Question 1

The correct answers are:
(a) (2)
(b) (1)
(c) (2)
(d) (3)
(e) (2)
(f) (1)
(g) (2)
(h) (1)

Question 2

(a) Any probability measure \mathbb{Q} equivalent to \mathbb{P} on \mathcal{F}_{2} can be described by

$$
\begin{equation*}
\mathbb{Q}\left[\left\{\left(x_{1}, x_{2}\right)\right\}\right]:=q_{x_{1}} q_{x_{1}, x_{2}}, \tag{1}
\end{equation*}
$$

where $q_{x_{1}}, q_{x_{1}, x_{2}}$ are in $(0,1)$ and satisfy $\sum_{x_{1} \in\{1,2\}} q_{x_{1}}=1, \sum_{x_{2} \in\{1,2,3\}} q_{1, x_{2}}=1$ and $\sum_{x_{2} \in\{1,2\}} q_{2, x_{2}}=1$. Next, since \mathcal{F}_{0} is trivial, $\mathcal{F}_{1}=\sigma\left(S_{1}^{1}\right)$ and S_{1}^{1} only takes two values, S^{1} is a \mathbb{Q}-martingale if and only if

$$
\mathbb{E}_{\mathbb{Q}}\left[S_{1}^{1}\right]=100, \quad \mathbb{E}_{\mathbb{Q}}\left[S_{2}^{1} \mid S_{1}^{1}=200\right]=200 \quad \text { and } \quad \mathbb{E}_{\mathbb{Q}}\left[S_{2}^{1} \mid S_{1}^{1}=50\right]=50
$$

Thus, $q_{1}, q_{2}, q_{1,1}, q_{1,2}, q_{1,3}, q_{2,1}, q_{2,2} \in(0,1)$ define an equivalent martingale measure for S^{1} if and only if they satisfy the three systems of equations

$$
\begin{align*}
\begin{cases}q_{1}+q_{2} & =1 \\
50 q_{1}+200 q_{2} & =100\end{cases} \tag{I}\\
\begin{cases}q_{2,1}+q_{2,2} & =1 \\
100 q_{2,1}+300 q_{2,2} & =200\end{cases} \tag{II}\\
\begin{cases}q_{1,1}+q_{1,2}+q_{1,3} & =1 \\
30 q_{1,1}+50 q_{1,2}+70 q_{1,3} & =50\end{cases} \tag{III}
\end{align*}
$$

It is straightforward to check that the solution to (I) and (II) is given by

$$
\begin{equation*}
q_{1}=\frac{2}{3}, \quad q_{2}=\frac{1}{3} \quad \text { and } \quad q_{2,1}=\frac{1}{2}, \quad q_{2,2}=\frac{1}{2} \tag{2}
\end{equation*}
$$

Moreover, (III) is equivalent to

$$
\begin{cases}q_{1,1}+q_{1,2}+q_{1,3} & =1 \tag{III'}\\ -q_{1,1}+q_{1,3} & =0\end{cases}
$$

Recalling that $q_{1,1}, q_{1,2}, q_{1,3} \in(0,1)$ shows that the solution to (III') is given by

$$
\begin{equation*}
q_{1,1}=\rho, \quad q_{1,2}=1-2 \rho, \quad q_{1,3}=\rho, \quad \rho \in(0,1 / 2) \tag{3}
\end{equation*}
$$

Thus, $\mathbb{P}_{e}\left(S^{1}\right)=\left\{\mathbb{Q}^{\rho}: \rho \in(0,1 / 2)\right\}$, where $\mathbb{Q}^{\rho}\left[\left\{\left(x_{1}, x_{2}\right)\right\}\right]=q_{x_{1}}^{\rho} q_{x_{1}, x_{2}}^{\rho}$ with

$$
\begin{equation*}
q_{1}^{\rho}=\frac{2}{3}, \quad q_{2}^{\rho}=\frac{1}{3}, \quad q_{1,1}^{\rho}=\rho, \quad q_{1,2}^{\rho}=1-2 \rho, \quad q_{1,3}^{\rho}=\rho \quad \text { and } \quad q_{2,1}^{\rho}=\frac{1}{2}, \quad q_{2,2}^{\rho}=\frac{1}{2} \tag{4}
\end{equation*}
$$

Because $\mathbb{P}_{e}\left(S^{1}\right) \neq \emptyset$, we conclude that the market is free of arbitrage.
(b) Since the strike price K is greater than or equal to 70 and less than 300 , the payoff from the call option is not zero if and only if the price of S^{1} has increased in the first step, i.e., on the set $\left\{S_{1}^{1}=200\right\}$.
Working backwards through the tree, i.e. starting from $k=2$, we obtain the values of the call option for $k=1$ and $k=0$ as

$$
\begin{array}{rl}
V^{C^{K}}: \frac{1}{6}\left(300-K+(100-K)^{+}\right) \\
& 0 \xrightarrow{\frac{1}{2}(300-K)+\frac{1}{2}(100-K)^{+}} 300-K \\
& 0 \\
0 & 0
\end{array}
$$

To calculate the replication strategy $\vartheta_{k}, k=1,2$, we use Δ-hedging $\Delta V_{k}^{C^{K}}=\vartheta_{k} \Delta S_{k}^{1}$, which gives

$$
\vartheta_{k}=\frac{V_{k}^{C^{K}}-V_{k-1}^{C^{K}}}{S_{k}^{1}-S_{k-1}^{1}}
$$

Hence, we get that the initial capital is $v_{0}=\frac{1}{6}\left(300-K+(100-K)^{+}\right), \vartheta_{0}=0$,

$$
\begin{aligned}
\vartheta_{1} & =\frac{\left(\frac{1}{2}-\frac{1}{6}\right)\left(300-K+(100-K)^{+}\right)}{200-100} \\
& =\frac{300-K+(100-K)^{+}}{300} \\
& =\frac{200-K}{150} 1_{\{70 \leq K \leq 100\}}+\frac{300-K}{300} 1_{\{K>100\}}
\end{aligned}
$$

and

$$
\begin{aligned}
\vartheta_{2} & =\frac{300-K-(100-K)^{+}}{200} 1_{\left\{S_{1}^{2}=200\right\}} \\
& =1_{\left\{S_{1}^{2}=200,70 \leq K \leq 100\right\}}+\frac{300-K}{200} 1_{\left\{S_{1}^{2}=200, K>100\right\}}
\end{aligned}
$$

and the holdings on the bank account are determined by the relation $\varphi_{k}^{0}=V_{k}^{C^{K}}-\vartheta_{k} S_{k}^{1}$, $k=1,2$.
(c) The call option is not attainable for $50 \leq K<70$. Indeed, fix $0<\rho<1 / 2$ in the parametrization of the EMM \mathbb{Q}^{ρ} in (3). Then, similarly as in (b), we solve

and obtain

$$
\begin{equation*}
\mathbb{E}_{\mathbb{Q}^{\rho}}\left[C^{K}\right]=V_{0}^{C^{K}, \mathbb{Q}^{\rho}}=\frac{200-K}{3}+\rho \frac{140-2 K}{3}, K \in[50,70) \tag{5}
\end{equation*}
$$

The mapping $\rho \mapsto \mathbb{E}_{\mathbb{Q}^{\rho}}\left[C^{K}\right], 0<\rho<1 / 2$, is non-constant. This implies that the payoff C^{K} is not attainable for the strike price $50 \leq K<70$ (Theorem 1.2.3 on p. 49 in the lecture notes).
(d) By put-call parity,

$$
S_{2}^{1}-K=\left(S_{2}^{1}-K\right)^{+}-\left(K-S_{2}^{1}\right)^{+}
$$

the put option P^{K} is attainable precisely for those values of the strike price $50 \leq K<300$ for which the call C^{K} is attainable. So, the put option is attainable for $70 \leq K<300$ and not attainable for $50 \leq K<70$.

Question 3

(a) It clearly suffices to show that for all $k=1, \ldots, T-1$, we have

$$
\begin{equation*}
E_{Q}\left[\frac{\widetilde{C}_{k+1}^{E u}}{\widetilde{S}_{k+1}^{0}}\right] \geq E_{Q}\left[\frac{\widetilde{C}_{k}^{E u}}{\widetilde{S}_{k}^{0}}\right] \tag{6}
\end{equation*}
$$

Fix $k \in\{1, \ldots, T-1\}$. Using the tower property of conditional expectations, Jensen's inequality for conditional expectations (for the convex function $x \mapsto x^{+}$), the fact that S^{1} is a Q-martingale and $r \geq 0$, we get

$$
\begin{aligned}
E_{Q}\left[\frac{\widetilde{C}_{k+1}^{E u}}{\widetilde{S}_{k+1}^{0}}\right] & =E_{Q}\left[\left(S_{k+1}^{1}-\frac{\widetilde{K}}{(1+r)^{k+1}}\right)^{+}\right] \\
& =E_{Q}\left[E_{Q}\left[\left.\left(S_{k+1}^{1}-\frac{\widetilde{K}}{(1+r)^{k+1}}\right)^{+} \right\rvert\, \mathcal{F}_{k}\right]\right] \\
& \geq E_{Q}\left[\left(E_{Q}\left[\left.S_{k+1}^{1}-\frac{\widetilde{K}}{(1+r)^{k+1}} \right\rvert\, \mathcal{F}_{k}\right]\right)^{+}\right] \\
& =E_{Q}\left[\left(S_{k}^{1}-\frac{\widetilde{K}}{(1+r)^{k+1}}\right)^{+}\right] \\
& \geq E_{Q}\left[\left(S_{k}^{1}-\frac{\widetilde{K}}{(1+r)^{k}}\right)^{+}\right] \\
& =E_{Q}\left[\frac{\widetilde{C}_{k}^{E u}}{\widetilde{S}_{k}^{0}}\right]
\end{aligned}
$$

(b) Since the function $x \mapsto x^{+}$is convex, we have for $k=1, \ldots, T$ that

$$
\begin{align*}
\widetilde{C}_{k}^{A s} & =\left(\frac{1}{k} \sum_{j=1}^{k} \widetilde{S}_{j}^{1}-\widetilde{K}\right)^{+}=\left(\sum_{j=1}^{k} \frac{1}{k}\left(\widetilde{S}_{j}^{1}-\widetilde{K}\right)\right)^{+} \\
& \leq \sum_{j=1}^{k} \frac{1}{k}\left(\widetilde{S}_{j}^{1}-\widetilde{K}\right)^{+}=\frac{1}{k} \sum_{j=1}^{k} \widetilde{C}_{j}^{E u} \tag{7}
\end{align*}
$$

By linearity and monotonicity of expectation and since $r \geq 0$, we get

$$
\begin{align*}
E_{Q}\left[\frac{\widetilde{C}_{k}^{A s}}{\widetilde{S}_{k}^{0}}\right] & =E_{Q}\left[\frac{\widetilde{C}_{k}^{A s}}{(1+r)^{k}}\right] \leq \frac{1}{k} \sum_{j=1}^{k} E_{Q}\left[\frac{\widetilde{C}_{j}^{E u}}{(1+r)^{k}}\right] \\
& \leq \frac{1}{k} \sum_{j=1}^{k} E_{Q}\left[\frac{\widetilde{C}_{j}^{E u}}{(1+r)^{j}}\right]=\frac{1}{k} \sum_{j=1}^{k} E_{Q}\left[\frac{\widetilde{C}_{j}^{E u}}{\widetilde{S}_{j}^{0}}\right] \tag{8}
\end{align*}
$$

(c) Putting the results of (a) and (b) together yields for $k=1, \ldots, T$ that

$$
\begin{equation*}
E_{Q}\left[\frac{\widetilde{C}_{k}^{A s}}{\widetilde{S}_{k}^{0}}\right] \leq \frac{1}{k} \sum_{j=1}^{k} E_{Q}\left[\frac{\widetilde{C}_{j}^{E u}}{\widetilde{S}_{j}^{0}}\right] \leq \frac{1}{k} \sum_{j=1}^{k} E_{Q}\left[\frac{\widetilde{C}_{k}^{E u}}{\widetilde{S}_{k}^{0}}\right]=E_{Q}\left[\frac{\widetilde{C}_{k}^{E u}}{\widetilde{S}_{k}^{0}}\right] \tag{9}
\end{equation*}
$$

(d) We have

$$
\begin{aligned}
E_{Q}\left[\left.\frac{\widetilde{C}_{k+1}^{l b}}{\widetilde{S}_{k+1}^{0}} \right\rvert\, \mathcal{F}_{k}\right] & =E_{Q}\left[\left.\frac{\left(\max _{j \leq k+1} \widetilde{S}_{j}^{1}-\widetilde{K}\right)^{+}}{(1+r)^{k+1}} \right\rvert\, \mathcal{F}_{k}\right] \\
& \geq \frac{\left(E_{Q}\left[\max _{j \leq k+1} \widetilde{S}_{j}^{1} \mid \mathcal{F}_{k}\right]-\widetilde{K}\right)^{+}}{(1+r)^{k+1}} \\
& \geq \frac{\left(\max _{j \leq k} \widetilde{S}_{j}^{1}-\widetilde{K}\right)^{+}}{(1+r)^{k+1}} \\
& \geq \frac{\left(\max _{j \leq k} \widetilde{S}_{j}^{1}-\widetilde{K}\right)^{+}}{(1+r)^{k}} \\
& =\frac{\widetilde{C}_{k}^{l b}}{\widetilde{S}_{k}^{0}}
\end{aligned}
$$

where the first inequality is Jensen's inequality for the conditional expectation, the second follows from the fact that $\max _{j \leq k+1} \widetilde{S}_{j}^{1}=\widetilde{S}_{k+1}^{1} \vee \max _{j \leq k} \widetilde{S}_{j}^{1}$ and the last from the fact that $r \geq 0$. So, $\left(\widetilde{C}_{k}^{l b} / \widetilde{S}_{k}^{0}\right)_{k=1, \ldots, T}$ is a Q-submartingale.
(e) Let us denote the process $\widetilde{C}_{k}^{E u}=\left(\widetilde{S}_{k}^{1}-\widetilde{K}\right)^{+}, k=1, \ldots, T$, by $X=\left(X_{k}\right)_{k=1, \ldots, T}$ and the process $\widetilde{C}_{k}^{l b}=\left(\max _{j \leq k} \widetilde{S}_{j}^{1}-\widetilde{K}\right)^{+}=\max _{j \leq k}\left(\widetilde{S}_{j}^{1}-\widetilde{K}\right)^{+}=\max _{j \leq k} X_{k}, k=1, \ldots, T$, by $X^{*}=\left(X_{k}^{*}\right)_{k=1, \ldots, T}$. Repeating the argument for (a) with conditional expectations given \mathcal{F}_{k} shows that X is a non-negative Q-submartingale, and repeating the argument in (d) with $r=0$ shows that X^{*} is a non-negative Q-submartingale. The stopping time τ can now be written as

$$
\tau=\inf \left\{k \in\{1, \ldots, T\}: X_{k}^{*} \geq M\right\} \wedge T
$$

Moreover, we have

$$
X_{\tau} \geq M
$$

on $A:=\left\{X_{T}^{*} \geq M\right\}$ and

$$
\tau=T
$$

on $\Omega \backslash A=\left\{X_{T}^{*}<M\right\}$. Since $\tau \leq T$, by the (optional) stopping/sampling theorem, we get

$$
E_{Q}\left[X_{T} \mid \mathcal{F}_{\tau}\right] \geq X_{\tau}=X_{\tau} 1_{A}+X_{\tau} 1_{\Omega \backslash A} \geq M 1_{A}
$$

Taking Q-expectations on both sides, we get

$$
Q[A] \leq \frac{1}{M} E_{Q}\left[X_{T}\right],
$$

i.e.,

$$
Q\left[\widetilde{C}_{T}^{l b} \geq M\right] \leq \frac{1}{M} E_{Q}\left[\widetilde{C}_{T}^{E u}\right]
$$

as claimed.
(f) We have

$$
H^{2}(\omega)=H(\omega) \forall \omega \in \Omega
$$

if and only if

$$
H(\omega)(1-H(\omega))=0 \forall \omega \in \Omega .
$$

So, H takes only the values 0 and 1 and is \mathcal{F}_{T}-measurable, so

$$
H=1_{F}=: H^{F}
$$

for some $F \in \mathcal{F}_{T}$. There are exactly 2^{N} such options and since $r=0$, their price under Q is equal to the Q-expectation

$$
E_{Q}\left[H^{F}\right]=Q[F]
$$

Question 4

(a) By Itô's formula,

$$
h\left(W_{t}\right)=h\left(W_{0}\right)+\int_{0}^{t} h^{\prime}\left(W_{s}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} h^{\prime \prime}\left(W_{s}\right) d s
$$

i.e.,

$$
\int_{0}^{t} h^{\prime}\left(W_{s}\right) d W_{s}=h\left(W_{t}\right)-h\left(W_{0}\right)-\frac{1}{2} \int_{0}^{t} h^{\prime \prime}\left(W_{s}\right) d s
$$

for any C^{2}-function $h: \mathbb{R} \rightarrow \mathbb{R}$. We want to find a function h whose derivative $h^{\prime}(x)$ is $x e^{x}$, so we pick a candidate $h(x)=x e^{x}-e^{x}+c$, where c is a constant. For this particular choice of h, we have $h\left(W_{0}\right)=h(0)=-1+c, h^{\prime}(x)=x e^{x}$ and $h^{\prime \prime}(x)=e^{x}+x e^{x}=e^{x}(1+x)$, so we pick $f(x)=h(x)-h(0)=x e^{x}-e^{x}+1$ and $g(x)=-\frac{1}{2} h^{\prime \prime}(x)=-\frac{1}{2} e^{x}(1+x)$. We return to Itô's formula to verify that

$$
\begin{aligned}
\int_{0}^{t} W_{s} e^{W_{s}} d W_{s} & =W_{t} e^{W_{t}}-e^{W_{t}}+1-\frac{1}{2} \int_{0}^{t} e^{W_{s}}\left(1+W_{s}\right) d s \\
& =f\left(W_{t}\right)+\int_{0}^{t} g\left(W_{s}\right) d s
\end{aligned}
$$

(b) We have $S=\mathcal{E}(\sigma W+\mu t)$, so $S>0$ and $|S|^{3}=S^{3}$. Since $x \mapsto x^{3}$ is in C^{2}, we may compute, by Itô's formula,

$$
d Y_{t}=d S_{t}^{3}=3 S_{t}^{2} d S_{t}+\frac{1}{2} 6 S_{t} d\langle S\rangle_{t}
$$

where

$$
d\langle S\rangle_{t}=\sigma^{2} S_{t}^{2} d\langle W\rangle_{t}=\sigma^{2} S_{t}^{2} d t
$$

so that

$$
\begin{aligned}
d Y_{t} & =3 \mu S_{t}^{3} d t+3 \sigma S_{t}^{3} d W_{t}+3 \sigma^{2} S_{t}^{3} d t \\
& =3 \sigma Y_{t} d W_{t}+3\left(\mu+\sigma^{2}\right) Y_{t} d t \\
& =Y_{t}\left(3 \sigma d W_{t}+3\left(\mu+\sigma^{2}\right) d t\right),
\end{aligned}
$$

i.e., $Y=\mathcal{E}\left(3 \sigma W+3\left(\mu+\sigma^{2}\right) t\right)$.
(c) Let us try to find a measure Q which admits a continuous density process $Z=\left(Z_{t}\right)_{t \in[0, T]}$ of the form

$$
Z_{t}=\mathcal{E}\left(-\int \nu_{s} d W_{s}\right)_{t}
$$

for ν in $L_{l o c}^{2}(W)$. Then, by Girsanov's theorem (lecture notes Theorem 6.2.3), given a P-Brownian motion W, the process \widetilde{W} given as

$$
\widetilde{W}_{t}=W_{t}-\left\langle\int \nu_{s} d W_{s}, W\right\rangle_{t}=W_{t}-\int_{0}^{t} \nu_{s} d s, t \in[0, T]
$$

is a Q-Brownian motion. We want

$$
X_{t}=\widetilde{W}_{t}
$$

for all $t \in[0, T]$, and this we have for ν for which

$$
\int_{0}^{t} \nu_{s} d s=t^{3}-t, t \in[0, T]
$$

i.e.,

$$
\nu_{t}=3 t^{2}-1, t \in[0, T],
$$

which is apparently in $L_{\text {loc }}^{2}(W)$. We may now explicitly compute the density process $Z=\left(Z_{t}\right)_{t \in[0, T]}$ as

$$
\begin{aligned}
Z_{t} & =\mathcal{E}\left(-\int \nu_{s} d W_{s}\right)_{t} \\
& =\exp \left(-\int_{0}^{t} \nu_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} \nu_{s}^{2} d s\right) \\
& =\exp \left(-\int_{0}^{t}\left(3 s^{2}-1\right) d W_{s}-\frac{1}{2} \int_{0}^{t}\left(3 s^{2}-1\right)^{2} d s\right) \\
& =\exp \left(-3 \int_{0}^{t} s^{2} d W_{s}+W_{t}-\frac{9}{10} t^{5}+t^{3}-\frac{1}{2} t\right)
\end{aligned}
$$

and we see that the process Z is indeed continuous. The Radon-Nikodým derivative $\frac{d Q}{d P}$ is then obtained as

$$
\frac{d Q}{d P}=Z_{T}=\exp \left(-3 \int_{0}^{T} s^{2} d W_{s}+W_{T}-\frac{9}{10} T^{5}+T^{3}-\frac{1}{2} T\right)
$$

which uniquely characterizes the measure Q as

$$
Q[F]=\int_{F} Z_{T} d P, F \in \mathcal{F}_{T}
$$

Question 5

(a) Let W^{Q} denote the Q-Brownian motion given by

$$
W_{t}^{Q}=W_{t}+\frac{\mu-r}{\sigma} t, t \in[0, T]
$$

For the discounted stock price process

$$
S_{t}=S_{0} \exp \left(\sigma W_{t}+\left(\mu-r-\frac{1}{2} \sigma^{2}\right) t\right)=S_{0} \exp \left(\sigma W_{t}^{Q}-\frac{1}{2} \sigma^{2} t\right)
$$

we obtain by Itô's formula the dynamics under measure P as

$$
d S_{t}=S_{t}\left((\mu-r) d t+\sigma d W_{t}\right)=\sigma S_{t}\left(\frac{\mu-r}{\sigma} d t+d W_{t}\right)
$$

So, under the measure Q, we have

$$
d S_{t}=\sigma S_{t} d W_{t}^{Q}
$$

i.e.,

$$
S_{t}=S_{0} \exp \left(\sigma W_{t}^{Q}-\frac{1}{2} \sigma^{2} t\right)
$$

So,

$$
\begin{aligned}
1 / S_{t} & =\frac{1}{S_{0}} \exp \left(-\sigma W_{t}^{Q}+\frac{1}{2} \sigma^{2} t\right) \\
& =\frac{1}{S_{0}} \exp \left(-\sigma W_{t}^{Q}-\frac{1}{2} \sigma^{2} t+\sigma^{2} t\right)
\end{aligned}
$$

so that $1 / S=\frac{1}{S_{0}} \mathcal{E}\left(-\sigma W^{Q}+\sigma^{2} t\right)$ satisfies

$$
d\left(\frac{1}{S_{t}}\right)=\frac{1}{S_{t}}\left(\sigma^{2} d t-\sigma d W_{t}^{Q}\right)
$$

(b) We have $\log \frac{S_{t}}{S_{0}} \sim \mathcal{N}\left(\left(\mu-r-\frac{1}{2} \sigma\right) t, \sigma^{2} t\right)$, so by the fact that $\log \frac{S_{t}}{S_{0}}=-\log \frac{S_{0}}{S_{t}}$, we have $\log \frac{S_{0}}{S_{t}} \sim \mathcal{N}\left(\left(\frac{1}{2} \sigma-\mu+r\right) t, \sigma^{2} t\right)$. In particular, we conclude that the adapted process $1 / S$ is integrable. It is apparent that $1 / S>0$, and because the function $1 / x$ is convex for $x>0$, we get by Jensen's inequality that

$$
E_{Q}\left[1 / S_{t} \mid \mathcal{F}_{s}\right] \geq 1 / E_{Q}\left[S_{t} \mid \mathcal{F}_{s}\right]=1 / S_{s}
$$

where the equality on the right follows by the Q-martingale property of S. Indeed, the process S is a Q-martingale (see Proposition 4.2.2. in the lecture notes). Thus, we have shown that $1 / S$ is a Q-submartingale.
(c) We note that $g\left(S_{T}\right)=\sigma W_{T}^{Q}$. Indeed,

$$
\log \frac{S_{T}}{S_{0}}+\frac{1}{2} \sigma^{2} T=\sigma W_{T}^{Q}
$$

We have

$$
\sigma W_{T}^{Q}=\sigma W_{0}^{Q}+\int_{0}^{T} \sigma d W_{u}^{Q}=0+\int_{0}^{T} S_{u}^{-1} d S_{u}
$$

so that the self-financing strategy whose initial capital is $V_{0}=0$ and which at $0 \leq t \leq T$ holds $\vartheta_{t}=S_{t}^{-1}$ shares of stock and $\varphi_{t}^{0}=V_{t}-\vartheta_{t} S_{t}=V_{t}-1$ units of cash on the bank account replicates the payoff $g\left(S_{T}\right)$. Here,

$$
V_{t}=V_{0}+\int_{0}^{t} \vartheta_{u} d S_{u}=\int_{0}^{t} S_{u}^{-1} d S_{u}=\sigma W_{t}^{Q}=\log \frac{S_{t}}{S_{0}}+\frac{1}{2} \sigma^{2} t
$$

