Question 1

The correct answers are:
(a) (3)
(b) (1)
(c) (3)
(d) (2)
(e) (2)
(f) (3)
(g) (1)
(h) (3)

Question 2

(a) 2 points

Let Y be a martingale deflator (note that in particular $Y_{T} S_{T}$ is P-integrable). We want to construct an EMM Q. Therefore we define a new measure Q with Radon-Nikodym density

$$
\frac{d Q}{d P}=\frac{Y_{T} \tilde{S}_{T}^{0}}{E_{P}\left[Y_{T} \tilde{S}_{T}^{0}\right]}
$$

Observe that

- Q is a probability measure since $Q[\Omega]=E_{Q}\left[\mathbb{1}_{\Omega}\right]=E_{P}\left[\frac{d Q}{d P}\right]=1$
- Q is equivalent to P since $\frac{d Q}{d P}>0$ by the positiveness of the martingale deflator Y.

Remains to show that Q is a martingale measure. By Bayes formula,

$$
E_{Q}\left[\left.\frac{\tilde{S}_{T}^{1}}{\tilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right]=\frac{E_{P}\left[\tilde{S}_{T}^{1} Y_{T} \mid \mathcal{F}_{t}\right]}{E_{P}\left[\tilde{S}_{T}^{0} Y_{T} \mid \mathcal{F}_{t}\right]}
$$

Since Y is a martingale deflator, the numerator is equal to $E_{P}\left[\tilde{S}_{T}^{1} Y_{T} \mid \mathcal{F}_{t}\right]=\tilde{S}_{t}^{1} Y_{t}$ and the denominator is equal to $E_{P}\left[\tilde{S}_{T}^{0} Y_{T} \mid \mathcal{F}_{t}\right]=\tilde{S}_{t}^{0} Y_{t}$. Simplifying by the non-negative Y_{t} gives

$$
E_{Q}\left[\left.\frac{\tilde{S}_{T}^{1}}{\tilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right]=\frac{\tilde{S}_{t}^{1}}{\tilde{S}_{t}^{0}}
$$

and hence Q is a martingale measure (adaptedness of the discounted price process does not depend on the probability measure and integrability of $\frac{\tilde{S}_{T}^{1}}{\tilde{S}_{T}^{0}}$ under \mathbb{Q} follows easily from the integrability of $Y_{T} \tilde{S}_{T}^{1}$ under $\left.\mathbb{P}\right)$.
Conversely, suppose that Q is an EMM. Let

$$
Z_{t}=E_{P}\left[\left.\frac{d Q}{d P} \right\rvert\, \mathcal{F}_{t}\right]
$$

Note that by definition Z is a P-martingale. Moreover since Q is equivalent to P, the process Z is positive. Define

$$
Y_{t}=\frac{Z_{t}}{\tilde{S}_{t}^{0}}
$$

We now show that Y is a martingale deflator. First, note that Y is positive since Z and \tilde{S}^{0} are both positive. Moreover the process Y satisfies

$$
\begin{aligned}
E_{P}\left[\tilde{S}_{T}^{0} Y_{T} \mid \mathcal{F}_{t}\right] & =E_{P}\left[Z_{T} \mid \mathcal{F}_{t}\right] \\
& =Z_{t} \\
& =\tilde{S}_{t}^{0} Y_{t}
\end{aligned}
$$

Furthermore, $\tilde{S}_{T}^{1} / \tilde{S}_{T}^{0}$ is Q-integrable (by the definition of martingale) and hence $\tilde{S}_{T}^{1} Y_{T}$ is P-integrable. We can thus conclude using Bayes formula that

$$
\begin{aligned}
E_{P}\left[\tilde{S}_{T}^{1} Y_{T} \mid \mathcal{F}_{t}\right] & =E_{Q}\left[\left.\frac{\tilde{S}_{T}^{1}}{\tilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right] E_{P}\left[\tilde{S}_{T}^{0} Y_{T} \mid \mathcal{F}_{t}\right] \\
& =\frac{\tilde{S}_{t}^{1}}{\tilde{S}_{t}^{0}} \tilde{S}_{t}^{0} Y^{t} \\
& =\tilde{S}_{t}^{1} Y_{t}
\end{aligned}
$$

so Y is a martingale deflator.

(b) 2 points

Since the market is complete, there is no problem with integrability because Y_{t} is bounded for all $t \geq 0$. Adaptedness is clear by assumption. Remains to prove the supermartingale property.
Using our assumption that $\tilde{S}_{t+1}^{0} \geq \tilde{S}_{t}^{0}$ for all $t \geq 0$, we have

$$
Y_{t} \leq \frac{Y_{t} \tilde{S}_{t}^{0}}{\tilde{S}_{s}^{0}}
$$

and hence using that Y is a martingale deflator, we get

$$
\begin{aligned}
E_{P}\left[Y_{t} \mid \mathcal{F}_{s}\right] & \leq E_{P}\left[\left.\frac{Y_{t} \tilde{S}_{t}^{0}}{\tilde{S}_{s}^{0}} \right\rvert\, \mathcal{F}_{s}\right] \\
& =\frac{1}{\tilde{S}_{s}^{0}} E_{P}\left[Y_{t} \tilde{S}_{t}^{0} \mid \mathcal{F}_{s}\right] \\
& =\frac{Y_{s} \tilde{S}_{s}^{0}}{\tilde{S}_{s}^{0}}=Y_{s}
\end{aligned}
$$

Hence Y is a P-supermartingale.
(c) 2 points

Jensen's inequality and the martingale property of $Y \tilde{S}^{1}$ together imply

$$
\begin{aligned}
E_{P}\left[\left(Y_{t} \tilde{S}_{t}^{1}-Y_{t} \tilde{K}\right)^{+} \mid \mathcal{F}_{s}\right] & \geq\left(E_{P}\left[Y_{t} \tilde{S}_{t}^{1}-Y_{t} \tilde{K} \mid \mathcal{F}_{s}\right]\right)^{+} \\
& =\left(Y_{s} S_{s}^{1}-\tilde{K} E_{P}\left[Y_{t} \mid \mathcal{F}_{s}\right]\right)^{+} \\
& \geq\left(Y_{s} S_{s}^{1}-Y_{s} \tilde{K}\right)^{+}
\end{aligned}
$$

where the supermartingale property of Y has been used in the last line.
(d) 1 point

By no arbitrage, we know form lecture that the discounted initial price of the European Call option is

$$
C(T, \tilde{K})=E_{Q}\left[\frac{\left(\tilde{S}_{T}^{1}-\tilde{K}\right)^{+}}{\tilde{S}_{T}^{0}}\right]
$$

Using the one-to-one correspondence between EMMs and martingale deflators given by

$$
\frac{d Q}{d P}=\frac{Y_{T} \tilde{S}_{T}^{0}}{E_{P}\left[Y_{T} \tilde{S}_{T}^{0}\right]}
$$

we conclude using Bayes formula that

$$
\begin{aligned}
C(T, \tilde{K}) & =\frac{E_{P}\left[Y_{T}\left(\tilde{S}_{T}^{1}-\tilde{K}\right)^{+}\right]}{E_{P}\left[Y_{T} \tilde{S}_{0}^{T}\right]} \\
& =\frac{E_{P}\left[Y_{T}\left(\tilde{S}_{T}^{1}-\tilde{K}\right)^{+}\right]}{Y_{0} \tilde{S}_{0}^{0}} \\
& =\frac{E_{P}\left[Y_{T}\left(\tilde{S}_{T}^{1}-\tilde{K}\right)^{+}\right]}{\tilde{S}_{0}^{0}}
\end{aligned}
$$

The undiscounted initial price of the option is therefore

$$
\tilde{C}(T, \tilde{K})=\tilde{S}_{0}^{0} C(T, \tilde{K})=E_{P}\left[Y_{T}\left(\tilde{S}_{T}^{1}-\tilde{K}\right)^{+}\right]
$$

(e) 1 point

That $\tilde{K} \rightarrow \tilde{C}(T, \tilde{K})$ is decreasing and convex is immediate from the same properties of $K \rightarrow\left(\tilde{S}_{T}^{1}-\tilde{K}\right)^{+}$. That $T \rightarrow \tilde{C}(T, \tilde{K})$ is increasing is a consequence of the submartingale property of $Y\left(\tilde{S}^{1}-K\right)^{+}$.

Question 3

(a) 3 points

We use $\Omega=\{u, m, d\}^{T}$, and define the random variables $Y_{k}(\omega)=1+\omega_{k}$.
Begin by introducing the notation $I_{k}=\{u, m, d\}^{k}$ for the set of outcomes until time k and $J_{k}=\{u, m, d\}^{T-k}$ for the set of future outcomes. Then set $S^{1}:=\tilde{S}^{1} / \tilde{S}^{0}$. By rewriting the martingale condition $S_{k}^{1}=E_{Q}\left[S_{k+1}^{1} \mid \mathcal{F}_{k}\right]$, we obtain

$$
1+r=E_{Q}\left[Y_{k+1} \mid \mathcal{F}_{k}\right]=\sum_{\omega^{k} \in I_{k}} E_{Q}\left[Y_{k+1} \mid\left\{\omega^{k}\right\} \times J_{k}\right] 1_{\left\{\omega^{k}\right\} \times J_{k}}
$$

for $k=0,1, \ldots, T-1$. With the notation $Q\left[Y_{k+1}=1+v \mid\left\{\omega^{k}\right\} \times J_{k}\right]=q_{\omega^{k}}^{v}$, for $v \in\{u, m, d\}$ and $\omega^{k} \in I_{k}$, this condition reduces to

$$
q_{\omega^{k}}^{u} u+q_{\omega^{k}}^{m} m+q_{\omega^{k}}^{d} d=r, \quad \forall \omega^{k} \in I_{k}
$$

because $q_{\omega^{k}}^{u}+q_{\omega^{k}}^{m}+q_{\omega^{k}}^{d}=1$. In the case $k=0$, we have

$$
q_{\omega^{0}}^{u} u+q_{\omega^{0}}^{m} m+q_{\omega^{0}}^{d} d=r
$$

where $q_{\omega^{0}}^{v}=Q\left[Y_{1}=1+v\right]$. The solution for all $k=0, \ldots, T$ are analogous to the one period case handled below.
When $T=1$, we omit the dependence of q on k and therefore need to find q_{i} for $i \in\{u, m, d\}$ such that

$$
\begin{array}{lr}
1+r=(1+u) q_{u}+(1+m) q_{m}+(1+d) q_{d}, & \text { (Martingale property) } \\
1=q_{u}+q_{m}+q_{d}, & (Q[\Omega]=1) \\
q_{i} \in(0,1), \quad i \in\{u, m, d\} . & (Q \approx P)
\end{array}
$$

We parametrize this set by choosing $q_{m}=\lambda$. Using the two equations then yields

$$
\begin{aligned}
& q_{u}=\frac{(r-d)-(m-d) \lambda}{u-d} \\
& q_{d}=\frac{(u-r)-(u-m) \lambda}{u-d}
\end{aligned}
$$

Now we just have to restrict λ according to the third condition. This amounts to choosing λ such that

$$
\begin{aligned}
q_{m} \in(0,1) & \Leftrightarrow \lambda \in(0,1) \\
q_{u} \in(0,1) & \Leftrightarrow \lambda \in\left(\frac{r-u}{m-d}, \frac{r-d}{m-d}\right) \\
q_{d} \in(0,1) & \Leftrightarrow \lambda \in\left(\frac{d-r}{u-m}, \frac{u-r}{u-m}\right) .
\end{aligned}
$$

Since $u>m>d$ and $u>r>d$ this reduces to

$$
\lambda \in\left(0, \min \left\{\frac{r-d}{m-d}, \frac{u-r}{u-m}\right\}\right)
$$

For the general case $(T \geq 1)$ the same argument can be used to write the set of solutions, with the parameter $\lambda_{\omega^{k}}$, as

$$
\left(q_{\omega^{k}}^{u}, q_{\omega^{k}}^{m}, q_{\omega^{k}}^{d}\right)=\left(\frac{(r-d)-(m-d) \lambda_{\omega^{k}}}{u-d}, \lambda_{\omega^{k}}, \frac{(u-r)-(u-m) \lambda_{\omega^{k}}}{u-d}\right)
$$

where

$$
\lambda_{\omega^{k}} \in\left(0, \min \left\{\frac{r-d}{m-d}, \frac{u-r}{u-m}\right\}\right) .
$$

For any sequence of $\lambda_{\omega^{k}}, \omega^{k} \in I_{k}$ for $k=0, \ldots, T-1$ as above, we get an (equivalent) martingale measure Q, namely

$$
Q[\{\omega\}]=\prod_{k=1}^{T} q_{\omega^{k-1}}^{\omega_{k}},
$$

where $\omega=\left(\omega_{1}, \ldots, \omega_{k}, \ldots, \omega_{T}\right) \in \Omega$ and $\omega^{k-1}=\left(\omega_{1}, \ldots, \omega_{k-1}\right) \in I_{k-1}$ and $q_{\omega^{k-1}}^{\omega_{k}}$, as defined earlier, is the conditional probability under Q that Y_{k} takes the value $1+\omega_{k}$, given that we are in the node ω^{k-1} at time $k-1$, for $k=1, \ldots, T$.
(b) 2 points

Since $\tilde{S}_{0}^{1}=1$ is deterministic, \mathcal{F}_{0} must be trivial, i.e. $\mathcal{F}_{0}=\{\emptyset, \Omega\}$. Therefore $\tilde{H} \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$ can be replicated if and only if there exists an admissible self-financing trading strategy $\phi=\left(\tilde{V}_{0}, \vartheta_{1}\right) \in \mathbb{R}^{2}$ such that

$$
\tilde{V}_{0}(1+r)+\vartheta_{1} \tilde{S}_{1}^{1}=\tilde{H}
$$

hold in every state of the world, which, using $\tilde{S}_{0}^{1}=1$, is equivalent to

$$
\tilde{V}_{0}(1+r)+\vartheta_{1} Y_{1}=\tilde{H}
$$

Writing $\tilde{H}^{u}, \tilde{H}^{m}$ and \tilde{H}^{d} for the outcomes of the random variable \tilde{H} on the different market scenarios "up", "middle" and "down" respectively, the above vector equation leads to the following system of equations

$$
\left\{\begin{array}{l}
\tilde{V}_{0}(1+r)+\vartheta_{1}(1+u)=\tilde{H}^{u} \\
\tilde{V}_{0}(1+r)+\vartheta_{1}(1+m)=\tilde{H}^{m} \\
\tilde{V}_{0}(1+r)+\vartheta_{1}(1+d)=\tilde{H}^{d}
\end{array}\right.
$$

This system admits non-trivial solutions if and only if

$$
\operatorname{det}\left[\begin{array}{ccc}
1+r & 1+u & \tilde{H}^{u} \\
1+r & 1+m & \tilde{H}^{m} \\
1+r & 1+d & \tilde{H}^{d}
\end{array}\right]=0 .
$$

(c) 2 points

Since $\tilde{S}_{0}^{1}=1$ is deterministic, \mathcal{F}_{0} must be trivial, i.e. $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and thus our optimisation for $T=1$ simplifies to an optimisation over $\vartheta \in \mathbb{R}$:

$$
\min _{\vartheta \in \mathbb{R}} E\left[\left(\left(\tilde{S}_{1}^{1}-\tilde{K}\right)^{+}-\left(\vartheta \bullet \tilde{S}^{1}\right)_{T}\right)^{2}\right]
$$

which using $\tilde{S}_{0}^{1}=1$, is equivalent to

$$
\min _{\vartheta \in \mathbb{R}} E\left[\left(\left(Y_{1}-1\right)^{+}-\vartheta\left(Y_{1}-1\right)\right)^{2}\right]
$$

Using the given values for u, m, d, p_{u}, p_{m} and p_{d}, the problem becomes

$$
\min _{\vartheta \in \mathbb{R}} \frac{2}{3}(0.5-0.5 \vartheta)^{2}+0+\frac{1}{6}(0.5 \vartheta)^{2}
$$

whose solution is given by $\vartheta^{*}=\frac{4}{5}$ and the minimal mean squared hedging error is $\frac{1}{30}$.

Question 4

(a) 1 point

The parameter \bar{r} is the mean of the limiting ivariant distribution of $\left(r_{t}\right)_{t \geq 0}$ and can therefore be interpreted as long term mean. This is the mean level to which the process $\left(r_{t}\right)_{t \geq 0}$ reverts as $t \rightarrow \infty$. The speed of the mean revesion is characterised by the parameter $\lambda>0$. FInally σ describes the volatility of the stochastic interest rate.
(b) 2 points

Due to the similarity with the ordinary differential equation $\frac{y^{\prime}}{y}=g \Longleftrightarrow \log (y)^{\prime}=g$, whose solution is given by $y(t)=C \exp \left(\int g(t) d t\right)$, one might try to apply Itô's formula to the function $f(x)=\log (x)$ and the positive continuous semimartingale \widetilde{S}^{0}. This yields

$$
\begin{aligned}
\log \left(\widetilde{S}_{t}^{0}\right) & =\log \left(\widetilde{S}_{0}^{0}\right)+\int_{0}^{t} \frac{1}{\widetilde{S}_{s}^{0}} d \widetilde{S}_{s}^{0}-\frac{1}{2} \int_{0}^{t} \frac{1}{\left(\widetilde{S}_{t}^{0}\right)^{2}} d\left[\widetilde{S}^{0}\right]_{s} \\
& =\int_{0}^{t} \frac{1}{\widetilde{S}_{s}^{0}} \widetilde{S}_{s}^{0} r_{s} d s=\int_{0}^{t} r_{s} d s
\end{aligned}
$$

where we have used that \widetilde{S}^{0} is of finite variation and therefore

$$
\left[\widetilde{S}^{0}\right]_{t}=\left[\int \widetilde{S}^{0} r d s\right]_{t}=\int_{0}^{s}\left(\widetilde{S}_{s}^{0}\right)^{2} r_{s}^{2} d[s]_{s}=0
$$

Taking the exponential on both sides, we get

$$
\widetilde{S}_{t}^{0}=\exp \left(\int_{0}^{t} r_{s} d s\right)
$$

(c) 2 points

Since Q is an EMM, the discounted price process of the zero coupon bond must be a martingale under Q and therefore must satisfy

$$
\frac{\tilde{P}_{t}^{(T)}}{e_{0}^{\int_{0}^{t} r_{s} d s}}=\mathbb{E}_{Q}\left[\left.\frac{\tilde{P}_{T}^{(T)}}{e^{\int_{0}^{T} r_{s} d s}} \right\rvert\, \mathcal{F}_{t}\right]
$$

Using that $\tilde{P}_{T}^{(T)}=1$ we get

$$
\tilde{P}_{t}^{(T)}=\mathbb{E}_{Q}\left[e^{-\int_{t}^{T} r_{s} d s} \mid \mathcal{F}_{t}\right]
$$

(d) 3 points

Using Ito's lemma, we get that the undicsounted price dynamics satisfy

$$
\begin{aligned}
d \tilde{V}\left(t, r_{t}\right) & =\frac{\partial v}{\partial t}\left(t, r_{t}\right) d t+\frac{\partial \tilde{V}}{\partial r}\left(t, r_{t}\right) d r_{t}+\frac{1}{2} \frac{\partial^{2} \tilde{V}}{\partial r_{t}^{2}}\left(t, r_{t}\right) d<r>_{t} \\
& =\left(\frac{\partial \tilde{V}}{\partial t}\left(t, r_{t}\right)+\lambda\left(\bar{r}-r_{t}\right) \frac{\partial \tilde{V}}{\partial r_{t}}+\frac{1}{2} \sigma^{2} \frac{\partial^{2} \tilde{V}}{\partial r_{t}^{2}}\left(t, r_{t}\right)\right) d t+\frac{\partial \tilde{V}}{\partial r_{t}}\left(t, r_{t}\right) \sigma d \hat{W}_{t}
\end{aligned}
$$

Applying Ito once more with the semimartingale $\left(\tilde{V}, \tilde{S}^{0}\right)$ and the C^{2} function $f(x, y)=\frac{x}{y}$, we get the dynamics of the discounted price process $V=\frac{\tilde{V}}{\tilde{S}^{0}}$:

$$
\begin{aligned}
d V\left(t, r_{t}\right) & =\frac{1}{\tilde{S}_{0}^{t}} d \tilde{V}-\frac{\tilde{V}}{\tilde{S}_{t}^{0}} r_{t} d t \\
& =\frac{1}{\tilde{S}_{0}^{t}}\left[d \tilde{V}-r_{t} \tilde{V} d t\right] \\
& =\frac{1}{\tilde{S}_{0}^{t}}\left[\left(\frac{\partial \tilde{V}}{\partial t}\left(t, r_{t}\right)+\lambda\left(\bar{r}-r_{t}\right) \frac{\partial \tilde{V}}{\partial r_{t}}+\frac{1}{2} \sigma^{2} \frac{\partial^{2} \tilde{V}}{\partial r_{t}^{2}}\left(t, r_{t}\right)-r_{t} \tilde{V}\left(t, r_{t}\right)\right) d t+\frac{\partial \tilde{V}}{\partial r_{t}}\left(t, r_{t}\right) \sigma d \hat{W}_{t}\right]
\end{aligned}
$$

The LHS is a Q-martingale by definition and the stochastic integral on the RHS defines a local Q-martingale. Therefore the finite variational part on the RHS is a local martingale starting at 0 and of finite variation and hence it must vanish. This gives

$$
\int_{0}^{t}\left(\frac{\partial \tilde{V}}{\partial t}\left(s, r_{s}\right)+\lambda\left(\bar{r}-r_{t}\right) \frac{\partial \tilde{V}}{\partial r_{t}}+\frac{1}{2} \sigma^{2} \frac{\partial^{2} \tilde{V}}{\partial r_{t}^{2}}\left(s, r_{s}\right)-r_{s} \tilde{V}\left(s, r_{s}\right)\right) d s=0 \quad \text { for all } t \geq 0
$$

which is equivalent to

$$
\frac{\partial \tilde{V}}{\partial t}\left(t, r_{t}\right)+\lambda\left(\bar{r}-r_{t}\right) \frac{\partial \tilde{V}}{\partial r}\left(t, r_{t}\right)+\frac{1}{2} \sigma^{2} \frac{\partial^{2} \tilde{V}}{\partial r_{t}^{2}}\left(t, r_{t}\right)=r_{t} \tilde{V}
$$

on $(0, \infty) \times(-\infty, \infty)$ since the integral up to time t can vanish for all $t \geq 0$ if and only if the integrand vanishes on it's support.
Finally the undiscounted value process must satisfy the boundary condition

$$
\tilde{V}\left(T, r_{T}\right)=\tilde{P}_{T}^{(T)}=1
$$

(e) $\mathbf{3}$ BONUS points

The idea is to take the partial derivatives of the ansatz and plug them back into the PDE obtained in the last question. To simplify the notations, we will write $\dot{R}:=\frac{d R}{d t}$ and $\dot{Q}:=\frac{d Q}{d t}$ for the derivatives of the functions R and Q with respect to t. An easy computation gives:

$$
\left\{\begin{array}{l}
\frac{\partial \tilde{V}}{\partial t}=\tilde{V}\left(-r_{t} \dot{R}-\dot{Q}\right) \\
\frac{\partial V}{\partial r}=\tilde{V} R \\
\frac{\partial^{2} \tilde{V}}{\partial r^{2}}=\tilde{V} R^{2}
\end{array}\right.
$$

Plugging back the above expressions into the pricing PDE yields

$$
\tilde{V}\left(-r_{t} \dot{R}-\dot{Q}\right)+\lambda\left(\bar{r}-r_{t}\right) \tilde{V} R+\frac{1}{2} \sigma^{2} \tilde{V} R^{2}=r_{t} \tilde{V}
$$

which is equivalent to

$$
\begin{equation*}
r_{t} \tilde{V}(\dot{R}-\lambda R)+\tilde{V}\left(-\dot{Q}+\lambda \bar{r} R+\frac{1}{2} \sigma^{2} R^{2}\right)=r_{t} \tilde{V} \tag{1}
\end{equation*}
$$

Equation (1) has to hold on the full support of the function \tilde{V}, which is only possible if the coefficients of the terms in r_{t} on the LHS equals the coefficients in r_{t} on the RHS and similarly for the coefficients for the terms without r_{t}. This leads to the following system of ODEs:

$$
\left\{\begin{array}{l}
-\dot{R}-\lambda R=1 \\
\dot{Q}=\lambda \bar{r} R+\frac{1}{2} \sigma^{2} R^{2}
\end{array}\right.
$$

The initial conditions are $R(0)=Q(0)=0$ so that $\tilde{V}\left(T, r_{T}\right)=\exp \left(r_{T} R(T-T)+Q(T-T)\right)=$ 1.

The equation for R can easily be solved via variation of constants method. Finally Q can be simply obtained by integrating the solution for R.
(a) Solving homogeneous equation for R Consider the homogeneous equation

$$
-\dot{R}-\lambda R=0
$$

which is clearly equivalent to

$$
\frac{\dot{R}}{R}=-\lambda
$$

Integrating on both sides gives

$$
\ln R(t)=-\lambda t+c_{1}
$$

for some constant c_{1} Taking the exponential, we find

$$
R(t)=K \exp (-\lambda t)
$$

for some constant K.
(b) Solving inhomogeneous equation for R (variation of constants) Suppose that K is actually a function of time t to solve the inhomegeneous case. Using the solution for the homogeneous case, the inhomogeneous equation

$$
-\dot{R}-\lambda R=1
$$

leads to the following ODE for K :

$$
\dot{K} \exp (-\lambda t)=-1
$$

whose solution is

$$
K(t)=\frac{-\exp (\lambda t)}{\lambda}+c_{2}
$$

for some constant c_{2}. The solution to the inhomogeneous equation $-\dot{R}-\lambda R=1$ is therefore

$$
R(t)=\left(c_{2}-\frac{\exp (\lambda t)}{\lambda}\right) \exp (-\lambda t)
$$

Using the initial condition $R(0)=0$ we found $c_{2}=\frac{1}{\lambda}$ and therefore

$$
R(t)=\frac{\exp (-\lambda t)-1}{\lambda}
$$

which is equivalent to

$$
R(T-t)=\frac{\exp (-\lambda(T-t))-1}{\lambda}
$$

(c) Solving ODE for Q The solution of $\dot{Q}=\lambda \bar{r} R+\frac{1}{2} \sigma^{2} R^{2}$ is obtained by integrating the RHS:

$$
\begin{aligned}
Q(T-t) & =Q(0)+\int_{0}^{T-t}\left(\lambda \bar{r} R(s)+\frac{1}{2} \sigma^{2}(R(s))^{2}\right) d s \\
& =\int_{0}^{T-t}\left(\lambda \bar{r} R(s)+\frac{1}{2} \sigma^{2}(R(s))^{2}\right) d s \\
& =\bar{r} \frac{1-e^{-\lambda(T-t)}-\lambda(T-t)}{\lambda}+\frac{\sigma^{2}\left(4 e^{-\lambda(T-t)}-e^{-2 \lambda(T-t)}+2 \lambda(T-t)-3\right)}{4 \lambda^{3}}
\end{aligned}
$$

where in the second equality we have used the initial condition $Q(0)=0$ and in the last equality we have used the expression for $R(z)$ found previously and have evaluated the integral explicitly.
Finally plugging back the solutions for $R(T-t)$ and $Q(T-t)$ into our initial ansatz, we get the the solution to the pricing PDE is

$$
\begin{aligned}
\tilde{V}\left(t, r_{t}\right) & =\exp \left(r_{t} R(T-t)+Q(T-t)\right) \\
& =\exp \left(r_{t} \frac{e^{-\lambda(T-t)}-1}{\lambda}+\bar{r} \frac{1-e^{-\lambda(T-t)}-\lambda(T-t)}{\lambda}+\frac{\sigma^{2}\left(4 e^{-\lambda(T-t)}-e^{-2 \lambda(T-t)}+2 \lambda(T-t)-3\right)}{4 \lambda^{3}}\right)
\end{aligned}
$$

Question 5

To price the contingent claims, we first need to find an EMM Q. To get find this measure, we first need to derive the dynamics of the discounted price process S^{1} under P and then try to find a candidate Q under which S^{1} can be expressed as a stochastic integral with respect to a Q-Brownian Motion and therefore is a Q-local martingale. To show that S^{1} is actually a true Q-martingale, we solve the SDE for S^{1} under Q and show explicitly that the solution defines a Q-martingale and therefore our candidate Q is indeed an EMM. Uniqueness of the EMM Q follows from Ito's representation theorem
Using Ito's formula with the semimartingale $\left(\tilde{S}^{1}, \tilde{S}^{0}\right)$ and the C^{2} function $f(x, y)=\frac{x}{y}$ we get the P-dynamics of the discounted price process S^{1} :

$$
\begin{equation*}
d S_{t}^{1}=S_{t}^{1}\left((\mu-r) d t+\sigma d W_{t}\right) \tag{2}
\end{equation*}
$$

To get a candidate EMM Q we rewrite (2) as

$$
\begin{aligned}
d S_{t}^{1} & =S_{t}^{1}\left((\mu-r) d t+\sigma d W_{t}\right) \\
& =S_{t}^{1} \sigma\left(\frac{\mu-r}{\sigma} d t+d W_{t}\right) \\
& =S_{t}^{1} \sigma d W_{t}^{*}
\end{aligned}
$$

with $W^{*}=\left(W_{t}\right)_{0 \leq t \leq T}$ defined by

$$
W_{t}^{*}=W_{t}+\frac{\mu-r}{\sigma} t=W_{t}+\int_{0}^{t} \lambda d s \quad \text { for } 0 \leq t \leq T
$$

where $\lambda=\frac{\mu-r}{\sigma}$ is the instantaneous market price of risk of S^{1}. Girsanov theorem tells us that W^{*} is a Brownian motion under the probability measure Q^{*} given by

$$
\frac{d Q^{*}}{d P}=\mathcal{E}\left(-\int \lambda d W\right)_{T}=\exp \left(-\lambda W_{T}-\frac{1}{2} \lambda^{2} T\right)
$$

By a general result on stochastic integration, the stochastic integral process

$$
S_{t}^{1}=S_{0}^{1}+\int_{0}^{t} S_{s}^{1} \sigma d W_{s}^{*}
$$

is then a continuous Q-local martingale. It is even a Q-martingale since we get using a log transformation that the solution of $d S_{t}^{1}=S_{t}^{1} \sigma d W_{t}^{*}$ is given by

$$
S_{t}^{1}=S_{0}^{1} \exp \left(\sigma W_{t}^{*}-\frac{1}{2} \sigma^{2} t\right)
$$

which indeed defines a Q-martingale as W^{*} is a Q-Brownian motion.
Remark: the proof of existence and uniqueness of the EMM Q is not required, students are allowed to state the results from the lecture.
Let $H=\frac{\tilde{H}}{\tilde{S}_{T}^{0}}$ denote the discounted payoff. The no arbitrage discounted price of H is given by the Q-martingale $V^{*}=\left(V_{t}^{*}\right)_{0 \leq t \leq T}$ defined as

$$
\begin{equation*}
V_{t}^{*}=\mathbb{E}_{Q}\left[H \mid \mathcal{F}_{t}\right] \text { for } 0 \leq t \leq T \tag{3}
\end{equation*}
$$

To find the initial replication price and the hedging strategy, we need to compute the above conditional expectation (3) for the particular value of H and express it as a function of current time t and current underlying price S_{t}^{1}, i.e. find a function v such that $V_{t}^{*}=v\left(t, S_{t}^{1}\right)$ for all $0 \leq t \leq T$. If the function v is smooth enough (which is the case for the given payoffs), we can apply Ito's formula to get

$$
v\left(t, S_{t}^{1}\right)=v\left(0, S_{0}^{1}\right)+\int_{0}^{t} \frac{\partial}{\partial x} v\left(t, S_{t}^{1}\right) d S_{t}^{1}+\text { continuous FV process. }
$$

Since the left-hand side and the stochastic integral on the right-hand side are local Q-martingales, the "continuous FV process" is a local Q-martingale as well and since it apparently is null at 0 , it must be identically equal to 0 . We thus immediately obtain that the hedging strategy as

$$
\vartheta_{t}=\frac{\partial}{\partial x} v\left(t, S_{t}^{1}\right)
$$

i.e. a s the spatial derivative of v, evaluated along the trajectories of S^{1}. Note that ϑ represents the holdings in the risky asset \tilde{S}^{1}. To find the holding ϕ_{t} in the numeraire \tilde{S}^{0}, one simply solves the budget equation

$$
\phi_{t}+\vartheta_{t} S_{t}^{1}=V_{t}^{*}=v\left(t, S_{t}^{1}\right)
$$

which gives

$$
\phi_{t}=v\left(t, S_{t}^{1}\right)-\vartheta_{t} S_{t}^{1}
$$

Finally, the initial discounted replication cost is given by $v\left(0, S_{0}^{1}\right)$.
It thus remains to find the function v for the four different payoffs of the exercise. For all subquestions, we will use that the undiscounted terminal price \tilde{S}_{T}^{1} can be expressed as

$$
\begin{aligned}
\tilde{S}_{T}^{1} & =e^{r T} S_{T}^{1} \\
& =e^{r T} S_{t}^{1} \exp \left(\sigma\left(W_{T}^{*}-W_{t}^{*}\right)-\frac{\sigma^{2}}{2}(T-t)\right)
\end{aligned}
$$

in terms of the Q-Brownian motion W^{*}.
(a) 4 points

$$
\begin{aligned}
V_{t}^{*} & =\mathbb{E}_{Q}\left[\left.\frac{\left(\tilde{S}_{T}^{1}\right)^{p}}{\tilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{Q}\left[\left.\frac{\left(e^{r T} S_{t}^{1} \exp \left(\sigma\left(W_{T}^{*}-W_{t}^{*}\right)-\frac{\sigma^{2}}{2}(T-t)\right)\right)^{p}}{\tilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{r T(p-1)}\left(S_{t}^{1}\right)^{p} \exp \left(-\frac{p \sigma^{2}(T-t)}{2}\right) \mathbb{E}_{Q}\left[e^{p \sigma\left(W_{T}^{*}-W_{t}^{*}\right)}\right] \\
& =\left(S_{t}^{1}\right)^{p} \exp \left((p-1)\left(r+p \frac{\sigma^{2}}{2}\right)(T-t)\right) \exp ((p-1) t) \\
& =\left(S_{t}^{1}\right)^{p} \exp \left((p-1)\left(r T+p \frac{\sigma^{2}}{2}(T-t)\right)\right) \\
& =\left(\tilde{S}_{t}^{1}\right)^{p} e^{-r t p} \exp \left((p-1)\left(r T+p \frac{\sigma^{2}}{2}(T-t)\right)\right) \\
& =v\left(t, S_{t}^{1}\right)
\end{aligned}
$$

with

$$
v(t, x)=x^{p} \exp \left((p-1)\left(r T+p \frac{\sigma^{2}}{2}(T-t)\right)\right)
$$

By the above arguments, the hedging strategy is fully characterised by

$$
\vartheta_{t}=\frac{\partial}{\partial x} v\left(t, S_{t}^{1}\right)=p\left(S_{t}^{1}\right)^{p-1} \exp \left((p-1)\left(r T+p \frac{\sigma^{2}}{2}(T-t)\right)\right)
$$

and $V_{0}^{*}=v\left(0, S_{0}^{1}\right)=\left(S_{0}^{1}\right)^{p} \exp \left((p-1)\left(r T+p \frac{\sigma^{2}}{2} T\right)\right)$.
(b) 4 points

Similarly we get

$$
\begin{aligned}
V_{t}^{*} & =\mathbb{E}_{Q}\left[\left.\frac{\left(\log \left(\tilde{S}_{T}^{1}\right)\right)^{2}}{\tilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{Q}\left[\left.\frac{\left(\log \left(e^{r T} S_{t}^{1} \exp \left(\sigma\left(W_{T}^{*}-W_{t}^{*}\right)-\frac{\sigma^{2}}{2}(T-t)\right)\right)\right)^{2}}{\tilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{Q}\left[\left.\frac{\left(r T+\log S_{t}^{1}-\frac{\sigma^{2}}{2}(T-t)\right)^{2}+2\left(r T+\log S_{t}^{1}-\frac{\sigma^{2}}{2}(T-t)\right) \sigma\left(W_{T}^{*}-W_{t}^{*}\right)+\sigma^{2}\left(W_{T}^{*}-W_{t}^{*}\right)^{2}}{e^{r T}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{-r T}\left(\left(\log S_{t}^{1}+r T-\frac{\sigma^{2}}{2}(T-t)\right)^{2}+\sigma^{2}(T-t)\right) \\
& =v\left(t, S_{t}^{1}\right)
\end{aligned}
$$

with

$$
v(t, x)=e^{-r T}\left(\left(\log x+r T-\frac{\sigma^{2}}{2}(T-t)\right)^{2}+\sigma^{2}(T-t)\right)
$$

By the above arguments, the hedging strategy is fully characterised by

$$
\vartheta_{t}=\frac{\partial}{\partial x} v\left(t, S_{t}^{1}\right)=\frac{2 e^{-r T}\left(\log S_{t}^{1}+r T-\frac{\sigma^{2}}{2}(T-t)\right)}{S_{t}^{1}}
$$

and $V_{0}^{*}=v\left(0, S_{0}^{1}\right)=e^{-r T}\left(\left(\log S_{0}^{1}+r T-\frac{\sigma^{2}}{2} T\right)^{2}+\sigma^{2} T\right)$.
(c) 4 points

We start by showing the hint. Let $F(c, m):=E\left[\left(e^{-c / 2+\sqrt{c} X}-m\right)^{+}\right]$where $X \sim \mathcal{N}(0,1)$ is a standard normal random variable, and c and m are positive constants. A simple computation using the density of X yields

$$
\begin{aligned}
F(c, m) & =\int_{-\infty}^{\infty}\left(e^{-c / 2+\sqrt{c} x}-m\right)^{+} \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} d x \\
& =\int_{\frac{\log m}{\sqrt{c}}+\frac{\sqrt{c}}{2}}^{\infty}\left(e^{-c / 2+\sqrt{c} x}-m\right) \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} d x \\
& =\int_{\frac{\log m}{\sqrt{c}}+\frac{\sqrt{c}}{2}}^{\infty} \frac{e^{-c / 2+\sqrt{c} x-x^{2} / 2}}{\sqrt{2 \pi}} d x-m \int_{\frac{\log m}{\sqrt{c}}+\frac{\sqrt{c}}{2}}^{\infty} \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} d x \\
& =\int_{-\infty}^{-\frac{\log m}{\sqrt{c}}+\frac{\sqrt{c}}{2}} \frac{e^{-s^{2} / 2}}{\sqrt{2 \pi}} d s-m \int_{-\infty}^{-\frac{\log m}{\sqrt{c}}-\frac{\sqrt{c}}{2}} \frac{e^{-s^{2} / 2}}{\sqrt{2 \pi}} d s \\
& =\Phi\left(-\frac{\log m}{\sqrt{c}}+\frac{\sqrt{c}}{2}\right)-m \Phi\left(-\frac{\log m}{\sqrt{c}}-\frac{\sqrt{c}}{2}\right)
\end{aligned}
$$

The discounted time t value of the European call option is

$$
\begin{aligned}
V_{t}^{*} & =\mathbb{E}_{Q}\left[\left.\frac{\left(\tilde{S}_{T}^{1}-\tilde{K}\right)^{+}}{\tilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{Q}\left[\left.\frac{\left(e^{r T} S_{t}^{1} \exp \left(\sigma\left(W_{T}^{*}-W_{t}^{*}\right)-\frac{\sigma^{2}}{2}(T-t)\right)-\tilde{K}\right)^{+}}{\tilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =S_{t}^{1} \mathbb{E}_{Q}\left[\left.\left(\exp \left(\sigma\left(W_{T}^{*}-W_{t}^{*}\right)-\frac{\sigma^{2}}{2}(T-t)\right)-\frac{\tilde{K}}{e^{r T} S_{t}^{1}}\right)^{+} \right\rvert\, \mathcal{F}_{t}\right] \\
& =S_{t}^{1} F(c, m) \\
& =v\left(t, S_{t}^{1}\right)
\end{aligned}
$$

with $c=\sigma^{2}(T-t)$ and $m=\frac{\tilde{K}}{e^{T T} S_{t}^{T}}=\frac{K}{S_{t}^{t}}$ where we defined the discounted strike $K=\frac{\tilde{r}}{e^{r T}}$ and the function v by

$$
\begin{aligned}
v\left(t, S_{t}^{1}\right) & =S_{t}^{1} F(c, m) \\
& =S_{t}^{1}\left[\Phi\left(-\frac{\log \left(\frac{K}{S_{t}^{1}}\right)}{\sigma \sqrt{T-t}}+\frac{\sigma \sqrt{T-t}}{2}\right)-\frac{K}{S_{t}^{1}} \Phi\left(-\frac{\log \left(\frac{K}{S_{t}^{1}}\right)}{\sigma \sqrt{T-t}}-\frac{\sigma \sqrt{T-t}}{2}\right)\right] \\
& =S_{t}^{1} \Phi\left(\frac{\log \left(\frac{S_{t}^{1}}{K}\right)+\frac{1}{2} \sigma^{2}(T-t)}{\sigma \sqrt{T-t}}\right)-K \Phi\left(\frac{\log \left(\frac{S_{t}^{1}}{K}\right)-\frac{1}{2} \sigma^{2}(T-t)}{\sigma \sqrt{T-t}}\right)
\end{aligned}
$$

By the above arguments, the hedging strategy is fully characterised by

$$
\vartheta_{t}=\frac{\partial}{\partial x} v\left(t, S_{t}^{1}\right)=\Phi\left(\frac{\log \left(\frac{S_{t}^{1}}{K}\right)+\frac{1}{2} \sigma^{2}(T-t)}{\sigma \sqrt{T-t}}\right)
$$

and

$$
V_{0}^{*}=v\left(0, S_{0}^{1}\right)=S_{0}^{1} \Phi\left(\frac{\log \left(\frac{S_{0}^{1}}{K}\right)+\frac{1}{2} \sigma^{2} T}{\sigma \sqrt{T}}\right)-K \Phi\left(\frac{\log \left(\frac{S_{0}^{1}}{K}\right)-\frac{1}{2} \sigma^{2} T}{\sigma \sqrt{T}}\right)
$$

We have used the hint to compute the partial derivative $\frac{\partial}{\partial x} v\left(t, S_{t}^{1}\right)$.
(d) 4 points

As suggested by the hint, we derive the dynamics of $\left(S_{t}^{1}\right)^{2}$ and relate the bonus question to pricing of a standard European call option (part c)). Note that under P, the undiscounted price process is given by

$$
\tilde{S}_{t}^{1}=\tilde{S}_{0}^{1} \exp \left(\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma W_{t}\right)
$$

Therefore the squared undiscounted price satisfies

$$
\begin{aligned}
\left(\tilde{S}_{t}^{1}\right)^{2} & =\left(\tilde{S}_{0}^{1}\right)^{2} \exp \left(\left(2 \mu-\sigma^{2}\right) t+2 \sigma W_{t}\right) \\
& =\left(\tilde{S}_{0}^{1}\right)^{2} \exp \left(\left(\bar{\mu}-\frac{\bar{\sigma}^{2}}{2}\right) t+\bar{\sigma} W_{t}\right)
\end{aligned}
$$

where $\bar{\mu}=2 \mu-\sigma^{2}$ and $\bar{\sigma}=2 \sigma$. Therefore $\left(S_{t}^{1}\right)^{2}$ is again a geometric Brownian motion but with new drift $\bar{\mu}=2 \mu+\sigma^{2}$ and new diffusion $\bar{\sigma}=2 \sigma$. This is very helpful as it guarantees that we can use a similar argument to question c).

Using the relation between W and W^{*}, we directly get that the undiscounted squared asset price statisfies

$$
\begin{aligned}
\left(\tilde{S}_{T}^{1}\right)^{2} & =\left(\tilde{S}_{0}^{1}\right)^{2} \exp \left(\left(2 r-\sigma^{2}\right) T+2 \sigma W_{T}^{*}\right) \\
& =e^{2 r T}\left(S_{t}^{1}\right)^{2} \exp \left(-\sigma^{2}(T-t)+2 \sigma\left(W_{T}^{*}-W_{t}^{*}\right)\right)
\end{aligned}
$$

The discounted time t value of the European call option is

$$
\begin{aligned}
V_{t}^{*} & =\mathbb{E}_{Q}\left[\left.\frac{\left(\left(\tilde{S}_{T}^{1}\right)^{2}-\tilde{K}\right)^{+}}{\tilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{Q}\left[\left.\frac{\left(e^{2 r T}\left(S_{t}^{1}\right)^{2} \exp \left(-\sigma^{2}(T-t)+2 \sigma\left(W_{T}^{*}-W_{t}^{*}\right)\right)-\tilde{K}\right)^{+}}{\tilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{r T+\sigma^{2}(T-t)}\left(S_{t}^{1}\right)^{2} F(c, m) \\
& =v\left(t, S_{t}^{1}\right)
\end{aligned}
$$

with $c=4 \sigma^{2}(T-t)$ and $m=\frac{\tilde{K}}{e^{2 r T}\left(S_{t}^{1}\right)^{2} e^{\sigma^{2}(T-t)}}=\frac{K}{e^{r T+\sigma^{2}(T-t)}\left(S_{t}^{1}\right)^{2}}$ where we defined the discounted strike $K=\frac{\tilde{K}}{e^{r T}}$ and the function v by

$$
\begin{aligned}
v\left(t, S_{t}^{1}\right) & =e^{r T+\sigma^{2}(T-t)}\left(S_{t}^{1}\right)^{2} F(c, m) \\
& =e^{r T+\sigma^{2}(T-t)}\left(S_{t}^{1}\right)^{2} \Phi\left(\frac{r T+3 \sigma^{2}(T-t)+\log \left(\frac{\left(S_{t}^{1}\right)^{2}}{K}\right)}{4 \sigma \sqrt{T-t}}\right)-K \Phi\left(\frac{r T-\sigma^{2}(T-t)+\log \left(\frac{\left(S_{t}^{1}\right)^{2}}{K}\right)}{4 \sigma \sqrt{T-t}}\right)
\end{aligned}
$$

We therefore have that the hedging strategy is fully characterized by

$$
\vartheta_{t}=\frac{\partial}{\partial x} v\left(t, S_{t}^{1}\right)
$$

and

$$
V_{0}^{*}=v\left(0, S_{0}^{1}\right)
$$

Due to time constraints, the students are not required to explicitly evaluate the delta hedge.

