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Abstract

A general methodology for modeling loss data depending on covariates is developed. The
parameters of the frequency and severity distributions of the losses may depend on covariates.
The loss frequency over time is modeled with a non-homogeneous Poisson process with rate
function depending on the covariates. This corresponds to a generalized additive model which
can be estimated with spline smoothing via penalized maximum likelihood estimation. The loss
severity over time is modeled with a non-stationary generalized Pareto distribution (alternatively,
a generalized extreme value distribution) depending on the covariates. Since spline smoothing
can not directly be applied in this case, an efficient algorithm based on orthogonal parameters is
suggested. The methodology is applied both to simulated loss data and a database of operational
risk losses collected from public media. Estimates, including confidence intervals, for risk measures
such as Value-at-Risk as required by the Basel II/III framework are computed. Furthermore, an
implementation of the statistical methodology in R is provided.
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1 Introduction

The aim of the paper is threefold: first, we present a statistical approach for the modeling of
business loss data as a function of covariates; second, this methodology is exemplified in the
context of an Operational Risk dataset to be detailed later in the paper; third, a publicly available
software implementation (including a simulated data example) is developed to apply the presented
methodology.

The fact that we apply the new statistical tools to business “loss” data is not really essential but
rather reflects the properties of the Operational Risk dataset at hand (and data of a similar kind).
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1 Introduction

“Losses” can without any problem be changed into “gains”; relevant is that we concentrate our
analysis on either the left or the right tail of an underlying performance distribution function. This
more general interpretation will become clear from the sequel. Slightly more precise, the typical data
to which our methodology applies is of the marked point process type, that is, random losses occur
at random time points and one is interested in estimating the aggregate loss distribution dynamically
over time. Key features will be the existence of extreme (rare) events, the availability of covariate
information, and a dynamic modeling of the underlying parameters as a function of the covariates.
Operational Risk data typically exhibits such features; see later references. Our concentration on
an example from the financial services industry also highlights the recent interest shown in more
stringent capital buffers for banks (under the Basel guidelines) and insurance (referring to Solvency
2); for some background on these regularity frameworks, see for instance McNeil et al. (2005) and
the references therein.

The methodology presented in this paper is applied to a database of OpRisk losses collected
from public media. We are aware that other databases are available. In particular, it would have
been interesting to get further explanatory variables such as firm size (not present in our database)
which may have an impact on the loss severity and frequency; see, for instance Ganegoda and Evans
(2013), Shih et al. (2000) and Cope and Labbi (2008). The database at our disposal is, however,
original, rather challenging to model (mainly due to data scarcity), and shows stylized features any
OpRisk losses can show. Our findings regarding the estimated parameters are in accordance with
Moscadelli (2004) (infinite-mean models), the latter being based on a much larger database. We also
provide an implementation including a reproducible simulation study in a realistic OpRisk context;
it shows that even under these difficult features, the methodology provides a convincing fit. We
stress that the (limited) public OpRisk data available to us provided the motivation for developing
the new statistical EVT-methodology of this paper. We do not (and indeed cannot) formulate
general conclusions on the Loss Distribution Approach (LDA) modeling of real, one-company based
OpRisk data. By providing the R-software used, any industry end-user can apply our techniques
to his/her internal data. We very much hope to learn from such experiments in the future so that
the method provided can be further enhanced. In Section 5, we do however make some general
comments on the quantitative LDA modeling of OpRisk data.

Recall that, under the capital adequacy guidelines of the Basel Committee on Banking Supervision
(see http://www.bis.org/bcbs, shortened throughout the paper as Basel or the Basel Committee),
Operational Risk (OpRisk) is defined as “The risk of a loss resulting from inadequate or failed
internal processes, people and systems or from external events. This definition includes legal risk,
but excludes strategic and reputational risk.”; see BIS (2006, p. 144). By nature, this risk category,
as opposed to Market and Credit Risk, is much more akin to non-life insurance risk or loss experience
from industrial quality control. OpRisk came under regulatory scrutiny in the wake of Basel II in
the late nineties; see BIS (2006). This is relevant as data was only systematically collected fairly
recently, leading to reporting bias in all OpRisk datasets. We will come back to this issue later in the
paper. An important aspect of the Basel framework is industry’s freedom of choice of the internal
model. Of course, industry has to show to the regulators that the model fits well; on the latter,
Dutta and Perry (2006) contains a list of basic principles an internal model has to satisfy. Recent
events like Société Générale (rogue trading), UBS (rogue trading), the May 6, 2010 Flash Crash
(algorithmic trading), the Libor scandal (fraud involving several banks), and litigation coming out
of the subprime crisis have catapulted OpRisk very high on the regulators’ and politicians’ agenda.
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Basel II allows banks to opt for an increasingly sophisticated approach, starting from the Basic
Indicator Approach and the Standardized Approach to the Advanced Measurement Approach. The
latter is commonly realized via the LDA which we will consider in this paper. All LDA models
in use aim for a (loss-frequency, loss-severity) approach. Regulators prescribe the use of the risk
measure Value-at-Risk (VaR) over a one-year horizon at the 99.9% confidence level, denoted by
VaRg.999. Note that in this notation we stick to the use of “confidence level” in order to refer to
what statisticians prefer to call “percentile”; this unfortunate choice is by now universal in the
regulatory as well as more practical academic literature. For the latter, see for instance Jorion (2007,
Section 16.1.2).

The wisdom of the choice of VaRg ggg is highly contested; see for instance Danielsson et al. (2001).
We will see later that Expected Shortfall (ES) as another risk measure is not always a viable
alternative, mainly due to the extreme (even infinite mean) heavy-tailedness of OpRisk data. In
this respect, we would like to point to the current discussion on Market Risk measurement triggered
by the Basel documents BIS (2012) and BIS (2013). See in particular Question 8 on page 41 of the
former: “What are the likely constraints with moving from VaR to ES, including any challenges
in delivering robust backtesting and how might these be best overcome?” These documents, and
the latter question in particular, led to a very extensive debate between regulators, practitioners
and academics; see Embrechts et al. (2014) for more details. Ingredients of the wider debate are
1) to what extent can financial or insurance risk be mapped to a number to be used as a basis for
capital requirement, 2) which number, that is, risk measure to use, and 3) for a given risk measure,
how to statistically esimate it and backtest it on historical data? In this paper we mainly look at
EVT-based methodology for answering the first part of 3), that is, statistical estimation, and this
with focus on VaR, at very high quantile levels.

An important question concerns whether OpRisk can be accurately modeled and statistically
estimated as proposed under the Basel guidelines: one year VaR at a confidence level of 99.9%.
Whereas for certain subcategories like soft- and hardware failures this may be possible, for risk
classes like fraud this becomes much more complicated, if at all possible with the data available.
It is worthwhile to compare and contrast this situation with insurance regulation: under the EU
Solvency 2 framework (to come into force on January 1, 2016) the capital requirement for OpRisk is
volume based, that is, 4.5%¢ of the technical provisions for life insurance obligations or 3% of the
premiums earned during the past 12 months for non-life. For the Swiss Solvency Test, in force since
January 1, 2011, no quantitative consideration is given. OpRisk is treated qualitatively through the
Swiss Quality Assessment (SQA). The SQA guidelines state however that “The undertaking must
be organized in such a way that all its significant risks can be captured, limited, and monitored”.
The approach we develop in this paper will also be useful in the analysis of particular subclasses of
OpRisk for internal use within the context of SQA-like requirements.

Key publications on OpRisk from the regulatory front are de Fontnouvelle et al. (2004), de
Fontnouvelle et al. (2005), Dutta and Perry (2006), Mori et al. (2007), and Moscadelli (2004). The
latter paper uses Extreme Value Theory (EVT) to analyze data from the second Quantitative
Impact Study with over 47000 observations. Interesting contributions from industry include Baud
et al. (2002), Baud et al. (2003) and Frachot et al. (2004) for Crédit Lyonnais, Aue and Kalkbrener
(2006) for Deutsche Bank, and Soprano et al. (2009) for UniCredit Group. More methodological
papers relevant for our approach are Chavez-Demoulin and Embrechts (2004), El-Gamal et al.
(2007), and Bocker and Kliippelberg (2010). For the analysis of economic business factors influencing
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OpRisk, as well as the resulting reputational risk consequences, see for instances Cummins et al.
(2006), Jarrow (2008), Jarrow et al. (2010), and Chernobai et al. (2011). Unfortunately, publically
available OpRisk data is hard (if not impossible) to come by. An excellent source of statistical
information on consortium data (based on the ORX data) can be found on the ORX website:
www.orx.org/orx-research. Questions researched include data homogeneity, scaling, correlation,
and capital modeling. For another study on OpRisk data (from several Italian banking groups),
explicitly modeling dependence between weekly aggregated losses of business lines or event types
via a copula approach, see Brechmann et al. (2014). Finally, more recent textbook treatments are
Cruz (2002), Akkizidis and Bouchereau (2006), Panjer (2006), Bocker (2010), Shevchenko (2011),
and Bolancé et al. (2012); see also McNeil et al. (2005, Chapter 10).

For the LDA, the Basel Committee has decomposed a bank’s activities into business lines (the
standard is 8) and event types (typically 7) so that it is possible to model along substructures of this
matrix; often aggregation to business line level is chosen. Some methodological issues underlying
the analysis of loss data in such a matrix structure, which is also known as Unit of Measure (UOM)
in the regulatory jargon, are discussed in Embrechts and Puccetti (2008). Papers analyzing data
at the business line and event type levels include Moscadelli (2004), de Fontnouvelle et al. (2004)
at the individual bank level, Dutta and Perry (2006) at the enterprise level. The latter two also
attempt a modeling by time. Papers on modeling OpRisk data using covariates include Ganegoda
and Evans (2013), Shih et al. (2000), and Cope and Labbi (2008) where the authors investigate
whether the size of OpRisk losses can be correlated with firm size and geographical region. Na et al.
(2006) supposes that the operational loss can be broken down into a component common to all
banks and idiosyncratic components specific to each loss. Dahen and Dionnne (2010) investigates
how severity and frequencies of external losses can be scaled for integration with internal data.

Going down to more granular levels of modeling increases the variance of the resulting estimators
due to data scarcity. The methodology presented in the following sections allows for “pooling” of the
data (explained later), introducing business line, event type, and time as covariates. This approach
allows for a greater flexibility in analyzing the data, as well as making model comparisons possible.

The paper is organized as follows. Section 2 provides a brief introduction to EVT in terms of
the block maxima and the Peaks-over-Threshold (POT) approaches. In Section 3 we extend these
classical approaches, allowing the (constant) parameters of the model to (dynamically) vary with
covariates. This constitutes the main statistical methodology used in the paper and focus is put
on the dynamic POT approach. A fitting method is developed in Section 3.3 and it is applied to
simulated data in Section A.3. In Section 4 we model a dataset of publicly available OpRisk losses
with the presented dynamic, EVT-based approaches. Section 5 provides an in-depth discussion of
the presented methodology and data.

2 Classical EVT approach for modeling losses

The standard approaches for describing the extreme events of a stationary time series are the block
maxima approach (which models the maxima of a set of blocks dividing the series) and the POT
approach (which focuses on exceedances over a fixed high threshold). The POT method has the
advantage of being more flexible in modeling data, because more data points are incorporated. The
method we use is an extension of the POT method to a non-stationary setup; an extension of the
block maxima method to the non-stationary case is also proposed and serves as another possibility
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to evaluate risk measures. We begin with the latter.

2.1 The Block Maxima Method

Consider the maximum of a sequence of independent and identically distributed random variables
Xi,...,X, from a continuous distribution F. Suppose there exists a point zg (possibly oo) such
that lim,_,,, F'(z) = 1. For any fixed < xy we have

P(max{Xy,..., Xy} <2)=P(X; <z, i=1,...,q) = Fi(x),

which tends to 0 as ¢ — oco. To obtain a non-degenerate limiting distribution for the maximum, the
X,’s must be rescaled by sequences (aq) (positive) and (b,) leading to W, = a;l(max(Xl, o Xg) —
bqg). As ¢ — 00, a possible limiting distribution of W, is such that P(W, < w) = F?(by 4+ aqw) has

_ q
a limit. It can be shown that the latter expression, rewritten as (1 - %‘ﬁaqw») , has a limit if

and only if limg o ¢(1 — F(by + aqw)) exists. If so, the only possible limits are

(L+eme) 7 ite 20,

i _ (1)
exp(—==H), if £ =0,

lim ¢(1 — F(bg + aqw)) = {

q— o0

where (z)4 = max{z,0} with £&,x € R and ¢ > 0. We shall not go into details about (1). In
theory, it requires that F' satisfies some properties of regular variation but in the vast majority
of applications, simpler conditions are sufficient. This leads to the remarkable result that given
suitable sequences (aq) and (b,), the non-degenerate limiting distribution must be a generalized
extreme value (GEV) distribution, given by

Heo(w) =

{exp(—(l vy ) ire £, )

exp(—exp(—(*4))), if £ =0.

The parameters u € R and o > 0 are respectively the location and scale parameters of the
distribution. The parameter £ € R controls the shape of the distribution.

In applications, we consider thl y.-., Xy  following a non-degenerate, continuous distribution
function F'. We interpret thl . (ZnO) as losses in some monetary unit over a time period
[0,T] with 0 < ¢} <--- < ¢, <T. We fit the GEV distribution (2) to the series of (typically)
annual maxima. Taking ¢ to be the number of observations in a year and considering m’ years
observed over the period [0,7] (such that m’q = n’), we have block mazima Mél), .. ,Mq(m/) from
m' blocks of size ¢. Assuming these block maxima to be independent, the log-likelihood is given by

. 1 m')\ o i
6(57 W, 0; Mq( )) s 7Mz§ )) - 10g< ]___‘E hE,u,o’(Mq( ))]]_{1+£(M,§i)—u)/a>0})’

where h¢ ,, -(w) denotes the density of He , -(w). By maximizing the log-likelihood with respect
to &, u, o, one obtains the maximum likelihood estimators é , i1, 0. The fitted distribution is used
to estimate the 1/p-year return level, that is, the level exceeded once every 1/p years on average,



2 Classical EVT approach for modeling losses

p € (0,1). This is equivalent to using VaR,, at confidence level & = 1 — p as risk measure. Based on
the estimates &, [, 6, VaR,, is estimated by

VaR, = {P” ((~log(1— )¢ —1)/& ifE#0, N

o
fi + & (= log(—log(1 — a))), if £ =0.

The latter estimation is an approximation in the limit of a high quantile, « being typically close to
1.

2.2 The Peaks-over-Threshold approach

Given a suitably large threshold u > 0, let {t1,...,t,} C {t],...,t,,} denote those time points (in

increasing order) for which thl yo. oy Xy exceed u, that is, let Xy,..., Xy, denote the exceedances

over u with corresponding excesses Y}in: X, —u, i € {1,...,n}. It follows from Embrechts et al.

(1997, p. 167) that

1) the number of exceedances N; approximately follows a Poisson process with intensity A, that is,
Ny ~ Poi(A(t)) with integrated rate function A(t) = \t;

2) the excesses Y, ... , Y1y, over u approximately follow (independently of Ny) a generalized Pareto
distribution (GPD), denoted by GPD(E, §) for £ € R, § > 0, with distribution function

Ces(a) = 1— (1+&x/8)7 "¢, ite 0,
ST —exp(—a/B),  ifE=0,

for > 0,if € > 0, and = € [0,—5/¢], if £ < 0.
For a precise formulation and full details of the proof, see Leadbetter (1991); note that £ is the same
as in (1).
If £ > 0 (which is in accordance with most OpRisk loss models), the mathematical condition
needed in order for the above asymptotics to hold is known as regular variation, that is,

F(z)=1-F(z) =2 Y¢L(x) (4)
for some slowly varying function L : (0, 00) — (0, 00) measurable so that

L
lim (t)

AT @) =1 forall¢t>0.

The underlying theorems are known under the names of Gnedenko and Pickands—Balkema—de Haan;
see McNeil et al. (2005, Theorems 7.8 and 7.20). Equation (4) implies that the tail of the loss
distribution is of power- (or Pareto-) type, a property which typically holds for OpRisk data. One
can show that a model satisfying (4) with £ € (0,1) has at least a finite first moment whereas
for £ > 1, F has infinite first moment; for examples of the latter within an OpRisk context, see
Moscadelli (2004). More methodological consequences are for instance to be found in Neslehova
et al. (2006) and the references therein; see also Section 5. In the following, we assume & > —1. The
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asymptotic independence condition between Poisson exceedance times and GPD excesses yields an
approximate likelihood function of the form

L B:Y) = OO (X)L ges(Vi),

|
n: =1

where Y = (Y;,,...,Y;,) and g¢ g is the density of G¢ g. It follows that the log-likelihood splits into
two parts

X6 B:Y) = LN Y) +L(E,B;Y),

where

n

UNY) = AT+ nlog(A) +log(T"/nl) and U B;Y) =) (¢, B:Ys,)

=1

with

(&, By) = logge s(y)

~log(B) — (1+1/)log(1 +&y/B), ifE>0, y>0or & <0, yel0,~B/e),
= 3 —log(8) ~ y/5. it € =0,

—00, otherwise.

The maximization for the two estimation problems related to 1) and 2) can thus be carried out
separately. One can further show that this standard EVT (POT) methodology also holds for certain
classes of stationary models beyond the assumption of independence and identical distribution; see
Embrechts et al. (1997, Section 4.4).

3 A dynamic EVT approach

In practice, it is often the case that stationarity assumptions (such as independence and identical
distribution) for time series extremes are violated. For example, OpRisk losses might depend on
covariates, that is, on additional variables which are possibly predictive for the outcome. Covariates
can be economic factors, business lines and/or event types, or also time.

We now extend the classical approaches described above to more dynamic ones, in which we
let the model parameters depend on covariates. The new methodology allows the dependence (on
covariates) to be parametric, non-parametric, or semi-parametric and can also include interactions.
With the OpRisk example in mind, we focus on two covariates: a factor = (in Section 4: business
line) and time ¢ (in Section 4: year). The model presented can easily be extended to more covariates.
Let 8 € R? be the vector of p EVT model parameters (p = 3 for the GEV distribution and p = 2
for the GPD). A general model for @ can then be built via

9k(0) = fr(z) + he(t), ke{l,...,p}, (5)

where gj denotes a link function (constrained to the parameter space), fr maps the factor levels to
correspondingly many constants, and hy(t) is either a linear (parametric) function or, in most of
the cases, a smooth (non-parametric) function of t € A C R.
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The idea of letting GEV parameters depend on covariates in a parametric way has been developed
in Coles (2001, Chapter 6). Its generalization to a semi-parametric form using smoothing splines is
new. This approach allows any functional form for the dependence of the (annual, say) maxima
over time which may be useful in various kinds of applications where there is a significant evolution
through time (in the form of a trend or seasonality). Assuming all hy in (5) to be sufficiently smooth
functions, the parameter vector 8 of the EVT model can be estimated by maximizing the penalized
log-likelihood

€0:) =3 (w [ i), (6)

where the first term ¢(0;-) is the log-likelihood based on either the block-maxima or the EVT
POT-model. The introduction of the penalty terms is a standard technique to avoid over-fitting
when one is interested in fitting smooth functions hj, (see Hastie and Tibshirani (1990) or Green
and Silverman (2000)). Intuitively, the penalty functions [, hj(t)? dt measure the roughness of
twice-differentiable curves and the parameters 7; are chosen to regulate the smoothness of the
estimates hy. Large values of v, produce smoother curves, while smaller values produce rougher
curves.

In this paper, we mainly consider the methodology for the POT approach, which is more relevant
in our case because it allows one to incorporate more data. However, as a further assessment of the
results, we also apply the semi-parametric GEV-based approach to yearly maxima of OpRisk losses;
this is done in Section 4.3.5.

Focusing on the POT approach, we follow Chavez-Demoulin and Davison (2005) and let the
intensity A, as well as the GPD parameters £ and /3 depend on covariates (x and t). This is done in
Sections 3.1 and 3.2. Section 3.3 then presents the details about the fitting procedure.

3.1 Loss frequency

The number of exceedances is assumed to follow a non-homogeneous Poisson process with rate
function

A=A, t) = exp(fa(z) + ha(t)) (7)

where f) denotes a function mapping the factor levels of the covariate x to correspondingly many
constants and hy : [0,7] — R a general measurable function not depending on specific parameters.

This model is a standard generalized additive model which leads to an estimate for A; see,
for example, Wood (2006). In the statistical software R for example, such models can be fit
with the function gam(..., family=poisson) from the package mgcv. Pointwise asymptotic
confidence intervals can be constructed from the estimated standard errors obtained by predict(.. .,
se.fit=TRUE). For how to use these and other functions we implemented in the R package QRM (>
0.4-11), see the simulation examples in Section A.3.

3.2 Loss severity

We use a similar form as (7) for each of the parameters £ and § of the approximate GPD of the
excesses. However, for convergence of the simultaneous fitting procedure for £ and (3, it is crucial that
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these parameters are orthogonal with respect to the Fisher information metric; see Chavez-Demoulin

(1999, p. 96) for a counter-example otherwise. We therefore reparameterize the GPD parameter (3
by

v =log((1+¢&)p) (8)

which is orthogonal to £ in this sense; see Cox and Reid (1987) for the general theory and Chavez-
Demoulin and Davison (2005) for a similar reparameterization in a EVT POT-context. Note
that this reparameterization is only valid for £ > —1 (which is a rather weak assumption for the
applications we consider). The corresponding reparameterized log-likelihood ¢" for the excesses is
thus

(&3 Y) = £(8, exp(v) /(14 £); Y).

We assume that £ and v are of the form

§=¢&(@,1) = fe(z) + he(2), (9)
v=v(z,t) = fu(x) + h (1), (10)

where f¢, f, denote functions in the factor levels of the covariate x as in (7) and h¢, h,, : [0,7] = R
are general measurable functions. Concerning the excesses, our goal is to estimate £ and v, and thus

B=Bla,t) = m (1)

as functions of the covariate x and of time ¢ based on estimators fg,ﬁg, fy, h, of feshey fu, o,
respectively. The latter estimates are obtained from the observed vectors z; = (t;, i, y,), © €
{1,...,n}, where 0 < t; < --- < t, < T denote the exceedance times, z;, i € {1,...,n}, the
corresponding observed covariates, and y;, the corresponding realization of the (random) excess Yz,
over the threshold u, ¢ € {1,...,n}. In contrast to (7), simultaneously fitting (9) and (10) does not
lie within the scope of a standard generalized additive modeling procedure. We therefore develop a
suitable backfitting algorithm (including a bootstrap for computing confidence intervals) for this
task in the following section.

Before doing so, let us briefly mention a graphical goodness-of-fit test for the GPD model. If the
excesses Yz, i € {1,...,n}, (approximately independently) follow GPD(¢;, 8;) distributions, then
R =1-Gg, 5,(Y,), i € {1,...,n}, (approximately) forms a random sample from a standard uniform
distribution. We can thus graphically check (for example, with a Q-Q plot) whether, approximately,

ri=—log(1 =G 5 (y;), i€{l,...,n}, (12)
are distributed as independent standard exponential variables.

3.3 The penalized maximum likelihood estimator and risk measure estimators

In this section, we present the penalized maximum likelihood estimator and a backfitting algorithm
for simultaneously estimating the parameters { and v (thus ) associated with the approximate
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GPD for the excesses; see (9) and (10) above. In our application in Section 4, covariates will be
business line x and year ¢ (in which the loss happened) of the OpRisk loss under consideration.

In order to fit reasonably smooth functions h¢,h, to the observations z; = (t;, i, y,), © €
{1,...,n}, we use the penalized likelihood (6). The penalized log-likelihood ¢P corresponding to the
observations z;, i € {1,...,n}, is given by

T T
O (feshe, forhui 21, 20) = (€, 03 y) —fyg/o hg(t)2dt—%/0 B ()2 dt (13)
where ~¢,7, > 0 denote smoothing parameters, y = (ys,, - .., Yz, ), and
& viy) =Y (& visur,) (14)
i=1

for 07 (&, viyyr,) = (& exp(vi)/(1 + &); ye,). Larger values of the smoothing parameters lead to
smoother fitted curves.

Let 0 =89 < 81 < -+ < S < Sm41 = T denote the ordered and distinct values among {t1,...,t,}.
A function h defined on [0, 7] is a cubic spline with the above knots if the two following conditions
are satisfied: 1) on each interval [s;, s;y1], @ € {1,...,m}, h is a cubic polynomial; 2) at each knot
si, 1 € {1,...,m}, h and its first and second derivatives are continuous, hence the same is true on
the entire domain [0,7]. A cubic spline on [0, 7] is a natural cubic spline if in addition to the two
latter conditions it satisfies the natural boundary condition: 3) the second and third derivatives of
h at 0 and T are zero. It follows from Green and Silverman (2000, p. 13) that for a natural cubic
spline h with knots s1,..., Sy, one has

T
/ R'(t)?dt = h' Kh,
0

where h = (hgy,...,hs,,) = (h(s1),...,h(sy)) and K is a symmetric (m, m)-matrix of rank m — 2

)y 1Y8m

only depending on the knots s1, ..., s;,. The penalized log-likelihood (13) can thus be written as
Kp(ffa h{a fl/7 hu; Zlyeees Zn) = ET(£7 v y) - ’thgKhi - ’Yl/h—erhl/ (15)

with he = (he(s1), ..., he(sm)) and hy, = (hy(s1), ..., hu(Sm))-

With these formulas, it is possible to develop a backfitting algorithm for estimating the GPD
parameters £ and v (thus ). The basic idea is an iterative weighted least squares procedure
(see Algorithm A.2) that alternates between Newton steps for £ and v (see Algorithm A.1). We
construct bootstrapped pointwise two-sided confidence intervals with a post-blackend bootstrap
(see Algorithm A.3). Based on the estimates 3\, é , and 3 for a fixed covariate x and time point ¢,
one can then compute estimates of the risk measures VaR and ES (depending on x and t) as

- A _oN—¢
VaRa_qu’@:((lA O‘) —1), (16)
SN/
_ VeRat8-€u i £ ¢ (01
Be =i 1 o e, (17)
00, §>1

10
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where n' = n/(z,t) is the total number of losses for a fixed covariate x and time point ¢; see McNeil
et al. (2005, p. 283) for the basic formulas. In practice and for prediction purposes, we directly
model the rate p = p(x,t) = A(z,t)/n'(x,t) of the number of exceedances over the number of losses
using a logistic regression model (gam(. .., link=logit)) instead of the Poisson regression model
for the number of exceedances. Bootstrapped pointwise two-sided confidence intervals for VaR,,
and ES, can be constructed from the fitted values of A and bootstrapped estimates of £ and S by
computing the corresponding empirical quantities.

3.4 Smoothing parameter selection

For simplicity, we consider Model (5) for § with p = 1 and with link function g equal to the
identity (it is straightforward to extend the following argument to the general form with penalized
log-likelihood as given in (6)). In generalized additive models, asymptotic distribution theory
provides tools for inference and assessment of model fit based on the deviance and its associated
number of parameters used to estimate the model. A quantity related to the smoothing parameter ~y
in (6) is the degrees of freedom; see Green and Silverman (2000, p. 110). This gives an indication of
the effective number of parameters used in the model for a specific value of the smoothing parameter.
It is defined as

Df =m — tr($) — tr((DTA(I - $)D)"'DTA(I - 8)*D),

where S = E(ETAE +~vK) 'ETA, A = E[-2,0(6;)], D = %, and E = 2. Very often, the
term “degrees of freedom” substitutes the term “smoothing parameter” for simplicity, the degrees of
freedom 1 corresponding to linearity; in R the function s() is used, where, as smoothing parameter,
the input is Df (with Df = 1 representing linearity).

There are two different approaches of choosing the smoothing parameter (degrees of freedom), in
practice. When the aim is a pure exploration of data on different scales, varying the smoothing
parameter is an efficient way to proceed. The other approach follows the paradigm that the data itself
must choose the smoothing parameter and thus an automatic procedure is recommended. Following
Hastie and Tibshirani (1990, pp. 158), we suggest the use of Akaike’s Information Criterion (AIC).

The derivation of AIC is intended to create an approximation to the Kullback—Leibler divergence

Jr(X )}
fe(X) )
for X ~ fp, where fp denotes the density of the true model and fc the density of the candidate

model. The AIC criterion is readily adapted to a wide range of statistical models. In the context of
semiparametric models its form is given by

E {log

AIC x —2¢(0;-) + 2 Df, (18)

see Simonoff and Tsai (1999).
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4 Application to an OpRisk loss database

In this section, we apply the methodology presented before to a database of OpRisk losses collected?
from public media, these data may not exhibit all characteristics of company specific data. The
database consists of 1413 OpRisk events reported in the public media since 1970. For our analysis,
we consider the 1387 events since 1980. For each event, the following information is given: a reference
number; the organization affected (one or 0.07% missing); the country of head office; the country
where the event happened (one or 0.07% missing); the business line; the event type; the type of
insurance; the year of the event; the gross loss amount in GBP (437 or 31.51% missing); the net
loss amount in GBP (1353 or 97.55% missing); the regulator involved (838 or 60.42% missing), the
source from which the information was drawn (29 or 2.09% missing); and a loss description. The
data has been sourced from various webpages, newspapers, press releases, regulator announcements,
and databases (Bloomberg, Yahoo Finance etc.). In later years, webpages were used predominantly
(including, for example, Reuters, Financial Times, and BBC). The reported OpRisk loss events
happened in 62 different countries. The countries with the largest number of events in the considered
time period are the USA (615 or 44.34% of the reported events), the UK (361 or 26.03%); additionally,
there is one reported event on the Cayman Islands and two reported events on the Isle of Man),
Japan (70 or 5.05%), Australia (32 or 2.31%), and India (28 or 2.02%); 15 events (1.08%) are
reported under “Various” and not associated with a specific country. With regards to insurance, 887
of the events (63.95%) were (partially) insured, 483 (34.82%) were not insured (for the remaining 17
losses, 13 were missing and there was no information available yet for the other 4).

4.1 The covariates investigated

In this section we briefly address the choice of covariates for our data analysis below. As will
become clear from Section 4.2, the dependence on time is an important aspect we would like to
incorporate in our model to deal with the inhomogeneity of the data in time. Furthermore, the
Basel II guidelines naturally provide the buckets “business line” and “event type”. For our analysis
we “aggregate”, for each business line, the losses over all event types. This is common practice in
OpRisk modeling and justified by the fact that business lines are often operated separately and thus
require a separate consideration. Another practical aspect of this aggregation is that it mitigates the
problem of too small sample sizes, see also the Basel matrix versus the Basel vector in Section 4.2
below.

Incorporating additional information via covariates is a distinct feature of the new model proposed.
A particular advantage hereby is that the model can be fitted to all the data simultaneously. This
allows us to “pool” the data, that is, all the data is used to fit the model, not just the data available
for a certain business line; the latter would not be feasible due to the data being sparse, especially
over time; see, for example, the business line Retail Banking in Figure 2 below.

Let us also remark that if the identification of covariates is not as clear as in our case here
(see Section 4.2 below) and no covariates can be identified, we are simply in the classical setup of
Section 2, so this is incorporated as a special case in our model.

4by Willis Professional Risks
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4.2 Descriptive analysis of the loss data

For our data analysis, we work with gross losses and adjust the loss amounts for inflation to the
niveau of 2013 with the consumer price index as given in Table 50 in the document Consumer Price
Inflation Reference Tables, August 2013 obtained from the webpage http://www.ons.gov.uk/ons/
rel/cpi/consumer-price-indices/august-2013/index.html. To obtain an inflation adjusted
value (to the niveau of 2013) of a loss in a certain year, the loss is multiplied by the composite price
index of 2013 divided by the composite price index of the loss’ year. Table 1 shows a summary of
selected information about the ten largest losses, including the corresponding business line (BL)
which is Agency Services (AS), Asset Management (AM), Commercial Banking (CB), Corporate
Finance (CF), Insurance (I), Payment and Settlement (PS), Retail Banking (RBa), Retail Brokerage
(RBr), Trading and Sales (TS), or an unallocated business line (UBL). It also includes the event
type (ET) which is Internal Fraud (IF), External Fraud (EF), Employment Practices and Workplace
Safety (EPWS), Clients, Products, and Business Practices (CPBP), Damage to Physical Assets
(DPA), Business Disruption and System Failures (BDSF), and Execution, Delivery, and Process
Management (EDPM); see BIS (2006, p. 302 and p. 305) for more details on this classification. Due
to space limitation, the description was largely shortened. Insurance coverage was present for all
but the largest, third-largest, and fifth-largest of these losses. However, the database does not give
information about the amount of insurance coverage.

In what follows, we consider the 950 available, inflation adjusted, gross losses in M GBP (M =
million). Table 2 presents summary statistics about the OpRisk losses for each business line; the
losses are quite positively skewed.

The left-hand side of Figure 1 provides a graphical summary of the available losses over time. On
the right-hand side of Figure 1, the number of losses over time is given per business line. There are
obvious concerns about changes in measurement. The increasing frequency of events is probably
also due to improved record-keeping (reporting bias). Furthermore, the frequencies depend on the
business lines. Our model takes both of these features into account; see Section 4.3.

Figure 2 shows the available, positive gross losses in M GBP per business line on a logarithmic
scale. It seems obvious from this figure that the losses in different business lines are not identically
distributed and thus can not be modeled with the same parameters. Our model will take this into
account by interpreting the business lines as covariates.

Remark 4.1

The OpRisk database under study is clearly fairly limited with respect to sample size. Compare
for instance with the sample sizes in the simulated example in Section A.3. Our analysis hence
should be viewed as a first step towards an LDA model. Before its introduction into practice, more
extensive datasets are needed. On the other hand, as we shall see, our analysis clearly is able to
capture some important features of OpRisk (and similar) data.

The Basel matriz B contains the number of available gross losses divided into business lines (rows)
and event types (columns). In our case, this is a (10, 7)-matrix. By summing, for each business
line, over the different event types, one obtains the corresponding Basel vector b. Based on the 950
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Organization Loss BL ET Year Description
Madoff and investors 40819 AM EF 2008 B. Madoff’s Ponzi scheme
Parmalat 14608 PS EF 2003 Dubious transactions with

funds on Cayman Islands

Bank of America et al. 12500 CB CPBP 2013 Fannie Mae claims regarding
sold mortgage loans

Bank of America 9268 UBL CPBP 2011 Settle Countrywide Financial
Corp/s residential mortgage-
backed security repurchase ex-
posure

BTA Bank 8518 CB IF 2010 Fraud by chairman, diverting
funds to companies he owned

Agricult. Bank of China 6173 CB IF 2004 Financial crimes and book-
keeping irregularities

T. Imar Bankasi T.A.S. 5528 RBr IF 2003 Fraudulent computer program

Société Générale 4548 UBL IF 2008 A trader entered futures po-
sitions circumventing internal
regulations

Banca Naz. del Lavoro 4407 RBr IF 1989 Four counts of fraud

J.P. Morgan 3760 UBL CPBP 2013 US authorities demand money

due to mis-sold securities to
Fannie Mae and Freddie Mac

Table 1 Summary of the ten largest losses (adjusted for inflation to the level of 2013; rounded to
M GBP).

BL  Mean Std. dev. Median 3rd quartile Max Skewness # > 1M

AS 86.21 132.92 20.51 106.22 490.10 1.76 17
AM 57241  4558.43 15.53 53.87 40818.88 8.60 67
CB  271.55 1185.12 20.25 81.63 12500.00 7.70 172
CF 142.58 344.75 16.82 74.57  1928.06 3.85 36
I 70.87 180.10 7.38 34.35 910.73 3.35 42
PS 337.82 1859.65 18.86 70.05 14607.65 7.29 55
RBa 201.80 368.86 22.57 274.15  1257.18 1.91 9
RBr 125.65 561.16 3.97 25.50  5527.96 7.16 153
TS 19.16 31.62 6.57 31.88 172.55 2.77 35
UBL 228.30 831.22 21.20 114.10  9268.25 7.71 181

Table 2 Summary statistics (mean, standard deviation, median, third quartile, maximum, skewness,
number of losses above 1M GBP) about the 950 losses split by business lines.
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Figure 1 OpRisk data. Number of available losses and total available gross losses (aggregated per
year) over time (left). Number of available losses for each business line over time (right).

available gross losses since 1980, the Basel matrix B and the Basel vector b are given by

IF EF EPWS CPBP DPA BDSF EDPM

2 1 0 12 0 0 3\ AS 18\ As
12 3 4 55 0 0 6 | AMm 80 | AM
60 54 4 77 1 0 11 | cB 207 | cB
12 4 0 23 0 0 2 | cF 41 | cF

B— 13 2 2 32 0 0 4 |1 and b= 53 |1

10 3 0 38 2 0 9 | ps 62 | ps

3 0 0 4 0 2 3 | RBa 12 | RBa
71 62 5 73 1 0 14 | RBr 226 | RBr
13 3 2 28 0 1 2 | TS 49 | TS
60 2 20 107 0 3 10/ uBL 202/ UBL

Note that the right-hand side of Figure 1 indeed shows the evolution of the Basel vectors over time,

2013
80 (bt)te{1980,....2013}, Where b = 3> ~=194 by.

4.3 Dynamic EVT modeling

We now apply the methodology presented in Section 3 to estimate the different parameters entering
the calculation of the annual VaRg 999, including pointwise two-sided 95% confidence intervals. As
mentioned before, due to the data being sparse, we consider the losses aggregated for each business
line over all event types. In Sections 4.3.1, 4.3.2, and 4.3.3, we focus on the dynamic POT approach,
in Section 4.3.5 we present the dynamic block maxima approach.
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Figure 2 OpRisk data. Available positive gross losses (on log scale) in M GBP per business line
including the threshold u chosen in Section 4.3.1 (median of all losses).
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4.3.1 Dynamic POT analysis

In this section, we consider the median of all losses as threshold u (that is, 11.02M GBP) and the
475 gross losses from 1980 to 2013 which exceed u. The reason for this choice and the sensitivity of
our analysis on the threshold are addressed in Section 4.3.2.

The choice of the smoothing parameters (yy for A and v¢,v, for the GPD parameters £, v) or,
equivalently, the degrees of freedom, depends on the aim of the analysis. If the purpose is purely
explorative, the smoothers can be made suitably large to suit the situation by interpolating the
data more. We automatically select the smoothing parameters with the AIC criterion (18). Another
option would be cross-validation, but this can become computationally demanding when the number
of losses is large. We also adopt informal inference based on likelihood-ratio statistics to assess
model validation and comparison.

In applications dealing with OpRisk losses, it is not rare that ES does not exist because the
estimated shape parameter £ is greater than or equal to 1. This turns out to be the case here for
several business lines; see Figure 5. Hence, for the remaining part of the paper, we can only present
results about VaR. For further comments on this important issue, see Section 5.

Loss frequency
We fit the following models for A:

log A\(x,t) = ¢y, (19)
log A(z,t) = fa(x), (20)
log A(z,t) = fa(z) + ext. (21)

Model (19) is the classical constant model, neither depending on business lines nor on time.
Model (20) depends on business lines (z is a factor running in AS, AM, CB, CF, I, PS, RBa, RBr,
TS, UBL) but not on time. Model (21) depends on business lines x and, parametrically, on time ¢
(year in 1980 to 2013) as covariates.

Comparing Models (19) with (20) and (20) with (21) via likelihood-ratio tests leads to both
business line and time being significant. With the AIC criterion, we then compare Model (21) to
models of the form

log Az, t) = fa(x) + PP (1), (22)

for natural cubic splines hg\Df) with degrees of freedom Df € {1,...,8}; see Figure 3. Note that
the case Df = 1 corresponds to Model (21). It is clear from this curve, that a non-parametric
dependence on time is suggested. We use the “elbow criterion” to choose the optimal degrees of
freedom as 3; to be more precise, in Figure 3 we choose the smallest degrees of freedom so that
adding another degree does not lead to a smaller AIC.

We therefore select the estimated model

log Az, t) = fa(z) + AP (¢) (23)

for A, where x denotes the corresponding business line and fzf\?’) (t) is a natural cubic spline with
3 degrees of freedom. In particular, the selected model shows that considering a homogeneous

Poisson process for the occurrence of losses is not adequate. Figure 4 shows A for each business line
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Determining the degrees of freedom for ~ h;(t)
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Figure 3 OpRisk data. AIC curve for fitted models of the form log A(x,t) = fa(z) + hg\Df) (t) with
different degrees of freedom Df € {1,...,8}.

from 1980 to 2013 (solid lines: predicted values; filled dots: fitted values; dashed lines: pointwise
asymptotic 95% confidence intervals). Overall, the curves show an increasing pattern through time
for all business lines.

Loss severity
We now use the methodology explained in Section 3 to fit dynamic models for the GPD parameters
(&,v); recall the reparameterization (8). We fit the following models for (£, v):

§(x,1) = cg, v(z,t) = c, (24)
{(z,t) = fe(x), v(z,t) = cy, (25)
E(x,t) = fe(x) + cet, v(z,t) =cy, (26)
{(z,1) = fe(x), v(z,t) = fu (), (27)
{(z,1) = fe(x), v(z,t) = fu(z) + ot, (28)
{(z,1) = fe(x), v(z,t) = fu(x) + h,(t), (29)

where h, is a smooth function of ¢ (with variable degrees of freedom). The likelihood-ratio test
based on Models (24) and (25) reveals that business line has a significant effect on £. Comparing
Models (25) with (26) indicates that time does not have a significant effect on £&. We therefore
use Model (25) for €. As the test shows for Models (25) and (27), business line is significant for
v. Comparing Models (28) and (27) with the likelihood-ratio test indicates that time also has a
significant effect on v. Finally, Model (29) does not lead to a significant improvement of (28), the
estimated degrees of freedom are very close to one. Therefore, v in (28) is linear in time. Finally,
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Figure 4 OpRisk data. Estimates \ including 95% confidence intervals depending on time and
business line.
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we select the estimated models

é(iﬂ, t) = fé(x)’ l?(l',t) = fu(x) + Cut. (30)

Note that the more influential or important GPD parameter is £, as it determines the tail of
the loss severity distribution, see Equation (4), and also whether the loss severity distribution has
finite (¢ € (0,1)) or infinite (§£ > 1) first moment. As our estimate reveals, this important parameter
does not depend on time. This is advantageous as we therefore do not switch between the two
worlds (finite/infinite first moment) in time. In most applications, it is observed that the shape
parameter does not depend on time. A reason for this is that it is likely (and to be expected)
that the shape parameter provides evidence in favor of (only) one of the possible underlying loss
distributions determining to which maximum domain of attraction (MDA) the loss distribution
belongs to. Furthermore, considering a fixed threshold u, the number of exceedances above u could
vary with time as if the value of the threshold would itself be varying. Theoretically, it can be
shown that the shape parameter does not vary for any other threshold value v with v > u given
that w is the “smallest” among all thresholds for which the asymptotic result in Section 2.2 holds.
For more details about this property of the GPD, see McNeil et al. (2005, Lemma 7.22).

The left-hand side of Figure 5 shows the estimates f for every business line and corresponding
bootstrapped two-sided 95% confidence intervals for our dataset. The right-hand side shows the
results of Moscadelli (2004, p. 40) for a broad comparison. Note that, with two exceptions, all
estimates (left-hand side) are larger than 1, leading to infinite-mean models (roughly in line with
the estimates found by Moscadelli (2004, p. 40) based on a much larger database). However, the
confidence intervals for all except two business lines also cover values below 1. Figure 2 justifies
somehow that £ is negative for the business lines AS and TS for which the choice of the threshold
is rather “high” for these two (sub)datasets, leading to low chance of sudden appearance of high
losses, that are, furthermore, not so high above the threshold. The contrary is observed for the other
(sub)datasets for which £ > 1: Figure 2 shows that for these business lines, there is a high chance (a
high proportion of data above the threshold) of observing sudden high losses (with values far above
the threshold). The overall larger size of the confidence intervals in comparison to Moscadelli (2004)
is due to the lack of data for each business line; see also Figures 1 and 2.

Figure 6 shows the corresponding estimates B including bootstrapped pointwise two-sided 95%
confidence intervals depending on time and on business lines. The linear effect of time on v is
apparent and results in a slight increase of 3 over the years; this means more variability over time.

Figure 7 shows a Q-Q plot of the residuals (12) computed from the selected Model (30) for the
GPD parameters against the quantiles of the standard exponential distribution including pointwise
asymptotic 95% confidence intervals. It follows that there is no reason to reject the model based on
the given data.

Figure 8 displays the effect of the selected models on VaRg.g99. Both the effect of business line
and the increase in occurrence of losses are visible. The confidence intervals are rather large for
most of the business lines, indicating considerable uncertainty. We refrain from (over)interpreting
the loss amounts estimated. As the data is gathered across several institutions, it is difficult to
put them in perspective. As mentioned earlier, the main purpose of the paper is to show how the
new methodology presented can be used for modeling OpRisk-type data; see also Embrechts and
Puccetti (2008) for specifics of this kind of data from a Quantitative Risk Management point of view.
A typical application would concentrate on loss data within one company for which then a common
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Figure 5 OpRisk data. Estimates & (left: our dataset; right: Moscadelli (2004)) including boot-
strapped 95% confidence intervals depending on business lines.

total capital denominator would be available. For an application focusing on institutions belonging
to the banking and finance sector and in the US market only, see our study in Section 4.3.4.

4.3.2 Sensitivity of the model choice with respect to the choice of the threshold

The outcome of a POT analysis is of course affected by the choice of the threshold u above which
losses are modeled; see, for instance, de Fontnouvelle et al. (2004) and Shevchenko and Temnov
(2009) for time varying thresholds. The key question is “by how much”? If the threshold is chosen
too large, the number of losses is small which increases the variance in the statistical estimation;
if the threshold is chosen too small, the asymptotic results by Pickands—Balkema—de Haan from
Section 2.2 and Leadbetter (1991) might not provide a valid approximation and thus an estimation
bias results. To assess the sensitivity of our modeling approach on the choice of the threshold, we
conduct the same analysis with the threshold u being chosen as the 0-quantile (taking all data
into account), 0.2-quantile, 0.3-quantile, and 0.4-quantile; recall that we chose the threshold u as
the 0.5-quantile (median) above. The models selected for the loss severity are given in Table 3.
Residual plots (not included) for smaller values of u showed clear departures from the model. We
have indicated the increasing deterioration with decreasing u by the non-technical #-symbols. The
residuals for the threshold « = 0.5 are given in Figure 7 and show a good overall behavior; whence
we decided on this level of u.

4.3.3 Sensitivity of the model choice with respect to the modeled time period

Another question is how sensitive the selected models (23) and (30) are to the modeled time period.
To address this, we repeat the whole analysis conducted in Section 4.3.1 for the data from 1980
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Exp(1) Q-Q plot

Quantiles of the selected model's residuals

Pointwise asymptotic 95% confidence intervals

Theoretical quantiles

Figure 7 OpRisk data. Q-Q plot of the chosen model’s residuals.

Threshold u n Model for & Model for v Q-Q plot
O-quantile 934  £(z,t) = fe(x) + &t p(x,t) = f,,( )+ éut 1774
0.2-quantile 760 £(z,t) = fg(x) D(x,t) = f,(2) 7
0.3-quantile 665 £(x,t) = fg(x) D(x,t) = f,(2) 77
0.4-quantile 570 &(z,t) = fe(x) D(x,t) = f(x) ¢
0.5-quantile 475 &(z,t) = fe(z) D(x,t) = fo(x) + et v

Table 3 Selected models for the loss severity depending on the choice of threshold.
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4 Application to an OpRisk loss database

to 2009, then up to 2010, 2011, and 2012. The results are very similar to the study based on all
available data up to 2013 and so we simply summarize our findings in Table 4 (the selected model
for the data up to 2013 included for convenience). Besides the end date in the first column, Table 4

End year n Model for A Model for & Model for v Q-Q plot
2009 329 logA(z,t) = fa(x) + AV (1) E(at) = felx) Dlat) = fo(x) v
2010 364 logA(z,t) = fa(x) + AV (1) E(a,t) = felw) Dla,t) = fu(a) + et v
2011 413 logA(z,t) = fa(a) + AV (1) E(a,t) = felw)  Dla,t) = fo(2) v
2012 452 logA(z,t) = fi(z) + (1) Ela,t) = fe(w) Dla,t) = fulz) + ot v
2013 475 logA(z,t) = f(x) + AV (t)  E(a,t) = fe(x) D(a.t) = fila) + et v

Table 4 Selected models for the time periods from 1980 up to 2009, 2010,..., 2013.

contains the number of exceedances n over the threshold u (chosen as the median for all studies).
Furthermore, we see that the selected loss frequency model and the selected model for the crucial
loss severity parameter £ is the same for all investigated time periods. The only difference is the
chosen model for v (with no significant dependence on time for the data up to 2009 and up to 2011),
however, using the same model as for the data up to 2013 (2(z,t) = f,(x) + é,t) virtually leads to
the same results. The residual Q-Q plots were fine in all cases; see Figure 9 for the ones based on
the data up to 2009 and up to 2011. To summarize, the selected model is quite stable over different
time periods. The impact on \ﬁﬂ{o,ggg is also small, the estimates including confidence intervals
look similar to Figure 8 for all investigated time periods. As an example, we included the one for
the data up to 2011 in Figure 10.

Exp(1) Q-Q plot

Exp(1) Q-Q plot

Quantiles of the selected model's residuals
onfidence intervals

Quantiles of the selected model's residuals
confidence intervals

Pointwise asymptotic 95% confidence interva
Pointwise asymptotic 95%

Theoretical quantiles Theoretical quantiles

Figure 9 OpRisk data up to and including the year 2009 (left) and 2011 (right). Q-Q plots of the

chosen models’ residuals.
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4.3.4 Dynamic POT analysis based on the US banking and finance industry

As a point of criticism concerning our data study conducted in Section 4.3.1 one might argue that
the losses in the database available to us are heterogenous. It is unlikely to assume that an event
like Madoff’s Ponzi scheme (see Table 1) may occur to a well-supervised bank. In this section, we
therefore focus on those losses which appeared in the banking and finance industry in the US; there
are 328 such events with reported losses. As before, the median is chosen as threshold w.

It is clear that this study is based on a very small sample size (and a small amount of bootstrap
replications failed due to this fact). Interestingly, though, the selected model for the loss frequency
and the selected model for the crucial loss severity parameter £ are still the same as in Section 4.3.1;
see (23) and (30), respectively. As a model for v, 0(x,t) = f,(z) is selected, so a slightly simpler
model than we saw before (not depending on time as a covariate). The residual Q-Q plot is shown
in Figure 11, there is no indication of a misspecified model. The estimated VaRg 999 is displayed
in Figure 12; as the rate p only depends on the business line in this case, so does the estimated
VaRg.999. We omit further details.

Exp(1) Q-Q plot

T 1T T
o
o

Quantiles of the selected model's residuals

Pointwise asymptotic 95% confidence intervals

I I I T T T 1
0 1 2 3 4 5 6

Theoretical quantiles

Figure 11 OpRisk data for the US banking and finance industry. Q-Q plot of the chosen model’s
residuals.

4.3.5 Dynamic block maxima method

In this section, we apply the dynamic block maxima method to the yearly maxima of all logarithmic
gross losses observed from 1980 to 2013; note that in Section A.3.2, a small simulation study is
presented to show how the dynamic block maxima methodology works. The analysis is motivated by
a clear increasing trend of the log-transformed maxima over years. Because there are only 34 yearly
maxima available, we do not consider other covariates (business lines or event types) than year.
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Figure 12 OpRisk data for the US banking and finance industry. Estimates VaRg gg9 (on log scale)

including bootstrapped pointwise two-sided 95% confidence intervals depending on time

and business line.
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If one is interested in VaR,, it can sometimes be useful to work with the log-transformed data.
This is allowed since for 0 < X ~ Fx and log X ~ Fi x,

VaRa(X) = Fx'(a) = exp(F, x () = exp(VaR, (log X)). (31)

A well-known property from EVT states that the log-transform of a random variable (distribution
function) in the maximum domain of attraction of a Fréchet (£ > 0 in (1) and (2)) belongs to
the MDA of the Gumbel (£ = 0). A special case concerns exact Pareto distribution functions,
the log-transform of which is exponential. See Embrechts et al. (1997, p. 148, Example 3.3.33)
and further examples therein. Besides the relevant (31), log-transformation moves data from the
heavy-tailed (even infinite-mean) case to a more standard short-tailed environment. For the OpRisk
data, the left-hand side of Figure 13 shows for the log-transformed data an increasing trend over
the years; the symbols represent different business lines. The business lines AS and RBa are never
yearly maxima for this period of time. Because we only have a small amount of yearly maxima and
because the different business lines all seem to follow the increasing trend in time, in a first analysis,
it seems reasonable to let only the location parameter p of the GEV distribution (2) depend on
time (and not on business lines nor event type). We use the penalized log-likelihood of the form (6)
for the block maxima approach (GEV), penalized for p = u(t). The resulting dynamic model is a
fully non-parametric model

~ ~ 7(2
f= () = R ),

that is, a natural cubic spline with two degrees of freedom. The scale and shape parameters are set
to be constant and their estimates are & = 1.52 (0.25) and £ = —0.39 (0.10) (standard errors in
parentheses). Note that the model suggests a short tail for the log-losses (é < 0). Using (3), where
i1 is replaced by iL,(E) (t) and the two other parameters by their estimates, we obtain an estimated
curve for VaRg.gg99 including bootstrapped pointwise two-sided 95% confidence intervals for the
yearly log-loss maxima and for the original yearly loss maxima using the relation (31); see the
right-hand side of Figure 13. The confidence intervals are rather large because of the small number
of maxima, highlighting strong uncertainty of the model. Nevertheless, the estimated VaRg.gg9
curve captures the increasing trend of the yearly maxima over time (all business lines and event
types superimposed). The results are not comparable but complementary to the ones obtained from
the dynamic POT model in Section 4.3.1. First, (much) less data and therefore less information
is available. Second, it has not been possible to incorporate the additional information about the
business lines. Third, the model is applied to yearly maxima and the corresponding VaR,, at level
a (3) is the value of the (log-)loss maxima expected to be exceeded once every 1/(1 — «) years.
The curve \7a\R0.999 on the right-hand side of Figure 13, therefore shows the estimated loss maxima
that can be exceeded only “once every 1000 years on average”. Over our period under study, the
resulting \721?{0.999 has not been exceeded by the observed losses.

5 Discussion

In recent years, banks and insurance companies have paid increasing attention to OpRisk and there
is a pressing need for a flexible statistical methodology for the modeling of extreme losses in this
context. Recent actions by international regulation show ample evidence of this, especially in the
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Figure 13 OpRisk data. Yearly loss maxima (on log scale) in M GBP over the period 1980-2013 (left);
symbols indicate business lines. Estimates VaRg. 999 (on log scale) including bootstrapped
pointwise two-sided 95% confidence intervals for the yearly loss maxima over time (right).

aftermath of the subprime crisis (legal risk). Further events like the LIBOR-case and the worries
about fixes in FX-markets will no doubt imply more pressure for risk capital increases. For instance,
the Swiss regulator FINMA (October 2013) ordered a 50% increase of the regulatory capital for UBS,
a large Swiss bank. Similar actions throughout the industry worldwide will no doubt follow. Based
on currently (especially publicly) available OpRisk data, yearly high-quantile-type risk measures
(like VaRy.g99) are statistically hard to come by. It is to be hoped that more and more complete
and reliable data will eventually become available. In anticipation of this, we developed a new
methodology in this paper. We offer an EVT-based statistical approach that allows one to choose
either appropriate loss frequency and loss severity distributions, or loss maximum distribution, by
taking into account dependence of the parameters on covariates and time. The methodology is
applied both to simulated data (see Section A.3) and to a database of publicly available OpRisk
losses (see Section 4) which shows several stylized features of industry-wide OpRisk data.

Some of the assumptions and consequences, advantages and drawbacks of the presented EVT-based
methodology and data application require a discussion:

= Let us start with the database investigated in this paper. It is well known to be extremely difficult
for academia to get its hands on “real” OpRisk data (internal data, from, say, larger banks, or
collected from a consortium such as ORIC or ORX). Studies based on real data are thus rather
rare in the scientific OpRisk literature. The database of OpRisk losses we investigate differs from
“real” OpRisk losses in that it consists of a range of events (not only of losses from the banking
industry, although we specifically address this case in Section 4.3.4), it has been collected by a
single person (instead of a company or consortium), the information is drawn from public media
(rather than internally), starting about 30 years before the notion of OpRisk has appeared in the
Basel II guidelines (as opposed to around the year 2004). Also, the sample size is quite small. It
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was thus not possible to conduct a comprehensive data analysis based on our model for “real”
internal data for one specific company and our results should be viewed in this light. Whether
our findings also apply to complete internal data the industry with corresponding database
access has to investigate further (and the best we could do here is to provide an open-source
implementation of the model). Nevertheless, we found it quite reassuring that, for example, the
important parameter £ in our studies is comparable to the findings of Moscadelli (2004), whose
database consists of such “real” losses (although also not only collected from a specific company)
with a considerably larger sample size.

It is important to say something on infinite mean models resulting from fitted é > 1 as we
partly saw in Section 4. In the context of OpRisk, several analyses based on unbounded severity
models have resulted in such é ’s. Ome can, and should question such models; industry has
used various techniques avoiding these models, such as tapering or truncation from above; see
for instance Kagan and Schoenberg (2001) in the context of seismology. For an interesting
overview of these techniques together with applications to wildfire-sizes, earthquake inter-event
times and stock-price data, see Patel (2011). Our experience is that for data of such very
heavy-tailed type, whatever fitting adjustment one tries, capital charges are highly depending
on the tapering or truncation mechanism used (which is entirely conceivable when using VaR
as a risk measure). A fully unconditioned POT analysis (possibly resulting in > 1) points
into a direction of extreme uncertainty of high quantile (VaR) estimates and should trigger
a warning concerning the possibility for accurate statistical estimation. A relevant, thought
provoking paper on the economics of climate change in the presence of (very) heavy-tailed risks
is Weitzman (2009) and the various reactions on that paper, like Nordhaus (2009). The catch
phrase reflecting on uncertainty coming from infinite mean models is “The Dismal Theorem”.
We quote from Weitzman (2009) as it very much reflects our own thinking: “The economics of
fat-tailed catastrophes raises difficult conceptual issues which cause the analysis to appear less
scientifically conclusive and to look more contentiously subjective than what comes out of [...]
more usual thin-tailed situations. But if this is the way things are with fat tails, then this is
the way things are, and it is an inconvenient truth to be lived with rather than a fact to be
evaded just because it looks less scientifically objective in cost-benefit applications”. Further
relevant papers on the topic include Ibragimov and Walden (2007), Ibragimov and Walden (2008),
and Embrechts et al. (2013). Das et al. (2013) contains a discussion in the broader context of
model uncertainty within Quantitative Risk Management. For heavy-tailed data, é > 1/3 or
1/4, say, the so-called one big jump heuristic kicks in: “One large loss dwarfs the aggregate of
all other losses over a given time period”. This is a well-known phenomenon which has precise
mathematical formulations and consequences; see for instance Embrechts et al. (1997, Section
8.3.3). Recent fraud (hence OpRisk) events have unfortunately shown how much this principle
holds in the world of banking. In the case of settlements related to fraudulent marketing of
mortgage-backed securities that helped cause the 2007-2009 financial crisis, fines have indeed
become huge: Citigroup ($7 Billion), JP Morgan Chase ($13 Billion) and, at the time of writing
these lines, a record $16-17 Billion for Bank of America (Wall Street Journal, August 6, 2014).

The kind of OpRisk data we could get access to raises the question whether there is an overall
bias in terms of a positive shift of the losses (as large losses are more likely to be reported
publicly). However, note that our model effectively deals with such a bias. To see this, assume all
exceedances are shifted above by h. Then, the excesses are Y;, = (Xy, —h) —u= X3, — (h+ u),
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i€ {l,...,n}, and thus we are in the same setup as before with the threshold being replaced by
(the larger) h + u. Since we conducted a threshold analysis, this bias has been taken care of.

In theory, the model allows for all possible interactions between the covariates, in practice
this is only possible for sufficiently large sample sizes. The simulated example in Section A.3
partly considers interactions between the variables “group” and “year”. This has been possible
because enough data has been drawn for each combination of interaction level. Furthermore,
for sufficiently large datasets, asymptotic distribution theory provides tools for inference and
assessment of model fit based on the notion of deviance and its associated degrees of freedom of
an appropriate x? statistic; see Nelder and Wedderburn (1972). In the context of small samples,
standard approximate distributions for the statistics can be unreliable. For more discussion on
these points, see, for instance, Hastie and Tibshirani (1990) and Appendix B. Indeed “large
enough” is difficult to define. In order to “gain in sample size” for the OpRisk data considered in
this paper, we found it reasonable not to include the covariate “event type”. A larger dataset
would allow us to fit all possible interactions (combinations) of “business line”, “event type”, and
“year”. It would also allow for a more reliable comparison of the fitting procedure using likelihood
ratio statistics.

Note that we do not model a specific business line at a given time point. For this one would
clearly not have sufficient data for all year—business lines combinations. We fit a model to all
available losses simultaneously. This is what we mean by “pooling”. Although considering all
data (pooling) provides higher global information and significance for the business-line effect, the
lack of data (at least for some business lines) and possible heterogeneity across risk types may
lead to model misspecification and should be considered carefully.

One concern with any regression model is spurious regression. This phenomenon could occur, for
example, if there is another hidden (or present) variable, with which the considered losses and
covariates are correlated. In principle we cannot rule out such a possibility, but in case other
covariates are identified at some point in time, they can be incorporated in our model and do
not require to create a new modeling methodology. This feature of our methodology comes from
the underlying generalized additive modeling approach. It also allows to consider different link
functions to improve the fitting capabilities, a feature we have only partially made use of in the
present paper for guaranteeing that A is positive (with a log-link function).

In Section 4.3.5, we use log-transformed data. As mentioned, in practice, it has the effect of
reducing the estimated value of the shape parameter £. Theoretical proofs of the latter for some
distributions are provided in Embrechts et al. (1997, p. 148). See also Theorem 1 (for A = 0)
and the comment thereafter in Wadsworth et al. (2010). The numerical reduction from £ > 1
obtained from the original data to f < 1 for the log-transformed data may sometimes be useful;
for £ > 1 (infinite-mean) the usual Taylor expansions can be made but do not yield a consistent
estimator. In this case, the log-likelihood may be arbitrarily large, so a maximum likelihood
estimators may take values which correspond to local maxima of the log-likelihood; see Davison
and Smith (1990).

The fact that we implemented the statistical fitting procedure, the bootstrap, and relevant model
functionals in the language R is not relevant. The reason why we chose R is that it is open source,
widely known in the statistical community, provides an implementation for the (non-trivial)
fitting of generalized additive models, and graphics. For implementing the model in another
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programming language, a fitting procedure for generalized additive models has to be provided in
addition to the functions we implemented; see Wood (2006) for details.

® The field of applications of our methodology clearly extends to the broader domains of finance,
insurance, environmental risk, and any industrial domain where the modeling of extremes or
extremal point measures like VaR or ES depending on covariates is of interest.

A Appendix

A.1 Derivatives of the reparameterized log-likelihood

Algorithm A.1 requires to compute the first two derivatives of the reparameterized log-likelihood
with respect to £ and v. We now present these ingredients. The reparameterized log-likelihood
contribution is

(& vy) = L(E exp(v) /(1 +&);y)
log(14+&) —v—(1+1/8log(1+&(1+ &) exp(—v)y), case 1,
=1 —(v+exp(—v)y), case 2,

—00, otherwise,

with case 1 being the set where { > 0 and y > 0, or { < 0 and y € [0, —exp(v)/(£(14£))), and case
2 the one where £ = 0. This implies

0
gg(gu v y) = a—é_fr(§7 Vs y)

B {1/(1 +€) +log(1+ £(1+ &) exp(—v)y) /62 — (1 + 1/&) 1L case 1,

0, otherwise
and
82
lee(&,v39) = 5l (Eviy)
. 2 N 3 2(14-2¢) exp(—v)y
L/(A+8)7 -2 10g<12(+1 f §(11 ;f) e?_p() )ﬁ/iégj (L) o)
=1 —(141/¢)exp(—v)y (1+§1+€)ixp(_y)y)2 2 case 1,
0, otherwise.
Furthermore,
—14+(1+E&) exp(=v)y .
9 T exp( )y 85¢ L
(& vsy) = 55’"(6, viy) =4 —1 4+ exp(—v)y, case 2,
0, otherwise
and
—(1+&)% exp(=v)y
52 e O exp(—oypr €a5¢ L
b (s viy) = w”(fa viy) = —exp(—v)y, case 2,
0, otherwise.

33



A Appendix

By replacing & by &, v by v;, and y by v, above, we obtain the required derivatives of the
reparameterized log-likelihood as given in (14).

A.2 Fitting and bootstrapping confidence intervals

Algorithm A.1 computes one Newton step (for both parameters) for solving the likelihood equations.

The quantities fél),hél), 51),111(,1) denote initial values for f¢, he, fu, hy, respectively. They are

computed from the classical (non-dynamic) approach described in Section 2; see Algorithm A.2

below for this step. The formulas xi.formula and nu.formula refer to the (parametric, non-

parametric, or semi-parametric) model specification; see, for example, (24)—(29) in Section 4. For

the derivatives of the reparameterized log-likelihood appearing in the following algorithm see

Section A.1.

Algorithm A.1 (Newton step; QRM: : : gamGPDfitUp())

Let k € N and n-dimensional parameter vectors &%) = ( %k), e ,§§Lk)) and v = (VYC), e w(Lk)) be

given. Furthermore, let z; = (t;, zi, y,), i € {1,...,n}, be given.

1) Setup: Specify formulas xi.formula and nu.formula for the calls to gam() in Steps 2.2) and
3.2) below for fitting (9) and (10), respectively.

2) Update £#):
2.1) Newton step for the score component: Compute (componentwise)

(€W, M) y)
Teo (€0, 1T, )

£Newt0n _ €(kz) -

2.2) Fitting: Compute £*+1) via calling fitted(xi0bj) for
xiObj <- gam(£"*"**"~xi.formula,...,weights=—(})

for the specified formula xi.formula.
3) Given £+ update v():

3.1) Newton step for the score component: Compute (componentwise)

VNewton _ V(k) - €£(£(k+1)> V(k); y)
05, (EFTD, p1);y)

3.2) Fitting: Compute v**1) via calling fitted (nulbj) for

Newton

nulbj <- gam(v ~nu.formula,...,weights=—/] )

for the specified formula nu.formula.

4) Return £#+1) and pE+1),
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Based on Algorithm A.1, the following backfitting algorithm computes the estimators

A A A~

£= (5(5517751)7 s 75(mn7tn))’
s (exp(D(xy,t1)) exp(D(xn, tn))
ﬁ_(l—ké(l‘l,tl),“', 1+£(l’n,tn))

of the GPD parameters at each of the observed vectors z;, ¢ € {1,...,n}, where entries corresponding
to the same covariates and time points are equal.

Algorithm A.2 (Fitting the GPD parameters; QRM: : gamGPDfit ())
1) Setup: Fix e¢, e, > 0 sufficiently small (for example, e¢ = ¢, = 1079).
2) Initialization step (use gpd.fit() from the R package ismev):

2.1) Compute the (classical) maximum likelihood estimators ¢MME and MME of the GPD
parameters based on all the data y;,, ¢ € {1,...,n}, as described in Section 2 2).

2.2) Compute vMME = Jog((1 4 ¢MLE) gMLE)

2.3) Set k=1, £W) = (eMLE  eMLE) and pk) = (MLE ) MLE),

)

3) Iteration:

3.1) Based on €®) and v compute the new, updated parameter vectors €+ 1 and p(*+1)
with Algorithm A.1 (Newton step).

3.2) Check convergence: If the mean relative differences satisfy
1
stop. In this case, compute

Sk _ <exp(y§k+1)) exp(VT(LkH)))
1+§§k+1) AR/ 1_'_&(1k+1)

Vi(k) _ Vi(kJrl)

1 n
< e and fz
N

(k) p(et1)
S5 <ey,
e

Vi

and return the estimates éz £(k+1) and B = B+ Otherwise, set k to k + 1 and continue
with Step 3.1).

The following algorithm wraps around Algorithm A.2 to compute a list of estimates (as returned
by Algorithm A.2) of length B + 1 with the post-blackend bootstrap of Chavez-Demoulin and
Davison (2005), where B denotes the number of bootstrap replications. This list can then be used
to compute bootstrapped pointwise two-sided 1 — « confidence intervals for the GPD parameters &
and v (or () for each combination of covariate x and time point t. Predicted values can also be
computed; see the function GPD.predict () in QRM.

Algorithm A.3 (Post-blackend bootstrap; QRM: : gamGPDboot () )

1) Compute estimates 187 (and B ) with Algorithm A.2 and corresponding residuals r;, i € {1,...,n},
as in (12).
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2) For b from 1 to B do:

2.1) Within each group of covariates, randomly sample (with replacement) r;, i € {1,...,n}, to
obtain rl(b), ie{l,...,n}.

-1

: 6-(1 —exp(—rlgb))), i€ {1,...,n}, where, for

2.2) Compute the corresponding excesses y(f) =G
all p € [0,1],

o B =p)t=1)/e, i E#£0,
Gg/lg( )= {—Blog(l - D), if £ =0.

2.3) Compute estimates £®) p®) (and B(b)) with Algorithm A.2.

3) Return a list of length B + 1 containing all estimated objects (including £ €0 p p® and B,
B® . be{l,...,B}).

A.3 Demonstration of the dynamic approaches based on simulated data

In this section, we provide an example based on simulated data (sample size of 2000) to check
correctness of our implementation and to indicate how/that our methodology works. We only briefly
discuss this example; all details for the POT approach, including more plots, can be accessed via
demo (game) in QRM.

A.3.1 The dynamic POT approach

We generate a dataset of losses over a time period of 10 years for two groups (factor with levels
“A” and “B”). The simulated losses are drawn from a (non-stationary) GPD depending on the
covariates “year” and “group”. We remove the losses of year 2006 in group “A” (to mimic having no
losses for this year—group combination) and then fit the (Poisson process) intensity A and the two
GPD parameters ¢ and 8 depending on “year” and “group” and compute bootstrapped confidence
intervals using the methodology presented in Sections 3.1 to 3.3. The precise models fitted for the
loss frequency and severity are

log A(z, 1) = fa(z) + h{P (¢, x),
E(z,t) = fe(x) + h{(t, ),
V<m7t) = fl,($) + hx(/3)(tv a;),

where x denotes the corresponding group and hg\3), hg’), hl(,3) are group-specific (hence the interaction

with x) natural cubic splines with 3 degrees of freedom. Finally, we compute dynamic estimates of
VaR,; see Figure 14. Overall, as a comparison with the true parameters and values indicates, our
methodology can be applied to fit a model to the entire dataset and captures the different functional
forms driven by the covariates.
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Figure 14 Simulated data. Estimates @0.999 (on log scale) including bootstrapped pointwise
two-sided 95% confidence intervals depending on time and group, obtained from the
dynamic POT method.
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A.3.2 The dynamic block maxima approach

We run a similar simulation study to assess the performance of the dynamic GEV approach
introduced in Section 4.3.5. We generate a dataset of losses over a time period of 10 years for two
groups (factor with levels “A” and “B”). The simulated losses are drawn from a (non-stationary)
GEV with location parameter o depending on the covariates “year” and “group” using non-linear
functions; here we consider all simulated losses (no missing data). We fit the semi-parametric model

pw(x,t) = fulx) + hl(f’) (t,x)
for the location parameter p, where, again,  denotes the corresponding group and hftg) is a group-
specific natural cubic splines with 3 degrees of freedom. The shape and scale parameters are set
constant, like in the application of Section 4.3.5. We then compute dynamic estimates of VaR,; see
Figure 15.

55000 60000 65000
|

50000

45000

40000

VaRg 999 With bootstrapped ptw. two—sided 0.95% confidence intervals

—

T T T T T T T T T T
2004 2006 2008 2010 2012 2004 2006 2008 2010 2012
Year —— VaRoge --- 095Cl o true VaRoggo

Figure 15 Simulated data. Estimates \751?{0.999 (on log scale) including bootstrapped pointwise
two-sided 95% confidence intervals depending on time and group, obtained from the
dynamic GEV block maxima method.
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