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or green pen. Moreover, please do not use whiteout.
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proceeding to the ones you expect to be more difficult. Do not spend too much time on
one question but try to solve as many questions as possible.

� Take a new sheet for each question and write your name on every sheet.

� All results have to be explained/argued by indicating intermediate steps in the respective
calculations. You can use known formulas from the lecture without derivation.

� Simplify your results as far as possible.

� Some of the subquestions can be solved independently of each other.
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Question 1 (10 points)

Assume we have n observations given by

D = {(Y1,x1), . . . , (Yn,xn)} .

Assume that Yi are independent and Bernoulli distributed for i = 1, . . . , n with

Yi =

{
1 with probability p(xi),
0 with probability 1− p(xi),

for a given (but unknown) regression function p : X → (0, 1).

(a) Choose a homogeneous regression function, i.e. p(x) ≡ p ∈ (0, 1) for all x ∈ X . Give the
resulting log-likelihood function and derive the maximum likelihood estimator p̂ for p.

(b) Calculate the resulting in-sample deviance statistics and give sufficient conditions for the
observations D such that the resulting estimated distribution is non-degenerate.

(c) Assume that x ∈ X is a one-dimensional continuous real-valued feature, i.e. X = R. Define
a generalized linear model for the estimation of the regression function p : X → (0, 1) using
4 (non-empty) categorical classes. Calculate the resulting maximum likelihood estimator.
Hint: Use for data compression in the categorical classes the property that the sum of
i.i.d. Bernoulli distributed random variables provides a random variable with a well-known
distribution function.

(d) Assume that x ∈ X is a one-dimensional continuous real-valued feature, i.e. X = R. Define
a generalized linear model for the estimation of the regression function p : X → (0, 1)

directly using the continuous feature x. Give the design matrix and calculate the resulting
maximum likelihood estimator (as far as possible).

(e) Comparing the results of items (a), (c) and (d) we obtain the following in-sample losses
and out-of-sample losses.

in-sample loss out-of-sample loss
(a) homogeneous model 0.2320 0.2360
(c) categorical feature 0.2050 0.2200
(d) continuous feature 0.2100 0.2180

Discuss the two error measures (in-sample loss and out-of-sample loss) and make a model
choice (with justification).



Solution 1

(a) The likelihood function LD(p) of the data D is given by

LD(p) =

n∏
i=1

pYi(1− p)1−Yi .

Thus, for the log-likelihood we get

lD(p)
def
= log(LD(p)) =

n∑
i=1

Yi log(p) + (1− Yi) log(1− p).

In order to determine the maximum likelihood estimator p̂ for p, we take the derivative of
lD(p) with respect to p and set it equal to 0. We have

∂lD(p)

∂p
=

n∑
i=1

Yi
1

p
− (1− Yi)

1

1− p
,

which is equal to 0 if and only if

n∑
i=1

Yi(1− p) =

(
n−

n∑
i=1

Yi

)
p ⇐⇒ p =

1

n

n∑
i=1

Yi.

For the second derivative of lD(p) we get

∂2lD(p)

∂p2
= −

n∑
i=1

Yi
1

p2
− (1− Yi)

1

(1− p)2
< 0.

We conclude that the log-likelihood function is concave in p, and the maximum likelihood
estimator p̂ is given by

p̂ =
1

n

n∑
i=1

Yi.

(b) By definition, the resulting (scaled) deviance statistics is obtained by twice the difference
between the log-likelihood of the saturated model and the log-likelihood of the considered
model. In the saturated model we have one parameter (pi) per observation (i) and look
for the MLE. By similar arguments as shown in a), in the saturated model we get pi = Yi,
for all i = 1, . . . , n. We write Y = (Y1, . . . , Yn). The log-likelihood of the saturated model
is then given by

lD(Y ) =

n∑
i=1

Yi log(Yi) + (1− Yi) log(1− Yi) = 0,

where we define Yi log(Yi) = 0 if Yi = 0 and (1 − Yi) log(1 − Yi) = 0 if Yi = 1. For the
(scaled) deviance statistics we then have

D∗(Y , p̂) = 2(lD(Y )− lD(p̂)) = −2lD(p̂) = −2

n∑
i=1

Yi log(p̂) + (1− Yi) log(1− p̂).

This deviance statistics is non-degenerate if and only if not all of the Yi’s are equal to the
same value. Equivalently, if and only if there exist i 6= j ∈ {1, . . . , n} with Yi 6= Yj .



(c) We define a partition of R into 4 disjoint intervals I1, I2, I3 and I4, such that for all j =

1, . . . , 4 there exists an i ∈ {1, . . . , n} with xi ∈ Ij , i.e. we have at least one observation in
every interval. We define, for all j = 1, . . . , 4,

vj =

n∑
i=1

1{xi∈Ij}

and

Nj =
n∑
i=1

1{xi∈Ij}Yi.

The quantities v1, . . . , v4 describe the volume of the four intervals and N1, . . . , N4 the sum
of the Bernoulli successes in each interval. Let p1, . . . , p4 denote the unknown success
parameters of the four categorical classes. As we have independent observations and the
sum of independent Bernoulli random variables with the same success parameter follows a
binomial distribution, we get the model

Nj ∼ Bin(vj , pj).

For each class we now have a logistic regression model. As the features consist only of the
class affiliation, we model

pj(βj) =
eβj

1 + eβj
,

for all j = 1, . . . , 4, where the parameter β = (β1, . . . , β4) has to be estimated. We note
that

∂pj(βj)

∂βj
=
eβj (1 + eβj )− eβjeβj

(1 + eβj )2
=

eβj

(1 + eβj )2
= pj(βj)(1− pj(βj)) > 0.

For the likelihood function LD(β) (with respect to the unknown parameter β) we have

LD(β) =
4∏
j=1

(
vj
Nj

)
pj(βj)

Nj (1− pj(βj))vj−Nj .

The log-likelihood function lD(β) is then given by

lD(β) = log(LD(β)) =
4∑
j=1

log

((
vj
Nj

))
+Nj log(pj(βj)) + (vj −Nj) log(1− pj(βj)).

Similarly as in (a), we calculate the maximum likelihood estimator by setting the derivative
of the log-likelihood function to 0. We have, for all j = 1, . . . , 4,

∂lD(β)

∂βj
= Nj

1

pj(βj)

∂pj(βj)

∂βj
− (vj −Nj)

1

1− pj(βj)
∂pj(βj)

∂βj

= Nj(1− pj(βj))− (vj −Nj)pj(βj).

For all j = 1, . . . , 4, this is equal to 0 if and only if

pj(βj) =
Nj

vj
.

For the second derivative of lD(β) we get, for all j = 1, . . . , 4,

∂2lD(β)

∂β2j
= −Nj

∂pj(βj)

∂βj
− (vj −Nj)

∂pj(βj)

∂βj
< 0,



as at least one of the two terms Nj and vj − Nj is strictly positive. For all j = 1, . . . , 4,
we conclude that the log-likelihood function is concave in βj , and the maximum likelihood
estimator p̂j(βj) is given by

p̂j(βj) =
Nj

vj
.

Note that the logistic regression model is not necessary here, i.e. we can directly estimate
pj by p̂j = Nj/vj .

(d) We use a logistic regression approach and model

pβ(x) =
eβ0+β1x

1 + eβ0+β1x
,

where β = (β0, β1) is the unknown model parameter. We get the design matrix

X =


1 x1
1 x2
...

...
1 xn

 .

The likelihood function LD(β) of the data D is given by

LD(β) =

n∏
i=1

pβ(xi)
Yi(1− pβ(xi))

1−Yi .

Thus, for the log-likelihood we get

lD(β) = log(LD(β)) =
n∑
i=1

Yi log(pβ(xi)) + (1− Yi) log(1− pβ(xi)).

Again, we calculate the maximum likelihood estimator by setting the derivative of the
log-likelihood function to 0. We have, for j = 0, 1,

∂lD(β)

∂βj
=

n∑
i=1

(
Yi

pβ(xi)
− 1− Yi

1− pβ(xi)

)
∂pβ(xi)

∂βj
.

For j = 0 we get

∂pβ(xi)

∂β0
=
eβ0+β1xi(1 + eβ0+β1xi)− (eβ0+β1xi)2

(1 + eβ0+β1xi)2
= pβ(xi)(1− pβ(xi)),

for all i = 1, . . . , n. Thus, we get

∂lD(β)

∂β0
=

n∑
i=1

Yi(1− pβ(xi))− (1− Yi)pβ(xi) > 0.

This is equal to 0 if and only if

n∑
i=1

Yi =
n∑
i=1

pβ(xi). (1)

For the second derivative of lD(β) with respect to β0 we get

∂2lD(β)

∂β20
=

n∑
i=1

−Yi
∂pβ(xi)

∂β0
− (1− Yi)

∂pβ(xi)

∂β0
< 0.



For j = 1 we get

∂pβ(xi)

∂β1
=
eβ0+β1xixi(1 + eβ0+β1xi)− (eβ0+β1xi)2xi

(1 + eβ0+β1xi)2
= pβ(xi)(1− pβ(xi))xi,

for all i = 1, . . . , n. Thus, we get

∂lD(β)

∂β1
=

n∑
i=1

Yi(1− pβ(xi))xi − (1− Yi)pβ(xi)xi.

This is equal to 0 if and only if

n∑
i=1

Yixi =

n∑
i=1

pβ(xi)xi. (2)

For the second derivative of lD(β) with respect to β1 we get

∂2lD(β)

∂β21
=

n∑
i=1

−Yixi
∂pβ(xi)

∂β1
− (1− Yi)xi

∂pβ(xi)

∂β1

=
n∑
i=1

−Yix2i pβ(xi)(1− pβ(xi))− (1− Yi)x2i pβ(xi)(1− pβ(xi)) < 0.

We conclude that the maximum likelihood estimator β̂ for β is the solution to equations
(1) and (2), which have to be solved numerically.

(e) The in-sample loss is the loss obtained on the training sample that is used to estimate
the parameters. Minimizing this error can lead to overfitting especially if our considered
parametric model is too flexible. Therefore, the quality of the model should be evaluated
on a test data set (out-of-sample loss) that has not been used for model estimation.

In our case we prefer the continuous feature because the corresponding model has the
smallest out-of-sample loss (0.2180). Moreover, the continuous feature model has less
parameters than the categorical one, therefore we also expect a lower parameter estimation
uncertainty in the former.



Question 2 (10 points)

Assume we have n observations given by

D = {(Y1,x1), . . . , (Yn,xn)} .

Assume that Yi are independent and Bernoulli distributed for i = 1, . . . , n with

Yi =

{
1 with probability p,
0 with probability 1− p,

for a given (but unknown) parameter p ∈ (0, 1).

(a) Define a Bayesian Bernoulli model for the estimation of the unknown parameter p ∈ (0, 1)

using a non-degenerate prior distribution.
Hint: The Beta distribution has density supported on (0, 1) given by

π(y) =
Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1, for y ∈ (0, 1),

and given parameters α, β > 0. The corresponding mean and variance are given by α/(α+

β) and αβ/((α+ β)2(α+ β + 1)), respectively.

(b) Calculate the posterior estimator p̂post for p, given data D, under the Bayesian model
assumptions made in item (a) (using π as prior density).

(c) Give a credibility theory interpretation of the posterior estimator p̂post derived in the
previous item. Can the posterior estimator lead to a degenerate probability model under
the above model assumptions (give an argument for your answer)?

(d) Derive the (conditional) mean square error of prediction of p̂post derived under item (b).
What happens with this error if n→∞?

(e) Explain why this Bayesian Bernoulli model can be useful in regression tree constructions.



Solution 2

(a) In a Bayesian Bernoulli model, we assume that the parameter p is a random variable whose
density π is supported on a subset of (0, 1). Additionally, we assume that

Yi | p ∼ Bernoulli(p)

for all i = 1, . . . , n and that, conditionally on p, the random variables Yi and Yj are
independent for all i 6= j.

Using the definition of conditional density (Bayes’ theorem) and our assumptions, the joint
distribution of the data Y = (Y1, . . . , Yn)′ and the parameter p is given by the density

f(Y , p) = f(Y | p)π(p) =

(
n∏
i=1

f(Yi | p)

)
π(p),

where f(Y | p) denotes the conditional probability mass function of Y given p and, anal-
ogously, f(Yi | p) denotes the conditional probability mass function of Yi given p. The
posterior distribution of p is then the distribution of p given the data Y and is given by
the density

f(p |Y ) =
f(Y , p)

f(Y )
∝ f(Y | p)π(p).

(b) In order to identify the posterior distribution, we select for the prior distribution of p the
Beta distribution given in the hint of (a). In that case, the joint distribution of the data
Y and the parameter p is given by

f(p |Y ) ∝

(
n∏
i=1

pYi(1− p)1−Yi
)

Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

=
Γ(α+ β)

Γ(α)Γ(β)
pα+

∑n
i=1 Yi−1(1− p)β+n−

∑n
i=1 Yi−1.

So,
f(p |Y ) ∝ pα+

∑n
i=1 Yi−1(1− p)β+n−

∑n
i=1 Yi−1,

which is the unnormalized density of the Beta distribution with parameters

α̂post = α+
n∑
i=1

Yi and β̂post = β + n−
n∑
i=1

Yi.

Since we have p̂post = E[p |Y ], using again the hint from (a), we obtain

p̂post =
α̂post

α̂post + β̂post
=
α+

∑n
i=1 Yi

α+ β + n
.

(c) We can write

p̂post =
α+

∑n
i=1 Yi

α+ β + n
=

α+ β

α+ β + n

α

α+ β
+

n

α+ β + n

∑n
i=1 Yi
n

= (1− w) p0 + w p̂,

where p0 is the mean of the prior distribution π, p̂ is the MLE from Question 1 (a) and w
is the credibility weight given by

w =
n

α+ β + n
∈ (0, 1).

Using the above fact that p̂post can be expressed as a weighted average of the prior and
sample mean (MLE) and that p0 ∈ (0, 1) for all α, β > 0, we see that the posterior estimator
p̂post never leads to a degenerate model for any n ∈ N.



(d) We have that

MSE
(
p̂post |Y

)
= E

[
(p̂post − p)2

∣∣Y ] = E
[
(E [p |Y ]− p)2

∣∣Y ] = Var (p |Y ) .

Using again the hint from (a), we obtain

MSE
(
p̂post |Y

)
=

α̂postβ̂post

(α̂post + β̂post)2(α̂post + β̂post + 1)
=

α̂postβ̂post

(α̂post + β̂post)2
1

α+ β + n+ 1

=
α̂post

(α̂post + β̂post)

β̂post

(α̂post + β̂post)

1

α+ β + n+ 1

=
1

α+ β + n+ 1
p̂post(1− p̂post).

Now, since p̂post ∈ (0, 1), we clearly have that MSE
(
p̂post |Y

)
→ 0 as n→∞.

(e) A general issue that might occur in insurance claims frequency modeling is that in a certain
node Xt of a regression tree we only have observations xi with Yi = 0 (or with Yi = 1). In
such a case we would obtain a degenerate model on Xt with maximum likelihood estimator
p̂ = 0 (or p̂ = 1, respectively). With the Bayesian Bernoulli model we get an estimator
which is never degenerate, as shown in the solution to (c).



Question 3 (10 points)

Assume we have n large claims given by

D = {(Y1,x1), . . . , (Yn,xn)} .

Assume that xi ∈ X = R, and that Yi are independent and Pareto distributed for i = 1, . . . , n

with density supported in [M,∞) and given by

Yi ∼ f(y|xi) =
α(xi)

M

( y
M

)−α(xi)−1
, for y ≥M ,

for a given (known) large claims thresholdM > 0 and a given (but unknown) regression function
α : X → R+.

(a) Calculate the deviance statistics for this problem.

(b) Set up a single hidden layer neural network with more than two hidden neurons for this
regression problem using the sigmoid activation function. How many parameters does the
model have?

(c) Calculate one step of the gradient descent optimization algorithm explicitly for the deviance
statistics loss function derived in item (a) and the single hidden layer neural network defined
in item (b). Explain why the gradient descent method is of interest in neural network
calibrations.

(d) Assume we have a large number of hidden neurons (say more than 100). Why are we in
this situation in general not interested in finding the maximum likelihood estimator? What
alternative solution do you propose?

(e) Assume we have feature space X = [−1, 1]2. Compare a single hidden layer neural network
with 3 hidden neurons and step function activation to a gradient boosting machine, where
for the latter we use single split regression trees for totally 3 boosting steps. Which of the
two models has the smaller optimal in-sample loss (give an argument for your answer)?
Which of the two models has the smaller out-of-sample loss (give an argument for your
answer)?



Solution 3

(a) The likelihood function LD(α(·)) of the data D is given by

LD(α(·)) =

n∏
i=1

α(xi)

M

(
Yi
M

)−α(xi)−1
.

Thus, for the log-likelihood we get

lD(α(·)) = log(LD(α(·))) =
n∑
i=1

log(α(xi))− log(M)− (α(xi) + 1) log

(
Yi
M

)
.

In the saturated model we have one parameter (αi) per observation (i). That is, we have
to maximize

g(αi)
def
= log(αi)− log(M)− (αi + 1) log

(
Yi
M

)
,

with respect to αi, for all i = 1, . . . , n. If we take the derivative with respect to αi, we get

∂g(αi)

∂αi
=

1

αi
− log

(
Yi
M

)
,

for all i = 1, . . . , n. This is equal to 0 if and only if

αi =
1

log
(
Yi
M

) , (3)

for all i = 1, . . . , n. For the second derivative of g(αi) with respect to αi we get

∂2g(αi)

∂α2
i

= − 1

α2
i

< 0,

for all i = 1, . . . , n. That is, in the saturated model we have the parameter α = (α1, . . . , αn)

with αi given as in (3), for all i = 1, . . . , n. For the log-likelihood of the saturated model
we then have

lD(α) =
n∑
i=1

log

 1

log
(
Yi
M

)
− log(M)−

 1

log
(
Yi
M

) + 1

 log

(
Yi
M

)

=
n∑
i=1

− log

(
log

(
Yi
M

))
− log(M)− 1− log

(
Yi
M

)
.

Finally, the (scaled) deviance statistics is given by

D∗(α, α(·)) = 2(lD(α)− lD(α(·)))

= 2
n∑
i=1

− log

(
log

(
Yi
M

))
− 1− log(α(xi)) + α(xi) log

(
Yi
M

)
.

(b) We choose a single hidden layer neural network with q hidden neurons. As our feature space
is X = R, we have only one neuron in the input layer. The sigmoid activation function (on
R) is given by

φ(x) =
1

1 + e−x
.



We then have the activations, for all j = 1, . . . , q,

zj(x) = φ(wj,0 + wj,1x),

with unknown parameters wj,0, wj,1 ∈ R, for the q neurons in the hidden layer. Since the
codomain of α(·) has to be the positive real line, we define a log-linear regression approach
as follows

α(x) = eβ0+
∑q

j=1 βjzj(x),

with unknown parameters β0, β1, . . . , βq ∈ R. Overall, we have

(1 + 1)q + (q + 1) = 3q + 1

parameters in the model.

(c) We note that for the derivative of the sigmoid activation function φ we have

∂φ(x)

∂x
=

e−x

(1 + e−x)2
= φ(x)(1− φ(x)).

We write
θ = (w1,0, w1,1, . . . , wq,0, wq,1, β0, β1, . . . , βq) ∈ R3q+1

for the vector of the unknown model parameters. Thus, the regression function αθ(·)
depends on θ. In the gradient descent optimization algorithm the goal is to decrease a
given loss function by iteratively updating the model parameters. In our case we would
like to decrease the deviance statistics

D∗(α, αθ(·)) = 2

n∑
i=1

− log

(
log

(
Yi
M

))
− 1− log(αθ(xi)) + αθ(xi) log

(
Yi
M

)
.

To this end, for a given θ, we move in the direction of the maximal local decrease of
the deviance statistics, i.e. in the direction of the negative gradient ∇θD∗(α, αθ(·)) of the
deviance statistics. We calculate

∇θD∗(α, αθ(·)) =
∂D∗(α, αθ(·))

∂θ
= 2

n∑
i=1

(
− 1

αθ(xi)
+ log

(
Yi
M

))
∂αθ(xi)

∂θ
,

where we have

∂αθ(xi)

∂wj,0
= αθ(xi)βjzj(xi)(1− zj(xi)),

∂αθ(xi)

∂wj,1
= αθ(xi)βjzj(xi)(1− zj(xi))xi,

∂αθ(xi)

∂β0
= αθ(xi),

∂αθ(xi)

∂βj
= αθ(xi)zj(xi),

for all i = 1, . . . , n and j = 1, . . . , q. In one single step of the gradient descent optimization
algorithm we have the update

θ −→ θ − ρ∇θD∗(α, αθ(·)),

where ρ > 0 is the so-called learning rate. The gradient descent method is of interest in
neural network calibrations because it allows us to reduce the deviance statistics and in
this way to get a better fit of the model to the data. Note that one should carefully choose
an appropriate stopping time of the algorithm in order to prevent from overfitting; and one
should also carefully choose ρ > 0 because the gradient descent steps lead to a decrease
locally.



(d) A neural network model with a large number of hidden neurons is heavily over-parametrized.
Therefore, a maximum likelihood estimator would lead to overfitting of the model to the
training dataset. Thus, we are only interested in finding a sufficiently good approxima-
tion which has also a good out-of-sample performance. We believe that such a ‘good’
parametrization can be reached for example by the gradient descent method.

(e) With a single hidden layer neural network with 3 hidden neurons and step function acti-
vation we can split the feature space X = [−1, 1]2 using three hyperplanes. This allows us
to assign a different value to at most 7 (disjoint) subsets of X . Using a boosting machine
consisting of single split regression trees for totally 3 boosting steps, we can split the feature
space X in at most 6 (disjoint) subsets of X . We conclude that with the neural network
we have more degrees of freedom in this example, which implies a lower in-sample loss for
the neural network. (However, we note that in a neural network we have to estimate the
network parameter using an optimization technique like gradient descent. These techniques
heavily depend on the stopping time and the starting value. Thus, in reality, one might
get a neural network model with a higher in-sample loss.)

With regard to the out-of-sample loss we cannot make any statement. There isn’t any
general rule because out-of-sample everything is possible.



Question 4 (10 points)

Assume we have n independently distributed claims count observations given by the data

D = {(N1,x1), . . . , (Nn,xn)} .

An actuary wants to have your opinion based on the following output. Take your decisions on a
test level of α = 5%.

(a) Define an appropriate generalized linear model for claims frequency modeling based on the
given data D. What conditions need to be fulfilled so that the model can be applied?

(b) The actuary gives you the following R output of his analysis. Answer the following questions
based on his output:

(i) How many observations do we have?

(ii) How many explanatory variables are available and what structure do they have?

(iii) Based on the output below: which variables have a significant relationship with the
observed claims frequency? Give statistical arguments for your statements.

(c) Assume that you have decided to keep variable f1 in the model. Give the resulting prediction
for the claims frequencies of the different policies.

(d) You intend to improve your existing generalized linear model and want to keep the inter-
pretability at the same time.

(i) What could you do to improve the prediction of your existing model?

(ii) How would you compare different models to check which model performs better?



(e) Consider the following output below and compare it to the output from item (b).

(i) What are the differences between the two models?

(ii) Would you revise one or more statements that you have taken in item (b) based on
this new output? Give arguments for your statements.

(iii) Which model fits better to the data? Give arguments for your statements.



Solution 4

(a) An example of an appropriate GLM would be a Poisson GLM with a log link given by

Ni ∼ Poi(λ(xi)),

where λ : X → R is given by x 7→ exp(β′x). In order for the model to be applicable, we
need N1, . . . , Nn to be independent.

(b) (i) There are 3000 observations. This can be read off from the number of degrees of
freedom of the null model in the first output.

(ii) There is a single variable. This can be read off from the second output since there is
only a single one-variable model (the other one is the null model). The fact that this
variable is categorical can be seen from the first output — there are three coefficients,
each corresponding to one category/label.

(iii) There is only a single variable. The last column of the table in the first output shows
the p-value from a z-test testing equality of the given coefficient to 0. While we see
that the coefficient for f1B is statistically significantly different from 0 on the 5% test
level, this is not the case for the coefficients corresponding to f1A (intercept) and f1C.
This means that we cannot reject that the effect on N differs among f1A and f1C.
The p-value from the second output also says that we cannot reject the null model in
favor of the single-variable model regr2.

(c) The third output can be used to carry out predictions using the single-variable model stored
in regr2. Since our model gives us that

N̂ = Ê[N ] = exp
(
β̂0 + β̂11{f1∈f1B} + β̂21{f1∈f1C}

)
,

we can predict N by its expectation depending on the class as

N̂ =


exp(β̂0) = 0.9 if f1 ∈ f1A,

exp(β̂0 + β̂1) = exp β̂0 exp β̂1 = 1.035 if f1 ∈ f1B,

exp(β̂0 + β̂2) = exp β̂0 exp β̂2 = 0.945 if f1 ∈ f1C.

(d) (i) In order to improve the GLM, we could look for other features that have a justifiable
relationship with the claim frequency variable N . In particular, the dispersion esti-
mate of 2.10 might indicate that we are missing an important feature in the model.
One could also opt for other features whose relationship with N cannot be easily
justified, but it could then be argued that the interpretability of the resulting model
would be worse. In a similar fashion, one could try to include transformations of the
newly introduced non-categorical features or even try generalizations of the GLM such
as GAMs, but these would all be arguably much less interpretable than the original
regr2 model. Alternatively, we could also try to use a different link function or to
compare with a negative binomial or a Poisson GLM.
We do not know whether the categorical variable f1 is nominal (such as a variable
encoding three different colors) or is obtained by partitioning the range of a continuous
variable similarly to the way we have done it in Question 1 (c). In case of the latter, one
could also try to partition the range of the original continuous variable in a different
way.



(ii) Which model performs better depends on what our goal is. If we only care about
prediction, the best way to compare the models is to compare their out-of-sample
loss under an appropriate loss function, such as the MSE. As long as we also care
about interpretability of the selected model, we might want to accept a model which
is not the best in terms of out-of-sample loss but the compensates it by being more
parsimonious.

(e) (i) The only difference between the two models is that the family used in the second
model is Poisson instead of quasi Poisson. The quasi Poisson family allows for the
dispersion parameter being different from 1, which effectively breaks the equality of
mean and variance associated with the Poisson distribution.

(ii) What changes in comparison to (b) is that the intercept now becomes statistically
significantly different from 0 on the 5% test level. Additionally, based on the second
output, the null model is now rejected in favor of the single-variable model regr1 on
the 5% test level.

(iii) Which model fits better to the data better depends on how the fit is measured. Out-
of-sample statistics are not available, but if we predict using expectation, both models
would perform the same with the same set of features since the expectations in the
two models are the same. The difference only matters when it comes to assessing
uncertainty.
As far as the Poisson GLM model goes, we can decide between the single-variable
model and the null model based on the AIC, in which case we would opt for the null
model since its AIC is lower.
In the quasi Poisson model, the AIC is not available, but since the null model cannot
be rejected on the a priori chosen 5% test level, we might also opt for the null model.
Choosing between the null models with Poisson and quasi Poisson family is more
complicated, since more detailed output is only available for the single-variable models.
In the case of the single-variable models, one could argue that since we have 3000
observations the dispersion parameter is greater than 2, its difference from 1 would
likely be statistically significant, which would suggest that the equality of the mean
and the variance in the Poisson GLM does not hold, and we would thus opt for the
quasi Poisson single-variable model. Alternatively, one could argue that the large
dispersion is only a syndrome of omitted features and that one would therefore opt
for the Poisson GLM and look for missing features.


