Question 1

The correct answers are:
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Question 2

(a)

Adaptedness follows from the adaptedness and predicatibility of the processes M and H
respectively. Integrability is a consequence of the integrability of M and the boundedness
of H. Remains to show the martingale property. For any ¢t = 1,2, ..., we have

E [Ny — Ne_1 | Fi] = E[Hy(M; — My_1) | Fi]
= HiE[(M; — My_1) | Fi]
=0

The first line uses the definition of the stochastic integral process, in the second line we
used that H is a predictable process, and the final line is a consequence of the martingale
property of M.

Note that for any ¢ =0,1,..., we have

tAT
A4z'=:.A40'+ j{:(ﬂ4$ _’A4$—l)
s=1
t
= My + Z ]lng(Ms - Ms—l)-

s=1

Since the event {s < 7} = {7 < s}¢ = {7 < s — 1}¢ is F,;_;-measurable by definition of
stopping time, we conclude that the process H, := 1< is predictable, and hence M7 is a
martingale as the stochastic integral of the bounded predictable process H with respect to
the martingale M.

Let (74)n=0,1,... be a localizing sequence for X, i.e a sequence of increasing stopping times
with 7, T oo such that X™ is a martingale for all n = 0,1,.... Define

op :=inf{t =0,1,---: |K¢11| > n}

with the convention inf ) = co. Note that o, is a stopping time for all n, and o, 1 oc.
Indeed, we have

{on<t—1}={on>t—-1}={on >t} = [ {|K| <n}.
0<s<t

Since K is predictable, we get {0, <t — 1} € F;_1, and hence o, is a stopping time. It
is clear that o, 1T co.

Let pp, := 7, Aop. We claim that (pp)n=0,1,... is a localizing sequence for X and also for N.
By definition, p, T oo since both 7, T co and o, T oco. Moreover p, is a stopping time
for each n = 0,1,... as the minimum of the two stopping times 7, and o,. Finally, the
stopped process XPr = X™"\n = (X" )" is a stopped martingale, and hence a martingale
by question b). The sequence (pp)n—o,1,... is therefore indeed a localizing sequence for X.
Note also that (H¢)i=1,2, .. = (Kl¢<p, )t=1,2,.. is predictable since K is predictable and py,
is a stopping time. Moreover, by definition of p, and o, the process H is bounded by n.
Writing
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we see that the stopped process NP is the stochastic integral of the bounded predictable
process H with respect to the martingale X, and hence is a martingale by question (b).
The sequence (pp)n=01,... is therefore a localizing sequence for N, and N is thus indeed a
local martingale.

Adaptedness of X follows from the fact that X is a local martingale. Integrability is also
clear since | X;| <Y; € L'(P) by assumption. It therefore remains to show the martingale
property.

Let (7n)n=0,1,... be a localizing sequence for X. The assumption | X;| < Y; almost surely for
all0 < s <t and Y; € L'(P) for all t = 0,1,... enables us to use Lebesgue’s Dominated
Convergence Theorem to write

E[Xt | ./_"s] = E[ lim Xt/\Tn | fs]
n—00
= lim ]E[Xt/\’rn | fs]
n—o00
= lim Xgnr,
n—o00
=X

The process X is therefore a true martingale.

Define Y; := 3°'_ | Xs|. The process Y is integrable by assumption and |X;| < V; for all
0 < s <t. The conclusion follows from question (d).



Question 3

(a) Let us first introduce some notation. Let 7' = 2 be the time horizon of the market. We
have Q = {u,d}”. Let Q be a candidate EMM, and let us write

qu = Q[Yi = ]
qq = QY1 = 1/2]
Quu = QD/Q = 3/2|Y1 = 2]
Qud = QY2 = 1Y = 2]
[
[

The EMM conditions (S} = E[Si+1|fk], Q@ ~ P, Q probability measure) give

e for k=0:
Qu + 44 =
Qu,dd
8 2 _

\%

1
0
4
1

o for k=1:
Qu,u + Qu,d =1

Qu,uy Qu,d >0
12 8 _ _8
e =

and
Qdu + 9d.d =1
4du» 9d,d >0

8 2 2
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The above system of equations have a unique solution given by

Qu = 1/2
@ =1/2
Quu = 1/2
Qu,d = 1/2
qdu = 1/6
(qd,a =5/6

The market is therefore arbitrage-free by the first fundamental theorem of asset pricing.

(b) Uniqueness of the EMM found in question (a), together with the assumption that F =
o(Y1,Y3), implies that the market is complete by the second fundamental theorem of asset
pricing.

(c) To guarantee no-arbitrage in the enlarged market, the discounted initial process of the call
option must a martingale under the risk neutral measure @ found in question (a). We thus

have
5 (53— K)*
Vo =Eq &
_ 2t e 3T e 8T 10
(1+ %)QQU(]u,u (1+ i)f]uch,d (1+ i)(l n %)Qde,u
226
= — =~ 1.00444
225 00

Using the assumption 5’8 = 1, we therefore conclude that the initial undiscounted price of
the call option is 220 ~ 1.00444.



Question 4

(a) Note that

t
Xy =ae 4 pu(l —e ) + be_at/ e dWs
0
= f(ta Mt)
where f(t,m) = ze” %+ pu(1—e~ ) +be %m, and M; := fg e**dWs. Applying It6 formula
to the continuous semimartingale (¢, M;);>o and the C? function f, we get
t
dX; = —ae ™ <x -+ b/ eades> dt + be~ e aWw,
0

= CL(/L — Xt)dt + det

(b) From exercise sheet 13, we know that for all f: R — R deterministic continuous function,
the random variable defined as the stochastic integral up to a fixed time with respect to a
Brownian motion is Gaussian with parameters

/Otf(s)dWS ~N (0, /Ot f2(s)ds> .

t
X~ N (xeat 4 N(l _ eat)’bZ/ (ea(ts))2d8)
0

It follows that

b2
— —at _—aty 2 (1 _ ,—2at
=N (xe +pu(l—e™ ), 2a(1 e ))

(c) First solution
Rewriting the SDE dX; = a(u — X¢)dt + bdW; in integral form, we get

T
Xr=Xo+ / a(,u — Xt)dt + bW
0

T
—x—i—auT—a/ Xidt + bWr.
0

We therefore have -
1
/ Xydt = - (X7 —x —apT — bWr).
0

Similarly to question (b), we conclude that fOT Xdt is normally distributed with mean
1

_E (l’e*aT + N(l _ e*aT) L GMT) _ (m — H)(Z e—aT)

+ pT.

To compute the variance, note that

T 1
Var </ Xtdt> = Var (— (Xp —2z —apT — bWT))
0 a

1
= (Var(X7) + b*Var(Wr) — 2bCov (X7, Wr))

1 /b
= <2a(1 — e 29Ty L T — 2bCov (X7, WT)> .



To compute the covariance of X7 and Wy, we use [t6’s isometry formula as follows:

T T
Cov (X7, Wrp) = Cov (:L‘e_“T +(1—eDyu+ / e_“(T_S)des,/ dWs>
0 0

T T
= Cov ( / e~ U= pqw,, / dWs>
0 0

T
= b/ e~ T=3)qsg
0

The variance of fOT X,dt is thus given by

T 1 2
Var < / Xtdt> == <§(1 — e 2Ty L v?T — 20Cov (X, WT)>
0 a a

1 [/ b? 202
- — (1= —2aT 2T _ 1= —aT
. (2(1( e )+ . (1—e ")

The random variable fOT X,dt is therefore Gaussian with parameters

T _ _ —aT 2 2
/ Xydt ~ N <(x W =) + uT, ig <b(1 —e 2Ty L p?T — &(1 - e“T)>> .
0 a® \ 2a a

a

Second solution
Alternatively, we can compute the integral explicitly using stochastic Fubini theorem

T T t
/ Xtdt:/ <xeat+(1—e )u+/ - (ts)de>dt
0 0
:,uT—i—/ (x — ) _“tdt—i—b/ / =) W, dt
0
:,UJT—F/ (z — “tdt~|—b/ / e~ =) drdw,
0

_ (e - )(1_e—sz)Jr a4+l /<1_e a(T=3)) gy,
0

a

Similarly to question (b), the integral %fOT(l — e~ UT=3))dW, is Caussian with mean 0

and variance 2—2 fOT(l —e~4T=9))2ds and hence the integral fOT X,dt is also Gaussian with
parameters

T _ _ ,—aT 2 T
/ Xtdt ~ N <($ H)(]‘ € ) + NT7 b2/ (1 _ ea(TS))2d5)
0 a a”Jo
_ _ ,—aT 2 2
=N <($ N)(l € ) + MTa % <b(1 _ 6—2aT) + bQT o &(1 _ e—aT))) )

a 2a a

The parameter 7 is the mean of the limiting invariant distribution of (7¢);>0, and can
therefore be interpreted as long term mean. This is the mean level to which the process
(r¢)¢>0 reverts as t — oo. The speed of the mean reversion is characterised by the parameter
A > 0. Finally o describes the volatility of the stochastic interest rate.

Due to the similarity with the ordinary differential equation % =g < log(y) =g,
whose solution is given by y(t) = C'exp ([ g(t)dt), one might try to apply Itd’s formula to
the function f(z) = log(z) and the positive continuous semimartingale S°. This yields

~ ~ 1o 1t 1
log(5F) = 102(55) + [ a5t~ [ L
S t

t 1 ~ t
:/ ~Sgrsds:/ rsds,
o SY 0

S




(2)

where we have used that S° is of finite variation and therefore

39 = | [ 3ras| = [ (&prtas o,

Taking the exponential on both sides, we get

_ t
SPY = exp </ rsds> .
0

Since @ is an EMM, the discounted price process of the zero coupon bond must be a
martingale under ) and therefore must satisfy

(1) H(T)
L I
ef(f rsds Q efOT rsds t

Using that P}T) =1 we get
pt(T) =Eg |:€_ I rsds“/—_-t}

We note that r is an Ornstein—Uhlenbeck process with drift © = 7, and parameters a = A
and b = o. Using the result from question (a), we therefore have

t
= e_’\tro +(1- e_)‘t)f + / e_A(t_S)adWs.
0

By question (f), the initial undiscounted price of the zero coupon bond with maturity 7" is
given by
A [e‘ Iy Tsds} .

Question (c) implies that, under the risk neutral measure @), the integral appearing in the
pricing formula is Gaussian with parameters

T = —\T 2 2
(ro—r)(1—e™) 1 (0o _o\T 2 20 AT
/0 7’st~./\[< )\ +TT7)\2<2)\(1—€ )+UT—T(1—€ )))
::./\/'(,u*,(a*)Q),

where we define

o _ (ro—m)(1—eT)
o A

+ 7T,
and

2 2
(0*)? = % <(2T)\(1 —e T L 527 — 2%(1 - e_’\T)) .

The initial undiscounted price PO(T) can therefore be computed using the moment generating

function of the Gaussian random variable fOT rsds:

(e%)?
2

150(T) =Eq [6_ Iy ”ds] =e Wt



Question 5

(a) Applying It6 formula to the continuous semimartingale S = (S°,S') and the C? function
f(z,y) == x/y, we derive the following SDE for the discounted stock price process S*:

S} ast S} -
ds} =d <g) = = — =545
S S (57)
= S} (= r)dt + o(t)dWy).

Applying Ité formula again to the continuous semimartingale S' and the C? function
g(x) = log(x) leads to the following SDE for the log of the discounted stock price process:

dlog(S}) = SldS ARG

- (M P UQ@) dt + o(t)dW;

2

The solution is given by

log(S!) = log(SE) + /D t (M —r— "22(‘9)> ds + /0 ta(s)dWS

or equivalently
t 2 t
Sl = Shexp (/ <,u, —r— U(S)> ds +/ U(S)dWs>
0 2 0
(b) From question (a), we know that

log(S}) = log(S}) + /Ot <u —r— "22(8)> ds + /Ota(s)dWs.

Since o is a non-random continuous function, and W is a P-Brownian Motion, we have by
a general result on stochastic integration (see Exercise sheet 13) that the stochastic integral

fo s)dWy is Gaussian with parameters

/Ota(s)dWS ~N (0, /Ot 02(s)ds)

under the measure P. Hence log(S}) is Gaussian under P with parameters

log(S1) ~ A <1og(sg) + /Ot <M e "22(5)> ds, /Ot 02(3)d3> .

(c¢) Recall that Itd’s lemma gave us in question (a)

dS} = S} ((u—r)dt + o (t)dWy) .

We can equivalently rewrite this as

ds! = Slo(t) (%dt + th>
= Slo(t)dWy
where we have defined W} = fot %ds + W;. Girsanov theorem tells us that

* tr_:u
Wt —Wt_/o 70(5) dS

([ [ o)




is a @-Brownian Motion under the measure ) ~ P defined via the Radon Nykodym
derivative

i = ([ ) = (| a5 [ () o)
(d) Tt follows from question (a) that
31— 51 exp ( / ' (M . "22(5>> s [ ! a(s)dWs>
— §lexp (/OT (M "22(5)> ds + /OT(r ~ w)ds+ /OT a(s)dw,;)
— §leT exp <_/0 22(3) ds + /OTa(s)dWS*> .

The initial (undiscounted) arbitrage free price of the call option is given by

(oo e L oom) i) |

where in the last equation we have used that

/Ota(s)dW; ~N (0, /Ot 02(5)d3>

under the measure @) (see exercise sheet 13).

(e) A simple computation using the density of the standard Gaussian distribution yields:

—22/2
/ —v/24fow _ )+€ " i
V2T
6—352/2
:/ fv/2+fx > dx
V2T
/ e~ V/2+Vvz—x 2/2 p /oo 6—x2/2d
= T — x
Tf NoY IO\gferT“ V2
+4 efs L 5%/2
= ds — ds
V2r
_ logm \/5 o _logm_@
f 2 Vu 2

(f) Under the assumption r = 0, the initial price of the at the money call option (with strike



K = S}) and maturity T is given by:

%=S&F</T <>dse—’“)

F s)ds, 1>
& foT s\ [l P)ds
-0 2 Ty 2
- ds
=5} ) -1

We therefore have

[ s = (20~ % 1))
OO'SS— 25% B

Assuming that the quoted prices are arbitrage-free, we can therefore estimate the function

2
o(-) by a numerical approximation of 2 (2<I>*1 (2‘?1 + )) .



