
Exercise 1

The correct answers are:

(a) (2)

(b) (1)

(c) (2)

(d) (3)

(e) (2)

(f) (2)

(g) (2)

(h) (1)



Exercise 2

(a) (1 point) The tree diagram is the following.
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(b) (3 points)We first compute the set of all equivalent martingale measures Q for S1. Define

q1 := Q[{ω1}], q2 := Q[{ω2}], q3 := Q[{ω3}].

Then Q is an EMM for S1 if and only if q1, q2, q3 ∈ (0, 1), q1 + q2 + q3 = 1, and

101(1 + d)q1 + 101(1 +m)q2 + 101(1 + u)q3 = 101(1 + r),

or equivalently

(q1, q2, q3) =
(u− r
u− d

, 0,
r − d
u− d

)
+ λ
(
− u− r
u− d

, 1,− r − d
u− d

)

=
(1

3
, 0,

2

3

)
+ λ(−1

3
, 1,−2

3

)

for some λ ∈ (0, 1).
For the second part, recall that there are three possible cases

• If s20 = 1
1+rEQ[S̃2

1 ] for exactly one EMM Q for S1, then the market is arbitrage-free
and complete,

• If s20 = 1
1+rEQ[S̃2

1 ] for more than one EMM Q for S1, then the market is arbitrage-free
but not complete,

• If s20 6= 1
1+rEQ[S̃2

1 ] for all the EMMs Q for S1, then the market is even not arbitrage-
free.

Hence we can do the following conclusions.

(i) For λ ∈ (0, 1), let Qλ be the EMM for S1 given by

(qλ1 , q
λ
2 , q

λ
3 ) =

(1

3
, 0,

2

3

)
+ λ(−1

3
, 1,−2

3

)
.

Then, since in this case K̃
1+r = 98 and thus

S2
1(ω1) = 0, S2

1(ω2) = 3, S2
1(ω3) = 6,



we can conclude that s20 = 1
1+rEQλ [S̃2

1 ] if and only if

s20 = 3λ+ 6
(2

3
− λ2

3

)
= 4− λ.

As a result, if s20 ∈ (3, 4) the market is free of arbitrage and complete, and otherwise
not even free of arbitrage.

(ii) For λ ∈ (0, 1), let again Qλ be the EMM for S1 given by

(qλ1 , q
λ
2 , q

λ
3 ) =

(1

3
, 0,

2

3

)
+ λ(−1

3
, 1,−2

3

)
.

Then, since in this case K̃
1+r = 92 and thus

S2
1(ω1) = 3, S2

1(ω2) = 9, S2
1(ω3) = 12,

we can conclude that s20 = 1
1+rEQλ [S̃2

1 ] if and only if

s20 = 3
(1

3
− λ1

3

)
+ 9λ+ 12

(2

3
− λ2

3

)
= 9.

As a result, if s20 = 9, the market is free of arbitrage but not complete, and otherwise
not even free of arbitrage.

(c) (2 points) The unique (discounted) price process for H which admits no arbitrage is given
by V H :=

(
V H
k

)
k=0,1

, where

V H
1 =

H̃

1 + r
=
(
99− S1

1

)+ and V H
0 = EQ∗

[ H̃

1 + r

]
=

1

6
(99− 95) =

2

3
.

A replication strategy for H is then an admissible, self-financing strategy ϕ =̂ (V H
0 , ϑ1, ϑ2)

with ϑi = (ϑik)k=0,1 for i = 1, 2 such that ϑ10 = ϑ20 = 0 and

H = VT (ϕ) = V H
0 + ϑ11∆S

1
1 + ϑ21∆S

2
1 . (1)

In our context, admissibility is automatically satisfied. By condition (1), we then have

H =
2

3
+ ϑ11(S

1
1 − S1

0) + ϑ21(S
2
1 − S2

0)

⇔





4 = 2/3 + ϑ11(95− 101) + ϑ21(0− 1)

0 = 2/3 + ϑ11(101− 101) + ϑ21(0− 1)

0 = 2/3 + ϑ11(104− 101) + ϑ21
(
(104− 101)− 1

)

⇔





4 = 2/3− 6ϑ11 − ϑ21
0 = 2/3− ϑ21
0 = 2/3 + 3ϑ11 + 2ϑ21

and hence ϑ21 = 2
3 and ϑ11 = −1

3

(
2
3 + 22

3

)
= −2

3 .

(d) (2 points) An arbitrage opportunity is an admissible, self-financing strategy ϕ =̂ (0, ϑ1, ϑ2)
with ϑi = (ϑik)k=0,1 for i = 1, 2 such that ϑ10 = ϑ20 = 0 and

ϑ11∆S
1
1 + ϑ21∆S

2
1 ≥ 0, (2)

P
[
ϑ11∆S

1
1 + ϑ21∆S

2
1 > 0

]
> 0. (3)



Again, admissibility is automatically satisfied; hence we only have to focus on conditions
(2) and (3). For the first one, we have

ϑ11(S
1
1 − S1

0) + ϑ21(S
2
1 − S2

0) ≥ 0

⇔





0 ≤ ϑ11(95− 101) + ϑ21(0− 3)

0 ≤ ϑ11(101− 101) + ϑ21(0− 3)

0 ≤ ϑ11(104− 101) + ϑ21
(
(104− 101)− 3

)

⇔





0 ≤ −6ϑ11 − 3ϑ21
0 ≤ −3ϑ21
0 ≤ 3ϑ11

⇔ ϑ21 ≤ 0 and ϑ11 ∈
[
0,−1

2
ϑ21

]
.

Observe that choosing ϑ21 = 0, condition (2) is satisfied if and only if ϑ11 = 0 and condition
(3) cannot be satisfied. As a result, an arbitrary arbitrage opportunity has to be of the
form ϕ =̂ (0, ϑ1, ϑ2) with ϑi = (ϑik)k=0,1 for i = 1, 2 such that ϑ10 = ϑ20 = 0, ϑ21 < 0, and
ϑ11 ∈

[
0,−1

2ϑ
2
1

]
.

For instance one can choose ϑ21 = −1 and ϑ11 = 0.



Exercise 3

(a) (3 points) Start by computing the density process Z of Q∗ with respect to P :

Zk = E

[
dQ∗

dP

∣∣∣∣Fk
]

(∗)
= eT (λ−1)

( k∏

j=1

λ−Yj
)
E
[
λ−Y1

]T−k

= eT (λ−1)
( k∏

j=1

λ−Yj
)( ∞∑

i=0

λ−i
λie−λ

i!

)T−k

= eT (λ−1)
( k∏

j=1

λ−Yj
)(

e−λ
∞∑

i=0

1

i!

)T−k

= eT (λ−1)
( k∏

j=1

λ−Yj
)(

e−(λ−1)
)T−k

= ek(λ−1)
( k∏

j=1

λ−Yj
)
,

for k = 1, . . . , T and Z0 = eT (λ−1)E
[
λ−Y1

]T
= 1. In (∗), we used the i.i.d. property of

(Yj)
T
j=1 and the fact that Yj is Fj-measurable for each j = 1, . . . , T .

Since dQ∗

dP > 0 P -a.s., we already have that Q∗ ≈ P . One thus only has to show that S1 is
a Q∗-martingale.

• Adaptedness is clear.
• For the integrability, first note that

EQ∗ [Yj ] = E

[
ej(λ−1)

( j∏

i=1

λ−Yi
)
Yj

]
= ej(λ−1)E

[
λ−Y1

]j−1
E
[
λ−Y1Y1

]

= ej(λ−1)
(
e−(λ−1)

)j−1( ∞∑

i=0

λ−ii
λie−λ

i!

)

= e(λ−1)
(
e−λ

∞∑

i=0

i
1

i!

)
= e(λ−1)

(
e−(λ−1)

)
= 1.

Hence for each k = 1, . . . , T , we can compute

EQ∗ [|S1
k |] = EQ∗ [S1

k ] = s10 − k +

k∑

j=1

EQ∗ [Yj ] = s10 <∞.

• It only remains to show the Q∗-martingale property of S1. Fix k ∈ {0, . . . , T − 1};
then we have

EQ∗ [S1
k+1 − S1

k |Fk] = EQ∗ [Yk+1 − 1|Fk]
Bayes

= E[e(λ−1)λ−Yk+1(Yk+1 − 1)|Fk]
(∗)
= E[e(λ−1)λ−Yk+1(Yk+1 − 1)]

= e(λ−1)
(
E[λ−Y1Y1]− E[λ−Y1 ]

)

= e(λ−1)
(
e−(λ−1) − e−(λ−1)

)
= 0,

where in (∗) we use that Yk+1 is independent of Fk under P .



(b) (1 point) For fixed j ∈ {1, . . . , T} and n ∈ N ∪ {0}, we can use that (Yj)
T
j=1 is a collection

of i.i.d., Poi(λ)-distributed random variables under P to compute

Q∗[Yj = n] = E

[
1{Yj=n}

(
eT (λ−1)

T∏

i=1

λ−Yi
)]

= eT (λ−1)
(∏

i 6=j
E
[
λ−Yi

])
E
[
1{Yj=n}(λ

−Yj )
]

= eT (λ−1)
(
e−(λ−1)

)T−1(
λ−n

λne−λ

n!

)
=
e−1

n!
=

1ne−1

n!
,

proving that Yj is Poi(1)-distributed under Q∗.

(c) (2 points) First note that since (Yj)
T
j=1 is a collection of i.i.d. Poi(1)-distributed random

variables under Q∗, by the hint we also have that
∑`

j=1 Yj is Poi(`)-distributed under Q∗,
for all ` = 1, . . . , T . Recall that H =

∣∣S1
T − s10

∣∣2 =
∣∣S1
T − S1

k + S1
k − s10

∣∣2 and hence, since
S1 is a (Q∗,F)-martingale, we can compute

EQ∗ [H|Fk] = EQ∗

[∣∣S1
T − S1

k

∣∣2
∣∣∣Fk
]

+
∣∣S1
k − s10

∣∣2

= EQ∗

[( T∑

j=k+1

Yj − (T − k)

)2]
+
∣∣S1
k − s10

∣∣2

= VarQ∗

[ T∑

j=k+1

Yj

]
+
∣∣S1
k − s10

∣∣2 = (T − k) +
∣∣S1
k − s10

∣∣2.

As a result, the price process V H,Q∗ of H with respect to Q∗ is given by

V H,Q∗

k = |S1
k − s10|2 + (T − k)

for all k = 0, . . . , T .
Since Q∗ is an equivalent martingale measure for (S0, S1, S2), by the fundamental theorem
of asset pricing, we can conclude that the proposed enlargement of the market is free of
arbitrage.

(d) (2 points) Since S1
T ≥ s10 − T ≥ 1, we have that HP = (S1

T )2 − 1 P -a.s. Moreover,

(S1
T )2 − 1 = (S1

T − s10)2 + 2S1
T s

1
0 − (s10)

2 − 1 = S2
T + 2S1

T s
1
0 − (s10)

2 − 1.

Hence choosing V0 := −
(
(s10)

2 + 1
)

+ 2(s10)
2 + S2

0 , ϑ10 := ϑ20 := 0, ϑ1k := 2s10, and ϑ2k := 1

for each k = 1, . . . , T , we obtain that the self-financing strategy ϕ =̂ (V0, ϑ
1, ϑ2) replicates

HP . Indeed, for each k = 1, . . . , T , we can compute

Vk(ϕ) = V0 +

k∑

j=1

ϑ1j∆S
1
j +

k∑

j=1

ϑ2j∆S
2
j

=
(
−
(
(s10)

2 + 1
)

+ 2(s10)
2 + S2

0

)
+ 2s10(S

1
k − S1

0) + (S2
k − S2

0)

= −
(
(s10)

2 + 1
)

+ 2s10S
1
k + S2

k ,

proving that ϕ is admissible (since S1
k , S

2
k ≥ 0 for each k = 1, . . . , T ) and VT (ϕ) = HP .



Exercise 4

(a) (2 points)Fix t ≥ s ≥ 0. Using that E[Ws] = E[Wt] = 0, the fact that the increment
Wt −Ws is independent of Fs and has mean zero (since W is a Brownian motion with
respect to IF), and the fact that E[W 2

s ] = s, we obtain

Cov(Ws,Wt) = E[WsWt] = E[Ws(Wt −Ws) +W 2
s ] = E[E[Wt −Ws | Fs]Ws] + s = s.

If s ≥ t ≥ 0, then Cov(Ws,Wt) = t by symmetry. In summary, Cov(Ws,Wt) = s ∧ t.

(b) (3 points) Note that Xt = f(t,Wt) for the smooth function f(t, x) = (1 + t) exp(x), t ≥ 0,
x ∈ R. Hence, by Itô’s formula,

dXt = exp(Wt) dt+ (1 + t) exp(Wt) dWt +
1

2
(1 + t) exp(Wt) d〈W 〉t

= Xt
1

1 + t
dt+Xt dWt +

1

2
Xt dt

= Xt

((
1

1 + t
+

1

2

)
dt+ dWt

)
.

Define the process L = (Lt)t∈[0,1] by

Lt = −
∫ t

0

(
1

1 + u
+

1

2

)
dWu.

By the hint, the stochastic exponential Z := E(L) is a (true) P -martingale. Thus, we can
define Q ≈ P on F1 by setting dQ

dP = Z1. Then by Girsanov’s theorem,

W̃t := Wt − 〈L,W 〉t = Wt +

∫ t

0

(
1

1 + u
+

1

2

)
du, t ∈ [0, 1],

defines a Q-Brownian motion W̃ = (W̃t)t∈[0,1]. Therefore,

dXt = Xt dW̃t

and since X0 = 1, we obtain X = E(W̃ ). We conclude that X is a Q-martingale.

(c) (3 points) Define the martingale X = (Xt)t∈[0,T ] by Xt = E[exp(WT ) | Ft]. For each
t ∈ [0, T ], using that WT −Wt is independent of Ft and N (0, T − t)-distributed (since W
is a Brownian motion with respect to P and F) and that Wt is Ft-measurable, we obtain

Xt = E[exp(WT −Wt) exp(Wt) | Ft] = exp(Wt) exp
(1

2
(T − t)

)
= f(t,Wt),

where f(t, x) = exp
(
x+ 1

2(T − t)
)
, t ≥ 0, x ∈ R.

Applying Itô’s formula, we find that for all t ∈ [0, T ]

Xt = f(t,Xt) = X0 +

∫ t

0

∂f

∂x
(s,Ws) dWs P -a.s.;

note that the finite variation terms must vanish sinceX andW are continuous P -martingales
by construction. In particular, the stochastic integral process

∫ ·
0
∂f
∂x (s,Ws) dWs is a (P,F)-

martingale and exp(WT ) = XT = X0 +
∫ T
0

∂f
∂x (s,Ws) dWs P -a.s. Hence, we can set

c := X0 = exp
(1

2
T
)
,

Ht :=
∂f

∂x
(t,Wt) = exp

(
Wt +

1

2
(T − t)

)
.

As H is continuous and adapted, it is predictable and locally bounded and thus belongs to
L2

loc(W ).



Exercise 5

(a) (2 points) It is known from the lecture notes that

W ∗t := Wt +
µ− r
σ

t, t ∈ [0, T ],

defines a Q∗-Brownian motion W ∗ and that S1 satisfies the SDE

dS1
t = S1

t σ dW ∗t .

By the product rule and the fact that S̃0 is continuous and of finite variation,

dS̃1
t = d

(
S1S̃0

)
t

= S1
t dS̃0

t + S̃0
t dS1

t = S̃1
t (r dt+ σ dW ∗t ) .

(b) (1 point) Itô’s formula and the given dynamics of S̃1 under P yield

d

(
1

S̃1

)

t

= − 1

(S̃1
t )2

dS̃1
t +

1

(S̃1
t )3

d〈S̃1〉t =
1

S̃1
t

(
−µ dt− σ dWt + σ2 dt

)
.

Using the product rule, the given dynamics of S̃0, and the fact that S̃0 is continuous and
of finite variation, we then obtain

dŜ0
t = d

(
1

S̃1
S̃0

)

t

= S̃0
t d

(
1

S̃1

)

t

+
1

S̃1
t

dS̃0
t = Ŝ0

t

(
(σ2 + r − µ) dt− σ dWt

)
.

(c) (2.5 points) We first note that by part (a),

S̃1
t = S̃1

0E
(∫ ·

0
r du+ σW ∗

)

t

= S1
0 exp

(
σW ∗t +

(
r − 1

2
σ2
)
t
)
, t ∈ [0, T ],

so that for 0 ≤ t ≤ u ≤ T ,

S̃1
u

S̃1
t

= exp
(
σ(W ∗u −W ∗t ) +

(
r − 1

2
σ2
)
(u− t)

)
. (4)

Using (4) for u = T and t = T0 gives

H̃ = log
S̃1
T

S̃1
T0

= σ(W ∗T −W ∗T0) +
(
r − 1

2
σ2
)
(T − T0).

Suppose first that t ∈ [0, T0]. AsW ∗T−W ∗T0 is independent of Ft (sinceW
∗ is a Q∗-Brownian

motion and t ≤ T0) and has expectation 0 under Q∗,

Vt = EQ∗

[
H̃/S̃0

T

∣∣∣Ft
]

= e−rTEQ∗

[
σ(W ∗T −W ∗T0) +

(
r − 1

2
σ2
)
(T − T0)

∣∣∣∣Ft
]

= e−rT
(
r − 1

2
σ2
)
(T − T0), t ∈ [0, T0]. (5)

Now, suppose that t ∈ (T0, T ]. Using (4), we obtain

H̃ = log
S̃1
T

S̃1
T0

= log
S̃1
T

S̃1
t

+ log
S̃1
t

S̃1
T0

= σ(W ∗T −W ∗t ) +
(
r − 1

2
σ2
)
(T − t) + log

S̃1
t

S̃1
t∧T0

.



With the same arguments as above,

Vt = EQ∗

[
H̃/S̃0

T

∣∣∣Ft
]

= e−rTEQ∗

[
σ(W ∗T −W ∗t ) +

(
r − 1

2
σ2
)
(T − t) + log

S̃1
t

S̃1
t∧T0

∣∣∣∣∣Ft
]

= e−rT

(
(
r − 1

2
σ2
)
(T − t) + log

S̃1
t

S̃1
t∧T0

)
, t ∈ (T0, T ]. (6)

In view of (5) and (6), we find that Ṽt = VtS̃
0
t = Vte

rt = ṽ(t, S̃1
t , S̃

1
t∧T0) where

ṽ(t, x, y) := e−r(T−t)
((
r − 1

2
σ2
)
(T −max(t, T0)) + log

x

y

)
, t ∈ [0, T ], x, y ∈ (0,∞).

(d) (2.5 points) From the lecture notes we know that S1
t = S1

0 exp
(
σW ∗t − 1

2σ
2t
)
and S̃0

t =
exp(rt) for t ∈ [0, T ]. As a result,

H̃0 = log
S̃1
T

S̃1
0

= log
S1
T S̃

0
T

S1
0

= σW ∗T +

(
r − 1

2
σ2
)
T,

and hence

Vt = EQ∗

[
H̃0/S̃0

T

∣∣∣Ft
]

= e−rTEQ∗

[
σW ∗T +

(
r − 1

2
σ2
)
T

∣∣∣∣Ft
]

= e−rT
(
σW ∗t +

(
r − 1

2
σ2
)
T

)

= e−rT
(

log
S1
t

S1
0

+ rT − 1

2
σ2(T − t)

)
, t ∈ [0, T ].

We can thus write Vt = v(t, S1
t ) where v(t, x) = e−rT

(
log x

S1
0

+ rT − 1
2σ

2(T − t)
)
, for

t ∈ [0, T ] and x > 0.
By definition of V and Itô’s formula, H0 = VT = v(T, S1

T ) and for all t ∈ [0, T ]

Vt = v(t, S1
t ) = v(0, S1

0) +

∫ t

0

∂v

∂x
(u, S1

u) dS1
u P -a.s.; (7)

note that the finite variation terms must vanish since V and S1 are continuous (Q∗,F)-
martingales by construction. In particular, the stochastic integral in (7) is a (Q∗,F)-
martingale. We can thus set

V0 := v(0, S1
0) = e−rT

(
r − 1

2
σ2
)
T,

ϑt :=
∂v

∂x
(t, S1

t ) = e−rT
1

S1
t

.

As ϑ is continuous and adapted, it is predictable and locally bounded.


