IKNO THEORY MEETS HIOMOTDPY THEORY
IMPRS Seminar November 2018.
MPI.

Danica Kosquovic

Chots
osjects eubeddings: $T K=$ Eunb $_{2}\left(S_{1} S^{3}\right)$
Relarions inotopies : patus in TH
$\Rightarrow \pi_{0} T \mathcal{L}=$ comm.monoid of unot types
invariants $H^{0}(\mathcal{H} ; A)=$ locally comtant A-valued maps
Questions 1) Cau we distinguish a given unot fom the ununot?
2) How far is it fom being the umunot?

Connect-sum
a Hopt link!

What next? Do multiple crosing cuanges or ...

Otumotopy
maps: $M=\operatorname{Map}_{1}\left(s^{\prime} s^{3}\right)$
homotopies: patus in M

$$
\Rightarrow \pi_{0} \mu=\left[s^{1}, s^{3}\right], \underline{N_{1}} S^{3}=0 .
$$

Eud of rooy? Not guite!
Maybe helps:
What is in M. TK ? Zook for a filtration?
InMersions: $\quad y=\operatorname{Imm}\left(s^{\prime} \mathrm{s}^{3}\right) \leq M$
patho in I: iothures and cer coming dranges.
What next?
Note: Oiginal appracal by Vasiliew: i.e. acootm 1 h hyper
sudy the "diocrimmaut" $\Sigma=M, ~$ SK
STEP1. Alexauder dudity $H^{*}(T) \cong H_{*}(\Sigma)$
STEP2. Simplicial resolution $\Sigma \sim \tilde{\sim}$

step3. Filtration on $\sum^{\prime} m \rightarrow$| Vassilier |
| :---: |
| speltral | sperral

rovgely (muttiple cooming changes
ex. of a correspending cord digram:

IDEA: Connect - sum Borromeau rings?
 M

12

12

Note:
Caus see something live a part of a genus 1 surface:

GEOMETRICAUY: these diagrams are too complicated... historically: Feynman diagrams appeared?
THEOREM [BAR-NATAN'95] $\frac{\text { cord diagrams }}{4 T, 1 T} \cong \frac{\text { Jawbidiagraus }}{\text { STU }}$
Q: What are Jawei diagrams geometrically?

From now on:
SETUP.

$$
\begin{aligned}
Y_{K} & :=\varepsilon u b_{\partial}\left(I \cdot I^{3}\right) \\
y & :=J m m_{\partial}\left(I, I^{3}\right)
\end{aligned}
$$

Note: $\quad y \simeq \Omega S^{2}$

Goodwillie - Weiss embedding calculus (199): applied to the functor $\varepsilon_{u b_{0}}\left(-, I^{3}\right): O(I) \longrightarrow T_{o p}$ In some cases Euro $\left(I, I^{d}\right) \simeq T_{\infty} \varepsilon_{b}\left(I, I^{d}\right)$
You guess: only for $d \geqslant 4$!
However:

* Conjecture. For every $n \geqslant 1$

$$
\pi_{0}\left(e_{n}\right): \pi_{0} K K \xrightarrow[0]{ } \pi_{0} T_{n} K
$$

is a universal invariant of type $n-1$.

Def. A Jacobi forest is a uni-trivaleut graph with $G_{1}(\Gamma)=0$ whose univalent vertices are attached to a distinguished line and whore trivalent vertices are oriented
i.e. there is a cyclic order on the edges incident to them.

The degree of Γ is half the total number of vertices.

a cord diagram
 $\operatorname{deg} 3$

Deft. Given a Jacobi tree Γ of degree n and a choice of root Γ_{*} we construe am abstract grope G_{Γ} of the shape Γ_{*} inductively:
notrivaleut vertices ma $\Gamma=a$ single cord
$m G_{r_{2}}=$ dire

! root edge mas genus 1 surface Σ
${ }^{T} Y^{T_{2}}$ nubtrees $T_{1} \& T_{2}$ ans attack gropes $G_{T_{1} \text {.. }}$ and $G_{T_{2} \text { a }}$

IN PRACTice: Embed $G_{T *} \longleftrightarrow I^{3}$ and demand all caps simple $!$

Def. Two unots K and K^{\prime} are $\begin{aligned} & \text { directly } \\ & \text {-equivalent }\end{aligned}$ it there exists an embedded grope wbordirm g_{r} between them such that $\operatorname{deg} \Gamma=n$.
They are n-equivaleut if they can be connected by a sequence of direct n-equivalences.
A unot n-equivalent to the unknot is called n-trinal.
We obtain the Gusarov-Habiro filtration:

$$
\begin{aligned}
\pi_{0} \mathcal{K}=G_{1} \geq G_{2} \geq \cdots \geq & G_{i i} \geq \cdots \\
& \{n \text {-trivial unots }\}
\end{aligned}
$$

Remark. If you know about finite type invariants, then: K is n-eguivalent to K^{\prime} ift they have saure invariauts of type $\leq n-1$. (the ley Gusaros, Habiro and Conant-Teidmer).

