
Convex Optimization

in Machine Learning and Computational Finance: Solutions

to Exam

Michel Baes, Patrick Cheridito

February 8, 2019

Question 1

a) (2 pts) The set Q is convex. For every k ≥ 0, we denote by Q′
k the set

⋂

i≥k Qi; as an intersection
of convex sets, Q′

k is convex itself. Also, Q′
k ⊆ Q′

k+1 for every k ≥ 0.

Let x, y ∈ Q and λ ∈ [0, 1]. We need to verify that z = xλ+ (1− λ)y ∈ Q. The point x belongs
to a set Q′

kx
and y to a set Q′

ky
for some numbers kx, ky. Let N = max{kx, ky}. Then x and y

both belong to Q′
N , because Q′

kx
, Q′

ky
⊆ Q′

N . Since Q′
N is convex, z ∈ Q′

N . Hence z ∈ Q and Q
is convex.

b) (2 pts) The set Q is not convex. Consider two disjoint balls B1 and B2 and define Qk = B1 for
k odd and Qk = B2 for k even. Then

⋂

i≥k Qi = B1 ∪ B2 for every k. Hence Q = B1 ∪ B2,
which is not convex.

c) (2pts) A setQ ⊆ R
n is semidefinite representable iff there exists a linear function A : Rn+m → S

N
+

and a symetric matrix B for which x ∈ Q iff there exists y ∈ R
m for which A

(

x
y

)

+B ∈ S
N
+ .

d) (2pts) The set Q is SDr. Let Q1 ⊆ R
n, Q2 ⊆ R

m be two semidefinite representable sets, and let
A1 : Rn+m1 → S

N1

+ , B1 ∈ S
N1 , A2 : Rm+m2 → S

N2

+ , B2 ∈ S
N2 such that xi ∈ Qi iff there exists

yi ∈ R
mi for which Ai

(

xi

yi

)

+Bi ∈ S
Ni

+ for i = 1, 2.

To show that Q1 ×Q2 is an SDr set, it suffices to define:

A3









x1

x2

y1
y2









:=









A1

(

x1

y1

)

0

0 A2

(

x2

y2

)









, B3 :=

(

B1 0
0 B2

)

.

Indeed, (x1;x2) ∈ Q1 ×Q2 iff there exists (y1; y2) ∈ R
m1+m2 for which A3 (x1;x2; y1; y2) +B3 is

positive semidefinite. This block-diagonal N1 + N2 by N1 +N2 matrix is positive semidefinite
iff each of its diagonal block is positive semidefinite, that is iff x1 ∈ Q1 and x2 ∈ Q2.
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e) (2pts) The set Q is SDr. With the same notation as above (and m = n), it suffices to verify that
if Q1 ×Q2 if SDr, then Q1 +Q2 is also SDr, as the former was already verified in the previous
item. Note that z ∈ Q1+Q2 iff there exists s1 ∈ Q1, s2 ∈ Q2 for which z = s1+s2; this equality
constraint can be represented in an SDr form as:

(

diag(z − s1 − s2) 0
0 diag(s1 + s2 − z)

)

∈ S
2n
+ .

To sum up, Q1 + Q2 is SDr as it admits the representation: z ∈ Q1 + Q2 iff there exists
(s1; s2; y1; y2) ∈ R

2n+m1+m2 for which:
















diag(z − s1 − s2) 0 0
0 diag(s1 + s2 − z) 0

0 0 A3









s1
s2
y1
y2

























+





0 0 0
0 0 0
0 0 B3



 ∈ S
2n+N1+N2

+ .

Question 2

a) (2pts) The function f is convex as a supremum of a collection of linear functions x 7→
∑n

k=1 xkt
k.

(Alternatively, but more painstakingly, we can prove the convexity of f by using the definition
directly).

b) (3pts) We can always replace the ”inf” by a ”min”, because the minimum of y 7→ g(x, y) is
attained over S for every x ∈ R

m in view of the compactness of S. A justification is not needed,
but here is one for the sake of completeness. Let us fix x ∈ R

m. For every k > 0 there exists yk ∈
S such that f(x) ≥ g(x, yk)−

1
k
. Since S is compact, there exists a subsequence {ykj

: j > 1} that
converges to some y∗ ∈ S. Then g(x, y∗) ≥ infy∈S g(x, y) ≥ lim infj≥0 g(x, ykj

)− 1
kj

= g(x, y∗),

since g is closed. Thus f(x) = g(x, y∗).

To prove that f is convex, let x, x′ ∈ R
m and λ ∈ [0, 1]. Let yx, y

′
x ∈ S be such that f(x) =

g(x, yx) and f(x′) = g(x′, y′x). Then

f(λx+ (1− λ)x′) = inf
y∈S

g(λx+ (1− λ)x′, y) ≤ g(λx+ (1− λ)x′, λyx + (1 − λ)y′x)

≤ λg(x, yx) + (1− λ)g(x′, y′x) = λf(x) + (1− λ)f(x′).

c) (2pts) The support function of S is σS(s) := supx∈S sTx. It has finite values because S is
bounded. Indeed, as there is an R > 0 for which S ⊆ B2[0, R], then

σS(s) := sup
x∈S

sTx ≤ sup
x∈B2[0,R]

sTx = ||s||2R,

which is finite for every s.

d) (3pts) To compute the conjugate function of σS , different avenues can be taken.

• The simplest consists in using that σS = χ∗
S , where χS is the characteristic function of S.

Then σ∗
S = χ∗∗

S , whose epigraph is the closed convex hull of the epigraph of χS , that is, the
epigraph of χcl (conv(S)).
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• While the above is a statement given in the lecture that can be used as such by the students,
some might want to compute explicitly what the conjugate of σS is.

There are different ways to do it. For this first solution, it is necessary to note that
σS(Ms) = MσS(s) for every M > 0, as it is clear from the definition of σS .

Suppose first that z is not in the closed convex hull Q of S. Then there exists a hyperplane
that separates strictly (and in fact strongly because Q is compact, we we will not need that
here) z from Q: there exists a nonzero ŝ for which ŝT z > ŝTx for every x ∈ Q, that is,
ŝT z > supx∈Q ŝTx ≥ supx∈S ŝTx = σS(ŝ). Then

σ∗
S(z) = sup

s

sT z − σS(s) ≥ sup
M

MŝT z − σS(Mŝ) ≥ sup
M≥0

MŝT z −MσS(ŝ) = +∞.

Let us now take a point z ∈ Q. Then for every s, we have that supx∈S sTx ≥ sT z ≥
infx∈S sTx. In particular, σS(s) ≥ sTx for every s, thus

σ∗
S(z) = sup

s

sT z − σS(s) ≥ 0

Taking s = 0, we see that σ∗
S(z) = 0.

• A possible way to simplify the reasoning above is to argue first that σS = σQ, then the use
the standard χ∗∗

Q = χQ.

Question 3

a) (2pts) The existence of a solution can be deduced from an argument similar to 2.b): the feasible
set is Q1 ×Q2, which is compact because Q1 and Q2 are both compact by assumption. Thus,
there exists at least a solution (x∗, y∗).

This solution is not necessarily unique. For instance (insert a picture), suppose that the first
satellite is a unit cube shifted so that its center coincides with the point (−2, 0, 0), and that the
second satellite is a unit cube shifted so that its center coincides with the point (2, 0, 0). Then
their faces (−1.5, x1, x2) and (1.5, y1, y2), 1/2 ≤ xi, yi ≤ 1/2 are parallel. Any point of these
faces with y1 = x1 and y2 = x2 solves the problem.

b) (4pts) Observe that the original problem is convex. With K := R
m1

+ × R
m2

+ , we shall take for
F the set of affine functions x 7→ uTx+ u0 that are nondecreasing with respect to the ordering
induced by K, i.e., for which u ∈ K∗. Note that K∗ = K, i.e. u must have all its component
nonnegative.

Since the original problem has only six variables, the dual problem will only have at most six
constraints, in addition to the nonnegativity of the dual variables u: the dual problem will satisfy
the requirements of our solver.

The dual will be exact, that is, there will not be any duality gap: indeed, the original problem
is convex and the constraints g(x, y) �K b are convex (g is actually a linear function). Since
each satellite has an interior point, Slater’s conditions are satisfied, and there is no duality gap
between the primal and the dual.

Let us write the dual of the original problem1:

max{uT
1 b1 + uT

2 b2 + u0 : ||x− y||22 ≥ uT
1 A1x+ uT

2 A2y + u0 for all x, y, u1, u2 � 0}

1one can also use the Lagrangian, it will be actually faster.
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= max{uT
1 b1 + uT

2 b2 +min
x,y

||x− y||22 − uT
1 A1x− uT

2 A2y : u1, u2 � 0}

Let us fix u1, u2 � 0 and let us focus on the subproblem. Taking x = y, we can see that
AT

1 u1 +AT
2 u2 = 0 for otherwise the infimum equals −∞.

The optimality conditions for the subproblem read:

2(xu − yu) = AT
1 u1, 2(yu − xu) = AT

2 u2.

(We see that the necessary constraint AT
1 u1 +AT

2 u2 = 0 is satisfied.) As yu = AT
2 u2/2+ xu, the

subproblem becomes:

||AT
2 u2/2||

2
2 − (uT

1 A1 + uT
2 A2)xu − uT

2 A2A
T
2 u2/2 = −||AT

2 u2||
2
2/4− 0.

The dual problem then takes the form:

max{−
1

4
||AT

2 u2||
2
2 + uT

1 b1 + uT
2 b2 : AT

1 u1 +AT
2 u2 = 0, u1 �Rm1 0, u2 �Rm2 0}.

To prove that the duality gap is null between both problems, we can use Slater’s conditions:
they are satisfied by a point (x̂, ŷ) in the interior of Q1 ×Q2.

c) (2pts) The KKT conditions for the original problem read:

2(x∗ − y∗) = AT
1 u

∗
1, 2(y∗ − x∗) = AT

2 u
∗
2, (1)

A1x
∗ � b1, A2y

∗ � b2, u∗
1 � 0, u∗

2 � 0

[u∗
1]i[A1x

∗ − b1]i = 0, [u∗
2]j [A2y

∗ − b2]j = 0 (2)

for 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. Note that u
∗
1, u

∗
2 are solutions of the dual problem (and in particular

AT
1 u

∗
1 +AT

2 u
∗
2 = 0).

The KKT for the dual problem are:

−
1

2
A2A

T
2 u

∗
2 + b2 −A2µ

∗ + λ∗
2 = 0, b1 −A1µ

∗ + λ∗
1 = 0 (3)

AT
1 u

∗
1 +AT

2 u
∗
2 = 0, u∗

1 � 0, u∗
2 � 0, λ∗

1 � 0, λ∗
2 � 0,

[u∗
1]i[λ

∗
1]i = 0, [u∗

2]j [λ
∗
2]j = 0 (4)

for 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. (Here, the multipliers µ∗ are unconstrained.) Denoting ν∗ :=
µ∗ + 1

2A
T
2 u

∗
2, the conditions (3) can be simplified into:

−A2ν
∗ + b2 + λ∗

2 = 0, b1 −A1µ
∗ + λ∗

1 = 0. (5)

We can eliminate λ∗
1 and λ∗

2 to get:

AT
1 u

∗
1 +AT

2 u
∗
2 = 0, u∗

1 � 0, u∗
2 � 0, A1µ

∗ � b1, A2ν
∗ � b2,

[u∗
1]i[A1µ

∗ − b1]i = 0, [u∗
2]j [A2ν

∗ − b2]j = 0 (6)

for 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. With the definition of ν∗, that is 2(ν∗ − µ∗) = AT
2 u

∗
2, we see that

the KKT constraints for the primal problem are identical than that for the dual problem. As
they should.
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d) (2pts) Computing y∗ from u∗ and x∗ can be easily done using the KKT condition (1). Using
a solution u∗ = (u∗

1, u
∗
2) to the dual problem to compute x∗ is a bit more complicated in

general. Observe first that if u∗
1 = 0 or u∗

2 = 0, then x∗ = y∗, and the satellites touch each
other, a contradiction. Hence u∗

1 and u∗
2 = 0 must have some non-zero components. Let I1

be the nonzero components i of u∗
1 and I2 be those of u∗

2. According to the complementarity
conditions (2), [A1x

∗]i = [b1]i for i ∈ I1 and, substituting y∗ with x∗+AT
2 u

∗
2/2 by (1), [A2x

∗]j =
[b2]j − [A2A

T
2 u

∗
2/2]j for j ∈ I2. If these equations form a non-degenerated system, we are done:

we can solve it for x∗, and the feasibility comes from the existence of a solution proved in 2a.

Otherwise, our problem has not a unique solution and things get (even) more complicated. We
only know that x∗ belongs to an affine space M . To get a solution to our problem, we can for
instance rewrite the original problem as min{||x||2 : x ∈ M,x ∈ Q1, y = x + AT

2 u
∗
2/2 ∈ Q2}.

We can again write a strong dual for this problem (again by Slater’s conditions) and proceed as
above. The condition x ∈ M ensures that the x∗ we find is optimal for the original problem.

Question 4

a) (2pts) Newton’s Method requires a function f that is twice differentiable. Given a starting point
x0, Newton’s method constructs the sequence xk+1 = xk − f ′′(xk)

−1f ′(xk) as long as f ′′(xk) is
an invertible matrix.

b) (2pts) Kantorovitch’s Theorem states the following:

Let f : Rn → R be a twice differentiable function minimized in x∗ for which:

(a) f ′′(x∗) � lI for some l > 0

(b) there exists M > 0 for which |||f ′′(x)− f ′′(y)||| ≤ M ||x− y||2 for every x, y ∈ R
n.

Here, the matrix norm ||| · ||| is the norm induced by || · ||2.

Suppose that ||x0 − x∗||2 ≤ 2l
3M . Then the Newton method is well defined and

||xk+1 − x∗||2 ≤
3M ||x2 − x∗||22

2(l −M ||x2 − x∗||2)
.

Hence, the convergence of Newton’s method is quadratic. (Even though the convergence result
was not required)

c) Newton’s method, as given above, can only be applied as such for unconstrained problems.
When the problem is convex and constrained, we must distinguish two cases

Linear equality constraints (3pts) Let us recall the Newton’s Method for unconstrained min-
imization of a function f can be seen as a method to solve the optimality condition equation
system f ′(x∗) = 0 by linearizing these equations around a point xk and taking for xk+1 the
exact solution of the linearized system.

Suppose that we need to solve min{f(x) : Ax = b}, where f is a twice differentiable convex
function and the matrix A has full row rank (that is, no constraint is redundant). The
KKT conditions of this problem read:

f ′(x∗) +ATu∗ = 0, Ax∗ − b = 0.
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Linearizing these conditions around a point (xk, uk), we get:

f ′′(xk)(x− xk) +AT (u− uk) + f ′(xk) +ATuk = 0, A(x− xk) +Axk − b = 0,

which gives us:
(

f ′′(xk) AT

A 0

)(

x
u

)

=

(

f ′′(xk)xk − f ′(xk)
b

)

.

As the matrix A has full row rank (no redundant constraint), the matrix of the above
linear system is invertible iff f ′′(xk) is itself invertible. Hence, Newton’s method on the
constrained optimization problem is well defined iff it is well-defined for the constrained
problem.

Incidentally, this scheme coincides with projecting xk − f ′′(xk)
−1f ′(xk) on the affine space

S = {x ∈ R
n : Ax = b}. As this was not in the course, a careful justification of this

assertion is in order.

First, we need to prove that:

argmin
y∈S

||y − xk + f ′′(xk)
−1f ′(xk)||2 = argmin

y∈S
f(xk) + f ′(xk)

T (y − xk) +
1

2
||x− xk||

2,

which can be done by comparing the KKT condition of either problem.

General convex constraints (3pts) Consider the problem min{f(x) : x ∈ Q}, where Q is a
set with a nonempty interior. This problem is equivalent to the unconstrained problem
min f(x) + χQ(x). However, the non-differentiability of χQ, especially at the boundary
of Q forbids us to use Newton’s Method to minimize this function. Suppose that we
have a barrier FQ for the set Q, that is, a strongly convex function (even though in some
examples a strictly convex function might be used instead of a strongly convex one; the
idea is to ensure that Newton’s method can be applied to the resulting problem) that is
twice differentiable on its domain intQ, that is bounded from below, and for which every
sequence {xn : n ≥ 0} ⊆ Q that converges to ∂Q is such that limn→∞ FQ(xn) = +∞.
Then, for any positive parameter µ > 0, we consider the problem:

min f(x) + µFQ(x).

Since this problem is convex, unconstrained, and with an objective function that is twice
differentiable, Newton’s Method can be applied, provided that the Hessian is invertible.
Note that the above optimization problem is only an approximation of the original problem
min f(x) + χQ(x).

It can be proven that the optimum x∗(µ) of the approximated problem converges to an
optimum x∗ of the original problem.

Further discussions on Interior-Point Methods are welcomed, but not indispensable.
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