Quantifying Regulatory Capital for Operational Risk: Utopia or Not?

Paul Embrechts ETH Zürich and London School of Economics (www.math.ethz.ch/~embrechts)

Based on joint work with V. Chavez-Demoulin, H.J. Furrer, R. Kaufmann and G. Samorodnitsky

© Paul Embrechts, 2004

Contents

- A. The New Accord (Basel II)
- B. Risk measurement methods for OP risks
- C. Loss distribution approach
- D. Some data
- E. The Capital Charge Problem
- F. Accuracy of VaR-estimates
- G. Conclusions
- H. References

A. The New Accord (Basel II)

- 1988: Basel Accord (Basel I): minimal capital requirements against credit risk, one standardised approach, Cooke ratio
- **1996**: Amendment to Basel I: market risk, internal models, netting
- **1999**: First Consultative Paper on the New Accord (Basel II)
- to date: CP3: Third Consultative Paper on the New Basel Capital Accord (www.bis.org/bcbs/bcbscp3.htmcp3)
- **2004**: Revision: (final) version
- 2006–2007: full implementation of Basel II ([13])

Basel II: What is new?

- **Rationale** for the New Accord: More flexibility and risk sensitivity
- **Structure** of the New Accord: Three-pillar framework:
 - Pillar 1: minimal capital requirements (risk measurement)
 - **2** Pillar 2: supervisory review of capital adequacy
 - Pillar 3: public disclosure

- Two options for the measurement of credit risk:
 - Standard approach
 - Internal rating based approach (IRB)
- Pillar 1 sets out the minimum capital requirements (Cooke Ratio):

$$\frac{\text{total amount of capital}}{\text{risk-weighted assets}} \geq 8\%$$

- MRC (minimum regulatory capital) $\stackrel{\text{def}}{=} 8\%$ of risk-weighted assets
- Explicit treatment of operational risk

Operational Risk:

The risk of losses resulting from inadequate or failed internal processes, people and systems, or external events

Remark: Business Risk is not included!

- Notation: C_{OP} : capital charge for operational risk
- Target: $C_{\text{OP}} \approx 12\%$ of MRC (down from initial 20%)
- Estimated total losses in the US (2001): \$50b

Some examples

- ✤ 1977: Credit Suisse Chiasso-affair
- ✤ 1995: Nick Leeson/Barings Bank, £1.3b
- ✤ 2001: Enron (largest US bankruptcy so far)
- ✤ 2002: Allied Irish, £450m

B. Risk measurement methods for OP risks

Pillar 1 regulatory minimal capital requirements for operational risk: Three distinct approaches:

- Basic Indicator Approach
- **2** Standardised Approach
- Advanced Measurement Approaches (AMA)

Basic Indicator Approach

• Capital charge:

$$C_{\mathsf{OP}}^{\mathsf{BIA}} = \alpha \times GI$$

- $C_{\text{OP}}^{\text{BIA}}$: capital charge under the Basic Indicator Approach
- GI: average annual gross income over the previous three years
- $\alpha = 15\%$ (set by the Committee based CISs)

Standardised Approach

• Similar to the BIA, but on the level of each business line:

$$C_{\mathsf{OP}}^{\mathsf{SA}} = \sum_{i=1}^{8} \beta_i \times GI_i$$

$$eta_i \in [12\%, 18\%]$$
, $i = 1, 2, \dots, 8$

• 8 business lines:

Corporate financePayTrading & salesAgRetail bankingAssCommercial bankingRetail

Payment & Settlement Agency Services Asset management Retail brokerage

Advanced Measurement Approaches (AMA)

- Allows banks to use their internally generated risk estimates
- Preconditions: Bank must meet qualitative and quantitative standards before being allowed to use the AMA
- Risk mitigation via insurance possible
- **AMA1**: Internal measurement approach (dropped!)
- AMA2: Loss distribution approach

Internal Measurement Approach

• Capital charge (similar to Basel II model for Credit Risk):

$$C_{\mathsf{OP}}^{\mathsf{IMA}} = \sum_{i=1}^{8} \sum_{k=1}^{7} \gamma_{ik} e_{ik} \quad (\mathsf{dropped!})$$

- e_{ik} : expected loss for business line i, risk type k γ_{ik} : scaling factor
- 7 loss types: Internal fraud External fraud Employment practices and workplace safety Clients, products & business practices Damage to physical assets Business disruption and system failures Execution, delivery & process management

C. Loss Distribution Approach

- For each business line/loss type cell (i, k) one models
 - $L_{i,k}^{T+1}$: OP risk loss for business line *i*, loss type *k* over the future (one year, say) period [T, T+1]

$$L_{i,k}^{T+1} = \sum_{\ell=1}^{N_{i,k}^{T+1}} X_{i,k}^{\ell}$$
 (next period's loss for cell (i,k))

Note that $X_{i,k}^{\ell}$ is truncated from below

Remark: Look at the structure of the loss random variable L^{T+1}

$$\begin{split} L^{T+1} &= \sum_{i=1}^{8} \sum_{k=1}^{7} L_{i,k}^{T+1} \quad \text{(next period's total loss)} \\ &= \sum_{i=1}^{8} \sum_{k=1}^{7} \sum_{\ell=1}^{N_{i,k}^{T+1}} X_{i,k}^{\ell} \end{split}$$

A methodological pause 1

 $L = \sum_{k=1}^{N} X_k \quad \text{(compound rv)}$ where (X_k) are the severities and N the frequency Models for X_k :

- gamma, lognormal, Pareto (≥ 0 , skew)

Models for N:

- binomial (individual model)
- Poisson(λ) (limit model)
- negative binomial (randomize λ as a gamma rv)

• Choice of a risk measure g ($\alpha \in (0,1)$ fixed)

$$C_{i,k}^{T+1,\mathsf{OR}} = g(L_{i,k}^{T+1}) = \begin{cases} F_{L_{i,k}^{T+1}}^{\leftarrow}(\alpha) = \operatorname{VaR}_{\alpha}(L_{i,k}^{T+1}) \\ \mathsf{ES}(L_{i,k}^{T+1}) = E\left(L_{i,k}^{T+1} | L_{i,k}^{T+1} > \operatorname{VaR}_{\alpha}(L_{i,k}^{T+1})\right) \end{cases}$$

- $\operatorname{VaR}_{\alpha}$ is not coherent (example)
- ES_{α} is coherent (modulo trivial change)

$$C^{T+1,\mathsf{OR}} = \sum_{i,k} g(L_{i,k}^{T+1})$$
 (perfect correlation)

- Why?
- Dependence effects (copulae)

 VaR_{α} is in general not coherent:

- 100 iid loans: 2%-coupon, 100 face value, 1% default probability (period: 1 year):

$$X_i = \begin{cases} -2 & \text{with probability 99\%} \\ 100 & \text{with probability 1\% (loss)} \end{cases}$$

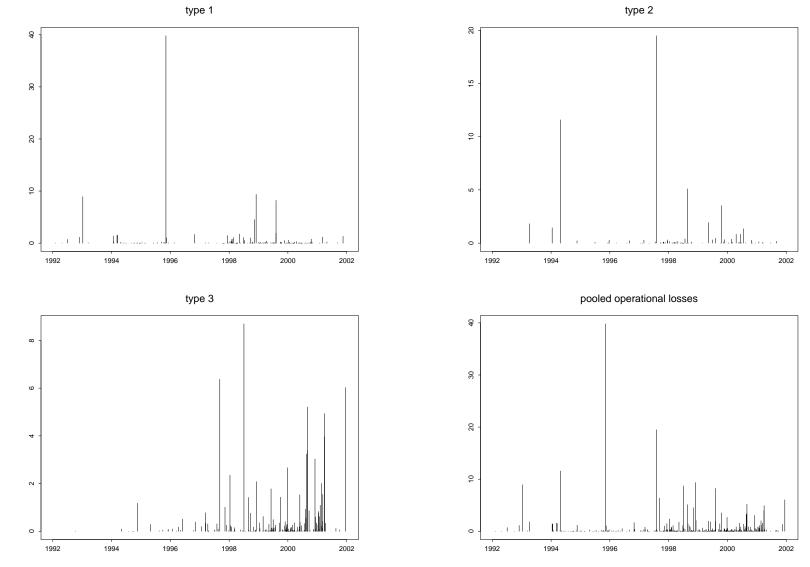
- Two portfolios $L_1 = \sum_{i=1}^{100} X_i$, $L_2 = 100X_1$

$$-\underbrace{\operatorname{VaR}_{95\%}(L_{1})}_{\operatorname{VaR}_{95\%}(\sum_{i=1}^{100} X_{i})} > \underbrace{\operatorname{VaR}_{95\%}(100X_{1})}_{\sum_{i=1}^{100} \operatorname{VaR}_{95\%}(X_{i})}$$
(!)

© Paul Embrechts, 2004

- Hence the well-diversified portfolio L_1 gets a higher (VaR-)risk charge than the very concentrated, "all eggs in one basket" portfolio L_2
- This cannot happen when (X_1, \ldots, X_d) has a multivariate normal (or more generally, elliptical) distribution
- Link to Operational Risks: skewness

D. Some data



© Paul Embrechts, 2004

- Stylized facts about OP risk losses:
 - Loss amounts show extremes
 - Loss occurence times are irregularly spaced in time (reporting bias, economic cycles, regulation, management interactions, structural changes, . . .)
 - Non-stationarity (frequency(!), severity(?))
- Large losses are of main concern
- Repetitive versus non-repetitive losses
- Warning flag: observations are not in line with standard modelling assumptions

A methodological pause 2

- severity models need to go beyond the classical models (binomial, homogeneous Poisson, negative binomial: → stochastic processes)
- as stochastic processes:
 - Poisson(λt), $\lambda > 0$ deterministic (1)
 - Poisson $(\lambda(t))$, $\lambda(t)$ deterministic non-homogeneous Poisson, via time change \rightarrow (1)
 - Poisson($\Lambda(t)$), $\Lambda(t)$ stochastic process
 - double stochastic (or Cox-) process
 - basic model for credit risk
- a desert-island model: (NB,LN) (cover of [4])

E. The Capital Charge Problem

• Estimate $g_{\alpha}(L^{T+1})$ for α large

Basel II: $g_{\alpha} = \operatorname{VaR}_{\alpha}$, $\alpha = 99.97\%$ (reason)

- In-sample estimation of $\operatorname{VaR}_{\alpha}(L^{T+1})$ for α large is difficult, if not impossible (lack of data)
- Even for nice (repetitive) data one needs a structural model: Insurance Analytics ([11])

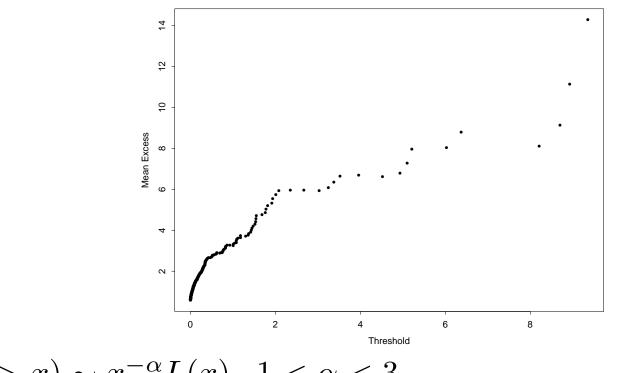
- Standard Actuarial Techniques
 - * Analytic approximations (normal, translated gamma, Edgeworth, saddle-point, . . .)
 However: long-tailedness (Pareto, power tails)

$$P(X > x) \sim x^{-\alpha}L(x), x \text{ large}$$

- * Inversion methods (FFT)
- * Recursive methods (Euler-Panjer)
- * (Rare event) simulation
- * Expert system Ansatz
- * Extreme Value Theory (EVT): α large

Back to the data

pooled operational losses: mean excess plot



- $P(L > x) \sim x^{-\alpha}L(x), \ 1 < \alpha < 3$
- 20 80 rule
- one-claim-causes-ruin phenomenon ([1])

Summary

- $\alpha\simeq 1$ and heavy-tailed loss-sizes, hence extremes matter
 - Extreme Value Theory (EVT) ([8])
- adding risk measures over different risk classes, hence dependence matters
 - Copulae $(F_{\underline{X}}(\underline{x}) = C(F_1(x_1), \dots, F_d(x_d)))$ ([9])
- complicated loss-frequencies, hence point processes matter
 - double-stochastic (or Cox) processes ([5])
- full model analytically not tractable, hence
 - rare event simulation ([3])

F. Accuracy of VaR-estimates

• Assumptions:

*
$$L_1, \ldots, L_n \text{ iid } \sim F_L$$

* For some ξ , β and u large ($G_{\xi,\beta}$: GPD):
 $F_u(x) := \mathbb{P}[L - u \leq x | L > u] \sim G_{\xi,\beta(u)}(x), u \text{ large}$
* Use that: $1 - F_L(x) = (1 - F_L(u))(1 - F_u(x - u)), \quad x > u$

• Tail- and quantile estimate:

$$\begin{vmatrix} 1 - \hat{F}_L(x) = \frac{N_u}{n} \left(1 + \hat{\xi} \frac{x - u}{\hat{\beta}} \right)^{-1/\hat{\xi}}, & x > u \\ \widehat{\mathsf{VaR}}_\alpha = \hat{q}_\alpha = u - \frac{\hat{\beta}}{\hat{\xi}} \left(1 - \left(\frac{N_u}{n(1 - \alpha)} \right)^{\hat{\xi}} \right) \end{vmatrix}$$

© Paul Embrechts, 2004

(1)

• Idea: Comparison of estimated quantiles with the corresponding theoretical ones by means of a simulation study ([12], [6]).

• Simulation procedure:

- Choose F_L and fix $\alpha_0 < \alpha < 1$, N_u (# of data points above u)
- **2** Calculate $u = q_{\alpha_0}$ and the true value of the quantile q_{α}
- ⁽³⁾ Sample N_u independent points of F_L above u by the rejection method. Record the total number n of sampled points this requires
- **4** Estimate ξ , β by fitting the GPD to the N_u exceedances over u by means of MLE
- **\bigcirc** Determine \hat{q}_{α} according to (1)
- **6** Repeat N times the above to arrive at estimates of $Bias(\hat{q}_{\alpha})$ and $SE(\hat{q}_{\alpha})$
- O Require bias and standard error to be small \Rightarrow datasize

Example: Pareto distribution with $\alpha = 2$

$u = F^{\leftarrow}(x_q)$	$ \alpha$	Goodness of \widehat{VaR}_{α}
q = 0.7	0.99	A minimum number of 100 exceedances (corresponding to 333 observations) is required to ensure accuracy wrt bias and standard error.
	0.999	A minimum number of 200 exceedances (corresponding to 667 observations) is required to ensure accuracy wrt bias and standard error.
q = 0.9	0.99	Full accuracy can be achieved with the minimum number 25 of exceedances (corresponding to 250 observations).
	0.999	A minimum number of 100 exceedances (corresponding to 1000 observations) is required to ensure accuracy wrt bias and standard error.

Summary

- Minimum number of observations increases as the tails become thicker ([12], [6]).
- Large number of observations necessary to achieve targeted accuracy.
- **Remember**: The simulation study was done under idealistic assumptions (iid, exact Pareto). Operational risk losses, however, typically do NOT fulfil these assumptions.

G. Conclusions

- OP risk \neq market risk, credit risk
- OP risk losses resemble non-life insurance losses
- Actuarial methods (including EVT) aiming to derive capital charges are for the moment of limited use due to
 - lack of data
 - inconsistency of the data with the modelling assumptions
- OP risk loss databases must grow
- Sharing/pooling internal operational risk data? Near losses?

- Choice of risk measure: ES better than VaR
- Heavy-tailed ruin estimation for general risk processes ([10]): an interesting mathematical problem related to time change
- Alternatives?
 - Insurance. Example: FIORI, Swiss Re (Financial Institution Operating Risk Insurance)
 - Securitization / Capital market products
- OP risk charges can not be based on statistical modelling alone
- Pillar 2 (overall OP risk management such as analysis of causes, prevention, . . .) more important than Pillar 1

H. References

- [1] Asmussen, S. (2000). Ruin Probabilities. World Scientific.
- [2] Basel Committee on Banking Supervision. The New Basel Capital Accord. April 2003. BIS, Basel, Switzerland, www.bis.org/bcbs
- [3] Bucklew, J.A. (2004). *Introduction to Rare Event Simulation*. Springer.
- [4] Cruz, M.G. (2002). Modeling, Measuring and Hedging Operational Risk. A Quantitative Approach. Wiley, New York.

- [5] Embrechts, P., and Chavez-Demoulin, V. (2004). *Smooth extremal models in finance and insurance*. The Journal of Risk and Insurance 71(2), 183-199.
- [6] Embrechts P., Furrer H.J., and Kaufmann R. (2003). Quantifying regulatory capital for operational risk. Derivatives Use, Trading and Regulation 9(3), 217-233.
- [7] Embrechts, P., Kaufmann, R., and Samorodnitsky, G. (2004). *Ruin theory revisited: stochastic models for operational risk*. Risk Management for Central Bank Foreign Reserves, 243-261.

[8] Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997).

Modelling Extremal Events for Insurance and Finance. Springer.

- [9] Embrechts, P., McNeil, A., and Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. In: *Risk Management: Value at Risk and Beyond*, ed. M.A.H. Dempster, Cambridge University Press, Cambridge, 176-223.
- [10] Embrechts, P., and Samorodnitsky, G. (2003). Ruin problem and how fast stochastic processes mix. Annals of Applied Probability, Vol. 13, 1-36.

[11] McNeil, A.J., Frey, R., and Embrechts, P. (2004)

Quantitative Risk Management: Concepts, Techniques and Tools. Forthcoming book.

- [12] McNeil, A.J., and Saladin, T. (1997) The peaks over thresholds method for estimating high quantiles of loss distributions. *Proceedings of XXVIIth International ASTIN Colloquium*, Cairns, Australia, 23-43.
- [13] The Economist (2003). *Blockage in Basel.* Vol. 369, No 8344, October 2003.