Exercise 1

The correct answers are:
(a) (2)
(b) (1)
(c) (2)
(d) (3)
(e) (2)
(f) (2)
(g) (2)
(h) (1)

Exercise 2

(a) (1 point) The tree diagram is the following.

(b) (3 points)We first compute the set of all equivalent martingale measures Q for S^{1}. Define

$$
q_{1}:=Q\left[\left\{\omega_{1}\right\}\right], \quad q_{2}:=Q\left[\left\{\omega_{2}\right\}\right], \quad q_{3}:=Q\left[\left\{\omega_{3}\right\}\right] .
$$

Then Q is an EMM for S^{1} if and only if $q_{1}, q_{2}, q_{3} \in(0,1), q_{1}+q_{2}+q_{3}=1$, and

$$
101(1+d) q_{1}+101(1+m) q_{2}+101(1+u) q_{3}=101(1+r)
$$

or equivalently

$$
\begin{aligned}
\left(q_{1}, q_{2}, q_{3}\right) & =\left(\frac{u-r}{u-d}, 0, \frac{r-d}{u-d}\right)+\lambda\left(-\frac{u-r}{u-d}, 1,-\frac{r-d}{u-d}\right) \\
& =\left(\frac{1}{3}, 0, \frac{2}{3}\right)+\lambda\left(-\frac{1}{3}, 1,-\frac{2}{3}\right)
\end{aligned}
$$

for some $\lambda \in(0,1)$.
For the second part, recall that there are three possible cases

- If $s_{0}^{2}=\frac{1}{1+r} E_{Q}\left[\widetilde{S}_{1}^{2}\right]$ for exactly one EMM Q for S^{1}, then the market is arbitrage-free and complete,
- If $s_{0}^{2}=\frac{1}{1+r} E_{Q}\left[\widetilde{S}_{1}^{2}\right]$ for more than one EMM Q for S^{1}, then the market is arbitrage-free but not complete,
- If $s_{0}^{2} \neq \frac{1}{1+r} E_{Q}\left[\widetilde{S}_{1}^{2}\right]$ for all the EMMs Q for S^{1}, then the market is even not arbitragefree.

Hence we can do the following conclusions.
(i) For $\lambda \in(0,1)$, let Q^{λ} be the EMM for S^{1} given by

$$
\left(q_{1}^{\lambda}, q_{2}^{\lambda}, q_{3}^{\lambda}\right)=\left(\frac{1}{3}, 0, \frac{2}{3}\right)+\lambda\left(-\frac{1}{3}, 1,-\frac{2}{3}\right) .
$$

Then, since in this case $\frac{\widetilde{K}}{1+r}=98$ and thus

$$
S_{1}^{2}\left(\omega_{1}\right)=0, \quad S_{1}^{2}\left(\omega_{2}\right)=3, \quad S_{1}^{2}\left(\omega_{3}\right)=6
$$

we can conclude that $s_{0}^{2}=\frac{1}{1+r} E_{Q^{\lambda}}\left[\widetilde{S}_{1}^{2}\right]$ if and only if

$$
s_{0}^{2}=3 \lambda+6\left(\frac{2}{3}-\lambda \frac{2}{3}\right)=4-\lambda
$$

As a result, if $s_{0}^{2} \in(3,4)$ the market is free of arbitrage and complete, and otherwise not even free of arbitrage.
(ii) For $\lambda \in(0,1)$, let again Q^{λ} be the EMM for S^{1} given by

$$
\left(q_{1}^{\lambda}, q_{2}^{\lambda}, q_{3}^{\lambda}\right)=\left(\frac{1}{3}, 0, \frac{2}{3}\right)+\lambda\left(-\frac{1}{3}, 1,-\frac{2}{3}\right)
$$

Then, since in this case $\frac{\widetilde{K}}{1+r}=92$ and thus

$$
S_{1}^{2}\left(\omega_{1}\right)=3, \quad S_{1}^{2}\left(\omega_{2}\right)=9, \quad S_{1}^{2}\left(\omega_{3}\right)=12
$$

we can conclude that $s_{0}^{2}=\frac{1}{1+r} E_{Q^{\lambda}}\left[\widetilde{S}_{1}^{2}\right]$ if and only if

$$
s_{0}^{2}=3\left(\frac{1}{3}-\lambda \frac{1}{3}\right)+9 \lambda+12\left(\frac{2}{3}-\lambda \frac{2}{3}\right)=9
$$

As a result, if $s_{0}^{2}=9$, the market is free of arbitrage but not complete, and otherwise not even free of arbitrage.
(c) (2 points) The unique (discounted) price process for H which admits no arbitrage is given by $V^{H}:=\left(V_{k}^{H}\right)_{k=0,1}$, where

$$
V_{1}^{H}=\frac{\widetilde{H}}{1+r}=\left(99-S_{1}^{1}\right)^{+} \text {and } V_{0}^{H}=E_{Q^{*}}\left[\frac{\widetilde{H}}{1+r}\right]=\frac{1}{6}(99-95)=\frac{2}{3}
$$

A replication strategy for H is then an admissible, self-financing strategy $\varphi \widehat{=}\left(V_{0}^{H}, \vartheta^{1}, \vartheta^{2}\right)$ with $\vartheta^{i}=\left(\vartheta_{k}^{i}\right)_{k=0,1}$ for $i=1,2$ such that $\vartheta_{0}^{1}=\vartheta_{0}^{2}=0$ and

$$
\begin{equation*}
H=V_{T}(\varphi)=V_{0}^{H}+\vartheta_{1}^{1} \Delta S_{1}^{1}+\vartheta_{1}^{2} \Delta S_{1}^{2} \tag{1}
\end{equation*}
$$

In our context, admissibility is automatically satisfied. By condition (1), we then have

$$
\begin{aligned}
H & =\frac{2}{3}+\vartheta_{1}^{1}\left(S_{1}^{1}-S_{0}^{1}\right)+\vartheta_{1}^{2}\left(S_{1}^{2}-S_{0}^{2}\right) \\
& \Leftrightarrow\left\{\begin{array}{l}
4=2 / 3+\vartheta_{1}^{1}(95-101)+\vartheta_{1}^{2}(0-1) \\
0=2 / 3+\vartheta_{1}^{1}(101-101)+\vartheta_{1}^{2}(0-1) \\
0=2 / 3+\vartheta_{1}^{1}(104-101)+\vartheta_{1}^{2}((104-101)-1)
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
4=2 / 3-6 \vartheta_{1}^{1}-\vartheta_{1}^{2} \\
0=2 / 3-\vartheta_{1}^{2} \\
0=2 / 3+3 \vartheta_{1}^{1}+2 \vartheta_{1}^{2}
\end{array}\right.
\end{aligned}
$$

and hence $\vartheta_{1}^{2}=\frac{2}{3}$ and $\vartheta_{1}^{1}=-\frac{1}{3}\left(\frac{2}{3}+2 \frac{2}{3}\right)=-\frac{2}{3}$.
(d) (2 points) An arbitrage opportunity is an admissible, self-financing strategy $\varphi \widehat{=}\left(0, \vartheta^{1}, \vartheta^{2}\right)$ with $\vartheta^{i}=\left(\vartheta_{k}^{i}\right)_{k=0,1}$ for $i=1,2$ such that $\vartheta_{0}^{1}=\vartheta_{0}^{2}=0$ and

$$
\begin{align*}
& \vartheta_{1}^{1} \Delta S_{1}^{1}+\vartheta_{1}^{2} \Delta S_{1}^{2} \geq 0 \tag{2}\\
& P\left[\vartheta_{1}^{1} \Delta S_{1}^{1}+\vartheta_{1}^{2} \Delta S_{1}^{2}>0\right]>0 \tag{3}
\end{align*}
$$

Again, admissibility is automatically satisfied; hence we only have to focus on conditions (2) and (3). For the first one, we have

$$
\begin{aligned}
& \vartheta_{1}^{1}\left(S_{1}^{1}-S_{0}^{1}\right)+\vartheta_{1}^{2}\left(S_{1}^{2}-S_{0}^{2}\right) \geq 0 \\
& \Leftrightarrow\left\{\begin{array}{l}
0 \leq \vartheta_{1}^{1}(95-101)+\vartheta_{1}^{2}(0-3) \\
0 \leq \vartheta_{1}^{1}(101-101)+\vartheta_{1}^{2}(0-3) \\
0 \leq \vartheta_{1}^{1}(104-101)+\vartheta_{1}^{2}((104-101)-3)
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
0 \leq-6 \vartheta_{1}^{1}-3 \vartheta_{1}^{2} \\
0 \leq-3 \vartheta_{1}^{2} \\
0 \leq 3 \vartheta_{1}^{1}
\end{array}\right. \\
& \Leftrightarrow \vartheta_{1}^{2} \leq 0 \quad \text { and } \quad \vartheta_{1}^{1} \in\left[0,-\frac{1}{2} \vartheta_{1}^{2}\right] .
\end{aligned}
$$

Observe that choosing $\vartheta_{1}^{2}=0$, condition (2) is satisfied if and only if $\vartheta_{1}^{1}=0$ and condition (3) cannot be satisfied. As a result, an arbitrary arbitrage opportunity has to be of the form $\varphi \widehat{=}\left(0, \vartheta^{1}, \vartheta^{2}\right)$ with $\vartheta^{i}=\left(\vartheta_{k}^{i}\right)_{k=0,1}$ for $i=1,2$ such that $\vartheta_{0}^{1}=\vartheta_{0}^{2}=0, \vartheta_{1}^{2}<0$, and $\vartheta_{1}^{1} \in\left[0,-\frac{1}{2} \vartheta_{1}^{2}\right]$.
For instance one can choose $\vartheta_{1}^{2}=-1$ and $\vartheta_{1}^{1}=0$.

Exercise 3

(a) (3 points) Start by computing the density process Z of Q^{*} with respect to P :

$$
\begin{aligned}
Z_{k}=E\left[\left.\frac{\mathrm{~d} Q^{*}}{\mathrm{~d} P} \right\rvert\, \mathcal{F}_{k}\right] & \stackrel{(*)}{=} e^{T(\lambda-1)}\left(\prod_{j=1}^{k} \lambda^{-Y_{j}}\right) E\left[\lambda^{-Y_{1}}\right]^{T-k} \\
& =e^{T(\lambda-1)}\left(\prod_{j=1}^{k} \lambda^{-Y_{j}}\right)\left(\sum_{i=0}^{\infty} \lambda^{-i} \frac{\lambda^{i} e^{-\lambda}}{i!}\right)^{T-k} \\
& =e^{T(\lambda-1)}\left(\prod_{j=1}^{k} \lambda^{-Y_{j}}\right)\left(e^{-\lambda} \sum_{i=0}^{\infty} \frac{1}{i!}\right)^{T-k} \\
& =e^{T(\lambda-1)}\left(\prod_{j=1}^{k} \lambda^{-Y_{j}}\right)\left(e^{-(\lambda-1)}\right)^{T-k}=e^{k(\lambda-1)}\left(\prod_{j=1}^{k} \lambda^{-Y_{j}}\right)
\end{aligned}
$$

for $k=1, \ldots, T$ and $Z_{0}=e^{T(\lambda-1)} E\left[\lambda^{-Y_{1}}\right]^{T}=1$. In $(*)$, we used the i.i.d. property of $\left(Y_{j}\right)_{j=1}^{T}$ and the fact that Y_{j} is \mathcal{F}_{j}-measurable for each $j=1, \ldots, T$.
Since $\frac{\mathrm{d} Q^{*}}{\mathrm{~d} P}>0 P$-a.s., we already have that $Q^{*} \approx P$. One thus only has to show that S^{1} is a Q^{*}-martingale.

- Adaptedness is clear.
- For the integrability, first note that

$$
\begin{aligned}
E_{Q^{*}}\left[Y_{j}\right]=E\left[e^{j(\lambda-1)}\left(\prod_{i=1}^{j} \lambda^{-Y_{i}}\right) Y_{j}\right] & =e^{j(\lambda-1)} E\left[\lambda^{-Y_{1}}\right]^{j-1} E\left[\lambda^{-Y_{1}} Y_{1}\right] \\
& =e^{j(\lambda-1)}\left(e^{-(\lambda-1)}\right)^{j-1}\left(\sum_{i=0}^{\infty} \lambda^{-i} i \frac{\lambda^{i} e^{-\lambda}}{i!}\right) \\
& =e^{(\lambda-1)}\left(e^{-\lambda} \sum_{i=0}^{\infty} i \frac{1}{i!}\right)=e^{(\lambda-1)}\left(e^{-(\lambda-1)}\right)=1 .
\end{aligned}
$$

Hence for each $k=1, \ldots, T$, we can compute

$$
E_{Q^{*}}\left[\left|S_{k}^{1}\right|\right]=E_{Q^{*}}\left[S_{k}^{1}\right]=s_{0}^{1}-k+\sum_{j=1}^{k} E_{Q^{*}}\left[Y_{j}\right]=s_{0}^{1}<\infty
$$

- It only remains to show the Q^{*}-martingale property of S^{1}. Fix $k \in\{0, \ldots, T-1\}$; then we have

$$
\begin{aligned}
E_{Q^{*}}\left[S_{k+1}^{1}-S_{k}^{1} \mid \mathcal{F}_{k}\right] & =E_{Q^{*}}\left[Y_{k+1}-1 \mid \mathcal{F}_{k}\right] \stackrel{\text { Bayes }}{=} E\left[e^{(\lambda-1)} \lambda^{-Y_{k+1}}\left(Y_{k+1}-1\right) \mid \mathcal{F}_{k}\right] \\
& \stackrel{(*)}{=} E\left[e^{(\lambda-1)} \lambda^{-Y_{k+1}}\left(Y_{k+1}-1\right)\right] \\
& =e^{(\lambda-1)}\left(E\left[\lambda^{-Y_{1}} Y_{1}\right]-E\left[\lambda^{-Y_{1}}\right]\right) \\
& =e^{(\lambda-1)}\left(e^{-(\lambda-1)}-e^{-(\lambda-1)}\right)=0,
\end{aligned}
$$

where in $(*)$ we use that Y_{k+1} is independent of \mathcal{F}_{k} under P.
(b) (1 point) For fixed $j \in\{1, \ldots, T\}$ and $n \in \mathbb{N} \cup\{0\}$, we can use that $\left(Y_{j}\right)_{j=1}^{T}$ is a collection of i.i.d., $\operatorname{Poi}(\lambda)$-distributed random variables under P to compute

$$
\begin{aligned}
Q^{*}\left[Y_{j}=n\right] & =E\left[\mathbb{1}_{\left\{Y_{j}=n\right\}}\left(e^{T(\lambda-1)} \prod_{i=1}^{T} \lambda^{-Y_{i}}\right)\right] \\
& =e^{T(\lambda-1)}\left(\prod_{i \neq j} E\left[\lambda^{-Y_{i}}\right]\right) E\left[\mathbb{1}_{\left\{Y_{j}=n\right\}}\left(\lambda^{-Y_{j}}\right)\right] \\
& =e^{T(\lambda-1)}\left(e^{-(\lambda-1)}\right)^{T-1}\left(\lambda^{-n} \frac{\lambda^{n} e^{-\lambda}}{n!}\right)=\frac{e^{-1}}{n!}=\frac{1^{n} e^{-1}}{n!}
\end{aligned}
$$

proving that Y_{j} is $\operatorname{Poi}(1)$-distributed under Q^{*}.
(c) (2 points) First note that since $\left(Y_{j}\right)_{j=1}^{T}$ is a collection of i.i.d. Poi(1)-distributed random variables under Q^{*}, by the hint we also have that $\sum_{j=1}^{\ell} Y_{j}$ is $\operatorname{Poi}(\ell)$-distributed under Q^{*}, for all $\ell=1, \ldots, T$. Recall that $H=\left|S_{T}^{1}-s_{0}^{1}\right|^{2}=\left|S_{T}^{1}-S_{k}^{1}+S_{k}^{1}-s_{0}^{1}\right|^{2}$ and hence, since S^{1} is a $\left(Q^{*}, \mathbb{F}\right)$-martingale, we can compute

$$
\begin{aligned}
E_{Q^{*}}\left[H \mid \mathcal{F}_{k}\right] & =E_{Q^{*}}\left[\left|S_{T}^{1}-S_{k}^{1}\right|^{2} \mid \mathcal{F}_{k}\right]+\left|S_{k}^{1}-s_{0}^{1}\right|^{2} \\
& =E_{Q^{*}}\left[\left(\sum_{j=k+1}^{T} Y_{j}-(T-k)\right)^{2}\right]+\left|S_{k}^{1}-s_{0}^{1}\right|^{2} \\
& =\operatorname{Var}_{Q^{*}}\left[\sum_{j=k+1}^{T} Y_{j}\right]+\left|S_{k}^{1}-s_{0}^{1}\right|^{2}=(T-k)+\left|S_{k}^{1}-s_{0}^{1}\right|^{2}
\end{aligned}
$$

As a result, the price process $V^{H, Q^{*}}$ of H with respect to Q^{*} is given by

$$
V_{k}^{H, Q^{*}}=\left|S_{k}^{1}-s_{0}^{1}\right|^{2}+(T-k)
$$

for all $k=0, \ldots, T$.
Since Q^{*} is an equivalent martingale measure for $\left(S^{0}, S^{1}, S^{2}\right)$, by the fundamental theorem of asset pricing, we can conclude that the proposed enlargement of the market is free of arbitrage.
(d) (2 points) Since $S_{T}^{1} \geq s_{0}^{1}-T \geq 1$, we have that $H^{P}=\left(S_{T}^{1}\right)^{2}-1 P$-a.s. Moreover,

$$
\left(S_{T}^{1}\right)^{2}-1=\left(S_{T}^{1}-s_{0}^{1}\right)^{2}+2 S_{T}^{1} s_{0}^{1}-\left(s_{0}^{1}\right)^{2}-1=S_{T}^{2}+2 S_{T}^{1} s_{0}^{1}-\left(s_{0}^{1}\right)^{2}-1
$$

Hence choosing $V_{0}:=-\left(\left(s_{0}^{1}\right)^{2}+1\right)+2\left(s_{0}^{1}\right)^{2}+S_{0}^{2}, \vartheta_{0}^{1}:=\vartheta_{0}^{2}:=0, \vartheta_{k}^{1}:=2 s_{0}^{1}$, and $\vartheta_{k}^{2}:=1$ for each $k=1, \ldots, T$, we obtain that the self-financing strategy $\varphi \widehat{=}\left(V_{0}, \vartheta^{1}, \vartheta^{2}\right)$ replicates H^{P}. Indeed, for each $k=1, \ldots, T$, we can compute

$$
\begin{aligned}
V_{k}(\varphi) & =V_{0}+\sum_{j=1}^{k} \vartheta_{j}^{1} \Delta S_{j}^{1}+\sum_{j=1}^{k} \vartheta_{j}^{2} \Delta S_{j}^{2} \\
& =\left(-\left(\left(s_{0}^{1}\right)^{2}+1\right)+2\left(s_{0}^{1}\right)^{2}+S_{0}^{2}\right)+2 s_{0}^{1}\left(S_{k}^{1}-S_{0}^{1}\right)+\left(S_{k}^{2}-S_{0}^{2}\right) \\
& =-\left(\left(s_{0}^{1}\right)^{2}+1\right)+2 s_{0}^{1} S_{k}^{1}+S_{k}^{2}
\end{aligned}
$$

proving that φ is admissible (since $S_{k}^{1}, S_{k}^{2} \geq 0$ for each $k=1, \ldots, T$) and $V_{T}(\varphi)=H^{P}$.

Exercise 4

(a) (2 points)Fix $t \geq s \geq 0$. Using that $E\left[W_{s}\right]=E\left[W_{t}\right]=0$, the fact that the increment $W_{t}-W_{s}$ is independent of \mathcal{F}_{s} and has mean zero (since W is a Brownian motion with respect to \mathbb{F}), and the fact that $E\left[W_{s}^{2}\right]=s$, we obtain

$$
\operatorname{Cov}\left(W_{s}, W_{t}\right)=E\left[W_{s} W_{t}\right]=E\left[W_{s}\left(W_{t}-W_{s}\right)+W_{s}^{2}\right]=E\left[E\left[W_{t}-W_{s} \mid \mathcal{F}_{s}\right] W_{s}\right]+s=s
$$

If $s \geq t \geq 0$, then $\operatorname{Cov}\left(W_{s}, W_{t}\right)=t$ by symmetry. In summary, $\operatorname{Cov}\left(W_{s}, W_{t}\right)=s \wedge t$.
(b) (3 points) Note that $X_{t}=f\left(t, W_{t}\right)$ for the smooth function $f(t, x)=(1+t) \exp (x), t \geq 0$, $x \in \mathbb{R}$. Hence, by Itô's formula,

$$
\begin{aligned}
\mathrm{d} X_{t} & =\exp \left(W_{t}\right) \mathrm{d} t+(1+t) \exp \left(W_{t}\right) \mathrm{d} W_{t}+\frac{1}{2}(1+t) \exp \left(W_{t}\right) \mathrm{d}\langle W\rangle_{t} \\
& =X_{t} \frac{1}{1+t} \mathrm{~d} t+X_{t} \mathrm{~d} W_{t}+\frac{1}{2} X_{t} \mathrm{~d} t \\
& =X_{t}\left(\left(\frac{1}{1+t}+\frac{1}{2}\right) \mathrm{d} t+\mathrm{d} W_{t}\right)
\end{aligned}
$$

Define the process $L=\left(L_{t}\right)_{t \in[0,1]}$ by

$$
L_{t}=-\int_{0}^{t}\left(\frac{1}{1+u}+\frac{1}{2}\right) \mathrm{d} W_{u}
$$

By the hint, the stochastic exponential $Z:=\mathcal{E}(L)$ is a (true) P-martingale. Thus, we can define $Q \approx P$ on \mathcal{F}_{1} by setting $\frac{\mathrm{d} Q}{\mathrm{~d} P}=Z_{1}$. Then by Girsanov's theorem,

$$
\widetilde{W}_{t}:=W_{t}-\langle L, W\rangle_{t}=W_{t}+\int_{0}^{t}\left(\frac{1}{1+u}+\frac{1}{2}\right) \mathrm{d} u, \quad t \in[0,1]
$$

defines a Q-Brownian motion $\widetilde{W}=\left(\widetilde{W}_{t}\right)_{t \in[0,1]}$. Therefore,

$$
\mathrm{d} X_{t}=X_{t} \mathrm{~d} \widetilde{W}_{t}
$$

and since $X_{0}=1$, we obtain $X=\mathcal{E}(\widetilde{W})$. We conclude that X is a Q-martingale.
(c) (3 points) Define the martingale $X=\left(X_{t}\right)_{t \in[0, T]}$ by $X_{t}=E\left[\exp \left(W_{T}\right) \mid \mathcal{F}_{t}\right]$. For each $t \in[0, T]$, using that $W_{T}-W_{t}$ is independent of \mathcal{F}_{t} and $\mathcal{N}(0, T-t)$-distributed (since W is a Brownian motion with respect to P and \mathcal{F}) and that W_{t} is \mathcal{F}_{t}-measurable, we obtain

$$
X_{t}=E\left[\exp \left(W_{T}-W_{t}\right) \exp \left(W_{t}\right) \mid \mathcal{F}_{t}\right]=\exp \left(W_{t}\right) \exp \left(\frac{1}{2}(T-t)\right)=f\left(t, W_{t}\right)
$$

where $f(t, x)=\exp \left(x+\frac{1}{2}(T-t)\right), t \geq 0, x \in \mathbb{R}$.
Applying Itô's formula, we find that for all $t \in[0, T]$

$$
X_{t}=f\left(t, X_{t}\right)=X_{0}+\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, W_{s}\right) \mathrm{d} W_{s} \quad P \text {-a.s.; }
$$

note that the finite variation terms must vanish since X and W are continuous P-martingales by construction. In particular, the stochastic integral process $\int_{0}^{*} \frac{\partial f}{\partial x}\left(s, W_{s}\right) \mathrm{d} W_{s}$ is a (P, \mathbb{F}) martingale and $\exp \left(W_{T}\right)=X_{T}=X_{0}+\int_{0}^{T} \frac{\partial f}{\partial x}\left(s, W_{s}\right) \mathrm{d} W_{s} P$-a.s. Hence, we can set

$$
\begin{aligned}
c & :=X_{0}=\exp \left(\frac{1}{2} T\right) \\
H_{t} & :=\frac{\partial f}{\partial x}\left(t, W_{t}\right)=\exp \left(W_{t}+\frac{1}{2}(T-t)\right)
\end{aligned}
$$

As H is continuous and adapted, it is predictable and locally bounded and thus belongs to $L_{\text {loc }}^{2}(W)$.

Exercise 5

(a) (2 points) It is known from the lecture notes that

$$
W_{t}^{*}:=W_{t}+\frac{\mu-r}{\sigma} t, \quad t \in[0, T],
$$

defines a Q^{*}-Brownian motion W^{*} and that S^{1} satisfies the SDE

$$
\mathrm{d} S_{t}^{1}=S_{t}^{1} \sigma \mathrm{~d} W_{t}^{*}
$$

By the product rule and the fact that \widetilde{S}^{0} is continuous and of finite variation,

$$
\mathrm{d} \widetilde{S}_{t}^{1}=\mathrm{d}\left(S^{1} \widetilde{S}^{0}\right)_{t}=S_{t}^{1} \mathrm{~d} \widetilde{S}_{t}^{0}+\widetilde{S}_{t}^{0} \mathrm{~d} S_{t}^{1}=\widetilde{S}_{t}^{1}\left(r \mathrm{~d} t+\sigma \mathrm{d} W_{t}^{*}\right)
$$

(b) (1 point) Itô's formula and the given dynamics of \widetilde{S}^{1} under P yield

$$
\mathrm{d}\left(\frac{1}{\widetilde{S}^{1}}\right)_{t}=-\frac{1}{\left(\widetilde{S}_{t}^{1}\right)^{2}} \mathrm{~d} \widetilde{S}_{t}^{1}+\frac{1}{\left(\widetilde{S}_{t}^{1}\right)^{3}} \mathrm{~d}\left\langle\widetilde{S}^{1}\right\rangle_{t}=\frac{1}{\widetilde{S}_{t}^{1}}\left(-\mu \mathrm{d} t-\sigma \mathrm{d} W_{t}+\sigma^{2} \mathrm{~d} t\right)
$$

Using the product rule, the given dynamics of \widetilde{S}^{0}, and the fact that \widetilde{S}^{0} is continuous and of finite variation, we then obtain

$$
\mathrm{d} \widehat{S}_{t}^{0}=\mathrm{d}\left(\frac{1}{\widetilde{S}^{1}} \widetilde{S}^{0}\right)_{t}=\widetilde{S}_{t}^{0} \mathrm{~d}\left(\frac{1}{\widetilde{S}^{1}}\right)_{t}+\frac{1}{\widetilde{S}_{t}^{1}} \mathrm{~d} \widetilde{S}_{t}^{0}=\widehat{S}_{t}^{0}\left(\left(\sigma^{2}+r-\mu\right) \mathrm{d} t-\sigma \mathrm{d} W_{t}\right)
$$

(c) (2.5 points) We first note that by part (a),

$$
\widetilde{S}_{t}^{1}=\widetilde{S}_{0}^{1} \mathcal{E}\left(\int_{0}^{\cdot} r \mathrm{~d} u+\sigma W^{*}\right)_{t}=S_{0}^{1} \exp \left(\sigma W_{t}^{*}+\left(r-\frac{1}{2} \sigma^{2}\right) t\right), \quad t \in[0, T],
$$

so that for $0 \leq t \leq u \leq T$,

$$
\begin{equation*}
\frac{\widetilde{S}_{u}^{1}}{\widetilde{S}_{t}^{1}}=\exp \left(\sigma\left(W_{u}^{*}-W_{t}^{*}\right)+\left(r-\frac{1}{2} \sigma^{2}\right)(u-t)\right) \tag{4}
\end{equation*}
$$

Using (4) for $u=T$ and $t=T_{0}$ gives

$$
\widetilde{H}=\log \frac{\widetilde{S}_{T}^{1}}{\widetilde{S}_{T_{0}}^{1}}=\sigma\left(W_{T}^{*}-W_{T_{0}}^{*}\right)+\left(r-\frac{1}{2} \sigma^{2}\right)\left(T-T_{0}\right)
$$

Suppose first that $t \in\left[0, T_{0}\right]$. As $W_{T}^{*}-W_{T_{0}}^{*}$ is independent of \mathcal{F}_{t} (since W^{*} is a Q^{*}-Brownian motion and $t \leq T_{0}$) and has expectation 0 under Q^{*},

$$
\begin{align*}
V_{t} & =E_{Q^{*}}\left[\widetilde{H} / \widetilde{S}_{T}^{0} \mid \mathcal{F}_{t}\right]=e^{-r T} E_{Q^{*}}\left[\left.\sigma\left(W_{T}^{*}-W_{T_{0}}^{*}\right)+\left(r-\frac{1}{2} \sigma^{2}\right)\left(T-T_{0}\right) \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{-r T}\left(r-\frac{1}{2} \sigma^{2}\right)\left(T-T_{0}\right), \quad t \in\left[0, T_{0}\right] \tag{5}
\end{align*}
$$

Now, suppose that $t \in\left(T_{0}, T\right]$. Using (4), we obtain

$$
\widetilde{H}=\log \frac{\widetilde{S}_{T}^{1}}{\widetilde{S}_{T_{0}}^{1}}=\log \frac{\widetilde{S}_{T}^{1}}{\widetilde{S}_{t}^{1}}+\log \frac{\widetilde{S}_{t}^{1}}{\widetilde{S}_{T_{0}}^{1}}=\sigma\left(W_{T}^{*}-W_{t}^{*}\right)+\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\log \frac{\widetilde{S}_{t}^{1}}{\widetilde{S}_{t \wedge T_{0}}^{1}}
$$

With the same arguments as above,

$$
\begin{align*}
V_{t} & =E_{Q^{*}}\left[\widetilde{H} / \widetilde{S}_{T}^{0} \mid \mathcal{F}_{t}\right] \\
& =e^{-r T} E_{Q^{*}}\left[\left.\sigma\left(W_{T}^{*}-W_{t}^{*}\right)+\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\log \frac{\widetilde{S}_{t}^{1}}{\widetilde{S}_{t \wedge T_{0}}^{1}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{-r T}\left(\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\log \frac{\widetilde{S}_{t}^{1}}{\widetilde{S}_{t \wedge T_{0}}^{1}}\right), \quad t \in\left(T_{0}, T\right] . \tag{6}
\end{align*}
$$

In view of (5) and (6), we find that $\widetilde{V}_{t}=V_{t} \widetilde{S}_{t}^{0}=V_{t} e^{r t}=\tilde{v}\left(t, \widetilde{S}_{t}^{1}, \widetilde{S}_{t \wedge T_{0}}^{1}\right)$ where

$$
\tilde{v}(t, x, y):=e^{-r(T-t)}\left(\left(r-\frac{1}{2} \sigma^{2}\right)\left(T-\max \left(t, T_{0}\right)\right)+\log \frac{x}{y}\right), \quad t \in[0, T], x, y \in(0, \infty)
$$

(d) (2.5 points) From the lecture notes we know that $S_{t}^{1}=S_{0}^{1} \exp \left(\sigma W_{t}^{*}-\frac{1}{2} \sigma^{2} t\right)$ and $\widetilde{S}_{t}^{0}=$ $\exp (r t)$ for $t \in[0, T]$. As a result,

$$
\widetilde{H}^{0}=\log \frac{\widetilde{S}_{T}^{1}}{\widetilde{S}_{0}^{1}}=\log \frac{S_{T}^{1} \widetilde{S}_{T}^{0}}{S_{0}^{1}}=\sigma W_{T}^{*}+\left(r-\frac{1}{2} \sigma^{2}\right) T,
$$

and hence

$$
\begin{aligned}
V_{t} & =E_{Q^{*}}\left[\widetilde{H}^{0} / \widetilde{S}_{T}^{0} \mid \mathcal{F}_{t}\right] \\
& =e^{-r T} E_{Q^{*}}\left[\left.\sigma W_{T}^{*}+\left(r-\frac{1}{2} \sigma^{2}\right) T \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{-r T}\left(\sigma W_{t}^{*}+\left(r-\frac{1}{2} \sigma^{2}\right) T\right) \\
& =e^{-r T}\left(\log \frac{S_{t}^{1}}{S_{0}^{1}}+r T-\frac{1}{2} \sigma^{2}(T-t)\right), \quad t \in[0, T] .
\end{aligned}
$$

We can thus write $V_{t}=v\left(t, S_{t}^{1}\right)$ where $v(t, x)=e^{-r T}\left(\log \frac{x}{S_{0}^{1}}+r T-\frac{1}{2} \sigma^{2}(T-t)\right)$, for $t \in[0, T]$ and $x>0$.
By definition of V and Itô's formula, $H^{0}=V_{T}=v\left(T, S_{T}^{1}\right)$ and for all $t \in[0, T]$

$$
\begin{equation*}
V_{t}=v\left(t, S_{t}^{1}\right)=v\left(0, S_{0}^{1}\right)+\int_{0}^{t} \frac{\partial v}{\partial x}\left(u, S_{u}^{1}\right) \mathrm{d} S_{u}^{1} \quad P \text {-a.s. } ; \tag{7}
\end{equation*}
$$

note that the finite variation terms must vanish since V and S^{1} are continuous $\left(Q^{*}, \mathbb{F}\right)$ martingales by construction. In particular, the stochastic integral in (7) is a $\left(Q^{*}, \mathbb{F}\right)$ martingale. We can thus set

$$
\begin{aligned}
V_{0} & :=v\left(0, S_{0}^{1}\right)=e^{-r T}\left(r-\frac{1}{2} \sigma^{2}\right) T, \\
\vartheta_{t} & :=\frac{\partial v}{\partial x}\left(t, S_{t}^{1}\right)=e^{-r T} \frac{1}{S_{t}^{1}}
\end{aligned}
$$

As ϑ is continuous and adapted, it is predictable and locally bounded.

