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Instructions

Duration: 180 min.

Closed book examination: no notes, no books, no calculator, no mobile phones, etc. allowed.

Important:

� Please put your student card on the table.

� Only pen and paper are allowed on the table. Please do not write with a pencil or a red
or green pen. Moreover, please do not use whiteout.

� Start by reading all questions and answer the ones which you think are easier first, before
proceeding to the ones you expect to be more difficult. Don’t spend too much time on one
question but try to solve as many questions as possible.

� Take a new sheet for each question and write your name on every sheet.

� Except for Question 1, all results have to be explained/argued by indicating intermediate
steps in the respective calculations. You can use known formulas and results from the
lecture or from the exercise classes without derivation.

� Simplify your results as much as possible.

� Most of the subquestions can be solved independently of each other.
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Question 1 (8 Points)

For each of the following eight subquestions, there is exactly one correct answer. For each
correct answer you get 1 point, for each wrong answer you get −0.5 point, and for no answer you
get 0 points. You get at least 0 points for the whole exercise. Please use the printed form
for your answers. It is enough to indicate your answer by a cross; you do not need to explain
your choice.

Throughout subquestions (a) to (d), let (S̃0, S̃1) be an undiscounted financial market in
discrete time on (Ω,F ,F, P ) with a finite time horizon T ∈ N and F := (Fk)k=0,1,...,T

generated by S̃1. Let S̃0
k := (1+r)k for k = 0, 1, . . . , T and constants r > −1 and S̃1

0 := s10 > 0.
The discounted market is denoted by (S0, S1).

(a) Let τ1, τ2 be two stopping times. Which of the following is a stopping time?

(1)
⌊
τ1+τ2

2

⌋
, where for any real number x, bxc is the greatest integer less than or equal to

x.

(2) τ11τ1≥τ2 .

(3) 1τ1>0.

(b) Which of the following conditions does not imply that (S̃0, S̃1) is arbitrage-free?

(1) There exists a probability measure Q ≈ P such that aS0 + bS1 is a (Q,F)-martingale
for any a, b ∈ R.

(2) S̃0/S̃1 is a positive martingale.

(3) There exists a positive martingale Z such that ZS1 is a martingale.

(c) Which of the following statements is not true about the binomial model?

(1) The market is complete if it is arbitrage-free.

(2) Every strategy is admissible.

(3) Every strategy is self-financing.

(d) Let M be an adapted process. Which of the following does not imply that M is a martin-
gale?

(1) M is a supermartingale such that E[Mk] is an increasing sequence.

(2) For each k = 1, . . . , T , E[Mk −Mk−1 | Fk−1] = 0.

(3) M is a bounded local martingale.



Throughout subquestions (e) to (h), W denotes a Brownian motion on a filtered probability
space (Ω,F ,F, P ) where F = (Ft)t≥0 satisfies the usual conditions of P -completeness and
right-continuity.

(e) Let M be a local (P,F)-martingale and A be a process of finite variation. Then

(1) H •M is a martingale, if H is bounded and predictable.

(2) H •A has finite variation, if H is locally bounded and predictable.

(3) H •M is a martingale, ifM is a martingale and H is locally bounded and predictable.

(f) Which of the following equations has a unique solution Z = (Zt)t∈[0,T ]?

(1) dZt = Zt(3dt+ dWt)

(2) [Z]t = t, for Z a continuous local martingale with Z0 = 0.

(3) Zt =
∫ t
0 (2 + cos(Zs))dWs

(g) Suppose that Q ≈ P with density dQ
dP = exp(Wt− t/2). Which of the following is not true?

(1) W 2
t − t is a Q-martingale.

(2) exp(Wt − 3t/2) is a Q-martingale.

(3) f(Wt) is a (Q,F)-semimartingale, for f ∈ C2(R).

(h) Consider the Black-Scholes model. Then:

(1) The price of a European put option increases, if the strike is decreased.

(2) The price of a European put option increases, if the interest rate is increased.

(3) None of the above.



Question 2 (8 Points)

Let S̃ = (S̃0
t , S̃

1
t ) be a model of an arbitrage-free discrete time complete financial market with

two assets and a finite time horizon T . Suppose that S̃0 is a numéraire asset satisfying S̃0
t+1 ≥ S̃0

t

for all t ≥ 0. Let C̃(T, K̃) be the initial undiscounted replication cost of a European Call option
with strike K̃ and maturity T written on the risky asset S̃1. The goal of this exercise is to show
that T → C̃(T, K̃) is increasing and that K̃ → C̃(T, K̃) is decreasing and convex. For simplicity
you may assume F0 is trivial.

(a) We define a martingale deflator to be an adapted process Y such that Yt > 0 for all t ≥ 0

almost surely and such that the process S̃Y = (S̃tYt)t≥0 is a martingale (under the original
measure P ). Show that there is a one-to-one correspondence between martingale deflators
and equivalent martingale measures (in finite time horizon models).
Hint: Given a martingale deflator Y , consider the measure Q defined by the Radon-
Nykodym derivative

dQ

dP
=

YT S̃
0
T

EP [YT S̃0
T ]

and show (using Bayes formula) that Q defined this way is indeed an EMM. Conversely,
given an EMM Q, consider the density process

Zt = EP

[
dQ

dP
|Ft
]

and show that the process Y defined by Yt = Zt

S̃0
t

is a martingale deflator.

Note that if Y is a martingale deflator, then so is cY for any c > 0. In what follows we will
consider the unique martingale deflator such that Y0 = 1.

(b) Let Y be the unique martingale deflator such that Y0 = 1. Show that Y is a P -supermartingale.
Hint: for the integrability, you may use the fact that if the market model S̃ with N assets is
complete, then for each t ≥ 0 the probability space Ω can be partitioned into no more than
N t Ft-measurable events of positive probability.

(c) Show that the process defined by Yt(S̃1
t − K̃)+ = (YtS̃

1
t − YtK̃)+ is a P -submartingale.

(d) Write down the initial replication cost of a European Call option with strike K̃ and maturity
T in function of the martingale deflator Y .

(e) Conclude that T → C̃(T, K̃) is increasing and that K → C̃(T, K̃) is decreasing and convex.



Question 3 (8 Points)

Let (Ω,F ,F, P, S̃0, S̃1) be the canonical setup of a two asset, T -period trinomial model. More
precisely, let the undiscounted price processes of the assets in our market be defined by

S̃0
k = (1 + r)k for k = 0, 1, . . . , T

S̃1
k+1

S̃1
k

= Yk+1 for k = 0, 1, . . . , T − 1

where the Yk are i.i.d. random variables describing the returns of the risky asset. For simplicity
assume that the initial undiscounted prices are given by S̃0

0 = S̃1
0 = 1. Suppose that the filtration

F is given by the canonical filtration of S̃1. Suppose also that the distribution of Yk under P is
given by

Yk =


1 + u with probability pu > 0

1 +m with probability pm > 0

1 + d with probability pd > 0

where pu, pm, pd > 0, pu + pm + pd = 1 , −1 < d < m < u and u > r > d.

(a) Find the set of all EMMs for the discounted price process S1 = S̃1

S̃0
. Give your answer for

a general T ≥ 1.

From now on, we suppose that there is only one trading period, i.e. T = 1. Also recall that we
have assumed S̃0

0 = S̃1
0 = 1 for simplicity.

(b) Find the set of all payoffs H̃ that can be replicated by trading in the risky underlying asset
and the bank account.

(c) When one cannot perfectly replicate a payoff, one can try to at least approximately repli-
cate the contingent claim. Mean-variance hedging is the problem of approximating, with
minimal mean squared error, a given payoff by the final value of a self-financing trading
strategy in a financial market. We thus consider the problem

min
ϑ∈A

E
[
(H̃ − c̃− (ϑ • S̃1)T )2

]
.

where the expectation is taken under the original measure P and c̃ is supposed to be
known and corresponds to the undiscounted initial investment, and the optimisation is
over suitably integrable predictable processes:

A = {all predictable processes ϑ = (ϑk)k=1,...,T : (ϑ • S̃1)k ∈ L2 for k = 1, . . . , T}

For simplicity, assume that we are only interested in strategies with zero initial wealth, i.e
c̃ = 0 and suppose that the interest rate is r = 0. Recall that we have assumed T = 1
and S̃0

0 = S̃1
0 = 1 to simplify the computations. Let pu = 2

3 and pm = pd = 1
6 and

d = −0.5, m = 0 and u = 0.5. Consider a European call option on the risky asset S̃1 with
undiscounted strike K̃ = 1. Find the hedging strategy for a European call option that
minimizes the quadratic hedging error.



Question 4 (8 Points)

Let (Ω,F , P ) be a probability space endowed with a filtration F = (Ft)t≥0 satisfying the usual
conditions and Ŵ = (Ŵt)t≥0 a Brownian motion adapted to F with respect to a fixed measure Q
that is equivalent to P . In this question we model stochastic interest rate processes and derive
an arbitrage-free price for the zero-coupon bond with maturity T . For simplicity, suppose that
there is no risky asset in the market and the undiscounted bank account price process S̃0 satisfies
the following SDE:

dS̃0
t = S̃0

t rtdt S̃0
0 = 1

where (rt)t is itself a stochastic process. In 1977, Vasicek proposed the following model (under
a fixed EMM Q) for the stochastic short rate process r:

drt = λ(r̄ − rt)dt+ σdŴt

with a certain initial condition r0. The parameters r̄, λ and σ are given and assumed to be
strictly positive.

(a) Give a financial interpretation of the parameters r̄ > 0, λ > 0 and σ > 0

(b) Derive a closed form solution for S̃0
t

(c) Let P̃ (T )
t denote the undiscounted time t price of a zero-coupon bond of maturity T and

face value 1. This is a financial instrument that makes no periodic interest payment until
it’s maturity where it pays it’s face value. In particular one must have P̃ (T )

T = 1 for a zero
coupon bond with maturity T and face value 1.

Express P̃ (T )
t in terms of a conditional expectation of a process involving r under the fixed

measure Q.

Using the results from the previous question, one could actually compute P̃ (T )
t explicitly

since under the Vasicek model, one can solve the SDE for r using an integrating factors
technique. It turns out that rt is Gaussian and so is

∫ T
t rsds for all t and hence the ex-

pectation obtained in the previous question can be evaluated using the moment generating
function of a Gaussian random variable. In this exercise, we however take another ap-
proach and derive a PDE for the price process. You can take for granted that P̃ (T )

t can be
expressed as a function of current time t and current spot rate rt. To fix the notations, let
Ṽ (t, rt) = P̃

(T )
t .

(d) Using Ito’s lemma, show that Ṽ satisfies the following PDE:

∂Ṽ

∂t
(t, rt) + λ(r̄ − rt)

∂Ṽ

∂rt
(t, rt) +

1

2
σ2
∂2Ṽ

∂r2t
(t, rt) = rtṼ (1)

on (0,∞)× (−∞,∞) with terminal condition Ṽ (T, rT ) = 1.

(e) Bonus question: you can gain additional 3 points for solving this question
To solve the above PDE (1), we make the ansatz (guess) that there exists unknown functions
R and Q that depend only on time (not the interest rate) such that the solution of the
PDE (1) is given by

Ṽ (t, rt) = exp (rtR(T − t) +Q(T − t))
Derive a system of ODEs for R and Q. Solve this system of ODEs and conclude that the
time t undiscounted price Ṽ (t, rt) = P̃

(T )
t of a zero-coupon bond with maturity T and face

value 1 is given by

Ṽ (t, rt) = P̃
(T )
t

= exp

(
rt
e−λ(T−t) − 1

λ
+ r̄

1− e−λ(T−t) − λ(T − t)
λ

+
σ2
(
4e−λ(T−t) − e−2λ(T−t) + 2λ(T − t)− 3

)
4λ3

)



Question 5 (8 Points)

Let T ∈ (0,∞) be a fixed time horizon and W = (Wt)t∈[0,T ] a Brownian motion on some proba-
bility space (Ω,F , P ). Let F = (Ft)t∈[0,T ] be the filtration generated by W and augmented by
the P -nullsets in σ(Ws; 0 ≤ s ≤ T ). Consider the Black–Scholes model with two assets, where
the undiscounted bank account price process S̃0 = (S̃0

t )t∈[0,T ] and the undiscounted stock price
process S̃1 = (S̃1

t )t∈[0,T ] satisfy

dS̃0
t = S̃0

t rdt, S̃0
0 = 1,

dS̃1
t = S̃1

t (µdt+ σdWt) , S̃1
0 = S1

0 ,

with constants µ, r ∈ R, σ > 0, and S̃1
0 = S1

0 > 0.
Find a replicating strategy and the associated wealth process for a claim with the following
payouts. You may choose to handle 2 out of the following 4 payoffs.

(a) H̃ = (S̃1
T )p for some p ∈ R

(b) H̃ =
(

log S̃1
T

)2
(c) H̃ = max(S̃1

T − K̃, 0) for some strike K̃ ∈ R
Hint 1: start by showing that if X ∼ N (0, 1) is a standard normal random variable, and c

and m are positive constants, then the expectation E
[(
e−v/2+

√
vX −m

)+]
can be expressed

in terms of Φ, the cumulative distribution function of X as follows:

E

[(
e−c/2+

√
cX −m

)+]
= Φ

(
− logm√

c
+

√
c

2

)
−mΦ

(
− logm√

c
−
√
c

2

)

Hint 2: You can assume without proof that the partial derivative of the function

v(t, S1
t ) = S1

t Φ

 log
(
S1
t
K

)
+ 1

2σ
2(T − t)

σ
√
T − t

−KΦ

 log
(
S1
t
K

)
− 1

2σ
2(T − t)

σ
√
T − t


with respect to its spatial variable is

∂

∂x
v(t, S1

t ) = Φ

 log
(
S1
t
K

)
+ 1

2σ
2(T − t)

σ
√
T − t


(d) H̃ = max((S̃1

T )2 − K̃, 0) for some strike K̃ ∈ R

Hint: What process does (S̃1
t )2 follow. How could you use the result for the standard

European Call option to solve d)?


