Question 1

The correct answers are:
(a) (2)
(b) (3)
(c) (1)
(d) (2)
(e) (3)
(f) (2)
(g) (3)
(h) (1)

Question 2

(a) Any probability measure $Q \approx P$ can be specified by four parameters $q_{\uparrow \uparrow}, q_{\downarrow \uparrow}, q_{\uparrow \downarrow}, q_{\downarrow \downarrow}$ (with the obvious interpretation), which must all be strictly between 0 and 1 . Moreover, for this probability measure to be an EMM for S^{1} and S^{2} the following conditions must be satisfied

$$
\begin{aligned}
& q_{\uparrow \uparrow}+q_{\downarrow \uparrow}+q_{\uparrow \downarrow}+q_{\downarrow \downarrow}=1 \\
& \left(1+u_{1}\right) q_{\uparrow *}+\left(1+d_{1}\right) q_{\downarrow *}=1+r \\
& \left(1+u_{2}\right) q_{* \uparrow}+\left(1+d_{2}\right) q_{* \downarrow}=1+r
\end{aligned}
$$

where $q_{\uparrow *}=q_{\uparrow \uparrow}+q_{\uparrow \downarrow}, q_{\downarrow *}=q_{\downarrow \uparrow}+q_{\downarrow \downarrow}, q_{* \uparrow}=q_{\uparrow \uparrow}+q_{\downarrow \uparrow}$ and $q_{* \downarrow}=q_{\uparrow \downarrow}+q_{\downarrow \downarrow}$. The first and the second equation let us solve explicitly

$$
q_{\uparrow *}=\frac{r-d_{1}}{u_{1}-d_{1}}, \quad q_{\downarrow *}=\frac{u_{1}-r}{u_{1}-d_{1}}
$$

and similarly the first with the third give

$$
q_{* \uparrow}=\frac{r-d_{2}}{u_{2}-d_{2}}, \quad q_{* \downarrow}=\frac{u_{2}-r}{u_{2}-d_{2}} .
$$

For these to be positive we already require $u_{1}>r>d_{1}, u_{2}>r>d_{2}$. Using a parameter $q_{\uparrow \uparrow}=: a$, we get

$$
q_{\downarrow \uparrow}=\frac{r-d_{2}}{u_{2}-d_{2}}-a, \quad q_{\uparrow \downarrow}=\frac{r-d_{1}}{u_{1}-d_{1}}-a \quad \text { and } \quad q_{\downarrow \downarrow}=1-\frac{r-d_{2}}{u_{2}-d_{2}}-\frac{r-d_{1}}{u_{1}-d_{1}}+a
$$

Given the conditions we already have, it is clear that this leads to a well-defined equivalent measure only if

$$
a \in\left(\max \left(0, \frac{r-d_{2}}{u_{2}-d_{2}}+\frac{r-d_{1}}{u_{1}-d_{1}}-1\right), \min \left(\frac{r-d_{1}}{u_{1}-d_{1}}, \frac{r-d_{2}}{u_{2}-d_{2}}\right)\right)
$$

So we have established that for no arbitrage to occur, $u_{1}>r>d_{1}, u_{2}>r>d_{2}$ must hold and a must belong to the given interval, and moreover the entire measure is then specified by the formulas above. Conversely, we can check that any such a generates an EMM. This interval thus describes all EMMs for S^{1} and S^{2}. Moreover, the interval is non-empty if and only if the four inequalities hold

$$
\begin{aligned}
\frac{r-d_{2}}{u_{2}-d_{2}}>0, \quad \frac{r-d_{1}}{u_{1}-d_{1}}>0 \\
\frac{r-d_{2}}{u_{2}-d_{2}}>\frac{r-d_{2}}{u_{2}-d_{2}}+\frac{r-d_{1}}{u_{1}-d_{1}}-1 \\
\frac{r-d_{1}}{u_{1}-d_{1}}>\frac{r-d_{2}}{u_{2}-d_{2}}+\frac{r-d_{1}}{u_{1}-d_{1}}-1
\end{aligned}
$$

These are all true as long as $0<\frac{r-d_{i}}{u_{2}-d_{i}}<1$, which in turn is implied by $d_{i}<r<u_{i}$. Therefore these conditions are also sufficient for absence of arbitrage.
(b) Since the market is arbitrage-free by assumption, there exists an EMM for $\left(S^{0}, S^{1}, S^{2}\right)$ by the fundamental theorem of asset pricing. The same EMM is therefore an EMM for both $\left(S^{0}, S^{1}\right)$ and $\left(S^{0}, S^{2}\right)$, which means again by the fundamental theorem of asset pricing that both of these markets are arbitrage-free. But both of these markets are simple binomial markets so they are also complete. We can thus hedge $f\left(\widetilde{S}_{1}^{1}\right)$ by trading only in \widetilde{S}^{1}. We do this by finding an initial value c_{1} and a trading strategy θ_{1} such that

$$
c_{1}+\theta_{1}\left(\widetilde{S}_{1}^{1}-\widetilde{S}_{0}^{1}\right)=f\left(\widetilde{S}_{1}^{1}\right) \quad P \text {-a.s. }
$$

since we assume $r=0$. This gives equations

$$
\begin{aligned}
& c_{1}+\theta_{1} u_{1}=f\left(1+u_{1}\right) \\
& c_{1}+\theta_{1} d_{1}=f\left(1+d_{1}\right)
\end{aligned}
$$

which can indeed be solved with

$$
\begin{aligned}
& \theta_{1}=\frac{f\left(1+u_{1}\right)-f\left(1+d_{1}\right)}{u_{1}-d_{1}}, \\
& c_{1}=\frac{u_{1} f\left(1+d_{1}\right)-d_{1} f\left(1+u_{1}\right)}{u_{1}-d_{1}} .
\end{aligned}
$$

Analogously, we can hedge $g\left(\widetilde{S}_{1}^{2}\right)$ by trading in \widetilde{S}^{2} only, and then add up the hedging strategies. In the specific case given, we have that

$$
\begin{aligned}
\theta_{1} & =\frac{f\left(1+u_{1}\right)-f\left(1+d_{1}\right)}{u_{1}-d_{1}}=\frac{1.2^{2}-0.8^{2}}{0.4}=2, \\
\theta_{2} & =\frac{g\left(1+u_{2}\right)-g\left(1+d_{2}\right)}{u_{2}-d_{2}}=\frac{0-(-0.3)}{0.9}=\frac{1}{3}, \\
c_{1}+c_{2} & =V_{0}(\widetilde{H})=\frac{u_{1} f\left(1+d_{1}\right)-d_{1} f\left(1+u_{1}\right)}{u_{1}-d_{1}}+\frac{u_{2} g\left(1+d_{2}\right)-d_{2} g\left(1+u_{2}\right)}{u_{2}-d_{2}} \\
& =\frac{0.2 \times 1.2^{2}+0.2 \times 0.8^{2}}{0.4}+\frac{0.6 \times(-0.3)+0.3 \times 0}{0.9}=1.04-0.2=0.84 .
\end{aligned}
$$

(c) Using that $r=0$, we obtain

$$
\begin{aligned}
E_{Q}[\widetilde{H}] & =q_{* \uparrow}(1.6)+q_{\uparrow \downarrow}(1.2)+q_{\downarrow \downarrow}(0.8) \\
& =\frac{0.3}{0.9} \times 1.6+\left(\frac{0.2}{0.4}-a\right) \times 1.2+\left(1-\frac{0.3}{0.9}-\frac{0.2}{0.4}+a\right) \times 0.8 \\
& =\frac{19}{15}-\frac{2}{5} a .
\end{aligned}
$$

One can see that the interval for a in this setting is given by $\left(0, \frac{1}{3}\right)$ and so the expectations under EMMs form the set

$$
\Pi(\widetilde{H})=\left(\frac{17}{15}, \frac{19}{15}\right) .
$$

In particular, this set is not a singleton, so according to Theorem 1.2 on page 49 in the lecture notes, \widetilde{H} is not attainable.

Question 3

(a) Since $Q \approx P$, we know that $Z>0 P$-a.s. by Radon-Nikodým theorem. Therefore also $\frac{1}{Z}>0 P$-a.s. As a continuous transformation of an adapted process $Z, \frac{1}{Z}$ is adapted. We also have by Lemma 3.1 in chapter 3 of the lecture notes and the adaptedness of $\frac{1}{Z}$ that

$$
E_{Q}\left[\left|\frac{1}{Z_{k}}\right|\right]=E_{Q}\left[\frac{1}{Z_{k}}\right]=E_{P}\left[Z_{k} \frac{1}{Z_{k}}\right]=1
$$

for all $k \in\{0,1, \ldots, T\}$. This gives the Q-integrability of $\frac{1}{Z}$ as well as the fact that

$$
E_{Q}\left[\frac{1}{Z_{0}}\right]=1
$$

Additionally, we have by the Bayes formula from Lemma 3.1 in chapter 3 of the lecture notes and again by the adaptedness of $\frac{1}{Z}$ that

$$
E_{Q}\left[\left.\frac{1}{Z_{k}} \right\rvert\, \mathcal{F}_{k-1}\right]=E_{P}\left[\left.\frac{Z_{k}}{Z_{k-1}} \frac{1}{Z_{k}} \right\rvert\, \mathcal{F}_{k-1}\right]=E_{P}\left[\left.\frac{1}{Z_{k-1}} \right\rvert\, \mathcal{F}_{k-1}\right]=\frac{1}{Z_{k-1}}
$$

for all $k \in\{0,1, \ldots, T\}$. So $\frac{1}{Z}$ is a strictly positive Q-martingale with $E_{Q}\left[\frac{1}{Z_{0}}\right]=1$. Since $A \in \mathcal{F}_{k}$ and because $\frac{1}{Z}$ is adapted, the random variable $\frac{1}{Z_{k}} \mathbb{1}_{A}$ is \mathcal{F}_{k}-measurable and we have again by the Lemma 3.1 in chapter 3 of the lecture notes

$$
E_{Q}\left[\frac{1}{Z_{k}} \mathbb{1}_{A}\right]=E_{P}\left[Z_{k} \frac{1}{Z_{k}} \mathbb{1}_{A}\right]=E_{P}\left[\mathbb{1}_{A}\right]=P[A]
$$

(b) Let $\eta:=\tau \wedge \sigma=\min \{\tau, \sigma\}$. Then we have for all $k \in\{0,1, \ldots, T\}$

$$
\begin{aligned}
\{\eta \leq k\} & =\{\min \{\tau, \sigma\} \leq k\}=\{\omega \in \Omega \text { such that } \tau(\omega) \leq k \text { or } \sigma(\omega) \leq k\} \\
& =\{\tau \leq k\} \cup\{\sigma \leq k\} \in \mathcal{F}_{k}
\end{aligned}
$$

since τ and σ are \mathbb{F}-stopping times by assumption and σ-algebras are closed under countable unions.
(c) We know from (b) that if σ_{n} is an \mathbb{F}-stopping time for all $n \in \mathbb{N}$ then $\tau_{n} \wedge \sigma_{n}$ is an \mathbb{F} stopping time as well. Since $\tau_{n} \uparrow T P$-a.s. by assumption, it is first enough to show that σ_{n} is an \mathbb{F}-stopping time for all $n \in \mathbb{N}$ and that $\sigma_{n} \uparrow T P$-a.s. The latter is clear from the very definition of σ_{n}. In order to show that σ_{n} is an \mathbb{F}-stopping time, we have

$$
\begin{aligned}
\left\{\sigma_{n} \leq k\right\} & =\left\{\omega \in \Omega \text { such that }\left|\vartheta_{l}\right|>n \text { for some } l \in\{0,1, \ldots, k+1\}\right\} \\
& =\bigcup_{l=1}^{k+1}\left\{\left|\vartheta_{l}\right|>n\right\} \in \mathcal{F}_{k}
\end{aligned}
$$

by the fact that ϑ is \mathbb{F}-predictable and that σ-algebras are closed under countable unions. In order to show that $X^{\tau_{n} \wedge \sigma_{n}}$ is a (P, \mathbb{F})-martingale for all $n \in \mathbb{N}$ we use the fact that a stopped martingale is a martingale (which has been proved in one of the exercise sheets) and that $X^{\tau_{n}}$ is a (P, \mathbb{F})-martingale since $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ is a localizing sequence for X. Denoting $Y=X^{\tau_{n}}$ we indeed we have for $k \in\{0,1, \ldots, T\}$ that

$$
X_{k}^{\tau_{n} \wedge \sigma_{n}}=X_{\tau_{n} \wedge \sigma_{n} \wedge k}=X_{\sigma_{n} \wedge k}^{\tau_{n}}=Y_{\sigma_{n} \wedge k}=Y_{k}^{\sigma_{n}}
$$

(d) Let us denote $\rho_{n}:=\tau_{n} \wedge \sigma_{n}$. Then we have for all $n \in \mathbb{N}$ and $k \in\{0,1, \ldots, T\}$ that

$$
(\vartheta \bullet X)_{\rho_{n} \wedge k}=\sum_{j=1}^{\rho_{n} \wedge k} \vartheta_{j}\left(X_{j}-X_{j-1}\right)=\sum_{j=1}^{k} \vartheta_{j}\left(X_{\rho_{n} \wedge j}-X_{\rho_{n} \wedge(j-1)}\right)=\left(\vartheta \bullet X^{\rho_{n}}\right)_{k} .
$$

But $X^{\rho_{n}}$ is a (P, \mathbb{F})-martingale for all $n \in \mathbb{N}$ and $\left|\vartheta_{j}\right| \leq n$ for all $j \leq \rho_{n}$ and

$$
X_{\rho_{n} \wedge j}-X_{\rho_{n} \wedge(j-1)}=0 \text { for all } j>\rho_{n},
$$

so we have for all $k \in\{0,1, \ldots, T\}$ that

$$
\begin{aligned}
E\left[\left|(\vartheta \cdot X)_{\rho_{n} \wedge k}\right|\right] & =E\left[\left|\sum_{j=1}^{k} \vartheta_{j}\left(X_{\rho_{n} \wedge j}-X_{\rho_{n} \wedge(j-1)}\right)\right|\right] \leq \sum_{j=1}^{k} E\left[\left|\vartheta_{j}\right|\left|X_{\rho_{n} \wedge j}-X_{\rho_{n} \wedge(j-1)}\right|\right] \\
& =\sum_{j=1}^{k} E\left[\left|\vartheta_{j}\right|\left|X_{\rho_{n} \wedge j}-X_{\rho_{n} \wedge(j-1)}\right| \mathbb{1}_{\left\{j \leq \rho_{n}\right\}}\right] \\
& \leq \sum_{j=1}^{k} n E\left[\left|X_{\rho_{n} \wedge j}-X_{\rho_{n} \wedge(j-1)}\right| \mathbb{1}_{\left\{j \leq \rho_{n}\right\}}\right] \leq \sum_{j=1}^{k} n E\left[\left|X_{\rho_{n} \wedge j}-X_{\rho_{n} \wedge(j-1)}\right|\right] \\
& \leq \sum_{j=1}^{k} n\left(E\left[\left|X_{\rho_{n} \wedge j}\right|\right]+E\left[\left|X_{\rho_{n} \wedge(j-1)}\right|\right]\right)<\infty,
\end{aligned}
$$

which is the integrability of $(\vartheta \cdot X)^{\rho_{n}}$. We also have for all $n \in \mathbb{N}$ and $k \in\{1, \ldots, T\}$ that

$$
\begin{aligned}
& E\left[(\vartheta \bullet X)_{\rho_{n} \wedge k}-(\vartheta \bullet X)_{\rho_{n} \wedge(k-1)} \mid \mathcal{F}_{k-1}\right]=E\left[\vartheta_{k-1}\left(X_{\rho_{n} \wedge k}-X_{\rho_{n} \wedge(k-1)}\right) \mid \mathcal{F}_{k-1}\right] \\
& \quad=E\left[\vartheta_{k-1}\left(X_{\rho_{n} \wedge k}-X_{\rho_{n} \wedge(k-1)}\right) \mathbb{1}_{\left\{k \leq \rho_{n}\right\}} \mid \mathcal{F}_{k-1}\right] \\
& \quad=\mathbb{1}_{\left\{k \leq \rho_{n}\right\}} \vartheta_{k-1} E\left[X_{\rho_{n} \wedge k}-X_{\rho_{n} \wedge(k-1)} \mid \mathcal{F}_{k-1}\right]=0,
\end{aligned}
$$

where the third equality follows from the fact that $\left|\vartheta_{k} \mathbb{1}_{\left\{k \leq \rho_{n}\right\}}\right| \leq n$ is bounded and

$$
\left\{\rho_{n} \geq k\right\}=\left\{\rho_{n}>k-1\right\}=\left\{\rho_{n} \leq k-1\right\}^{C} \in \mathcal{F}_{k-1} .
$$

Adaptedness is clear since $(\vartheta \cdot X)_{k}^{\rho_{n}}$ is a sum of products of \mathcal{F}_{k}-measurable random variables so we conclude that $(\vartheta \cdot X)^{\rho_{n}}$ is a (P, \mathbb{F})-martingale for all $n \in \mathbb{N}$, which shows that $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ is a localizing sequence for $(\vartheta \cdot X)$.

Question 4

(a) $B W$ is adapted since B and W are. By independence, $E\left[\left|B_{t} W_{t}\right|\right]=E\left[\left|B_{t}\right|\right] E\left[\left|W_{t}\right|\right]<\infty$ since B, W are integrable. Finally,

$$
\begin{aligned}
E\left[B_{t} W_{t} \mid \mathcal{F}_{s}\right] & =E\left[\left(B_{t}-B_{s}+B_{s}\right)\left(W_{t}-W_{s}+W_{s}\right) \mid \mathcal{F}_{s}\right] \\
& =E\left[\left(B_{t}-B_{s}\right)\left(W_{t}-W_{s}\right)\right]+B_{s} W_{s} \\
& =B_{s} W_{s}
\end{aligned}
$$

where the last equality follows from the independence of the increments of W and B. Thus $B W$ is a (P, \mathbb{F})-martingale. Alternatively, this can also be shown using the product rule and arguing that the stochastic integrals that show up are indeed martingales.
(b) \mathcal{M}_{0}^{2} is the space of martingales M null at 0 with $\sup _{t \geq 0} E\left[M_{t}^{2}\right]<\infty$.

Note that we clearly have for all $t \geq 0$ that

$$
X_{t}^{T}=\left(\int_{0}^{t} s d W_{s}\right)^{T}+B_{t}^{T}
$$

Since every deterministic time is also an \mathbb{F}-stopping time, we can apply the behavior under stopping property of stochastic integrals from page 89 in the lecture notes to obtain that

$$
X_{t}^{T}=\int_{0}^{t} s d W_{s}^{T}+B_{t}^{T}
$$

For each $T>0, B^{T} \in \mathcal{M}_{0}^{2}$ since $E\left[\left(B_{t}^{T}\right)^{2}\right]=t \wedge T \leq T<\infty$. On the other hand, by the properties of stochastic integrals $\left(\int_{0}^{*} s d W_{s}^{T}\right) \in \mathcal{M}_{0}^{2}$ since the process $H=\left(H_{s}\right)_{s \geq 0}$ defined by $H_{s}:=s$ is in $L^{2}\left(W^{T}\right)$, because it is clearly predictable since it is \mathbb{F}-adapted and continuous and

$$
E\left[\int_{0}^{\infty} s^{2} d\left[W^{T}\right]_{s}\right]=E\left[\int_{0}^{\infty} s^{2} d(s \wedge T)\right]=E\left[\int_{0}^{T} s^{2} d s\right]=\frac{T^{3}}{3}<\infty
$$

Clearly, both summands are null at 0 , thus $X^{T} \in \mathcal{M}_{0}^{2}$. Finally, applying Itô's formula to the C^{2}-function $f(x)=x^{2}$ with $f^{\prime}(x)=2 x, f^{\prime \prime}(x)=2$ and the (P, \mathbb{F})-semimartingale X, together with the fact that

$$
\begin{aligned}
\langle X\rangle_{t} & =\left\langle\int_{0}^{\cdot} s d W_{s}+B\right\rangle_{t}=\left\langle\int_{0} s d W_{s}\right\rangle_{t}+2\left\langle\int_{0} s d W_{s}, B\right\rangle_{t}+\langle B\rangle_{t} \\
& =\int_{0}^{t} s^{2} d\langle W\rangle_{s}+2 \int_{0}^{t} s d\langle W, B\rangle_{t}+\langle B\rangle_{t}=\frac{t^{3}}{3}+t
\end{aligned}
$$

since $\langle W\rangle_{t}=\langle B\rangle_{t}=t,\langle W, B\rangle_{t}=0$ (by the independence of W and B), gives that

$$
X_{t}^{2}=2 \int_{0}^{t} X_{s} d X_{s}+\langle X\rangle_{t}=2 \int_{0}^{t} s X_{s} d W_{s}+2 \int_{0}^{t} X_{s} d B_{s}+\frac{t^{3}}{3}+t
$$

(c) Since $X^{T} \in \mathcal{M}_{0}^{2},\left(X^{T}\right)^{2}-[X]^{T}$ is a (P, \mathbb{F})-martingale. Since X is continuous, we have that $[X]_{t}=\langle X\rangle_{t}$ so by (b) we get that

$$
\begin{aligned}
E\left[\left(X_{T}\right)^{2} \mid \mathcal{F}_{t}\right] & =X_{t}^{2}+E\left[[X]_{T}-[X]_{t} \mid \mathcal{F}_{t}\right]=X_{t}^{2}+\frac{T^{3}-t^{3}}{3}+(T-t) \\
& =T+\frac{T^{3}}{3}+2 \int_{0}^{t} s X_{s} d W_{s}+2 \int_{0}^{t} X_{s} d B_{s}
\end{aligned}
$$

(d) The measure Q with $\frac{d Q}{d P}=Z_{T}$ is a probability measure equivalent to P on \mathcal{F}_{T} since

$$
\frac{d Q}{d P}=\mathcal{E}(\alpha B+\beta W)_{T}=\exp \left(\alpha B_{T}+\beta W_{T}-\frac{\alpha^{2}+\beta^{2}}{2} T\right)
$$

is finite and strictly positive P-a.s., and $E_{P}\left[Z_{T}\right]=E_{P}\left[Z_{0}\right]=1$ since Z is a (P, \mathbb{F}) martingale. By Girsanov's theorem, since W and B are two independent (P, \mathbb{F})-Brownian motions and noting that

$$
\begin{aligned}
{[B, \alpha B+\beta W]_{t} } & =\alpha[B, B]_{t}+[B, W]_{t}=\alpha[B]_{t}=\alpha t \\
{[W, \alpha B+\beta W]_{t} } & =[W, B]_{t}+\beta[W, W]_{t}=\beta[W]_{t}=\beta t
\end{aligned}
$$

we get that \widetilde{B} and \widetilde{W} are (Q, \mathbb{F})-Brownian motions.
Finally, we can rewrite X^{2} as

$$
\begin{aligned}
X_{t}^{2} & =2 \int_{0}^{t} s X_{s} d W_{s}+2 \int_{0}^{t} X_{s} d B_{s}+\frac{t^{3}}{3}+t \\
& =2 \int_{0}^{t} s X_{s} d \widetilde{W}_{s}+2 \int_{0}^{t} X_{s} d \widetilde{B}_{s}+2 \int_{0}^{t}(\beta s+\alpha) X_{s} d s+\frac{t^{3}}{3}+t
\end{aligned}
$$

(e) No. Notice that $X_{0}^{2}=0 P$-a.s., while $X_{t}^{2} \geq 0 P$-a.s. and $P\left[X_{t}^{2}>0\right]>0$ for all $t>0$. These conditions must hold under any equivalent measure Q^{*}, and if we additionally want X^{2} to be a $\left(Q^{*}, \mathbb{F}\right)$-martingale, then we also need to have that $E_{Q^{*}}\left[X_{t}^{2}\right]=E_{Q^{*}}\left[X_{0}^{2}\right]=0$. These two conditions are, however, not compatible, since if $E_{Q^{*}}\left[X_{t}^{2}\right]=0$, then $X_{t}^{2}=0$ Q^{*}-a.s.

Question 5

(a) By Fubini's theorem,

$$
E\left[\int_{0}^{t} W_{s} d s\right]=\int_{0}^{t} E\left[W_{s}\right] d s=0
$$

and

$$
\begin{aligned}
E\left[\left(\int_{0}^{t} W_{s} d s\right)^{2}\right] & =E\left[\left(\int_{0}^{t} W_{s} d s\right)\left(\int_{0}^{t} W_{u} d u\right)\right]=E\left[\int_{0}^{t} \int_{0}^{t} W_{s} W_{u} d s d u\right] \\
& =\int_{0}^{t} \int_{0}^{t} E\left[W_{s} W_{u}\right] d s d u=\int_{0}^{t} \int_{0}^{t}(s \wedge u) d s d u \\
& =\int_{0}^{t}\left(\frac{u^{2}}{2}+(t-u) u\right) d u=\int_{0}^{t}\left(-\frac{u^{2}}{2}+t u\right) d u=-\frac{t^{3}}{6}+\frac{t^{3}}{2}=\frac{t^{3}}{3}
\end{aligned}
$$

where the fourth equality follows from the fact that for $s \geq u$, we have

$$
\begin{aligned}
E\left[W_{s} W_{u}\right] & =E\left[\left(W_{s}-W_{u}+W_{u}\right) W_{u}\right]=E\left[\left(W_{s}-W_{u}\right) W_{u}\right]+E\left[W_{u}^{2}\right] \\
& =E\left[W_{s}-W_{u}\right] E\left[W_{u}\right]+u=u
\end{aligned}
$$

and similarly for $s<u, E\left[W_{s} W_{u}\right]=s$.
For the conditional distribution we can rewrite

$$
\int_{0}^{T} W_{s} d s=\int_{0}^{t} W_{s} d s+(T-t) W_{t}+\int_{t}^{T}\left(W_{s}-W_{t}\right) d s
$$

The first two summands are \mathcal{F}_{t}-measurable, while $\left(W_{s}-W_{t}\right)_{s \in[0, T]}$ is by the Markov property a new (P, \mathbb{F})-Brownian motion independent of \mathcal{F}_{t}. Therefore we can use the earlier calculations to compute the distribution as

$$
\int_{0}^{T} W_{s} d s \sim \mathcal{N}\left(\int_{0}^{t} W_{s} d s+(T-t) W_{t}, \frac{(T-t)^{3}}{3}\right)
$$

conditionally on \mathcal{F}_{t}.
(b) We compute

$$
\begin{aligned}
V_{t} & =E\left[H \mid \mathcal{F}_{t}\right]=P\left[A_{t}>K \mid \mathcal{F}_{t}\right] \\
& =P\left[\left.T \log (x)+\int_{0}^{T}\left(\sigma W_{s}-\frac{\sigma^{2}}{2} s\right) d s>T \log (K) \right\rvert\, \mathcal{F}_{t}\right] \\
& =P\left[\left.\int_{0}^{T} W_{s} d s>\frac{T \log (K / x)}{\sigma}+\frac{T^{2} \sigma}{4} \right\rvert\, \mathcal{F}_{t}\right] .
\end{aligned}
$$

By (a) we know the conditional distribution of $\int_{0}^{T} W_{s} d s$, and we can write

$$
\int_{0}^{T} W_{s} d s \stackrel{(d)}{=} \int_{0}^{t} W_{s} d s+(T-t) W_{t}+\frac{(T-t)^{\frac{3}{2}}}{\sqrt{3}} Z
$$

for $Z \sim \mathcal{N}(0,1)$ and independent of \mathcal{F}_{t}. Therefore we can write the above as

$$
\begin{aligned}
& P\left[\left.\int_{0}^{T} W_{s} d s>\frac{T \log (K / x)}{\sigma}+\frac{T^{2} \sigma}{4} \right\rvert\, \mathcal{F}_{t}\right]= \\
& \quad=P\left[\left.\int_{0}^{t} W_{s} d s+(T-t) W_{t}+\frac{(T-t)^{\frac{3}{2}}}{\sqrt{3}} Z>\frac{T \log (K / x)}{\sigma}+\frac{T^{2} \sigma}{4} \right\rvert\, \mathcal{F}_{t}\right] \\
& \quad=P\left[\left.Z>\frac{\sqrt{3}}{(T-t)^{\frac{3}{2}}}\left(\frac{T \log (K / x)}{\sigma}+\frac{T^{2} \sigma}{4}-\int_{0}^{t} W_{s} d s-(T-t) W_{t}\right) \right\rvert\, \mathcal{F}_{t}\right] \\
& \quad=1-\Phi\left(X_{t}\right)
\end{aligned}
$$

as we wanted, using the aforementioned independence.
If instead we use that the conditional distribution of $\int_{0}^{T} W_{s} d s$ given \mathcal{F}_{t} is $\mathcal{N}\left(m_{t}, v_{t}^{2}\right)$ we still get $V_{t}=1-\Phi\left(X_{t}\right)$ with X given in the generic form by

$$
X_{t}=\frac{1}{v_{t}}\left(\frac{T \log (K / x)}{\sigma}+\frac{T^{2} \sigma}{4}-m_{t}\right) .
$$

(c) We can find the dynamics of $\Phi(X)$ using Itô's formula. Note that X_{t} is a smooth function of $t, \int_{0}^{t} W_{s} d s$ and W_{t}. We know that V_{t} must be a (P, \mathbb{F})-martingale (by the tower law), and because all the terms are continuous, any continuous finite variation part must vanish. Note that t and $\int_{0}^{t} W_{s} d s$ are finite variation processes, and so we only need to think about the derivative with respect to W_{t} (i.e., we know a priori that all the other terms must cancel out). Therefore that simply yields

$$
\begin{aligned}
V_{t} & =V_{0}+\int_{0}^{t} d V_{s}=V_{0}+\int_{0}^{t}-\Phi^{\prime}\left(X_{s}\right)\left(-\frac{\sqrt{3}}{(T-s)^{\frac{1}{2}}}\right) d W_{s} \\
& =V_{0}+\int_{0}^{t}\left(\frac{\sqrt{3} e^{\frac{-X_{s}^{2}}{2}}}{\sigma S_{s} \sqrt{2 \pi(T-s)}}\right) d S_{s}
\end{aligned}
$$

giving

$$
\theta_{t}=\left(\frac{\sqrt{3} e^{\frac{-x_{t}^{2}}{2}}}{\sigma S_{t} \sqrt{2 \pi(T-t)}}\right)
$$

and

$$
V_{0}=1-\Phi\left(X_{0}\right)=1-\Phi\left(\sqrt{3}\left(\frac{\log (K / x)}{\sigma \sqrt{T}}+\frac{\sqrt{T} \sigma}{4}\right)\right) .
$$

