
Question 1

The correct answers are:

(a) (2)

(b) (1)

(c) (2)

(d) (3)

(e) (2)

(f) (1)

(g) (2)

(h) (1)



Question 2

(a) Any probability measure Q equivalent to P on F2 can be described by

Q[{(x1, x2)}] := qx1qx1,x2 , (1)

where qx1 , qx1,x2 are in (0, 1) and satisfy
∑

x1∈{1,2} qx1 = 1,
∑

x2∈{1,2,3} q1,x2 = 1 and∑
x2∈{1,2} q2,x2 = 1. Next, since F0 is trivial, F1 = σ(S1

1) and S1
1 only takes two values, S1

is a Q-martingale if and only if

EQ[S1
1 ] = 100, EQ[S1

2 |S1
1 = 200] = 200 and EQ[S1

2 |S1
1 = 50] = 50.

Thus, q1, q2, q1,1, q1,2, q1,3, q2,1, q2,2 ∈ (0, 1) define an equivalent martingale measure for S1

if and only if they satisfy the three systems of equations{
q1 + q2 = 1,

50q1 + 200q2 = 100;
(I){

q2,1 + q2,2 = 1,

100q2,1 + 300q2,2 = 200;
(II){

q1,1 + q1,2 + q1,3 = 1,

30q1,1 + 50q1,2 + 70q1,3 = 50.
(III)

It is straightforward to check that the solution to (I) and (II) is given by

q1 =
2

3
, q2 =

1

3
and q2,1 =

1

2
, q2,2 =

1

2
. (2)

Moreover, (III) is equivalent to {
q1,1 + q1,2 + q1,3 = 1,

−q1,1 + q1,3 = 0.
(III’)

Recalling that q1,1, q1,2, q1,3 ∈ (0, 1) shows that the solution to (III’) is given by

q1,1 = ρ, q1,2 = 1− 2ρ, q1,3 = ρ, ρ ∈ (0, 1/2). (3)

Thus, Pe(S1) = {Qρ : ρ ∈ (0, 1/2)}, where Qρ[{(x1, x2)}] = qρx1q
ρ
x1,x2 with

qρ1 =
2

3
, qρ2 =

1

3
, qρ1,1 = ρ, qρ1,2 = 1− 2ρ, qρ1,3 = ρ and qρ2,1 =

1

2
, qρ2,2 =

1

2
. (4)

Because Pe(S1) 6= ∅, we conclude that the market is free of arbitrage.

(b) Since the strike price K is greater than or equal to 70 and less than 300, the payoff from
the call option is not zero if and only if the price of S1 has increased in the first step, i.e.,
on the set {S1

1 = 200}.
Working backwards through the tree, i.e. starting from k = 2, we obtain the values of the
call option for k = 1 and k = 0 as

V CK : 1
6(300−K + (100−K)+)

0

0

0

0

1
2(300−K) + 1

2(100−K)+

(100−K)+

300−K



To calculate the replication strategy ϑk, k = 1, 2, we use ∆-hedging ∆V CK

k = ϑk∆S
1
k ,

which gives

ϑk =
V CK

k − V CK

k−1

S1
k − S1

k−1

.

Hence, we get that the initial capital is v0 = 1
6(300−K + (100−K)+), ϑ0 = 0,

ϑ1 =
(1

2 −
1
6) (300−K + (100−K)+)

200− 100

=
300−K + (100−K)+

300

=
200−K

150
1{70≤K≤100} +

300−K
300

1{K>100},

and

ϑ2 =
300−K − (100−K)+

200
1{S2

1=200}

= 1{S2
1=200, 70≤K≤100} +

300−K
200

1{S2
1=200, K>100},

and the holdings on the bank account are determined by the relation ϕ0
k = V CK

k − ϑkS1
k ,

k = 1, 2.

(c) The call option is not attainable for 50 ≤ K < 70. Indeed, fix 0 < ρ < 1/2 in the
parametrization of the EMM Qρ in (3). Then, similarly as in (b), we solve

V CK : 200−K
3 + ρ140−2K

3

ρ(70−K)

0

0

70−K

200−K
100−K

300−K

and obtain

EQρ [C
K ] = V CK ,Qρ

0 =
200−K

3
+ ρ

140− 2K

3
, K ∈ [50, 70). (5)

The mapping ρ 7→ EQρ [C
K ], 0 < ρ < 1/2, is non-constant. This implies that the payoff

CK is not attainable for the strike price 50 ≤ K < 70 (Theorem 1.2.3 on p. 49 in the
lecture notes).

(d) By put-call parity,
S1

2 −K = (S1
2 −K)+ − (K − S1

2)+,

the put option PK is attainable precisely for those values of the strike price 50 ≤ K < 300
for which the call CK is attainable. So, the put option is attainable for 70 ≤ K < 300 and
not attainable for 50 ≤ K < 70.



Question 3

(a) It clearly suffices to show that for all k = 1, . . ., T − 1, we have

EQ

[
C̃Euk+1

S̃0
k+1

]
≥ EQ

[
C̃Euk

S̃0
k

]
. (6)

Fix k ∈ {1, . . . , T − 1}. Using the tower property of conditional expectations, Jensen’s
inequality for conditional expectations (for the convex function x 7→ x+), the fact that S1

is a Q-martingale and r ≥ 0, we get

EQ

[
C̃Euk+1

S̃0
k+1

]
= EQ

[(
S1
k+1 −

K̃

(1 + r)k+1

)+]

= EQ

[
EQ

[(
S1
k+1 −

K̃

(1 + r)k+1

)+ ∣∣∣∣∣Fk
]]

≥ EQ

[(
EQ

[
S1
k+1 −

K̃

(1 + r)k+1

∣∣∣∣∣Fk
])+]

= EQ

[(
S1
k −

K̃

(1 + r)k+1

)+]

≥ EQ

[(
S1
k −

K̃

(1 + r)k

)+]

= EQ

[
C̃Euk

S̃0
k

]
.

(b) Since the function x 7→ x+ is convex, we have for k = 1, . . ., T that

C̃Ask =

1

k

k∑
j=1

S̃1
j − K̃

+

=

 k∑
j=1

1

k

(
S̃1
j − K̃

)+

≤
k∑
j=1

1

k

(
S̃1
j − K̃

)+
=

1

k

k∑
j=1

C̃Euj . (7)

By linearity and monotonicity of expectation and since r ≥ 0, we get

EQ

[
C̃Ask

S̃0
k

]
= EQ

[
C̃Ask

(1 + r)k

]
≤ 1

k

k∑
j=1

EQ

[
C̃Euj

(1 + r)k

]

≤ 1

k

k∑
j=1

EQ

[
C̃Euj

(1 + r)j

]
=

1

k

k∑
j=1

EQ

[
C̃Euj

S̃0
j

]
. (8)

(c) Putting the results of (a) and (b) together yields for k = 1, . . ., T that

EQ

[
C̃Ask

S̃0
k

]
≤ 1

k

k∑
j=1

EQ

[
C̃Euj

S̃0
j

]
≤ 1

k

k∑
j=1

EQ

[
C̃Euk

S̃0
k

]
= EQ

[
C̃Euk

S̃0
k

]
. (9)



(d) We have

EQ

[
C̃ lbk+1

S̃0
k+1

∣∣∣∣∣Fk
]

= EQ


(

maxj≤k+1 S̃
1
j − K̃

)+

(1 + r)k+1

∣∣∣∣∣Fk


≥

(
EQ

[
maxj≤k+1 S̃

1
j

∣∣∣Fk]− K̃)+

(1 + r)k+1

≥

(
maxj≤k S̃

1
j − K̃

)+

(1 + r)k+1

≥

(
maxj≤k S̃

1
j − K̃

)+

(1 + r)k

=
C̃ lbk

S̃0
k

,

where the first inequality is Jensen’s inequality for the conditional expectation, the second
follows from the fact that maxj≤k+1 S̃

1
j = S̃1

k+1∨maxj≤k S̃
1
j and the last from the fact that

r ≥ 0. So,
(
C̃ lbk /S̃

0
k

)
k=1,...,T

is a Q-submartingale.

(e) Let us denote the process C̃Euk = (S̃1
k − K̃)+, k = 1, . . . , T , by X = (Xk)k=1,...,T and the

process C̃ lbk = (maxj≤k S̃
1
j − K̃)+ = maxj≤k(S̃

1
j − K̃)+ = maxj≤kXk, k = 1, . . . , T , by

X∗ = (X∗k)k=1,...,T . Repeating the argument for (a) with conditional expectations given
Fk shows that X is a non-negative Q-submartingale, and repeating the argument in (d)
with r = 0 shows that X∗ is a non-negative Q-submartingale. The stopping time τ can
now be written as

τ = inf{k ∈ {1, . . . , T} : X∗k ≥M} ∧ T.

Moreover, we have
Xτ ≥M

on A := {X∗T ≥M} and
τ = T

on Ω\A = {X∗T < M}. Since τ ≤ T , by the (optional) stopping/sampling theorem, we get

EQ [XT | Fτ ] ≥ Xτ = Xτ1A +Xτ1Ω\A ≥M1A.

Taking Q-expectations on both sides, we get

Q[A] ≤ 1

M
EQ[XT ],

i.e.,

Q
[
C̃ lbT ≥M

]
≤ 1

M
EQ[C̃EuT ]

as claimed.

(f) We have
H2(ω) = H(ω) ∀ω ∈ Ω

if and only if
H(ω)(1−H(ω)) = 0 ∀ω ∈ Ω.



So, H takes only the values 0 and 1 and is FT -measurable, so

H = 1F =: HF

for some F ∈ FT . There are exactly 2N such options and since r = 0, their price under Q
is equal to the Q-expectation

EQ
[
HF
]

= Q[F ].



Question 4

(a) By Itô’s formula,

h(Wt) = h(W0) +

∫ t

0
h′(Ws)dWs +

1

2

∫ t

0
h′′(Ws)ds,

i.e., ∫ t

0
h′(Ws)dWs = h(Wt)− h(W0)− 1

2

∫ t

0
h′′(Ws)ds

for any C2-function h : R→ R. We want to find a function h whose derivative h′(x) is xex,
so we pick a candidate h(x) = xex−ex+c, where c is a constant. For this particular choice
of h, we have h(W0) = h(0) = −1 + c, h′(x) = xex and h′′(x) = ex + xex = ex(1 + x), so
we pick f(x) = h(x)−h(0) = xex− ex + 1 and g(x) = −1

2h
′′(x) = −1

2e
x(1 +x). We return

to Itô’s formula to verify that∫ t

0
Wse

WsdWs = Wte
Wt − eWt + 1− 1

2

∫ t

0
eWs (1 +Ws) ds

= f(Wt) +

∫ t

0
g(Ws)ds.

(b) We have S = E(σW + µt), so S > 0 and |S|3 = S3. Since x 7→ x3 is in C2, we may
compute, by Itô’s formula,

dYt = dS3
t = 3S2

t dSt +
1

2
6Std〈S〉t,

where
d〈S〉t = σ2S2

t d〈W 〉t = σ2S2
t dt

so that

dYt = 3µS3
t dt+ 3σS3

t dWt + 3σ2S3
t dt

= 3σYtdWt + 3(µ+ σ2)Ytdt

= Yt
(
3σdWt + 3(µ+ σ2)dt

)
,

i.e., Y = E(3σW + 3(µ+ σ2)t).

(c) Let us try to find a measure Q which admits a continuous density process Z = (Zt)t∈[0,T ]

of the form
Zt = E

(
−
∫
νsdWs

)
t

for ν in L2
loc(W ). Then, by Girsanov’s theorem (lecture notes Theorem 6.2.3), given a

P -Brownian motion W , the process W̃ given as

W̃t = Wt −
〈∫

νsdWs,W

〉
t

= Wt −
∫ t

0
νsds, t ∈ [0, T ],

is a Q-Brownian motion. We want
Xt = W̃t

for all t ∈ [0, T ], and this we have for ν for which∫ t

0
νsds = t3 − t, t ∈ [0, T ],



i.e.,
νt = 3t2 − 1, t ∈ [0, T ],

which is apparently in L2
loc(W ). We may now explicitly compute the density process

Z = (Zt)t∈[0,T ] as

Zt = E
(
−
∫
νsdWs

)
t

= exp

(
−
∫ t

0
νsdWs −

1

2

∫ t

0
ν2
sds

)
= exp

(
−
∫ t

0
(3s2 − 1)dWs −

1

2

∫ t

0
(3s2 − 1)2ds

)
= exp

(
−3

∫ t

0
s2dWs +Wt −

9

10
t5 + t3 − 1

2
t

)
and we see that the process Z is indeed continuous. The Radon–Nikodým derivative dQ

dP is
then obtained as

dQ

dP
= ZT = exp

(
−3

∫ T

0
s2dWs +WT −

9

10
T 5 + T 3 − 1

2
T

)
,

which uniquely characterizes the measure Q as

Q[F ] =

∫
F
ZTdP, F ∈ FT .



Question 5

(a) Let WQ denote the Q-Brownian motion given by

WQ
t = Wt +

µ− r
σ

t, t ∈ [0, T ].

For the discounted stock price process

St = S0 exp

(
σWt +

(
µ− r − 1

2
σ2

)
t

)
= S0 exp

(
σWQ

t −
1

2
σ2t

)
,

we obtain by Itô’s formula the dynamics under measure P as

dSt = St ((µ− r)dt+ σdWt) = σSt

(
µ− r
σ

dt+ dWt

)
.

So, under the measure Q, we have

dSt = σStdW
Q
t ,

i.e.,

St = S0 exp

(
σWQ

t −
1

2
σ2t

)
.

So,

1/St =
1

S0
exp

(
−σWQ

t +
1

2
σ2t

)
=

1

S0
exp

(
−σWQ

t −
1

2
σ2t+ σ2t

)
so that 1/S = 1

S0
E
(
−σWQ + σ2t

)
satisfies

d

(
1

St

)
=

1

St

(
σ2dt− σdWQ

t

)
.

(b) We have log St
S0
∼ N

(
(µ− r − 1

2σ)t, σ2t
)
, so by the fact that log St

S0
= − log S0

St
, we have

log S0
St
∼ N

(
(1

2σ − µ+ r)t, σ2t
)
. In particular, we conclude that the adapted process 1/S

is integrable. It is apparent that 1/S > 0, and because the function 1/x is convex for
x > 0, we get by Jensen’s inequality that

EQ [1/St | Fs] ≥ 1/EQ [St | Fs] = 1/Ss,

where the equality on the right follows by the Q-martingale property of S. Indeed, the
process S is a Q-martingale (see Proposition 4.2.2. in the lecture notes). Thus, we have
shown that 1/S is a Q-submartingale.

(c) We note that g(ST ) = σWQ
T . Indeed,

log
ST
S0

+
1

2
σ2T = σWQ

T .

We have

σWQ
T = σWQ

0 +

∫ T

0
σdWQ

u = 0 +

∫ T

0
S−1
u dSu,

so that the self-financing strategy whose initial capital is V0 = 0 and which at 0 ≤ t ≤ T
holds ϑt = S−1

t shares of stock and ϕ0
t = Vt − ϑtSt = Vt − 1 units of cash on the bank

account replicates the payoff g(ST ). Here,

Vt = V0 +

∫ t

0
ϑudSu =

∫ t

0
S−1
u dSu = σWQ

t = log
St
S0

+
1

2
σ2t.


