## Question 1

The correct answers are:
(a) (2)
(b) (1)
(c) $(1)$
(d) (3)
(e) $(3)$
(f) $(2)$
(g) (3)
(h) (1)

## Question 2

(a) Adaptedness follows from the adaptedness and predicatibility of the processes $M$ and $H$ respectively. Integrability is a consequence of the integrability of $M$ and the boundedness of $H$. Remains to show the martingale property. For any $t=1,2, \ldots$, we have

$$
\begin{aligned}
\mathbb{E}\left[N_{t}-N_{t-1} \mid \mathcal{F}_{t}\right] & =\mathbb{E}\left[H_{t}\left(M_{t}-M_{t-1}\right) \mid \mathcal{F}_{t}\right] \\
& =H_{t} \mathbb{E}\left[\left(M_{t}-M_{t-1}\right) \mid \mathcal{F}_{t}\right] \\
& =0
\end{aligned}
$$

The first line uses the definition of the stochastic integral process, in the second line we used that $H$ is a predictable process, and the final line is a consequence of the martingale property of $M$.
(b) Note that for any $t=0,1, \ldots$, we have

$$
\begin{aligned}
M_{t}^{\tau} & =M_{0}+\sum_{s=1}^{t \wedge \tau}\left(M_{s}-M_{s-1}\right) \\
& =M_{0}+\sum_{s=1}^{t} \mathbb{1}_{s \leq \tau}\left(M_{s}-M_{s-1}\right) .
\end{aligned}
$$

Since the event $\{s \leq \tau\}=\{\tau<s\}^{c}=\{\tau \leq s-1\}^{c}$ is $\mathcal{F}_{s-1}$-measurable by definition of stopping time, we conclude that the process $H_{s}:=\mathbb{1}_{s \leq \tau}$ is predictable, and hence $M^{\tau}$ is a martingale as the stochastic integral of the bounded predictable process $H$ with respect to the martingale $M$.
(c) Let $\left(\tau_{n}\right)_{n=0,1, \ldots}$ be a localizing sequence for $X$, i.e a sequence of increasing stopping times with $\tau_{n} \uparrow \infty$ such that $X^{\tau_{n}}$ is a martingale for all $n=0,1, \ldots$ Define

$$
\sigma_{n}:=\inf \left\{t=0,1, \cdots:\left|K_{t+1}\right|>n\right\}
$$

with the convention $\inf \emptyset=\infty$. Note that $\sigma_{n}$ is a stopping time for all $n$, and $\sigma_{n} \uparrow \infty$. Indeed, we have

$$
\left\{\sigma_{n} \leq t-1\right\}^{c}=\left\{\sigma_{n}>t-1\right\}=\left\{\sigma_{n} \geq t\right\}=\bigcap_{0 \leq s \leq t}\left\{\left|K_{s}\right| \leq n\right\}
$$

Since $K$ is predictable, we get $\left\{\sigma_{n} \leq t-1\right\}^{c} \in \mathcal{F}_{t-1}$, and hence $\sigma_{n}$ is a stopping time. It is clear that $\sigma_{n} \uparrow \infty$.
Let $\rho_{n}:=\tau_{n} \wedge \sigma_{n}$. We claim that $\left(\rho_{n}\right)_{n=0,1, \ldots}$ is a localizing sequence for $X$ and also for $N$. By definition, $\rho_{n} \uparrow \infty$ since both $\tau_{n} \uparrow \infty$ and $\sigma_{n} \uparrow \infty$. Moreover $\rho_{n}$ is a stopping time for each $n=0,1, \ldots$ as the minimum of the two stopping times $\tau_{n}$ and $\sigma_{n}$. Finally, the stopped process $X^{\rho_{n}}=X^{\tau_{n} \wedge \sigma_{n}}=\left(X^{\tau_{n}}\right)^{\sigma_{n}}$ is a stopped martingale, and hence a martingale by question b$)$. The sequence $\left(\rho_{n}\right)_{n=0,1, \ldots}$ is therefore indeed a localizing sequence for $X$. Note also that $\left(H_{t}\right)_{t=1,2, \ldots}:=\left(K_{t} \mathbb{1}_{t \leq \rho_{n}}\right)_{t=1,2, \ldots}$ is predictable since $K$ is predictable and $\rho_{n}$ is a stopping time. Moreover, by definition of $\rho_{n}$ and $\sigma_{n}$, the process $H$ is bounded by $n$. Writing

$$
\begin{aligned}
N_{t}^{\rho_{n}} & =\sum_{s=1}^{t \wedge \rho_{n}} K_{s}\left(X_{s}-X_{s-1}\right) \\
& =\sum_{s=1}^{t} K_{s} \mathbb{1}_{s \leq \rho_{n}}\left(X_{s}-X_{s-1}\right) \\
& =\sum_{s=1}^{t} K_{s} \mathbb{1}_{s \leq \rho_{n}}\left(X_{s}^{\rho_{n}}-X_{s-1}^{\rho_{n}}\right) \\
& =\sum_{s=1}^{t} H_{s}\left(X_{s}^{\rho_{n}}-X_{s-1}^{\rho_{n}}\right)
\end{aligned}
$$

we see that the stopped process $N^{\rho_{n}}$ is the stochastic integral of the bounded predictable process $H$ with respect to the martingale $X^{\rho_{n}}$, and hence is a martingale by question (b). The sequence $\left(\rho_{n}\right)_{n=0,1, \ldots .}$ is therefore a localizing sequence for $N$, and $N$ is thus indeed a local martingale.
(d) Adaptedness of $X$ follows from the fact that $X$ is a local martingale. Integrability is also clear since $\left|X_{t}\right| \leq Y_{t} \in L^{1}(P)$ by assumption. It therefore remains to show the martingale property.
Let $\left(\tau_{n}\right)_{n=0,1, \ldots}$ be a localizing sequence for $X$. The assumption $\left|X_{s}\right| \leq Y_{t}$ almost surely for all $0 \leq s \leq t$, and $Y_{t} \in L^{1}(P)$ for all $t=0,1, \ldots$ enables us to use Lebesgue's Dominated Convergence Theorem to write

$$
\begin{aligned}
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[\lim _{n \rightarrow \infty} X_{t \wedge \tau_{n}} \mid \mathcal{F}_{s}\right] \\
& =\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{t \wedge \tau_{n}} \mid \mathcal{F}_{s}\right] \\
& =\lim _{n \rightarrow \infty} X_{s \wedge \tau_{n}} \\
& =X_{s}
\end{aligned}
$$

The process $X$ is therefore a true martingale.
(e) Define $Y_{t}:=\sum_{s=0}^{t}\left|X_{s}\right|$. The process $Y$ is integrable by assumption and $\left|X_{s}\right| \leq Y_{t}$ for all $0 \leq s \leq t$. The conclusion follows from question (d).

## Question 3

(a) Let us first introduce some notation. Let $T=2$ be the time horizon of the market. We have $\Omega=\{u, d\}^{T}$. Let $Q$ be a candidate EMM, and let us write

$$
\begin{aligned}
q_{u} & =Q\left[Y_{1}=2\right] \\
q_{d} & =Q\left[Y_{1}=1 / 2\right] \\
q_{u, u} & =Q\left[Y_{2}=3 / 2 \mid Y_{1}=2\right] \\
q_{u, d} & =Q\left[Y_{2}=1 \mid Y_{1}=2\right] \\
q_{d, u} & =Q\left[Y_{2}=4 \mid Y_{1}=1 / 2\right] \\
q_{d, d} & =Q\left[Y_{2}=1 \mid Y_{1}=1 / 2\right]
\end{aligned}
$$

The EMM conditions ( $S_{k}^{1}=\mathbb{E}\left[S_{k+1}^{1} \mid \mathcal{F}_{k}\right], Q \sim P, Q$ probability measure) give

- for $k=0$ :

$$
\begin{cases}q_{u}+q_{d} & =1 \\ q_{u}, q_{d} & >0 \\ \frac{8}{1+\frac{1}{4}} q_{u}+\frac{2}{1+\frac{1}{4}} q_{d} & =\frac{4}{1}\end{cases}
$$

- for $k=1$ :

$$
\begin{cases}q_{u, u}+q_{u, d} & =1 \\ q_{u, u}, q_{u, d} & >0 \\ \frac{12}{\left(1+\frac{1}{4}\right)^{2}} q_{u, u}+\frac{8}{\left(1+\frac{1}{4}\right)^{2}} q_{u, d} & =\frac{8}{1+\frac{1}{4}}\end{cases}
$$

and

$$
\begin{cases}q_{d, u}+q_{d, d} & =1 \\ q_{d, u}, q_{d, d} & >0 \\ \frac{8}{\left(1+\frac{1}{4}\right)\left(1+\frac{1}{2}\right)} q_{d, u}+\frac{2}{\left(1+\frac{1}{4}\right)\left(1+\frac{1}{2}\right)} q_{d, d} & =\frac{2}{1+\frac{1}{4}}\end{cases}
$$

The above system of equations have a unique solution given by

$$
\begin{cases}q_{u} & =1 / 2 \\ q_{d} & =1 / 2 \\ q_{u, u} & =1 / 2 \\ q_{u, d} & =1 / 2 \\ q_{d, u} & =1 / 6 \\ q_{d, d} & =5 / 6\end{cases}
$$

The market is therefore arbitrage-free by the first fundamental theorem of asset pricing.
(b) Uniqueness of the EMM found in question (a), together with the assumption that $\mathcal{F}=$ $\sigma\left(Y_{1}, Y_{2}\right)$, implies that the market is complete by the second fundamental theorem of asset pricing.
(c) To guarantee no-arbitrage in the enlarged market, the discounted initial process of the call option must a martingale under the risk neutral measure $Q$ found in question (a). We thus have

$$
\begin{aligned}
\tilde{V}_{0} & =\mathbb{E}_{Q}\left[\frac{\left(\tilde{S}_{2}^{1}-\tilde{K}\right)^{+}}{\tilde{S}_{2}^{0}}\right] \\
& =\frac{12-7}{\left(1+\frac{1}{4}\right)^{2}} q_{u} q_{u, u}+\frac{8-7}{\left(1+\frac{1}{4}\right)^{2}} q_{u} q_{u, d}+\frac{8-7}{\left(1+\frac{1}{4}\right)\left(1+\frac{1}{2}\right)} q_{d} q_{d, u}+0 \\
& =\frac{226}{225} \approx 1.00444
\end{aligned}
$$

Using the assumption $\tilde{S}_{0}^{0}=1$, we therefore conclude that the initial undiscounted price of the call option is $\frac{226}{225} \approx 1.00444$.

## Question 4

(a) Note that

$$
\begin{aligned}
X_{t} & =x e^{-a t}+\mu\left(1-e^{-a t}\right)+b e^{-a t} \int_{0}^{t} e^{a s} d W_{s} \\
& =f\left(t, M_{t}\right)
\end{aligned}
$$

where $f(t, m):=x e^{-a t}+\mu\left(1-e^{-a t}\right)+b e^{-a t} m$, and $M_{t}:=\int_{0}^{t} e^{a s} d W_{s}$. Applying Itô formula to the continuous semimartingale $\left(t, M_{t}\right)_{t \geq 0}$ and the $C^{2}$ function $f$, we get

$$
\begin{aligned}
d X_{t} & =-a e^{-a t}\left(x-\mu+b \int_{0}^{t} e^{a s} d W_{s}\right) d t+b e^{-a t} e^{a t} d W_{t} \\
& =a\left(\mu-X_{t}\right) d t+b d W_{t}
\end{aligned}
$$

(b) From exercise sheet 13 , we know that for all $f: \mathbb{R} \rightarrow \mathbb{R}$ deterministic continuous function, the random variable defined as the stochastic integral up to a fixed time with respect to a Brownian motion is Gaussian with parameters

$$
\int_{0}^{t} f(s) d W_{s} \sim \mathcal{N}\left(0, \int_{0}^{t} f^{2}(s) d s\right)
$$

It follows that

$$
\begin{aligned}
X_{t} & \sim \mathcal{N}\left(x e^{-a t}+\mu\left(1-e^{-a t}\right), b^{2} \int_{0}^{t}\left(e^{-a(t-s)}\right)^{2} d s\right) \\
& =\mathcal{N}\left(x e^{-a t}+\mu\left(1-e^{-a t}\right), \frac{b^{2}}{2 a}\left(1-e^{-2 a t}\right)\right)
\end{aligned}
$$

(c) First solution

Rewriting the $\operatorname{SDE} d X_{t}=a\left(\mu-X_{t}\right) d t+b d W_{t}$ in integral form, we get

$$
\begin{aligned}
X_{T} & =X_{0}+\int_{0}^{T} a\left(\mu-X_{t}\right) d t+b W_{T} \\
& =x+a \mu T-a \int_{0}^{T} X_{t} d t+b W_{T}
\end{aligned}
$$

We therefore have

$$
\int_{0}^{T} X_{t} d t=-\frac{1}{a}\left(X_{T}-x-a \mu T-b W_{T}\right)
$$

Similarly to question (b), we conclude that $\int_{0}^{T} X_{t} d t$ is normally distributed with mean

$$
-\frac{1}{a}\left(x e^{-a T}+\mu\left(1-e^{-a T}\right)-x-a \mu T\right)=\frac{(x-\mu)\left(1-e^{-a T}\right)}{a}+\mu T
$$

To compute the variance, note that

$$
\begin{aligned}
\operatorname{Var}\left(\int_{0}^{T} X_{t} d t\right) & =\operatorname{Var}\left(-\frac{1}{a}\left(X_{T}-x-a \mu T-b W_{T}\right)\right) \\
& =\frac{1}{a^{2}}\left(\operatorname{Var}\left(X_{T}\right)+b^{2} \operatorname{Var}\left(W_{T}\right)-2 b \operatorname{Cov}\left(X_{T}, W_{T}\right)\right) \\
& =\frac{1}{a^{2}}\left(\frac{b^{2}}{2 a}\left(1-e^{-2 a T}\right)+b^{2} T-2 b \operatorname{Cov}\left(X_{T}, W_{T}\right)\right)
\end{aligned}
$$

To compute the covariance of $X_{T}$ and $W_{T}$, we use Itô's isometry formula as follows:

$$
\begin{aligned}
\operatorname{Cov}\left(X_{T}, W_{T}\right) & =\operatorname{Cov}\left(x e^{-a T}+\left(1-e^{-a T}\right) \mu+\int_{0}^{T} e^{-a(T-s)} b d W_{s}, \int_{0}^{T} d W_{s}\right) \\
& =\operatorname{Cov}\left(\int_{0}^{T} e^{-a(T-s)} b d W_{s}, \int_{0}^{T} d W_{s}\right) \\
& =b \int_{0}^{T} e^{-a(T-s)} d s \\
& =\frac{b}{a}\left(1-e^{-a T}\right) .
\end{aligned}
$$

The variance of $\int_{0}^{T} X_{t} d t$ is thus given by

$$
\begin{aligned}
\operatorname{Var}\left(\int_{0}^{T} X_{t} d t\right) & =\frac{1}{a^{2}}\left(\frac{b^{2}}{2 a}\left(1-e^{-2 a T}\right)+b^{2} T-2 b \operatorname{Cov}\left(X_{T}, W_{T}\right)\right) \\
& =\frac{1}{a^{2}}\left(\frac{b^{2}}{2 a}\left(1-e^{-2 a T}\right)+b^{2} T-\frac{2 b^{2}}{a}\left(1-e^{-a T}\right)\right)
\end{aligned}
$$

The random variable $\int_{0}^{T} X_{t} d t$ is therefore Gaussian with parameters

$$
\int_{0}^{T} X_{t} d t \sim \mathcal{N}\left(\frac{(x-\mu)\left(1-e^{-a T}\right)}{a}+\mu T, \frac{1}{a^{2}}\left(\frac{b^{2}}{2 a}\left(1-e^{-2 a T}\right)+b^{2} T-\frac{2 b^{2}}{a}\left(1-e^{-a T}\right)\right)\right) .
$$

## Second solution

Alternatively, we can compute the integral explicitly using stochastic Fubini theorem

$$
\begin{aligned}
\int_{0}^{T} X_{t} d t & =\int_{0}^{T}\left(x e^{-a t}+\left(1-e^{-a t}\right) \mu+\int_{0}^{t} e^{-a(t-s)} b d W_{s}\right) d t \\
& =\mu T+\int_{0}^{T}(x-\mu) e^{-a t} d t+b \int_{0}^{T} \int_{0}^{t} e^{-a(t-s)} d W_{s} d t \\
& =\mu T+\int_{0}^{T}(x-\mu) e^{-a t} d t+b \int_{0}^{T} \int_{s}^{T} e^{-a(t-s)} d t d W_{s} \\
& =\frac{(x-\mu)\left(1-e^{-a T}\right)}{a}+\mu T+\frac{b}{a} \int_{0}^{T}\left(1-e^{-a(T-s)}\right) d W_{s} .
\end{aligned}
$$

Similarly to question (b), the integral $\frac{b}{a} \int_{0}^{T}\left(1-e^{-a(T-s)}\right) d W_{s}$ is Gaussian with mean 0 and variance $\frac{b^{2}}{a^{2}} \int_{0}^{T}\left(1-e^{-a(T-s)}\right)^{2} d s$, and hence the integral $\int_{0}^{T} X_{t} d t$ is also Gaussian with parameters

$$
\begin{aligned}
\int_{0}^{T} X_{t} d t & \sim \mathcal{N}\left(\frac{(x-\mu)\left(1-e^{-a T}\right)}{a}+\mu T, \frac{b^{2}}{a^{2}} \int_{0}^{T}\left(1-e^{-a(T-s)}\right)^{2} d_{s}\right) \\
& =\mathcal{N}\left(\frac{(x-\mu)\left(1-e^{-a T}\right)}{a}+\mu T, \frac{1}{a^{2}}\left(\frac{b^{2}}{2 a}\left(1-e^{-2 a T}\right)+b^{2} T-\frac{2 b^{2}}{a}\left(1-e^{-a T}\right)\right)\right) .
\end{aligned}
$$

(d) The parameter $\bar{r}$ is the mean of the limiting invariant distribution of $\left(r_{t}\right)_{t \geq 0}$, and can therefore be interpreted as long term mean. This is the mean level to which the process $\left(r_{t}\right)_{t \geq 0}$ reverts as $t \rightarrow \infty$. The speed of the mean reversion is characterised by the parameter $\lambda>0$. Finally $\sigma$ describes the volatility of the stochastic interest rate.
(e) Due to the similarity with the ordinary differential equation $\frac{y^{\prime}}{y}=g \Longleftrightarrow \log (y)^{\prime}=g$, whose solution is given by $y(t)=C \exp \left(\int g(t) d t\right)$, one might try to apply Itô's formula to the function $f(x)=\log (x)$ and the positive continuous semimartingale $\widetilde{S}^{0}$. This yields

$$
\begin{aligned}
\log \left(\widetilde{S}_{t}^{0}\right) & =\log \left(\widetilde{S}_{0}^{0}\right)+\int_{0}^{t} \frac{1}{\widetilde{S}_{s}^{0}} d \widetilde{S}_{s}^{0}-\frac{1}{2} \int_{0}^{t} \frac{1}{\left(\widetilde{S}_{t}^{0}\right)^{2}} d\left[\widetilde{S}^{0}\right]_{s} \\
& =\int_{0}^{t} \frac{1}{\widetilde{S}_{s}^{0}} \widetilde{S}_{s}^{0} r_{s} d s=\int_{0}^{t} r_{s} d s,
\end{aligned}
$$

where we have used that $\widetilde{S}^{0}$ is of finite variation and therefore

$$
\left[\widetilde{S}^{0}\right]_{t}=\left[\int \widetilde{S}^{0} r d s\right]_{t}=\int_{0}^{s}\left(\widetilde{S}_{s}^{0}\right)^{2} r_{s}^{2} d[s]_{s}=0,
$$

Taking the exponential on both sides, we get

$$
\widetilde{S}_{t}^{0}=\exp \left(\int_{0}^{t} r_{s} d s\right) .
$$

(f) Since $Q$ is an EMM, the discounted price process of the zero coupon bond must be a martingale under $Q$ and therefore must satisfy

$$
\frac{\tilde{P}_{t}^{(T)}}{e_{0}^{\int_{0}^{t} r_{s} d s}}=\mathbb{E}_{Q}\left[\left.\frac{\tilde{P}_{T}^{(T)}}{e^{\int_{0}^{T} r_{s} d s}} \right\rvert\, \mathcal{F}_{t}\right]
$$

Using that $\tilde{P}_{T}^{(T)}=1$ we get

$$
\tilde{P}_{t}^{(T)}=\mathbb{E}_{Q}\left[e^{-\int_{t}^{T} r_{s} d s} \mid \mathcal{F}_{t}\right]
$$

(g) We note that $r$ is an Ornstein-Uhlenbeck process with drift $\mu=\bar{r}$, and parameters $a=\lambda$ and $b=\sigma$. Using the result from question (a), we therefore have

$$
r_{t}=e^{-\lambda t} r_{0}+\left(1-e^{-\lambda t}\right) \bar{r}+\int_{0}^{t} e^{-\lambda(t-s)} \sigma d \hat{W}_{s} .
$$

(h) By question (f), the initial undiscounted price of the zero coupon bond with maturity $T$ is given by

$$
\tilde{P}_{0}^{(T)}=\mathbb{E}_{Q}\left[e^{-\int_{0}^{T} r_{s} d s}\right] .
$$

Question (c) implies that, under the risk neutral measure $Q$, the integral appearing in the pricing formula is Gaussian with parameters

$$
\begin{aligned}
\int_{0}^{T} r_{s} d s & \sim \mathcal{N}\left(\frac{\left(r_{0}-\bar{r}\right)\left(1-e^{-\lambda T}\right)}{\lambda}+\bar{r} T, \frac{1}{\lambda^{2}}\left(\frac{\sigma^{2}}{2 \lambda}\left(1-e^{-2 \lambda T}\right)+\sigma^{2} T-\frac{2 \sigma^{2}}{\lambda}\left(1-e^{-\lambda T}\right)\right)\right) \\
& :=\mathcal{N}\left(\mu^{*},\left(\sigma^{*}\right)^{2}\right),
\end{aligned}
$$

where we define

$$
\mu^{*}:=\frac{\left(r_{0}-\bar{r}\right)\left(1-e^{-\lambda T}\right)}{\lambda}+\bar{r} T,
$$

and

$$
\left(\sigma^{*}\right)^{2}:=\frac{1}{\lambda^{2}}\left(\frac{\sigma^{2}}{2 \lambda}\left(1-e^{-2 \lambda T}\right)+\sigma^{2} T-\frac{2 \sigma^{2}}{\lambda}\left(1-e^{-\lambda T}\right)\right) .
$$

The initial undiscounted price $\tilde{P}_{0}^{(T)}$ can therefore be computed using the moment generating function of the Gaussian random variable $\int_{0}^{T} r_{s} d s$ :

$$
\tilde{P}_{0}^{(T)}=\mathbb{E}_{Q}\left[e^{-\int_{0}^{T} r_{s} d s}\right]=e^{-\mu^{*}+\frac{\left(\sigma^{*}\right)^{2}}{2}} .
$$

## Question 5

(a) Applying Itô formula to the continuous semimartingale $\tilde{S}=\left(\tilde{S}^{0}, \tilde{S}^{1}\right)$ and the $C^{2}$ function $f(x, y):=x / y$, we derive the following SDE for the discounted stock price process $S^{1}$ :

$$
\begin{aligned}
d S_{t}^{1}=d\left(\frac{\tilde{S}_{t}^{1}}{\tilde{S}_{t}^{0}}\right) & =\frac{d \tilde{S}_{t}^{1}}{\tilde{S}_{t}^{0}}-\frac{\tilde{S}_{t}^{1}}{\left(\tilde{S}_{t}^{0}\right)^{2}} d \tilde{S}_{t}^{0} \\
& =S_{t}^{1}\left((\mu-r) d t+\sigma(t) d W_{t}\right)
\end{aligned}
$$

Applying Itô formula again to the continuous semimartingale $S^{1}$ and the $C^{2}$ function $g(x):=\log (x)$ leads to the following SDE for the log of the discounted stock price process:

$$
\begin{aligned}
d \log \left(S_{t}^{1}\right) & =\frac{1}{S_{t}^{1}} d S_{t}^{1}-\frac{1}{2} \frac{d<S^{1}>_{t}}{\left(S_{t}^{1}\right)^{2}} \\
& =\left(\mu-r-\frac{\sigma^{2}(t)}{2}\right) d t+\sigma(t) d W_{t}
\end{aligned}
$$

The solution is given by

$$
\log \left(S_{t}^{1}\right)=\log \left(S_{0}^{1}\right)+\int_{0}^{t}\left(\mu-r-\frac{\sigma^{2}(s)}{2}\right) d s+\int_{0}^{t} \sigma(s) d W_{s}
$$

or equivalently

$$
S_{t}^{1}=S_{0}^{1} \exp \left(\int_{0}^{t}\left(\mu-r-\frac{\sigma^{2}(s)}{2}\right) d s+\int_{0}^{t} \sigma(s) d W_{s}\right)
$$

(b) From question (a), we know that

$$
\log \left(S_{t}^{1}\right)=\log \left(S_{0}^{1}\right)+\int_{0}^{t}\left(\mu-r-\frac{\sigma^{2}(s)}{2}\right) d s+\int_{0}^{t} \sigma(s) d W_{s}
$$

Since $\sigma$ is a non-random continuous function, and $W$ is a $P$-Brownian Motion, we have by a general result on stochastic integration (see Exercise sheet 13) that the stochastic integral $\int_{0}^{t} \sigma(s) d W_{s}$ is Gaussian with parameters

$$
\int_{0}^{t} \sigma(s) d W_{s} \sim \mathcal{N}\left(0, \int_{0}^{t} \sigma^{2}(s) d s\right)
$$

under the measure $P$. Hence $\log \left(S_{t}^{1}\right)$ is Gaussian under $P$ with parameters

$$
\log \left(S_{t}^{1}\right) \sim \mathcal{N}\left(\log \left(S_{0}^{1}\right)+\int_{0}^{t}\left(\mu-r-\frac{\sigma^{2}(s)}{2}\right) d s, \int_{0}^{t} \sigma^{2}(s) d s\right)
$$

(c) Recall that Itô's lemma gave us in question (a)

$$
d S_{t}^{1}=S_{t}^{1}\left((\mu-r) d t+\sigma(t) d W_{t}\right)
$$

We can equivalently rewrite this as

$$
\begin{aligned}
d S_{t}^{1} & =S_{t}^{1} \sigma(t)\left(\frac{\mu-r}{\sigma(t)} d t+d W_{t}\right) \\
& =S_{t}^{1} \sigma(t) d W_{t}^{*}
\end{aligned}
$$

where we have defined $W_{t}^{*}=\int_{0}^{t} \frac{\mu-r}{\sigma(s)} d s+W_{t}$. Girsanov theorem tells us that

$$
\begin{aligned}
W_{t}^{*} & =W_{t}-\int_{0}^{t} \frac{r-\mu}{\sigma(s)} d s \\
& =W_{t}-\left\langle\int_{0}^{t} \frac{r-\mu}{\sigma(s)} d W_{s}, \int_{0}^{t} d W_{s}\right\rangle
\end{aligned}
$$

is a $Q$-Brownian Motion under the measure $Q \sim P$ defined via the Radon Nykodym derivative

$$
\frac{d Q_{\mid \mathcal{F}_{T}}}{d P_{\mid \mathcal{F}_{T}}}=\mathcal{E}\left(\int_{0}^{T} \frac{r-\mu}{\sigma(s)} d W_{s}\right)=\exp \left(\int_{0}^{T} \frac{r-\mu}{\sigma(s)} d W_{s}-\frac{1}{2} \int_{0}^{T}\left(\frac{r-\mu}{\sigma(s)}\right)^{2} d s\right)
$$

(d) It follows from question (a) that

$$
\begin{aligned}
\tilde{S}_{T}^{1} & =\tilde{S}_{0}^{1} \exp \left(\int_{0}^{T}\left(\mu-\frac{\sigma^{2}(s)}{2}\right) d s+\int_{0}^{T} \sigma(s) d W_{s}\right) \\
& =\tilde{S}_{0}^{1} \exp \left(\int_{0}^{T}\left(\mu-\frac{\sigma^{2}(s)}{2}\right) d s+\int_{0}^{T}(r-\mu) d s+\int_{0}^{T} \sigma(s) d W_{s}^{*}\right) \\
& =\tilde{S}_{0}^{1} e^{r T} \exp \left(-\int_{0}^{T} \frac{\sigma^{2}(s)}{2} d s+\int_{0}^{T} \sigma(s) d W_{s}^{*}\right)
\end{aligned}
$$

The initial (undiscounted) arbitrage free price of the call option is given by

$$
\begin{aligned}
\tilde{V}_{0}=V_{0} & =\mathbb{E}_{Q}\left[\frac{\left(\tilde{S}_{T}^{1}-\tilde{K}\right)^{+}}{\tilde{S}_{T}^{0}}\right] \\
& =e^{-r T} \mathbb{E}_{Q}\left[\left(\tilde{S}_{T}^{1}-\tilde{K}\right)^{+}\right] \\
& =e^{-r T} \tilde{S}_{0}^{1} e^{r T} \mathbb{E}_{Q}\left[\left(\exp \left(-\int_{0}^{T} \frac{\sigma^{2}(s)}{2} d s+\int_{0}^{T} \sigma(s) d W_{s}^{*}\right)-\frac{\tilde{K}}{\tilde{S}_{0}^{1} e^{r T}}\right)^{+}\right] \\
& =\tilde{S}_{0}^{1} F\left(\int_{0}^{T} \sigma^{2}(s) d s, \frac{\tilde{K}}{e^{r T} \tilde{S}_{0}^{1}}\right)
\end{aligned}
$$

where in the last equation we have used that

$$
\int_{0}^{t} \sigma(s) d W_{s}^{*} \sim \mathcal{N}\left(0, \int_{0}^{t} \sigma^{2}(s) d s\right)
$$

under the measure $Q$ (see exercise sheet 13 ).
(e) A simple computation using the density of the standard Gaussian distribution yields:

$$
\begin{aligned}
F(v, m) & =\int_{-\infty}^{\infty}\left(e^{-v / 2+\sqrt{v} x}-m\right)^{+} \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} d x \\
& =\int_{\frac{\log m}{\sqrt{v}}+\frac{\sqrt{v}}{2}}^{\infty}\left(e^{-v / 2+\sqrt{v} x}-m\right) \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} d x \\
& =\int_{\frac{\log m}{\sqrt{v}}+\frac{\sqrt{v}}{2}}^{\infty} \frac{e^{-v / 2+\sqrt{v} x-x^{2} / 2}}{\sqrt{2 \pi}} d x-m \int_{\frac{\log m}{\sqrt{v}}+\frac{\sqrt{v}}{2}}^{\infty} \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} d x \\
& =\int_{-\infty}^{-\frac{\log m}{\sqrt{v}}+\frac{\sqrt{v}}{2}} \frac{e^{-s^{2} / 2}}{\sqrt{2 \pi}} d s-m \int_{-\infty}^{-\frac{\log m}{\sqrt{v}}-\frac{\sqrt{v}}{2}} \frac{e^{-s^{2} / 2}}{\sqrt{2 \pi}} d s \\
& =\Phi\left(-\frac{\log m}{\sqrt{v}}+\frac{\sqrt{v}}{2}\right)-m \Phi\left(-\frac{\log m}{\sqrt{v}}-\frac{\sqrt{v}}{2}\right)
\end{aligned}
$$

(f) Under the assumption $r=0$, the initial price of the at the money call option (with strike
$\tilde{K}=\tilde{S}_{0}^{1}$ ) and maturity $T$ is given by:

$$
\begin{aligned}
\tilde{V}_{0} & =\tilde{S}_{0}^{1} F\left(\int_{0}^{T} \sigma^{2}(s) d s, e^{-r T}\right) \\
& =\tilde{S}_{0}^{1} F\left(\int_{0}^{T} \sigma^{2}(s) d s, 1\right) \\
& =\tilde{S}_{0}^{1}\left(\Phi\left(\frac{\sqrt{\int_{0}^{T} \sigma^{2}(s) d s}}{2}\right)-\Phi\left(-\frac{\sqrt{\int_{0}^{T} \sigma^{2}(s) d s}}{2}\right)\right) \\
& =\tilde{S}_{0}^{1}\left(2 \Phi\left(\frac{\sqrt{\int_{0}^{T} \sigma^{2}(s) d s}}{2}\right)-1\right) .
\end{aligned}
$$

We therefore have

$$
\int_{0}^{T} \sigma^{2}(s) d s=\left(2 \Phi^{-1}\left(\frac{\tilde{V}_{0}}{2 \tilde{S}_{0}^{1}}+\frac{1}{2}\right)\right)^{2}
$$

Assuming that the quoted prices are arbitrage-free, we can therefore estimate the function $\sigma(\cdot)$ by a numerical approximation of $\frac{\partial}{\partial T}\left(2 \Phi^{-1}\left(\frac{\tilde{V}_{0}}{2 S_{0}^{1}}+\frac{1}{2}\right)\right)^{2}$.

