$$
\text { INTERIOR TWIST }=\text { THE CUSP HOMOTOPY }=\begin{aligned}
& \text { MOVE } I \\
& \text { the non-regular move. }
\end{aligned}
$$

The movie:

3DPICTURE:

have a line of selfintersection (green)
perturb into past and future to get:

$$
\mathbb{D}^{2} \rightarrow \mathbb{D}^{3} \leq \mathbb{D}^{4}
$$

THE CUSP HOMOTOPY

MOVIE OF MOVIES:

$$
\longrightarrow \text { past } \longrightarrow \text { preseut } \longrightarrow \text { future } \longrightarrow
$$

\qquad STANOARD $D: D^{2} \subseteq \mathbb{D}^{4}$
\qquad

\qquad CUSP HOMOTOPY

Twisted $\tilde{D}: \mathbb{D}^{2} \leadsto \mathbb{D}^{4}$ with $\mu=+1$.

3DPICTURE

the double point and the corresponding accessony disk

Note:

$$
\begin{aligned}
& \lambda(\tilde{D}, \tilde{D})=\overbrace{\mu(\tilde{D})}^{+1}+\overline{\mu(\tilde{D})}+e(\nu \tilde{D}) \quad\} \Rightarrow e(\nu \tilde{D})=e(\nu D)-2 \\
& \| \text { ine } \lambda \text { hamodey mot. } \\
& \lambda\left(D, D^{+}\right)=e(\nu D) \\
& \text { The frawing of the twisted } \\
& \text { dixi recuced by } 2 .
\end{aligned}
$$

Note:
Reversing the movies wrt time we can get $\mu=-1$ and $\tilde{e}=e-2$

Boundary Twist

ThE MOVIE:

3DPICTURE:

THE HOMOTOPY
FROM EMBEDDED MODEL
to the Boundary Twist
MOVIE OF MOVIES:

$$
\begin{gathered}
\text { two } \\
\text { STANDARD } \\
D^{2} \leq \mathbb{D}^{4}
\end{gathered}\binom{\text { arabian }}{\text { fawning }}
$$

Two $\in M B \in \mathcal{D} \in D$ Disks with one intersection beTWeEn THEM.
the double point
NoTE: the parallel push-off \tilde{B}^{\uparrow} now has one move intersection with \tilde{B}, than B^{\top} had with B.

Therefore: $\quad e\left(\nu \widetilde{B}^{\uparrow}\right)=e(\nu B)$

Remark. Both intenver and boundary twist are produced using non-regular humotopies.
Recall: a regular hamotoly in a hemotury through immersions.
Namely: FOR THE INTERIOR twist WE HAD A MOMENT $t_{0} \in[0.1]$ WHERE \qquad HAPPENS WHICH IS NOT AN IMMERSION.

Similarly: FOR HHE BOUNDARY TWIST WE HAD A MOMENT $t_{0} \in[0,1]$ WHERE HERE THE TWO DISKS SHARE THE SAME TANGENT VECTORS AT THE POINT $p \in \partial B \cap A$
 HAPPENS.

This means that $h t_{0}$ is Not a generic map

Note: If in the boundary twist

we tame the "right green part" to $6 e$ also part of B, and forget the rest of green:

is again just an interim twist!

And framing changes by ± 2
since we now see two intersections:

