Question 1
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Question 2

(a)

By the fundamental theorem of asset pricing (Theorem II.2.1 in the lecture notes), the
market (SY, S1) is arbitrage-free if and only if there exists an EMM @ for the discounted
stock price process S.

Any probability measure Q = P on F can be described by
QU (z1,22)} = 21 a1 20

where gy, ¢z, 2, € (0,1) satisfy that 30, < 1130, =1 and 30, (1) Gay,e = 1 for all
r1 € {—1,1}. Next, since Fy is trivial, 71 = o(Y1) and Y] only takes two values, S! is a
(Q,F)-martingale if and only if ¢1,¢1,1,9-1,1 € (0,1) and

Y) Y,
EQ{ 1]:1, EQ[ 2 ’lel—l—u}:l and EQ[

Y;
—2 vy =1+d| =1
1+r 1+2r 27"’1 +]

1+

This is equivalent to ¢1,¢1.1,¢-1,1 € (0,1) and

—d
a(l+uw)+1—g)1+d) =1+r — qlzh,
—d
q171(1+2u)+(1—q171)(1+2d) =1+42r <~ q,1 = h,
2r —d
q_171(1+u)+(1—q_171)(1+d):1—1—27' <~ q-1,1 = w—d
In conclusion, the market (S°, S') is arbitrage-free if and only if
—d 2r —d
r € (0,1) and ! €(0,1) — d<r<u and d<2r<u.
u—d u—d

We know from the second fundamental theorem of asset pricing that an arbitrage-free
market is complete is and only if P.(S') is a singleton. However, we know from (a) that if
(89, S1) is arbitrage-free, then the EMM for (SY, S!) is unique. So we know that (S°, S')
is arbitrage-free and complete if and only if d < r < w and d < 2r < u.

Even if one did not find the conditions on u, r and d in (a), we can still argue each of the
single-period submarkets of our market (S, S') is a binomial market and it thus admits
a unique EMM if it is arbitrage-free. So the whole market admits at most one EMM and
the conditions for this market to be arbitrage-free and complete are the same as for it to
be just arbitrage-free.

Since any replicating strategy is self-financing by definition, we have
H="Vo(p) = Vo + (9:81)y P-as.
Because the market (S9, S') is arbitrage-free by assumption, we must have
VH =Vi(p) P-as. forall k€ {0,1,2}. (1)

Again because (S°,S') is arbitrage-free, P.(S') is non-empty by the first fundamental
theorem of asset pricing, and S' is a (@, F)-martingale for any Q € P.(S'). Additionally, 9
is admissible by the definition of a replicating strategy, so (1+.51) is also a (@, F)-martingale
for any Q € P.(S'). We therefore have by the martingale property of V(¢) (which follows
trivially from the martingale property of the stochastic integral process (J+S')) and (1)
that

Vi =Vi(p) = Eq [Va(p) | Fir] = Eg [H|Fi] P-as. for all k € {0,1,2}

for any Q € P.(S!).



(d) Note that V and VK are necessarily (@, F)-martingales. We only show this for V' since
one can proceed exactly in the same way for VE. V# is F-adapted by the definition of
conditional expectation,

Eq [V, | Fx] = EqQ[Eq [H | Fu1] | Frl = Eq [H | Fi] = Vi
for all k € {0,1} and
Eq [IVi'l] = Eq[|Eq [H | Fill] < Eq [Eq [|H||Fi]] = Eq [|H|] < oo

for all k € {0,1,2}, where we have used Jensen’s inequality.

Since @ is an EMM for (S9, S1) by assumption, @ is therefore an EMM for (S9, ST, VH VK).
But (S°, S1) is complete by assumption, so the second fundamental theorem of asset pricing
gives that @ is the only EMM for (SY, S'). Since the set of EMMs for (S°, S1, V# VE)is
the intersection of set of EMMs for (S°,S') and (V#,VE), the market (S°, S, V7, VE)
is complete even if VH and VX admit additional EMMs.



Question 3

(a) Let (7)nen be a localizing sequence for X and define M := maxyco 1.7} Yi- Then we
have for all k € {0,1,...,T} and all n € N that

‘XTn/\k‘ =

T T
ZXTn/\k]l{Tn:i} S ’XTn/\k’]l{Tn:i}
=1 =1

k T
=1

i=k+1
k T ' T
<Y Mig_p+ Y Ml _3=M<) Vi
i=1 i=k+1 i=1

But since Y; € L*(P) for all i € {0,1,...,T} by assumption, Zszl Y; € LY(P) as well and
dominated convergence theorem gives

T T
B[Xil| = B | lim |X;nl| = Tim B[Xrnll < Tim ;E[m = EEW < 00,
1= 1=

for all k € {0,1,...,T}, which is the integrability of X. The same bound and dominated
convergence theorem for conditional expectations can be used to show the martingale
property of X. Indeed

B[Xy | Fya] = B [ lim Xp x| Fioa] = lim B [Xp, | Foi]

= lm X, \k-1) = Xk—1

n—o0

for all k € {1,...,T}. Since adaptedness of X is clear, we get that X is indeed a true
(P, F)-martingale.

(b) Let X = (Xj)k=0,1,.,7 be an integrable local (P, F)-martingale. Since we clearly have for
all k € {0,1,...,T} that | Xi| < |Xy| and E [| Xy|] < oo by assumption the result from (a)
applies.

(c) Let F,, = o(Y3,...,Y,). By the definition of a stopping time, we only need to show that
{r <n} e F, foralln e NU{0}.
But

n
{r <n}={Y; > 1 for some k <n} = U{Yk>1}€fn
k=1
as {Yy > 1} € Fj, for all k € N by the very definition of Fj. So 7 is a stopping time with
respect to the filtration generated by Y.

(d) We have that

Plr =+400] =P[Y, <1lforallneN]=P ﬁ{Yngl}]:ﬁP[Yn<l]
n=1 n=2
oo o0 1\" 1 n—1
=TT (PIY, = 0] + Py, = 1]) = < 1—2) 4(1-2= >
I =I0((-3) < ()

But lim,, o (1 — l)n = e ! < 1, so there exists an N € N such that for all n > N,

n

(1—14)" < C, where C € (e71,1). So

P[T:—FOO]SSIJ_V[(I—:J” ﬁ cm =0.

n=2 n=N-+1



Question 4

(a)

Since W is a (P, F)-Brownian motion, in particular, Wy — Wy = W, P-a.s. is independent of
Fo, and in particular independent of Z. Therefore, as Z and W; are independent random
variables, we obtain that

Xy =Z + f(t)W, ~ N(0,tf2(t) + 1).

Moreover, we can calculate the covariance using the independence of increments of W and
their independence from Z: assuming that ¢ > s,

E[XiX,] = E[(Z + f()W)(Z + [(s)Wo)]
= B[Z%) + f(s)E[ZW] + f(OB[ZWi] + f(t) f () E[W, W]

=1+ f(t) f(s)E[(Wy — Wy)Ws] + f(t) f(s) E[W2]
=1+sf(t)f(s).

If we assume that t < s, we analogously obtain that
BIXi X = 1+ tf(t)f(s).
Putting the two cases together gives

BIX.X,] = 1+ (s At)F(D)f(s).

Continuous version of Ito’s formula says that if X = (X;);>0 is a continuous R valued
(P,F)-semimartingale and g : R — R is in C2, then the process g(X) = (9(X¢))i>0 is a
real-valued (P, F)-semimartingale and we explicitly have P-a.s. for all ¢ > 0

9(Xy) = g(Xo) +Z/ i X,)dX! + = Z/ axzaxﬂ )X, X7,

Applying Itd’s formula to the (P, F)-semimartingale (¢, W;);>0 and the C?-function g(z,y) =
f(x)y, using that t is a continuous finite variation process and hence has trivial quadratic
variation and covariations, and since

9o (z,y) = f1(2)y, gy(x,9) = (@), gay(,y) = f' (), gaal,y) = f"(2)y, gyy(z,y) =0,

we obtain
t ¢ ¢
Xi—Z=gt,Wy) = / f'(s)Wsds —|—/ f(s)dWs :/ f'(s)Wsds + Y,
0 0 0

since Xo = 0 as Wy = 0 P-a.s. Finally, since (M + N); = (M) + 2(M,N); + (N); and
since the process ( fg 1 (s)Wgds); is of finite variation (as has been shown in the exercise

sheet), we get that
)= 0 = [ Feaw), = [ s

Note that we can rewrite

T T
Yo = /0 F(s)dW, = Y, + /t F(8)A(Ws — Wins). (2)

By the Markov property of Brownian motion, Wy — Wias is a new Brownian motion (with
respect to the translated filtration G, = S+t) independent of F;. Moreover Y; is of course
measurable with respect to o(Y;) C F, and therefore we get that

Zy = Elexp (uYr) | Ft] = Elexp (uYr) | Yi].



Then clearly Z is adapted and since exp (uY7) is non-negative and integrable, it follows by
the tower property of conditional expectations that Z is integrable and has the martingale
property. Now from It&’s formula applied to Z; = F (Y, t), noting again that ¢ has trivial
quadratic variation and covariations and using the quadratic variation from (b), we obtain
that

LoF LOF LorF 9
z=zo+ | Grsis+ [ GEmmavi g [ S P

Thus collecting the finite variation terms we deduce that the equation

OF O*F

5 — (Y3, t) + o (i, 1) f2(t) =0 P-as. forallt € (0,7T)

must hold for the finite variation part to vanish and for Z to be a (P,F)-martingale. The
terminal condition is clear from (2) since conditionally on Y7 =y, exp(uYr) = exp(uy).

We can check that

Fi(y,t) = %di </ F2(s) dS) F(y,t) = - u2f22(t)F(y7t)

and
Fyy(y, t) = U2F(ya t)’

which indeed satisfies the equation. Moreover the terminal condition is satisfied since the
integral term vanishes when t = T'. Now plugging in y =t = 0 we get

F(0,0) —exp< / 72(s) ) Blexp(u¥r) | Yo = 0] = Elexp(u¥)],

where the last equality follows from the fact that Yy = 0 already holds P-a.s. By varying u
this gives us the moment generating function, or Laplace transform, of Y. By uniqueness
of the Laplace transform, since for N ~ N (u,0?) we have that

2 2
Elexp(uN)] = exp (uu + 2 20 ) ;

Yr ~ N (0, /OT f2(s)d5> :

we get that



Question 5

(a)

We can rewrite the SDE as dgtl = §t1dXt, where X = (Xt);(0,7] 18 given by X; = ut+oW;.
We then know that since X is clearly a continuous (P, F)-semimartingale, the solution to
this new SDE is given by

SAECX), = Shexp (Xt - ;[X]t> — Shexp <<u - ;ff?) - awt) .

The process is clearly positive and since it is in fact a C? transformation of the (P,TF)-
semimartingale (W3, t)>0, it is itself a (P, F)-semimartingale by Itd’s lemma.

We do so by applying It6’s lemma to the (P, F)-semimartingale (§0, S 1) and the C? function
f(x,y) = z/y. Since we have that

1 2
fx(-ray) = ga fy(l‘,y) = —%’ fyy(xay) — yii

and since S9 = exp(rt) (which is the solution the SDE for S°) defines a continuous process
of finite variation and also

(8 = (51)%at,

by the rules for computing quadratic variations of stochastic integrals from page 89 in the
lecture notes, we get

w1 o= S8 s
dS) = =dSP — —=L—dS} + —=1—d(S") = 8 ((r — p+ o*)t — odWy).
CE g e S i)

Since the process Z = (Z;)¢>0 defined by
Ly
Zy =E(aW)y =exp | aW; — e t

is a (P,F)-martingale for all a € R (for instance by Proposition 2.2 on page 70 in the

lecture notes) and Zp = 1 P-a.s., Girsanov’s theorem says that the process W = (W;)>0
defined by

Wy =W, — [aW, W], = W, — ot

is a (@, F)-Brownian motion, where @ is probability which is locally equivalent to P and
whose density process is Z defined as above. Rewriting the SDE from (b) using W, we get

dS? = 3\?((7" —pu+o*—oa)t — Uth).
If we set @ = (1 — pu + 02) /o, the finite variation term disappears and the SDE reduces to
dS? = S0%d(—aW,).
Since —o W is a continuous semimartingale, the solution to this SDE is given by

~ = = 1
S) = E(—oW) = exp (—th - 202t> ,

which is a (@, F)-martingale again by Proposition 2.2 on page 70 in the lecture notes. This

means that the probability measure ) whose density process with respect to P is given by
E((r—p+0?)/oW) is an EMM for S°.



(d) Since the Black-Scholes model is complete and because Stis a (@,F)—martingale, the
unique discounted value process V := V/S! of the claim whose payoff in undiscounted
terms is given by H is

ﬂ—@ﬂﬁhﬂ—gjﬁrﬂ :@ﬂygﬂﬂfd:@F}ZKpﬂ

:@\ g}exp(( ) T—1t)+oWp_ t)>K‘]—}]
=Q yexp((r—i— a)( —t)—i-UWT t)ZK}

i y="5}
_ 9 Wr_y . 10gg— (r+302) (T 1)

I T—1 oVl —1 y=3!

Because W is a (Q, F)-Brownian motion, Wy_;/vT — t ~ N(0,1) under Q, so

K 1.2 g
o 1_o kg@f*0+§g)g”*) _ log 55 + (r + 102) (T — 1)
L oVl —1 B oVl —1

This means that the undiscounted value process V of the payoff H is given by

log % + (r+30%) (T —1t)
oI —t

V, =S5}



