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Introduction



Spaces of embeddings

Goal. Study the homotopy type of the space

Emb∂(X,M)

of smooth neat embeddings between compact manifolds X and M,
satisfying a fixed boundary condition ∂X ↪→ ∂M.

Remarks. • Neat embedding is the one that is transverse to ∂M.
• We use Whitney C∞-topology.
• The case of closed manifolds can be reduced to this.

Tools. Goodwillie-Weiss [GW99] embedding calculus

⇒ homotopy limits, Whitehead / Samelson products, configuration
spaces, operads, graph complexes...
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In this talk...

...we give a geometric interpretation of embedding calculus for

Emb∂(I,M) with I = [0, 1] and dim(M) = 3

and relate it to Vassiliev theory of finite type knot invariants [Vas90].

In particular, for M = I3 one has

π0 Emb(S1,S3) ∼= π0 Emb∂(I, I3) = {knots}⧸isotopy
which is a commutative monoid:
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Geometric approach to
embedding calculus



Embedding calculus: the Taylor tower

The outcome of this theory is the tower:

Theorem (Goodwillie-Klein [GK15])
If (dim X, dimM) ̸= (1, 3) then the map
evn is k-connected for
k :=

(
1− dim X+ n(dimM− dim X− 2)

)
.

Recall: a map is k-connected if it is an iso
on π∗<k and onto πk.

Corollary
If dimM− dim X > 2, then
lim evn : Emb∂(X,M) → limPn(X,M)

is a weak equivalence.

...

Pn+1(X,M)

Pn(X,M)

...

Emb∂(X,M) P1(X,M)

Imm∂(X,M)

pn+1

pn

ev1

evn
evn+1

≃
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The Taylor tower for knotted arcs

Note. One can show that lim evn for M = I3 is not a weak equivalence.
However the connectivity formula predicts:

Theorem A [Kos20]

If dimM = 3, then evn : Emb∂(I,M) → Pn(I,M) is 0-connected.

This follows from Main Theorem B (see p. 9), which gives a geometric
interpretation of points in Pn(I,M). We use the following model.

Fix an increasing sequence of disjoint closed subintervals Ji ⊆ I.

J0 J1
. . .

Definition (Goodwillie’s punctured knots model)

Pn(I,M) := holim
∅̸=S⊆{0,1,...,n}

Emb∂(I \
⊔
i∈S

Ji,M)

There are natural fibrations pn and evaluation maps evn.
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Connection to Vassiliev’s theory

Theorem (Budney-Conant-Koytcheff-Sinha [BCKS17])
The set π0Pn(I, I3) has a structure of an abelain group, and
π0evn : π0 Emb∂(I, I3) → π0Pn(I, I3) is an additive Vassiliev invariant
of type < n, that is, a map of monoids which factors as

π0 Emb∂(I, I3) π0Pn(I, I3)

π0 Emb∂(I, I3)⧸∼n

π0evn

evn

Conjecture (BC-Scannell-S [BCSS05])
π0evn is a universal additive Vassiliev invariant of type < n, that is,
the induced homomorphism evn is an isomorphism of groups.

Corollary (of Theorem A)
The homomorphism evn is surjective.
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Connection to Vassiliev’s theory

Moreover, we can combine our main theorem and results of Boavida
de Brito and Horel to obtain the following.

Corollary (of Theorem B and [BH20])
• evn ⊗Q is an isomorphism for all n ≥ 1.
• evn ⊗ Zp is an isomorphism for n ≤ p+ 2.

Remarks. • Thus, the embedding calculus invariants are at least as
good as Kontsevich integral (or Bott–Taubes configuration
space integrals).

• Those invariants indeed use integration, so cannot offer
answers over Z (or in characteristic p).

• As a consequence of Theorem B, we also have that they
factor through the Taylor tower, cf. [Vol06].
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Two disguises of trees

There is a geometric approach to Vassiliev’s theory using gropes.

A grope cobordism of degree n is a certain 2-complex built out of
surfaces which are embedded in M. It has an underlying
π1M-decorated tree Γgn ∈ Treeπ1M(n).

Here Γgn consists of a rooted planar binary tree Γ with n leaves which
are enumerated and also decorated by elements

gi ∈ π1(M), 1 ≤ i ≤ n.

For example,

Γg3 :=

1
g1

3
g3

2
g2

∈ Treeπ1M(3).
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Two disguises of trees

Remarkably, the first non-vanishing homotopy group of the layer

Fn+1(M) := fib
(
pn+1 : Pn+1(I,M) → Pn(I,M)

)
in the Taylor tower is also related to the set Treeπ1M(n).

Namely, for any dim(M) = d ≥ 3 we show that

πn(d−3)Fn+1(M) ∼= Lieπ1M(n) := Z[Treeπ1M(n)]⧸AS, IHX ∼= Lie(n)⊗Z[(π1M)n]

where

AS : ...

Γ2 Γ1

+ ...

Γ1 Γ2

= 0,

IHX : ...

Γ3 Γ2 Γ1

− ...

Γ3 Γ2 Γ1

+ ...

Γ1 Γ3 Γ2

= 0. 8



Two disguises of trees are compatible

Main Theorem B [Kos20]
Given a grope cobordism G of degree n there is a point

en+1ψ(G) ∈ Fn+1(M)

and its path component is precisely given by the class modulo
AS, IHX of the underlying tree

t(G) ∈ Treeπ1M(n).

Remark
Linear combinations of trees are realised by “grope forests” (higher
genus gropes) and the appropriate extension of the theorem holds.

See p. 16 for maps en+1 and ψ.
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More details
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Finite type knot invariants

Vassiliev ’90 studied a stratification of Map(I, I3) \ Emb∂(I, I3).

Definition
A knot invariant v : π0 Emb∂(I, I3) → A is of type < n if its natural
extension to knots with < n double points vanishes.

Kontsevich ’91 defined a universal (additive) invariant of type < n

ZKont<n : π0 Emb∂(I, I3) →
∏
k<n

At
k ⊗Q

where At
k :=

Lie(k)⧸STU2 is the group of Jacobi trees. Namely, any
type < n invariant over Q factors through this one.

Example. All quantum invariants are of finite type, and can be written
as ω ◦ ZKont<n using weight systems ωk : At

k → C.

Question
What is a geometric meaning of Jacobi trees?
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Geometric approach to finite type theory

Theorem (Gusarov [Gus00] Habiro [Hab00] Conant-Teichner [CT04])
Two knots K0, K1 : I ↪→ I3 have the same invariants of type < n if and
only if there is a sequence of (capped) grope cobordisms of degree
n from K0 to K1. We write K0 ∼n K1.

Think of a grope cobordism as an ambient cobordism from a subset
of K0 to a subset of K1, which has several layers of embedded
surfaces following a shape of a tree. Examples follow shortly.

Actually, we can define this in any 3-manifold M, and there is the
underlying tree map tn that fits into

π0 Emb∂(I,M) π0Gropn(M) Z[Treeπ1M(n)]

π0 Emb∂(I,M)⧸∼n+1 At
n(M)

tn∂0

AS,IHX,STU2ZKont over Q for M=I3

Rn
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Examples: grope cobordisms of degree 1

g1

G(a0)

G(a⊥0 )

J1

g1

p1γ1

Figure 1: Two grope cobordisms of degree 1 on K0 : I ↪→ M (the horizontal
line). In both cases the union of black and red arcs is

K1 :=
(
U \ G(a0)

)
∪ G(a⊥

0 )

The trees are given by

1
1

and g1

1
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Examples: grope cobordisms of degree 2

a0

Right: A grope cobordism
from U to the knot

∂⊥G =
(

U\G(a0)
)
∪G(a⊥0 ).

with underlying tree:

t(G) =
2
g2

1
g1

Left: Abstract grope GΓ for Γ =
2 1

is the
union of the yellow torus and two disks.

J1 J2G(a0)

g2g1

G(a⊥0 )

G : GΓ → I3

13



Examples: n-equivalence of knots

Recall: K0 ∼n K1 if there is a sequence of (capped) grope cobordisms
of degree n from K0 to K1. For example:

∼=

Figure 1: The right-handed trefoil RHT is 1-equivalent to the unknot.

∼=

Figure 2: RHT is 2-equivalent to the unknot. But RHT ̸∼3 U.
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Gropes give points in the Taylor layers

Theorem K-Shi-Teichner
There is a continuous map ψ so that the following commutes

Gropn(M;U) Hn(M) := hofib(evn) Fn+1(M)

Emb∂(I,M) Pn+1(M)

Pn(M) Pn(M)

ψ

∂1

en+1

evn+1

evn pn

Theorem [Kos20]
For any M of dimension d ≥ 3 there is a homotopy equivalence

Fn+1(M) ≃ Ωn+1
∏

w∈BL(n)

Σ1+lw(d−2)(ΩM×lw)+

and the first non-vanishing homotopy group is
πn(d−3)Fn+1(M) ∼= Lieπ1M(n). 15



Main theorem more precisely

Main Theorem B [Kos20]
The following diagram commutes

π0Gropn(M) Z[Treeπ1M(n)]

π0Hn(M) Lieπ1M(n)

tn

ψ AS,IHX

π0en+1

Corollary
The map π0en+1 is a surjection (of sets).

• Theorem A (that π0evn is onto) follows from this by induction.
• Corollaries about universality follow using the work of Conant
[Con08] and by considering the spectral sequence in homotopy
groups of the tower of fibrations pn.
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Thank you!
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