
Question 1

The correct answers are:

(a) (2)

(b) (3)

(c) (1)

(d) (2)

(e) (3)

(f) (2)

(g) (3)

(h) (1)



Question 2

(a) Any probability measure Q ≈ P can be specified by four parameters q↑↑, q↓↑, q↑↓, q↓↓ (with
the obvious interpretation), which must all be strictly between 0 and 1. Moreover, for this
probability measure to be an EMM for S1 and S2 the following conditions must be satisfied

q↑↑ + q↓↑ + q↑↓ + q↓↓ = 1,

(1 + u1)q↑∗ + (1 + d1)q↓∗ = 1 + r,

(1 + u2)q∗↑ + (1 + d2)q∗↓ = 1 + r,

where q↑∗ = q↑↑ + q↑↓, q↓∗ = q↓↑ + q↓↓, q∗↑ = q↑↑ + q↓↑ and q∗↓ = q↑↓ + q↓↓. The first and
the second equation let us solve explicitly

q↑∗ =
r − d1
u1 − d1

, q↓∗ =
u1 − r
u1 − d1

and similarly the first with the third give

q∗↑ =
r − d2
u2 − d2

, q∗↓ =
u2 − r
u2 − d2

.

For these to be positive we already require u1 > r > d1, u2 > r > d2. Using a parameter
q↑↑ =: a, we get

q↓↑ =
r − d2
u2 − d2

− a, q↑↓ =
r − d1
u1 − d1

− a and q↓↓ = 1− r − d2
u2 − d2

− r − d1
u1 − d1

+ a.

Given the conditions we already have, it is clear that this leads to a well-defined equivalent
measure only if

a ∈
(

max

(
0,

r − d2
u2 − d2

+
r − d1
u1 − d1

− 1

)
,min

(
r − d1
u1 − d1

,
r − d2
u2 − d2

))
.

So we have established that for no arbitrage to occur, u1 > r > d1, u2 > r > d2 must hold
and a must belong to the given interval, and moreover the entire measure is then specified
by the formulas above. Conversely, we can check that any such a generates an EMM. This
interval thus describes all EMMs for S1 and S2. Moreover, the interval is non-empty if and
only if the four inequalities hold

r − d2
u2 − d2

> 0,
r − d1
u1 − d1

> 0

r − d2
u2 − d2

>
r − d2
u2 − d2

+
r − d1
u1 − d1

− 1

r − d1
u1 − d1

>
r − d2
u2 − d2

+
r − d1
u1 − d1

− 1

These are all true as long as 0 < r−di
u2−di < 1, which in turn is implied by di < r < ui.

Therefore these conditions are also sufficient for absence of arbitrage.

(b) Since the market is arbitrage-free by assumption, there exists an EMM for (S0, S1, S2) by
the fundamental theorem of asset pricing. The same EMM is therefore an EMM for both
(S0, S1) and (S0, S2), which means again by the fundamental theorem of asset pricing that
both of these markets are arbitrage-free. But both of these markets are simple binomial
markets so they are also complete. We can thus hedge f(S̃1

1) by trading only in S̃1. We
do this by finding an initial value c1 and a trading strategy θ1 such that

c1 + θ1(S̃
1
1 − S̃1

0) = f(S̃1
1) P -a.s.,

since we assume r = 0. This gives equations

c1 + θ1u1 = f(1 + u1),

c1 + θ1d1 = f(1 + d1),



which can indeed be solved with

θ1 =
f(1 + u1)− f(1 + d1)

u1 − d1
,

c1 =
u1f(1 + d1)− d1f(1 + u1)

u1 − d1
.

Analogously, we can hedge g(S̃2
1) by trading in S̃2 only, and then add up the hedging

strategies. In the specific case given, we have that

θ1 =
f(1 + u1)− f(1 + d1)

u1 − d1
=

1.22 − 0.82

0.4
= 2,

θ2 =
g(1 + u2)− g(1 + d2)

u2 − d2
=

0− (−0.3)

0.9
=

1

3
,

c1 + c2 = V0(H̃) =
u1f(1 + d1)− d1f(1 + u1)

u1 − d1
+
u2g(1 + d2)− d2g(1 + u2)

u2 − d2

=
0.2× 1.22 + 0.2× 0.82

0.4
+

0.6× (−0.3) + 0.3× 0

0.9
= 1.04− 0.2 = 0.84.

(c) Using that r = 0, we obtain

EQ[H̃] = q∗↑(1.6) + q↑↓(1.2) + q↓↓(0.8)

=
0.3

0.9
× 1.6 +

(
0.2

0.4
− a
)
× 1.2 + (1− 0.3

0.9
− 0.2

0.4
+ a)× 0.8

=
19

15
− 2

5
a.

One can see that the interval for a in this setting is given by (0, 13) and so the expectations
under EMMs form the set

Π(H̃) =

(
17

15
,
19

15

)
.

In particular, this set is not a singleton, so according to Theorem 1.2 on page 49 in the
lecture notes, H̃ is not attainable.



Question 3

(a) Since Q ≈ P , we know that Z > 0 P -a.s. by Radon–Nikodým theorem. Therefore also
1
Z > 0 P -a.s. As a continuous transformation of an adapted process Z, 1

Z is adapted. We
also have by Lemma 3.1 in chapter 3 of the lecture notes and the adaptedness of 1

Z that

EQ

[∣∣∣∣ 1

Zk

∣∣∣∣] = EQ

[
1

Zk

]
= EP

[
Zk

1

Zk

]
= 1

for all k ∈ {0, 1, . . . , T}. This gives the Q-integrability of 1
Z as well as the fact that

EQ

[
1

Z0

]
= 1.

Additionally, we have by the Bayes formula from Lemma 3.1 in chapter 3 of the lecture
notes and again by the adaptedness of 1

Z that

EQ

[
1

Zk

∣∣∣∣Fk−1] = EP

[
Zk
Zk−1

1

Zk

∣∣∣∣Fk−1] = EP

[
1

Zk−1

∣∣∣∣Fk−1] =
1

Zk−1

for all k ∈ {0, 1, . . . , T}. So 1
Z is a strictly positive Q-martingale with EQ

[
1
Z0

]
= 1. Since

A ∈ Fk and because 1
Z is adapted, the random variable 1

Zk
1A is Fk-measurable and we

have again by the Lemma 3.1 in chapter 3 of the lecture notes

EQ

[
1

Zk
1A

]
= EP

[
Zk

1

Zk
1A

]
= EP [1A] = P [A] .

(b) Let η := τ ∧ σ = min{τ, σ}. Then we have for all k ∈ {0, 1, . . . , T}

{η ≤ k} = {min{τ, σ} ≤ k} = {ω ∈ Ω such that τ(ω) ≤ k or σ(ω) ≤ k}
= {τ ≤ k} ∪ {σ ≤ k} ∈ Fk,

since τ and σ are F-stopping times by assumption and σ-algebras are closed under countable
unions.

(c) We know from (b) that if σn is an F-stopping time for all n ∈ N then τn ∧ σn is an F-
stopping time as well. Since τn ↑ T P -a.s. by assumption, it is first enough to show that
σn is an F-stopping time for all n ∈ N and that σn ↑ T P -a.s. The latter is clear from the
very definition of σn. In order to show that σn is an F-stopping time, we have

{σn ≤ k} = {ω ∈ Ω such that |ϑl| > n for some l ∈ {0, 1, . . . , k + 1}}

=
k+1⋃
l=1

{|ϑl| > n} ∈ Fk

by the fact that ϑ is F-predictable and that σ-algebras are closed under countable unions.
In order to show that Xτn∧σn is a (P,F)-martingale for all n ∈ N we use the fact that a
stopped martingale is a martingale (which has been proved in one of the exercise sheets)
and that Xτn is a (P,F)-martingale since (τn)n∈N is a localizing sequence for X. Denoting
Y = Xτn we indeed we have for k ∈ {0, 1, . . . , T} that

Xτn∧σn
k = Xτn∧σn∧k = Xτn

σn∧k = Yσn∧k = Y σn
k .

(d) Let us denote ρn := τn ∧ σn. Then we have for all n ∈ N and k ∈ {0, 1, . . . , T} that

(ϑ·X)ρn∧k =

ρn∧k∑
j=1

ϑj(Xj −Xj−1) =
k∑
j=1

ϑj(Xρn∧j −Xρn∧(j−1)) = (ϑ·Xρn)k.



But Xρn is a (P,F)-martingale for all n ∈ N and |ϑj | ≤ n for all j ≤ ρn and

Xρn∧j −Xρn∧(j−1) = 0 for all j > ρn,

so we have for all k ∈ {0, 1, . . . , T} that

E [|(ϑ·X)ρn∧k|] = E

[∣∣∣∣∣
k∑
j=1

ϑj(Xρn∧j −Xρn∧(j−1))

∣∣∣∣∣
]
≤

k∑
j=1

E
[
|ϑj ||Xρn∧j −Xρn∧(j−1)|

]
=

k∑
j=1

E
[
|ϑj ||Xρn∧j −Xρn∧(j−1)|1{j≤ρn}

]
≤

k∑
j=1

nE
[
|Xρn∧j −Xρn∧(j−1)|1{j≤ρn}

]
≤

k∑
j=1

nE
[
|Xρn∧j −Xρn∧(j−1)|

]
≤

k∑
j=1

n(E [|Xρn∧j |] + E
[
|Xρn∧(j−1)|

]
) <∞,

which is the integrability of (ϑ·X)ρn . We also have for all n ∈ N and k ∈ {1, . . . , T} that

E
[
(ϑ·X)ρn∧k − (ϑ·X)ρn∧(k−1)

∣∣Fk−1] = E
[
ϑk−1(Xρn∧k −Xρn∧(k−1))

∣∣Fk−1]
= E

[
ϑk−1(Xρn∧k −Xρn∧(k−1))1{k≤ρn}

∣∣Fk−1]
= 1{k≤ρn}ϑk−1E

[
Xρn∧k −Xρn∧(k−1)

∣∣Fk−1] = 0,

where the third equality follows from the fact that |ϑk1{k≤ρn}| ≤ n is bounded and

{ρn ≥ k} = {ρn > k − 1} = {ρn ≤ k − 1}C ∈ Fk−1.

Adaptedness is clear since (ϑ·X)ρnk is a sum of products of Fk-measurable random variables
so we conclude that (ϑ·X)ρn is a (P,F)-martingale for all n ∈ N, which shows that (ρn)n∈N
is a localizing sequence for (ϑ·X).



Question 4

(a) BW is adapted since B and W are. By independence, E[|BtWt|] = E[|Bt|]E[|Wt|] < ∞
since B, W are integrable. Finally,

E[BtWt | Fs] = E[(Bt −Bs +Bs)(Wt −Ws +Ws) | Fs]
= E[(Bt −Bs)(Wt −Ws)] +BsWs

= BsWs,

where the last equality follows from the independence of the increments ofW and B. Thus
BW is a (P,F)-martingale. Alternatively, this can also be shown using the product rule
and arguing that the stochastic integrals that show up are indeed martingales.

(b) M2
0 is the space of martingales M null at 0 with supt≥0E[M2

t ] <∞.
Note that we clearly have for all t ≥ 0 that

XT
t =

(∫ t

0
sdWs

)T
+BT

t

Since every deterministic time is also an F-stopping time, we can apply the behavior under
stopping property of stochastic integrals from page 89 in the lecture notes to obtain that

XT
t =

∫ t

0
sdW T

s +BT
t

For each T > 0, BT ∈ M2
0 since E[(BT

t )2] = t ∧ T ≤ T < ∞. On the other hand, by
the properties of stochastic integrals

(∫ ·
0 sdW

T
s

)
∈ M2

0 since the process H = (Hs)s≥0
defined by Hs := s is in L2(W T ), because it is clearly predictable since it is F-adapted and
continuous and

E

[∫ ∞
0

s2d
[
W T

]
s

]
= E

[∫ ∞
0

s2d(s ∧ T )

]
= E

[∫ T

0
s2ds

]
=
T 3

3
<∞.

Clearly, both summands are null at 0, thus XT ∈ M2
0. Finally, applying Itô’s formula to

the C2-function f(x) = x2 with f ′(x) = 2x, f ′′(x) = 2 and the (P,F)-semimartingale X,
together with the fact that

〈X〉t =

〈∫ ·
0
sdWs +B

〉
t

=

〈∫ ·
0
sdWs

〉
t

+ 2

〈∫ ·
0
sdWs, B

〉
t

+ 〈B〉t

=

∫ t

0
s2d〈W 〉s + 2

∫ t

0
sd〈W,B〉t + 〈B〉t =

t3

3
+ t

since 〈W 〉t = 〈B〉t = t, 〈W,B〉t = 0 (by the independence of W and B), gives that

X2
t = 2

∫ t

0
XsdXs + 〈X〉t = 2

∫ t

0
sXsdWs + 2

∫ t

0
XsdBs +

t3

3
+ t.

(c) Since XT ∈M2
0, (XT )2− [X]T is a (P,F)-martingale. Since X is continuous, we have that

[X]t = 〈X〉t so by (b) we get that

E[(XT )2 | Ft] = X2
t + E[[X]T − [X]t | Ft] = X2

t +
T 3 − t3

3
+ (T − t)

= T +
T 3

3
+ 2

∫ t

0
sXsdWs + 2

∫ t

0
XsdBs.

(d) The measure Q with dQ
dP = ZT is a probability measure equivalent to P on FT since

dQ

dP
= E(αB + βW )T = exp

(
αBT + βWT −

α2 + β2

2
T

)



is finite and strictly positive P -a.s., and EP [ZT ] = EP [Z0] = 1 since Z is a (P,F)-
martingale. By Girsanov’s theorem, since W and B are two independent (P,F)-Brownian
motions and noting that

[B,αB + βW ]t = α[B,B]t + [B,W ]t = α[B]t = αt,

[W,αB + βW ]t = [W,B]t + β[W,W ]t = β[W ]t = βt,

we get that B̃ and W̃ are (Q,F)-Brownian motions.
Finally, we can rewrite X2 as

X2
t = 2

∫ t

0
sXsdWs + 2

∫ t

0
XsdBs +

t3

3
+ t

= 2

∫ t

0
sXsdW̃s + 2

∫ t

0
XsdB̃s + 2

∫ t

0
(βs+ α)Xsds+

t3

3
+ t.

(e) No. Notice that X2
0 = 0 P -a.s., while X2

t ≥ 0 P -a.s. and P [X2
t > 0] > 0 for all t > 0.

These conditions must hold under any equivalent measure Q∗, and if we additionally want
X2 to be a (Q∗,F)-martingale, then we also need to have that EQ∗ [X2

t ] = EQ∗ [X2
0 ] = 0.

These two conditions are, however, not compatible, since if EQ∗ [X2
t ] = 0, then X2

t = 0
Q∗-a.s.



Question 5

(a) By Fubini’s theorem,

E

[∫ t

0
Wsds

]
=

∫ t

0
E[Ws]ds = 0

and

E

[(∫ t

0
Wsds

)2
]

= E

[(∫ t

0
Wsds

)(∫ t

0
Wudu

)]
= E

[∫ t

0

∫ t

0
WsWudsdu

]
=

∫ t

0

∫ t

0
E[WsWu]dsdu =

∫ t

0

∫ t

0
(s ∧ u)dsdu

=

∫ t

0

(
u2

2
+ (t− u)u

)
du =

∫ t

0

(
−u

2

2
+ tu

)
du = − t

3

6
+
t3

2
=
t3

3
,

where the fourth equality follows from the fact that for s ≥ u, we have

E [WsWu] = E [(Ws −Wu +Wu)Wu] = E [(Ws −Wu)Wu] + E
[
W 2
u

]
= E [Ws −Wu]E [Wu] + u = u

and similarly for s < u, E [WsWu] = s.
For the conditional distribution we can rewrite∫ T

0
Wsds =

∫ t

0
Wsds+ (T − t)Wt +

∫ T

t
(Ws −Wt)ds.

The first two summands are Ft-measurable, while (Ws−Wt)s∈[0,T ] is by the Markov prop-
erty a new (P,F)-Brownian motion independent of Ft. Therefore we can use the earlier
calculations to compute the distribution as∫ T

0
Wsds ∼ N

(∫ t

0
Wsds+ (T − t)Wt,

(T − t)3

3

)
conditionally on Ft.

(b) We compute

Vt = E[H | Ft] = P [At > K | Ft]

= P

[
T log(x) +

∫ T

0

(
σWs −

σ2

2
s

)
ds > T log(K)

∣∣∣∣Ft]
= P

[∫ T

0
Wsds >

T log(K/x)

σ
+
T 2σ

4

∣∣∣∣Ft] .
By (a) we know the conditional distribution of

∫ T
0 Wsds, and we can write∫ T

0
Wsds

(d)
=

∫ t

0
Wsds+ (T − t)Wt +

(T − t)
3
2

√
3

Z,

for Z ∼ N (0, 1) and independent of Ft. Therefore we can write the above as

P

[∫ T

0
Wsds >

T log(K/x)

σ
+
T 2σ

4

∣∣∣∣Ft] =

= P

[∫ t

0
Wsds+ (T − t)Wt +

(T − t)
3
2

√
3

Z >
T log(K/x)

σ
+
T 2σ

4

∣∣∣∣∣Ft
]

= P

[
Z >

√
3

(T − t)
3
2

(
T log(K/x)

σ
+
T 2σ

4
−
∫ t

0
Wsds− (T − t)Wt

) ∣∣∣∣∣Ft
]

= 1− Φ(Xt),



as we wanted, using the aforementioned independence.

If instead we use that the conditional distribution of
∫ T
0 Wsds given Ft is N (mt, v

2
t ) we

still get Vt = 1− Φ(Xt) with X given in the generic form by

Xt =
1

vt

(
T log(K/x)

σ
+
T 2σ

4
−mt

)
.

(c) We can find the dynamics of Φ(X) using Itô’s formula. Note that Xt is a smooth function
of t,

∫ t
0 Wsds and Wt. We know that Vt must be a (P,F)-martingale (by the tower law),

and because all the terms are continuous, any continuous finite variation part must vanish.
Note that t and

∫ t
0 Wsds are finite variation processes, and so we only need to think about

the derivative with respect to Wt (i.e., we know a priori that all the other terms must
cancel out). Therefore that simply yields

Vt = V0 +

∫ t

0
dVs = V0 +

∫ t

0
−Φ′(Xs)

(
−

√
3

(T − s)
1
2

)
dWs

= V0 +

∫ t

0

 √
3e

−X2
s

2

σSs
√

2π(T − s)

 dSs

giving

θt =

 √
3e

−X2
t

2

σSt
√

2π(T − t)


and

V0 = 1− Φ(X0) = 1− Φ

(
√

3

(
log(K/x)

σ
√
T

+

√
Tσ

4

))
.


