
Question 1

The correct answers are:

(a) (2)

(b) (1)

(c) (2)

(d) (3)

(e) (2)

(f) (3)

(g) (1)

(h) (2)



Question 2

(a) By the fundamental theorem of asset pricing (Theorem II.2.1 in the lecture notes), the
market (S0, S1) is arbitrage-free if and only if there exists an EMM Q for the discounted
stock price process S1.
Any probability measure Q ≈ P on F can be described by

Q[{(x1, x2)}] := qx1qx1,x2 ,

where qx1 , qx1,x2 ∈ (0, 1) satisfy that
∑

x1∈{−1,1} qx1 = 1 and
∑

x2∈{−1,1} qx1,x2 = 1 for all
x1 ∈ {−1, 1}. Next, since F0 is trivial, F1 = σ(Y1) and Y1 only takes two values, S1 is a
(Q,F)-martingale if and only if q1, q1,1, q−1,1 ∈ (0, 1) and

EQ

[
Y1

1 + r

]
= 1, EQ

[
Y2

1 + 2r

∣∣∣∣Y1 = 1 + u

]
= 1 and EQ

[
Y2

1 + 2r

∣∣∣∣Y1 = 1 + d

]
= 1.

This is equivalent to q1, q1,1, q−1,1 ∈ (0, 1) and

q1(1 + u) + (1− q1)(1 + d) = 1 + r ⇐⇒ q1 =
r − d
u− d

,

q1,1(1 + 2u) + (1− q1,1)(1 + 2d) = 1 + 2r ⇐⇒ q1,1 =
r − d
u− d

,

q−1,1(1 + u) + (1− q−1,1)(1 + d) = 1 + 2r ⇐⇒ q−1,1 =
2r − d
u− d

.

In conclusion, the market (S0, S1) is arbitrage-free if and only if

r − d
u− d

∈ (0, 1) and
2r − d
u− d

∈ (0, 1) ⇐⇒ d < r < u and d < 2r < u.

(b) We know from the second fundamental theorem of asset pricing that an arbitrage-free
market is complete is and only if Pe(S1) is a singleton. However, we know from (a) that if
(S0, S1) is arbitrage-free, then the EMM for (S0, S1) is unique. So we know that (S0, S1)
is arbitrage-free and complete if and only if d < r < u and d < 2r < u.
Even if one did not find the conditions on u, r and d in (a), we can still argue each of the
single-period submarkets of our market (S0, S1) is a binomial market and it thus admits
a unique EMM if it is arbitrage-free. So the whole market admits at most one EMM and
the conditions for this market to be arbitrage-free and complete are the same as for it to
be just arbitrage-free.

(c) Since any replicating strategy is self-financing by definition, we have

H = V2(ϕ) = V0 + (ϑ·S1)2 P -a.s.

Because the market (S0, S1) is arbitrage-free by assumption, we must have

V H
k = Vk(ϕ) P -a.s. for all k ∈ {0, 1, 2}. (1)

Again because (S0, S1) is arbitrage-free, Pe(S1) is non-empty by the first fundamental
theorem of asset pricing, and S1 is a (Q,F)-martingale for any Q ∈ Pe(S1). Additionally, ϑ
is admissible by the definition of a replicating strategy, so (ϑ·S1) is also a (Q,F)-martingale
for any Q ∈ Pe(S1). We therefore have by the martingale property of V (ϕ) (which follows
trivially from the martingale property of the stochastic integral process (ϑ·S1)) and (1)
that

V H
k = Vk(ϕ) = EQ [V2(ϕ) |Fk] = EQ [H |Fk] P -a.s. for all k ∈ {0, 1, 2}

for any Q ∈ Pe(S1).



(d) Note that V H and V K are necessarily (Q,F)-martingales. We only show this for V H since
one can proceed exactly in the same way for V K . V H is F-adapted by the definition of
conditional expectation,

EQ
[
V H
k+1

∣∣Fk] = EQ [EQ [H |Fk+1] |Fk] = EQ [H |Fk] = V H
k

for all k ∈ {0, 1} and

EQ
[
|V H
k |
]

= EQ [|EQ [H |Fk]|] ≤ EQ [EQ [|H| |Fk]] = EQ [|H|] <∞

for all k ∈ {0, 1, 2}, where we have used Jensen’s inequality.
SinceQ is an EMM for (S0, S1) by assumption, Q is therefore an EMM for (S0, S1, V H , V K).
But (S0, S1) is complete by assumption, so the second fundamental theorem of asset pricing
gives that Q is the only EMM for (S0, S1). Since the set of EMMs for (S0, S1, V H , V K) is
the intersection of set of EMMs for (S0, S1) and (V H , V K), the market (S0, S1, V H , V K)
is complete even if V H and V K admit additional EMMs.



Question 3

(a) Let (τn)n∈N be a localizing sequence for X and define M := maxk∈{0,1,...,T} Yk. Then we
have for all k ∈ {0, 1, . . . , T} and all n ∈ N that

|Xτn∧k| =
∣∣∣∣ T∑
i=1

Xτn∧k1{τn=i}

∣∣∣∣ ≤ T∑
i=1

|Xτn∧k|1{τn=i}

=
k∑
i=1

|Xi|1{τn=i} +
T∑

i=k+1

|Xk|1{τn=i}

≤
k∑
i=1

M1{τn=i} +

T∑
i=k+1

M1{τn=i} = M ≤
T∑
i=1

Yi.

But since Yi ∈ L1(P ) for all i ∈ {0, 1, . . . , T} by assumption,
∑T

i=1 Yi ∈ L1(P ) as well and
dominated convergence theorem gives

E [|Xk|] = E
[

lim
n→∞

|Xτn∧k|
]

= lim
n→∞

E [|Xτn∧k|] ≤ lim
n→∞

T∑
i=1

E [Yi] =
T∑
i=1

E [Yi] <∞,

for all k ∈ {0, 1, . . . , T}, which is the integrability of X. The same bound and dominated
convergence theorem for conditional expectations can be used to show the martingale
property of X. Indeed

E [Xk |Fk−1] = E
[

lim
n→∞

Xτn∧k

∣∣∣Fk−1] = lim
n→∞

E [Xτn∧k |Fk−1]

= lim
n→∞

Xτn∧(k−1) = Xk−1

for all k ∈ {1, . . . , T}. Since adaptedness of X is clear, we get that X is indeed a true
(P,F)-martingale.

(b) Let X = (Xk)k=0,1,...,T be an integrable local (P,F)-martingale. Since we clearly have for
all k ∈ {0, 1, . . . , T} that |Xk| ≤ |Xk| and E [|Xk|] <∞ by assumption the result from (a)
applies.

(c) Let Fn = σ(Y1, . . . , Yn). By the definition of a stopping time, we only need to show that

{τ ≤ n} ∈ Fn for all n ∈ N ∪ {0}.
But

{τ ≤ n} = {Yk > 1 for some k ≤ n} =

n⋃
k=1

{Yk > 1} ∈ Fn

as {Yk > 1} ∈ Fk for all k ∈ N by the very definition of Fk. So τ is a stopping time with
respect to the filtration generated by Y .

(d) We have that

P [τ = +∞] = P [Yn ≤ 1 for all n ∈ N] = P

[ ∞⋂
n=1

{Yn ≤ 1}

]
=

∞∏
n=2

P [Yn ≤ 1]

=

∞∏
n=2

(
P [Yn = 0] + P [Yn = 1]

)
=

∞∏
i=2

((
1− 1

n

)n
+

(
1− 1

n

)n−1)

=

∞∏
n=2

(
1− 1

n

)n(
1 +

n

n− 1

)
≤ 3

∞∏
n=2

(
1− 1

n

)n
.

But limn→∞
(
1− 1

n

)n
= e−1 < 1, so there exists an N ∈ N such that for all n ≥ N ,

(1− 1
n)n < C, where C ∈ (e−1, 1). So

P [τ = +∞] ≤ 3
N∏
n=2

(
1− 1

n

)n ∞∏
n=N+1

Cn = 0.



Question 4

(a) SinceW is a (P,F)-Brownian motion, in particular, Wt−W0 = Wt P -a.s. is independent of
F0, and in particular independent of Z. Therefore, as Z and Wt are independent random
variables, we obtain that

Xt = Z + f(t)Wt ∼ N (0, tf2(t) + 1).

Moreover, we can calculate the covariance using the independence of increments of W and
their independence from Z: assuming that t ≥ s,

E[XtXs] = E[(Z + f(t)Wt)(Z + f(s)Ws)]

= E[Z2] + f(s)E[ZWs] + f(t)E[ZWt] + f(t)f(s)E[WtWs]

= 1 + f(t)f(s)E[(Wt −Ws)Ws] + f(t)f(s)E[W 2
s ]

= 1 + sf(t)f(s).

If we assume that t < s, we analogously obtain that

E[XtXs] = 1 + tf(t)f(s).

Putting the two cases together gives

E[XtXs] = 1 + (s ∧ t)f(t)f(s).

(b) Continuous version of Itô’s formula says that if X = (Xt)t≥0 is a continuous Rd-valued
(P,F)-semimartingale and g : Rd → R is in C2, then the process g(X) = (g(Xt))t≥0 is a
real-valued (P,F)-semimartingale and we explicitly have P -a.s. for all t ≥ 0

g(Xt) = g(X0) +
d∑
i=1

∫ t

0

∂g

∂xi
(Xs)dX

i
s +

1

2

d∑
i,j=1

∫ t

0

∂2g

∂xi∂xj
(Xs)d〈Xi, Xj〉s.

Applying Itô’s formula to the (P,F)-semimartingale (t,Wt)t≥0 and the C2-function g(x, y) =
f(x)y, using that t is a continuous finite variation process and hence has trivial quadratic
variation and covariations, and since

gx(x, y) = f ′(x)y, gy(x, y) = f(x), gxy(x, y) = f ′(x), gxx(x, y) = f ′′(x)y, gyy(x, y) = 0,

we obtain

Xt − Z = g(t,Wt) =

∫ t

0
f ′(s)Wsds+

∫ t

0
f(s)dWs =

∫ t

0
f ′(s)Wsds+ Ys,

since X0 = 0 as W0 = 0 P -a.s. Finally, since 〈M + N〉t = 〈M〉t + 2〈M,N〉t + 〈N〉t and
since the process (

∫ t
0 f
′(s)Wsds)t is of finite variation (as has been shown in the exercise

sheet), we get that

〈X〉t = 〈Y 〉t =

∫ t

0
f2(s)d 〈W 〉s =

∫ t

0
f2(s)ds.

(c) Note that we can rewrite

YT =

∫ T

0
f(s)dWs = Yt +

∫ T

t
f(s)d(Ws −Wt∧s). (2)

By the Markov property of Brownian motion, Ws −Wt∧s is a new Brownian motion (with
respect to the translated filtration Gs = Fs+t) independent of Ft. Moreover Yt is of course
measurable with respect to σ(Yt) ⊆ Ft, and therefore we get that

Zt = E[exp (uYT ) | Ft] = E[exp (uYT ) | Yt].



Then clearly Z is adapted and since exp (uYT ) is non-negative and integrable, it follows by
the tower property of conditional expectations that Z is integrable and has the martingale
property. Now from Itô’s formula applied to Zt = F (Yt, t), noting again that t has trivial
quadratic variation and covariations and using the quadratic variation from (b), we obtain
that

Zt = Z0 +

∫ t

0

∂F

∂t
(Ys, s)ds+

∫ t

0

∂F

∂y
(Ys, s)dYs +

1

2

∫ t

0

∂2F

∂y2
(Ys, s)f

2(s)ds.

Thus collecting the finite variation terms we deduce that the equation

∂F

∂t
(Yt, t) +

∂2F

∂y2
(Yt, t)f

2(t) = 0 P -a.s. for all t ∈ (0, T )

must hold for the finite variation part to vanish and for Z to be a (P,F)-martingale. The
terminal condition is clear from (2) since conditionally on YT = y, exp(uYT ) = exp(uy).

(d) We can check that

Ft(y, t) =
u2

2

d

dt

(∫ T

t
f2(s)ds

)
F (y, t) = −u

2f2(t)

2
F (y, t)

and
Fyy(y, t) = u2F (y, t),

which indeed satisfies the equation. Moreover the terminal condition is satisfied since the
integral term vanishes when t = T . Now plugging in y = t = 0 we get

F (0, 0) = exp

(
u2

2

∫ T

0
f2(s)ds

)
= E[exp(uYT ) | Y0 = 0] = E[exp(uYT )],

where the last equality follows from the fact that Y0 = 0 already holds P -a.s. By varying u
this gives us the moment generating function, or Laplace transform, of YT . By uniqueness
of the Laplace transform, since for N ∼ N (µ, σ2) we have that

E[exp(uN)] = exp

(
µu+

u2σ2

2

)
,

we get that

YT ∼ N
(

0,

∫ T

0
f2(s)ds

)
.



Question 5

(a) We can rewrite the SDE as dS̃1
t = S̃1

t dXt, where X = (Xt)t∈[0,T ] is given by Xt = µt+σWt.
We then know that since X is clearly a continuous (P,F)-semimartingale, the solution to
this new SDE is given by

S̃1
0E(X)t = S̃1

0 exp

(
Xt −

1

2
[X]t

)
= S̃1

0 exp

((
µ− 1

2
σ2
)
t+ σWt

)
.

The process is clearly positive and since it is in fact a C2 transformation of the (P,F)-
semimartingale (Wt, t)t≥0, it is itself a (P,F)-semimartingale by Itô’s lemma.

(b) We do so by applying Itô’s lemma to the (P,F)-semimartingale (S̃0, S̃1) and the C2 function
f(x, y) = x/y. Since we have that

fx(x, y) =
1

y
, fy(x, y) = − x

y2
, fyy(x, y) =

2x

y3

and since S̃0
t = exp(rt) (which is the solution the SDE for S̃0) defines a continuous process

of finite variation and also

〈S̃1〉t = (S̃1
t )2σ2t,

by the rules for computing quadratic variations of stochastic integrals from page 89 in the
lecture notes, we get

dŜ0
t =

1

S̃1
t

dS̃0
t −

S̃0
t

(S̃1
t )2

dS̃1
t +

S̃0
t

(S̃1
t )3

d〈S̃1〉t = Ŝ0
t

(
(r − µ+ σ2)t− σdWt

)
.

(c) Since the process Z = (Zt)t≥0 defined by

Zt = E(αW )t = exp

(
αWt −

1

2
α2t

)
is a (P,F)-martingale for all α ∈ R (for instance by Proposition 2.2 on page 70 in the
lecture notes) and Z0 = 1 P -a.s., Girsanov’s theorem says that the process Ŵ = (Ŵt)t≥0
defined by

Ŵt := Wt − [αW,W ]t = Wt − αt

is a (Q̂,F)-Brownian motion, where Q̂ is probability which is locally equivalent to P and
whose density process is Z defined as above. Rewriting the SDE from (b) using Ŵ , we get

dŜ0
t = Ŝ0

t

(
(r − µ+ σ2 − σα)t− σdŴt

)
.

If we set α = (r − µ+ σ2)/σ, the finite variation term disappears and the SDE reduces to

dŜ0
t = Ŝ0

t d(−σŴt).

Since −σŴ is a continuous semimartingale, the solution to this SDE is given by

Ŝ0
t = E(−σŴ ) = exp

(
−σŴt −

1

2
σ2t

)
,

which is a (Q̂,F)-martingale again by Proposition 2.2 on page 70 in the lecture notes. This
means that the probability measure Q̂ whose density process with respect to P is given by
E
(
(r − µ+ σ2)/σW

)
is an EMM for Ŝ0.



(d) Since the Black–Scholes model is complete and because Ŝ1 is a (Q̂,F)-martingale, the
unique discounted value process V̂ := Ṽ /S̃1 of the claim whose payoff in undiscounted
terms is given by H̃ is

V̂t = E
Q̂

[
Ĥ
∣∣∣Ft] = E

Q̂

[
H̃

S̃1
T

∣∣∣∣∣Ft
]

= E
Q̂

[
1{S̃1

T≥K}

∣∣∣Ft] = Q̂
[
S̃1
T ≥ K

∣∣∣Ft]
= Q̂

[
S̃1
t exp

((
µ− 1

2
σ2
)

(T − t) + σWT−t

)
≥ K

∣∣∣∣Ft]
= Q̂

[
y exp

((
r +

1

2
σ2
)

(T − t) + σŴT−t

)
≥ K

] ∣∣∣∣
y=S̃1

t

= Q̂

[
ŴT−t√
T − t

≥
log K

y −
(
r + 1

2σ
2
)

(T − t)
σ
√
T − t

] ∣∣∣∣∣
y=S̃1

t

.

Because Ŵ is a (Q̂,F)-Brownian motion, ŴT−t/
√
T − t ∼ N (0, 1) under Q̂, so

V̂t = 1− Φ

 log K

S̃1
t

−
(
r + 1

2σ
2
)

(T − t)

σ
√
T − t

 = Φ

 log
S̃1
t
K +

(
r + 1

2σ
2
)

(T − t)
σ
√
T − t

 .

This means that the undiscounted value process Ṽ of the payoff H̃ is given by

Ṽt = S̃1
t Φ

 log
S̃1
t
K +

(
r + 1

2σ
2
)

(T − t)
σ
√
T − t

 .


