotopic to U (but to U#(A — X)G € Map,[D?, M]).

Note:
Embs[D?, M] is almost never abelian (we have seen dax(msM) C Z[x\1]” and A
is rarely symmetric, so A not in the image of dax).
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