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A. The New Accord (Basel II)

• 1988: Basel Accord (Basel I): minimal capital requirements against

credit risk, one standardised approach, Cooke ratio

• 1996: Amendment to Basel I: market risk, internal models, netting

• 1999: First Consultative Paper on the New Accord (Basel II)

• to date: CP3: Third Consultative Paper on the

New Basel Capital Accord (www.bis.org/bcbs/bcbscp3.htmcp3)

• 2004: Revision: (final) version

• 2006–2007: full implementation of Basel II ([13])
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Basel II: What is new?

• Rationale for the New Accord: More flexibility and risk sensitivity

• Structure of the New Accord: Three-pillar framework:

Ê Pillar 1: minimal capital requirements (risk measurement)

Ë Pillar 2: supervisory review of capital adequacy

Ì Pillar 3: public disclosure
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• Two options for the measurement of credit risk:

D Standard approach

D Internal rating based approach (IRB)

• Pillar 1 sets out the minimum capital requirements (Cooke Ratio):

total amount of capital

risk-weighted assets
≥ 8%

• MRC (minimum regulatory capital)
def= 8% of risk-weighted assets

• Explicit treatment of operational risk
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Operational Risk:

The risk of losses resulting from inadequate or failed internal

processes, people and systems, or external events

Remark: Business Risk is not included!
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• Notation: COP: capital charge for operational risk

• Target: COP ≈ 12% of MRC (down from initial 20%)

• Estimated total losses in the US (2001): $50b

• Some examples

D 1977: Credit Suisse Chiasso-affair

D 1995: Nick Leeson/Barings Bank, £1.3b

D 2001: Enron (largest US bankruptcy so far)

D 2002: Allied Irish, £450m
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B. Risk measurement methods for OP risks

Pillar 1 regulatory minimal capital requirements for operational risk:

Three distinct approaches:

Ê Basic Indicator Approach

Ë Standardised Approach

Ì Advanced Measurement Approaches (AMA)
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Basic Indicator Approach

• Capital charge:

CBIA
OP = α×GI

• CBIA
OP : capital charge under the Basic Indicator Approach

• GI: average annual gross income over the previous three years

• α = 15% (set by the Committee based CISs)
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Standardised Approach

• Similar to the BIA, but on the level of each business line:

CSA
OP =

8∑
i=1

βi ×GIi

βi ∈ [12%, 18%], i = 1, 2, . . . , 8

• 8 business lines:

Corporate finance Payment & Settlement

Trading & sales Agency Services

Retail banking Asset management

Commercial banking Retail brokerage
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Advanced Measurement Approaches (AMA)

• Allows banks to use their internally generated risk estimates

• Preconditions: Bank must meet qualitative and quantitative

standards before being allowed to use the AMA

• Risk mitigation via insurance possible

• AMA1: Internal measurement approach (dropped!)

• AMA2: Loss distribution approach
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Internal Measurement Approach

• Capital charge (similar to Basel II model for Credit Risk):

C IMA
OP =

8∑
i=1

7∑
k=1

γik eik (dropped!)

eik: expected loss for business line i, risk type k

γik: scaling factor

• 7 loss types: Internal fraud

External fraud

Employment practices and workplace safety

Clients, products & business practices

Damage to physical assets

Business disruption and system failures

Execution, delivery & process management
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C. Loss Distribution Approach

• For each business line/loss type cell (i, k) one models

LT+1
i,k : OP risk loss for business line i, loss type k over the

future (one year, say) period [T, T + 1]

LT+1
i,k =

NT+1
i,k∑

`=1

X`
i,k (next period’s loss for cell (i, k))

Note that X`
i,k is truncated from below
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Remark: Look at the structure of the loss random variable LT+1

LT+1 =
8∑

i=1

7∑
k=1

LT+1
i,k (next period’s total loss)

=
8∑

i=1

7∑
k=1

NT+1
i,k∑

`=1

X`
i,k
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A methodological pause 1

L =
N∑

k=1

Xk (compound rv)

where (Xk) are the severities and N the frequency

Models for Xk:

- gamma, lognormal, Pareto (≥ 0, skew)

Models for N :

- binomial (individual model)

- Poisson(λ) (limit model)

- negative binomial (randomize λ as a gamma rv)

c© Paul Embrechts, 2004 14



• Choice of a risk measure g (α ∈ (0, 1) fixed)

CT+1,OR
i,k =g(LT+1

i,k )=

{
F←

LT+1
i,k

(α) = VaRα(LT+1
i,k )

ES(LT+1
i,k )=E

(
LT+1

i,k |LT+1
i,k >VaRα(LT+1

i,k )
)

- VaRα is not coherent (example)

- ESα is coherent (modulo trivial change)

CT+1,OR =
∑
i,k

g(LT+1
i,k ) (perfect correlation)

- Why?

- Dependence effects (copulae)
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VaRα is in general not coherent:

- 100 iid loans: 2%-coupon, 100 face value, 1% default probability

(period: 1 year):

Xi =

{
−2 with probability 99%

100 with probability 1% (loss)

- Two portfolios L1 =
∑100

i=1 Xi, L2 = 100X1

- VaR95%(L1)︸ ︷︷ ︸
VaR95%(

P100
i=1 Xi)

> VaR95%(100X1)︸ ︷︷ ︸P100
i=1 VaR95%(Xi)

(!)
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• Hence the well-diversified portfolio L1 gets a higher (VaR-)risk

charge than the very concentrated, “all eggs in one basket” portfolio

L2

• This cannot happen when (X1, . . . , Xd) has a multivariate normal

(or more generally, elliptical) distribution

• Link to Operational Risks: skewness
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D. Some data
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• Stylized facts about OP risk losses:

D Loss amounts show extremes

D Loss occurence times are irregularly spaced in time

(reporting bias, economic cycles, regulation, management interactions,

structural changes, . . . )

D Non-stationarity (frequency(!), severity(?))

• Large losses are of main concern

• Repetitive versus non-repetitive losses

• Warning flag: observations are not in line with standard modelling

assumptions
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A methodological pause 2

• severity models need to go beyond the classical models (binomial,

homogeneous Poisson, negative binomial: → stochastic processes)

• as stochastic processes:

- Poisson(λt), λ > 0 deterministic (1)

- Poisson(λ(t)), λ(t) deterministic

non-homogeneous Poisson, via time change → (1)

- Poisson(Λ(t)), Λ(t) stochastic process

• double stochastic (or Cox-) process

• basic model for credit risk

• a desert-island model: (NB,LN) (cover of [4])
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E. The Capital Charge Problem

• Estimate gα(LT+1) for α large

Basel II: gα = VaRα, α = 99.97% (reason)

• In-sample estimation of VaRα(LT+1) for α large is difficult, if not

impossible (lack of data)

• Even for nice (repetitive) data one needs a structural model:

Insurance Analytics ([11])
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• Standard Actuarial Techniques

∗ Analytic approximations (normal, translated gamma, Edgeworth,

saddle-point, . . . )

However: long-tailedness (Pareto, power tails)

P (X > x) ∼ x−αL(x), x large

∗ Inversion methods (FFT)

∗ Recursive methods (Euler-Panjer)

∗ (Rare event) simulation

∗ Expert system Ansatz

∗ Extreme Value Theory (EVT): α large
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• Back to the data
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pooled operational losses: mean excess plot

• P (L > x) ∼ x−αL(x), 1 < α < 3

• 20 – 80 rule

• one-claim-causes-ruin phenomenon ([1])
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Summary

• α ' 1 and heavy-tailed loss-sizes, hence extremes matter

- Extreme Value Theory (EVT) ([8])

• adding risk measures over different risk classes, hence dependence

matters

- Copulae (FX(x) = C(F1(x1), . . . , Fd(xd))) ([9])

• complicated loss-frequencies, hence point processes matter

- double-stochastic (or Cox) processes ([5])

• full model analytically not tractable, hence

- rare event simulation ([3])
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F. Accuracy of VaR-estimates

• Assumptions:

D L1, . . . , Ln iid ∼ FL

D For some ξ, β and u large (Gξ,β: GPD):

Fu(x) := P[L− u ≤ x|L > u] ∼ Gξ,β(u)(x), u large

D Use that: 1− FL(x) = (1− FL(u)) (1− Fu(x− u)) , x > u

• Tail- and quantile estimate:

1− F̂L(x) =
Nu

n

(
1 + ξ̂

x− u

β̂

)−1/ξ̂

, x > u

V̂aRα = q̂α = u− β̂

ξ̂

(
1−

( Nu

n(1− α)

)ξ̂ ) (1)
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• Idea: Comparison of estimated quantiles with the corresponding

theoretical ones by means of a simulation study ([12], [6]).

• Simulation procedure:

Ê Choose FL and fix α0 < α < 1, Nu (# of data points above u)

Ë Calculate u = qα0 and the true value of the quantile qα

Ì Sample Nu independent points of FL above u by the rejection method.
Record the total number n of sampled points this requires

Í Estimate ξ, β by fitting the GPD to the Nu exceedances over u by means of
MLE

Î Determine q̂α according to (1)

Ï Repeat N times the above to arrive at estimates of Bias(q̂α) and SE(q̂α)

Ð Require bias and standard error to be small ⇒ datasize
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Example: Pareto distribution with α = 2

u = F←(xq) α Goodness of V̂aRα

0.99 A minimum number of 100 exceedances
(corresponding to 333 observations) is required
to ensure accuracy wrt bias and standard error.

q = 0.7
0.999 A minimum number of 200 exceedances

(corresponding to 667 observations) is required
to ensure accuracy wrt bias and standard error.

0.99 Full accuracy can be achieved with the minimum
number 25 of exceedances (corresponding to 250
observations).

q = 0.9
0.999 A minimum number of 100 exceedances

(corresponding to 1000 observations) is required
to ensure accuracy wrt bias and standard error.
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Summary

• Minimum number of observations increases as the tails become

thicker ([12], [6]).

• Large number of observations necessary to achieve targeted

accuracy.

• Remember: The simulation study was done under idealistic

assumptions (iid, exact Pareto). Operational risk losses, however,

typically do NOT fulfil these assumptions.
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G. Conclusions

• OP risk 6= market risk, credit risk

• OP risk losses resemble non-life insurance losses

• Actuarial methods (including EVT) aiming to derive capital charges

are for the moment of limited use due to

D lack of data

D inconsistency of the data with the modelling assumptions

• OP risk loss databases must grow

• Sharing/pooling internal operational risk data? Near losses?
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• Choice of risk measure: ES better than VaR

• Heavy-tailed ruin estimation for general risk processes ([10]): an

interesting mathematical problem related to time change

• Alternatives?

D Insurance. Example: FIORI, Swiss Re (Financial Institution

Operating Risk Insurance)

D Securitization / Capital market products

• OP risk charges can not be based on statistical modelling alone

I Pillar 2 (overall OP risk management such as analysis of causes,

prevention, . . . ) more important than Pillar 1
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