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Instructions

Duration: 180 min.

Closed book examination: no notes, no books, no calculator, no mobile phones, etc. allowed.

Important:

� Please put your student card on the table.

� Only pen and paper are allowed on the table. Please do not write with a pencil or a red
or green pen. Moreover, please do not use whiteout.

� Start by reading all questions and answer the ones which you think are easier first, before
proceeding to the ones you expect to be more difficult. Don’t spend too much time on one
question but try to solve as many questions as possible.

� Take a new sheet for each question and write your name on every sheet.

� Except for Question 1, all results have to be explained/argued by indicating intermediate
steps in the respective calculations. You can use known formulas and results from the
lecture or from the exercise classes without derivation.

� Simplify your results as much as possible.

� Most of the subquestions can be solved independently of each other.

? ? ? Good luck! ? ? ?



Answer Sheet for Question 1

Please use this sheet to answer Question 1. Indicate the correct answer by 7. If there is no cross
or more than one cross in a line, this will be interpreted as “no answer”.

answer (1) answer (2) answer (3)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Do not fill in

correct wrong no answer

Do not fill in

1st corr. 2nd corr.

correct

wrong

no answer

Points



Question 1 (8 Points)

For each of the following eight subquestions, there is exactly one correct answer. For each
correct answer you get 1 point, for each wrong answer you get −0.5 point, and for no answer you
get 0 points. You get at least 0 points for the whole exercise. Please use the printed form
for your answers. It is enough to indicate your answer by a cross; you do not need to explain
your choice.

Throughout subquestions (a) to (d), let (S̃0, S̃1) be an undiscounted financial market in
discrete time on (Ω,F ,F, P ) with a finite time horizon T ∈ N and F := (Fk)k=0,1,...,T

generated by S̃1. Let S̃0
k := (1+r)k for k = 0, 1, . . . , T and constants r > −1 and S̃1

0 := s10 > 0.
The discounted market is denoted by (S0, S1).

(a) Let ϕ = (ϕ0, ϑ) be a trading strategy. Which of the following does not hold?

(1) Vk(ϕ) = Ck(ϕ) +Gk(ϕ)

(2) Vk(ϕ) = ϕ0
0 +

∑k
j=1 ϑ

tr
j (S1

j − S1
j−1)

(3) ∆G̃k+1 = ϕ0
k+1(S̃

0
k+1 − S̃0

k) + ϑk+1(S̃
1
k+1 − S̃1

k).

(b) The set of attainable payoffs:

(1) is closed under addition.

(2) is closed under scalar multiplication.

(3) consists of integrable random variables.

(c) Which assumption about the market justifies the formula ∆Ck+1 = ∆ϕ0
k+1 + ∆ϑk+1S

1
k+1?

(1) The investor is small.

(2) Trading strategies are unrestricted.

(3) None of the above.

(d) Suppose S1 is a submartingale. Then:

(1) The market is arbitrage-free.

(2) For ϑ admissible, ϑ · S1 is a submartingale.

(3) (S1 − 1)+ − 1
2(S1 − 1)− is a submartingale.



Throughout subquestions (e) to (h), W denotes a Brownian motion on a filtered probability
space (Ω,F ,F, P ) where F = (Ft)t≥0 satisfies the usual conditions of P -completeness and
right-continuity.

(e) Let X,Y be semimartingales. Then:

(1) XY is a martingale, if X and Y are martingales.

(2) XY is a martingale, if X is a martingale and Y has finite variation.

(3) XY has finite variation, if X and Y have finite variation.

(f) Which of the following is a stopping time?

(1) τ = sup{t ≥ 0 : Wt ≥ t}

(2) τ = inf{t ≥ 1 :
∫ t
1 sgn(Ws−1)dWs > 2}, where sgn(z) = 1z>0 − 1z<0.

(3) τ = inf{t ≥ 0 : Wt2 ≥ 1}

(g) Let Q ≈ P . Then:

(1) If X is a P -submartingale, it is a Q-submartingale.

(2) If X is a continuous P -martingale, then X2− [X] is a continuous local Q-martingale.

(3) [W ]t = t holds Q-almost surely.

(h) In the Black-Scholes model, let f(S̃T ) be a payoff, for a smooth function f . What is the
PDE associated with its value process ṽ(t, S̃t)?

(1)

0 =
∂ṽ

∂t
+ rx̃

∂ṽ

∂x̃
+

1

2
σ2x̃2

∂2ṽ

∂x̃2
− rṽ, ṽ(T, x̃) = f(x̃)

(2)

0 = −∂ṽ
∂t

+ rx̃
∂ṽ

∂x̃
+

1

2
σ2x̃2

∂2ṽ

∂x̃2
− rṽ, ṽ(T, x̃) = f(x̃)

(3)

f = −∂ṽ
∂t

+ rx̃
∂ṽ

∂x̃
+

1

2
σ2x̃2

∂2ṽ

∂x̃2
− rṽ, ṽ(T, x̃) = 0



Question 2 (8 Points)

The goal of this exercise is to study important properties of martingales, local martingales and
discrete time stochastic integrals. Let (Ω,F , P ) be a probability space endowed with a filtration
F = (Ft)t=0,1,....

(a) Let (Mt)t=0,1,... be a discrete time martingale and let (Ht)t=0,1,... be a bounded predictable
process. Show that the discrete time stochastic integral process N defined by

Nt =
t∑

s=1

Hs (Ms −Ms−1)

is a martingale.

(b) Conclude that the stopped process M τ is a martingale for any stopping time τ .

(c) Question (c) is OPTIONAL. You can gain extra 2 points for solving it.
Let (Xt)t=0,1,... be a discrete time local martingale and let (Kt)t=0,1,... be a predictable
process. Show that the discrete time stochastic integral process N defined by

Nt =
t∑

s=1

Ks (Xs −Xs−1)

is a local martingale.

(d) Let (Xt)t=0,1,... be a discrete time local martingale, and let (Yt)t=0,1,... be a process such
that |Xs| ≤ Yt almost surely for all 0 ≤ s ≤ t, and Yt ∈ L1(P ) for all t = 0, 1, . . . . Show
that X is a true martingale.

(e) Conclude that any integrable discrete time local martingale (i.e. Xt ∈ L1(P ) for all t =
0, 1, . . . ) is a true martingale.
Remark: This result is only true in discrete time.



Question 3 (8 Points)

Consider a two step model (Ω,F , P, S̃0, S̃1) in which both the asset prices and the interest rate
rate evolve randomly in time. More precisely, let the undiscounted price processes of the assets
in our market be defined by S̃ = (S̃0

0 , S̃
1
0) = (1, 4), and

S̃0
k =

k∏
j=1

(1 + rj−1) for k = 1, . . . , T

S̃1
k+1

S̃1
k

= Yk+1 for k = 0, 1, . . . , T − 1

where Yk are i.i.d. random variables describing the returns of the risky asset at time k and rk
are i.i.d random variables describing the stochastic interest rates between time k and k + 1. We
endow our probability space with the natural filtration of Y , denoted by F, and assume, for
simplicity, that F = σ(Y1, Y2). The process Y is therefore adapted to F, and r is supposed to
be predictable with respect to F. One dollar invested in or borrowed from the money market
account S̃0 at time k grows to an investment or debt of 1 + rk at time k + 1. We suppose that
the distribution of Yk and rk under P is described by the following tree:

where 0 < p < 1 is a fixed transition probability.

(a) Is the market arbitrage free? If yes, find the set of all EMMs for S1. If not, construct an
explicit arbitrage.

(b) Is the market complete?

(c) Compute the undiscounted price of a European Call option with maturity T = 2 and
undiscounted strike K̃ = 7.



Question 4 (8 Points)

Let (Ω,F , P ) be a probability space endowed with a filtration F = (Ft)t≥0 satisfying the usual
conditions and W be a Brownian motion with respect to P and adapted to F and let

Xt = xe−at + µ(1− e−at) + b

∫ t

0
e−a(t−s)dWs (1)

be an Ornstein–Uhlenbeck process with drift µ ∈ R, and parameters a, b, and x ∈ R.

(a) Verify that (Xt)t≥0 satisfies the following stochastic differential equation:

dXt = a(µ−Xt)dt+ bdWt, X0 = x (2)

(b) Show that

Xt ∼ N
(
xe−at + µ(1− e−at), b

2

2a
(1− e−2at)

)
Hint: if you use results from the lecture/exercise sheets, it is enough to state them

(c) What is the distribution of the random variable
∫ T
0 Xtdt?

The following questions are OPTIONAL. You can gain a maximum of 5 bonus points by
correctly solving at least 3 out of the following 5 questions.

In the remaining part of the question we consider a simple stochastic interest rate model and
derive an arbitrage-free price for the zero-coupon bond with maturity T and face value 1. This is
a financial instrument that makes no periodic interest payment until its maturity, when it pays
its face value. In particular one must have P̃ (T )

T = 1 for a zero coupon bond with maturity T
and face value 1. Let Ŵ = (Ŵt)t≥0 be a Brownian motion, adapted to F, with respect to a fixed
measure Q, which is equivalent to P . For simplicity, suppose that there is no risky asset in the
market and the undiscounted bank account price process S̃0 satisfies the following SDE:

dS̃0
t = S̃0

t rtdt S̃0
0 = 1

where (rt)t is itself a stochastic process. In 1977, Vasicek proposed the following model for the
stochastic short rate process r:

drt = λ(r̄ − rt)dt+ σdŴt (3)

with a certain initial condition r0. The parameters r̄, λ and σ are given and assumed to be
strictly positive.

(d) Give a financial interpretation of the parameters r̄ > 0, λ > 0 and σ > 0.

(e) Solve the ODE for the undiscounted bank account process, i.e find a closed form solution
for S̃0

t .

(f) Let P̃ (T )
t denote the undiscounted time t price of a zero-coupon bond of maturity T and

face value 1. Express P̃ (T )
t in terms of a conditional expectation of a process involving r

under the fixed measure Q.

(g) Show that the solution of the SDE (3) is given by

rt = e−λtr0 + (1− e−λt)r̄ +

∫ t

0
e−λ(t−s)σdŴs. (4)

Hint: Try to cast the dynamics (3) into the general setting of Ornstein–Uhlenbeck processes
(2) for which you know that the solution is given by (1)

(h) Explain, how you could use the results of the previous questions to derive a closed form
pricing formula for the initial (i.e. time t = 0) price P̃ (T )

0 of the zero coupon bond.



Question 5 (8 Points)

Let T ∈ (0,∞) be a fixed time horizon and W = (Wt)t∈[0,T ] be a Brownian motion on some
probability space (Ω,F , P ). Let F = (Ft)t∈[0,T ] be the filtration generated by W and augmented
by the P -nullsets in σ(Ws; 0 ≤ s ≤ T ). In the lectures we have studied the simple Black Scholes
model where the volatility of the risky asset was assumed to be constant. In practice, one
can observe so-called volatility-smiles in the empirical call surface contradicting the constant
volatility assumption of the Black Scholes model. One possible approach to overcome this issue
is to consider a non-random continuous function σ : [0,+∞) → (0,+∞) and assume that the
undiscounted bank account price process S̃0 = (S̃0

t )t∈[0,T ] and the undiscounted stock price
process S̃1 = (S̃1

t )t∈[0,T ] satisfy

dS̃0
t = S̃0

t rdt, S̃0
0 = 1,

dS̃1
t = S̃1

t (µdt+ σ(t)dWt) , S̃1
0 = S1

0 ,

with constants µ, r ∈ R. For simplicity you may assume S̃1
0 = S1

0 > 0. As usual, let S0 = 1 and
S1 = (S1

t )t∈[0,T ] where S1
t =

S̃1
t

S̃0
t

denote the discounted price processes.

(a) Derive an SDE for the risky stock’s log price process logS1
t . Find an explicit solution for

logS1
t and conclude that the discounted risky stock price satisfies

S1
t = S1

0 exp

(∫ t

0

(
µ− r − σ2(s)

2

)
ds+

∫ t

0
σ(s)dWs

)
.

(b) What is the distribution of the random variable logS1
t under the original measure P?

(c) Find an EMM Q under which the dynamics of the discounted risky stock is given by

dS1
t = S1

t σ(t)dW ∗t

where W ∗t is a Q- Brownian Motion.

(d) Express the initial (i.e time 0) undiscounted replication cost of a European call option with
maturity T and undiscounted strike K̃ in terms of the function F : R+ × R+ → R+ given
by

F (v,m) : = E

[(
e−v/2+

√
vX −m

)+]
where X is a standard Gaussian random variable.

(e) Question (e) is OPTIONAL. You can gain an extra 2 points for a correct solution.
Prove that the function F can be expressed explicitly in terms of the cumulative distribution
function Φ of the standard gaussian distribution as follows:

F (v,m) = E

[(
e−v/2+

√
vX −m

)+]
= Φ

(
− logm√

c
+

√
c

2

)
−mΦ

(
− logm√

c
−
√
c

2

)
.

(f) Assume, for simplicity, that the interest rate is zero: r = 0. Explain how you could use
your answer to part (d) and quoted time 0 prices of at-the-money calls (i.e. call options
whose strike is given by the initial price of the underlying: K̃ = S̃1

0) of different maturities
T to estimate the function σ(·).

This model is often referred to as Hull-White extension of Black-Scholes


