The correct answers are:

- (a) (2)
- (b) (2)
- (c) (1)
- (d) (3)
- (e) (3)
- (f) (2)
- (g) (1)
- (h) (3)

(a) We need to find real numbers q_u, q_m and q_d satisfying

$$q_u + q_m + q_d = 1,$$

$$q_u, q_m, q_d > 0,$$

$$200q_u + 100q_m + 50q_d = 100.$$
(1)

Setting $q_u = 1 - q_m - q_d$ and plugging this into the third equation in (1), we obtain after straightforward simplifications that $q_m = 1 - \frac{3}{2}q_d$. Parametrising $q_d = \lambda$ where $\lambda \in (0, 1)$ so that we satisfy the first and the second equation in (1), we obtain $q_m = 1 - \frac{3}{2}\lambda$. This gives us the condition $\lambda \in (0, \frac{2}{3})$ again so that the first and the second equation in (1) are satisfied. Plugging the expressions for q_m and q_d involving λ back into $q_u = 1 - q_m - q_d$, we obtain that $q_u = \frac{1}{2}\lambda$, which implies no additional restrictions on λ . Therefore, the set of all EMMs for S^1 is given by

$$\mathbb{P}_e(S^1) = \left\{ Q_\lambda \stackrel{\frown}{=} (q_{u,\lambda}, q_{m,\lambda}, q_{d,\lambda}) = \left(\frac{1}{2}\lambda, 1 - \frac{3}{2}\lambda, \lambda\right) : \lambda \in \left(0, \frac{2}{3}\right) \right\}$$

Two specific solutions are for instance given by the vectors $(\frac{1}{4}, \frac{1}{4}, \frac{1}{2})$ and $(\frac{1}{5}, \frac{2}{5}, \frac{2}{5})$ obtained for $\lambda = \frac{1}{2}$ and $\lambda = \frac{2}{5}$, respectively.

- (b) Let $||H||_{\infty} = \max_{i=1,2,3} H(\omega_i)$ denote the sup-norm of H. The self-financing strategy $\vartheta = 0$ and $V_0 = \alpha ||H||_{\infty}$ is clearly a superreplicating strategy for H for any $\alpha \ge 1$.
- (c) Because $V_1(\varphi) = V_0 + \vartheta(S_1^1 S_0^1)$, we need to solve

$$V_0 + 100\vartheta \ge 110,$$
$$V_0 \ge 10,$$
$$V_0 - 50\vartheta \ge 0$$

for $V_0, \vartheta \in \mathbb{R}$. Adding the first equation to twice the last one gives $3V_0 \ge 110$, which implies the middle inequality. We thus need to solve

$$V_0 + 100\vartheta = 110$$
$$V_0 - 50\vartheta = 0$$

to get $\vartheta = \frac{11}{15}$ and then $V_0 = 50\vartheta = \frac{110}{3}$. So $\pi(H) = \frac{110}{3}$.

(d) We need to find nonnegative numbers q_u^*, q_m^* and q_d^* satisfying

$$q_u^* + q_m^* + q_d^* = 1,$$

$$200q_u^* + 100q_m^* + 50q_d^* = 100,$$

$$110q_u^* + 10q_m^* = \frac{110}{3}.$$

Similarly to (a), the first two equations imply $q_m^* = 1 - 3q_u^*$ and $q_d^* = 2q_u^*$. Plugging back into the third equation, we get $q_u^* = \frac{1}{3}$, $q_m^* = 0$ and $q_d^* = \frac{2}{3}$. The measure Q^* is therefore not equivalent to P since $q_m^* = 0$.

(a) Adaptedness of X follows from the fact that X is a local (P, \mathbb{F}) -martingale. Integrability is also clear since $|X_k| \leq Y_k \in L^1(P)$ for all $k \in \mathbb{N}_0$ by assumption. It therefore remains to show the martingale property.

Let $(\tau_n)_{n\in\mathbb{N}}$ be a localising sequence for X. The assumption $|X_j| \leq Y_k$ P-a.s. for all $0 \leq j \leq k$ and $Y_k \in L^1(P)$ for all $k \in \mathbb{N}$ enables us to use the dominated convergence theorem to write for all $k \in \mathbb{N}$ that

$$E\left[X_{k} \mid \mathcal{F}_{k-1}\right] = E\left[\lim_{n \to \infty} X_{k \wedge \tau_{n}} \mid \mathcal{F}_{k-1}\right] = \lim_{n \to \infty} E\left[X_{k \wedge \tau_{n}} \mid \mathcal{F}_{k-1}\right] = \lim_{n \to \infty} X_{(k-1) \wedge \tau_{n}} = X_{k-1}.$$

The process X is therefore a true (P, \mathbb{F}) -martingale.

- (b) Define $Y = (Y_k)_{k \in \mathbb{N}_0}$ by $Y_k := \sum_{j=0}^k |X_j|$. The process Y is integrable by assumption and $|X_j| \le Y_k$ for all $0 \le j \le k$. The result thus follows by a direct application of (a).
- (c) Let $(\tau_n)_{n\in\mathbb{N}}$ be a localising sequence for X. First, we show that X is integrable. Fix a $k\geq 0$ and note that Fatou's lemma yields

$$E[X_k] = E\left[\lim_{n \to \infty} X_{k \wedge \tau_n}\right] \le \liminf_{n \to \infty} E[X_{k \wedge \tau_n}] = \lim_{n \to \infty} E[X_0] = E[|X_0|] < \infty.$$

It follows from (b) that X is a true (P, \mathbb{F}) -martingale.

(d) Define $\tau_n := \inf\{k \in \mathbb{N}_0 : |H_{k+1}| > n\}$ with $\inf \emptyset = +\infty$. Then τ_n is an \mathbb{F} -stopping time because H is \mathbb{F} -predictable; indeed,

$$\{\tau_n \le \ell\} = \bigcup_{k=0}^{\ell} \{|H_{k+1}| > n\} = \bigcup_{k=1}^{\ell+1} \{|H_k| > n\} \in \mathcal{F}_{\ell}$$

because each $\{|H_k| > n\} \in \mathcal{F}_{k-1} \subseteq \mathcal{F}_{\ell}$ for $k \leq \ell + 1$. Moreover, $\tau_n \uparrow \infty$ as $n \to \infty$ because H is real-valued, and for each n and k,

$$|H_k^{\tau_n}| = |H_{k \wedge \tau_n}| = |H_k| \mathbb{1}_{\{\tau_n \ge k\}} + |H_{\tau_n}| \mathbb{1}_{\{\tau_n < k\}} \le n$$

because $|H_j| \leq n$ for $j \leq \tau_n$ by the definition of τ_n . So H is locally bounded with the localising sequence $(\tau_n)_{n \in \mathbb{N}}$.

(a) We compute

$$\begin{aligned} \left\|\widetilde{N}_{-}\right\|_{L^{2}(W^{T})}^{2} &= E\left[\int_{0}^{\infty}\widetilde{N}_{t-}^{2}d\left[W^{T}\right]_{t}\right] = E\left[\int_{0}^{T}\widetilde{N}_{t-}^{2}dt\right] = E\left[\int_{0}^{T}\widetilde{N}_{t}^{2}dt\right] \\ &= \int_{0}^{T}E\left[\widetilde{N}_{t}^{2}\right]dt = \int_{0}^{T}\lambda tdt = \frac{\lambda}{2}T^{2}, \end{aligned}$$

$$(2)$$

where the third equality uses that $\tilde{N}_t = \tilde{N}_{t-}$ almost everywhere with respect to the Lebesgue measure on [0, T], the fourth uses Fubini's theorem and the fifth that $E[\tilde{N}_t^2] = \lambda t$ since the process $(\tilde{N}_t^2 - \lambda t)_{t\geq 0}$ is a (P, \mathbb{F}) -martingale, as shown in Exercise 9.2 (b) in the exercise sheets.

(b) Since $\widetilde{N}_-\in L^2(W^T)$ by (a), the process $\int\widetilde{N}_-dW$ is a square-integrable martingale on [0, T]. So

$$E\left[\int_0^T \widetilde{N}_{t-} dW_t\right] = 0.$$

This gives

$$\operatorname{Var}\left[\int_{0}^{T} \widetilde{N}_{t-} dW_{t}\right] = E\left[\left(\int_{0}^{T} \widetilde{N}_{t-} dW_{t}\right)^{2}\right] = E\left[\int_{0}^{T} \widetilde{N}_{t-}^{2} dt\right] = \frac{\lambda}{2}T^{2}.$$

The second equality uses Itô's isometry and the third uses (2).

(c) We know from from Exercise 9.2 (a) of the exercise sheets that \widetilde{N} is a (P, \mathbb{F}) -martingale. So if $W \in L^2(\widetilde{N})$ on [0, T], then M is a (P, \mathbb{F}) -martingale. We estimate

$$E\left[\int_0^T W_t^2 d\left[\widetilde{N}\right]_t\right] = E\left[\int_0^T W_t^2 dN_t\right] \le E\left[\int_0^T \left(\sup_{t\in[0,T]} W_t^2\right) dN_t\right] = E\left[N_T \sup_{t\in[0,T]} W_t^2\right],$$

where the first equality follows from Exercise 9.2 (b) in which it is shown that $[\tilde{N}]_t = N_t$. By the Cauchy–Schwarz inequality, it then follows that

$$E\left[N_T \sup_{t \in [0,T]} W_t^2\right] \le \left(E\left[N_T^2\right] E\left[\left(\sup_{t \in [0,T]} W_t^2\right)^2\right]\right)^{\frac{1}{2}} < \infty.$$

This is because all moments of the Poisson distribution are finite and because

$$\sup_{t \in [0,T]} W_t^2 = \sup_{t \in [0,T]} |W_t|^2 = \left(\sup_{t \in [0,T]} |W_t| \right)^2$$

and all moments of $\sup_{t \in [0,T]} |W_t|$ are finite as given in the hint. The second equality above follows from the fact that $\mathbb{R}_+ \ni x \mapsto x^2$ is an increasing function.

(d) Note that the process S is like N a pure jump process and of finite variation. Unlike N, the size of the k-th jump of S is given by W_k and is thus random. Therefore we know from the lecture that

$$[S]_t = \sum_{0 < s \le t} (\Delta S_s)^2 = \sum_{k=0}^{N_t} W_k^2.$$

(a) Applying Itô's formula to the continuous semimartingale $\tilde{S} = (\tilde{S}^0, \tilde{S}^1)$ and the C^2 -function f(x, y) := x/y on \mathbb{R}^2_{++} , we obtain that the *P*-dynamics of S^1 is given by

$$dS_t^1 = d\left(\frac{\widetilde{S}_t^1}{\widetilde{S}_t^0}\right) = \frac{1}{\widetilde{S}_t^0} d\widetilde{S}_t^1 - \frac{\widetilde{S}_t^1}{\left(\widetilde{S}_t^0\right)^2} d\widetilde{S}_t^0 = S_t^1\left((\mu - r)dt + \sigma dW_t\right).$$

Applying again Itô's formula to the continuous semimartingale S^1 and the C^2 -function f(x) := 1/x on \mathbb{R}_{++} leads to

$$d(1/S_t^1) = \frac{1}{S_t^1} dS_t^1((r - \mu + \sigma^2) dt - \sigma dW_t) = -\frac{1}{S_t^1} \sigma \left(dW_t - \frac{r - \mu + \sigma^2}{\sigma} dt \right) = -\frac{1}{S_t^1} d\widehat{W}_t,$$

where $\widehat{W}_t = W_t - \frac{r - \mu + \sigma^2}{\sigma} t$. Girsanov's theorem gives that

$$\widehat{W} = W - \int \frac{r - \mu + \sigma^2}{\sigma} ds = W_t - \left\langle \int \frac{r - \mu + \sigma^2}{\sigma} dW, W \right\rangle_t$$

is a (\hat{Q}, \mathbb{F}) -Brownian motion, where $\hat{Q} \approx P$ on \mathcal{F}_T is given via the Radon–Nikodým derivative

$$\frac{d\widehat{Q}}{dP} = \mathcal{E}\left(\int \frac{r-\mu+\sigma^2}{\sigma}dW\right)_T = \exp\left(\left(\frac{r-\mu+\sigma^2}{\sigma}\right)W_T - \frac{1}{2}\left(\frac{r-\mu+\sigma^2}{\sigma}\right)^2T\right).$$

(b) Expressing $dW_t = d\widehat{W}_t + \frac{r-\mu+\sigma^2}{\sigma}dt$ in terms of $d\widehat{W}_t$ and plugging back into the *P*-dynamics of \widetilde{S}^1 , we get that the \widehat{Q} -dynamics of the undiscounted stock process \widetilde{S}^1 is given by

$$d\widetilde{S}^{1} = \widetilde{S}^{1}\left((r+\sigma^{2})dt + \sigma d\widehat{W}_{t}\right).$$

Applying Itô's formula with the C^2 -function $g(x) = \log x$ on \mathbb{R}_{++} , we get

$$d\log \widetilde{S}_t^1 = (r + \sigma^2/2) dt + \sigma d\widehat{W}_t,$$

and hence

$$\log \widetilde{S}_T^1 = \log S_0^1 + \left(r + \sigma^2/2\right) T + \sigma \widehat{W}_T \sim \mathcal{N}\left(\log S_0^1 + \left(r + \sigma^2/2\right) T, \sigma^2 T\right).$$

(c) Bayes' formula gives

$$E_Q[H] = E_{\widehat{Q}}\left[\frac{dQ}{d\widehat{Q}}H\right].$$

To compute the Radon–Nikodým derivative $\frac{dQ}{d\hat{Q}}$, we recall from (a) and from the lecture that the Radon–Nikodým derivative of \hat{Q} (respectively Q) with respect to P is given by

$$\frac{d\widehat{Q}}{dP} = \exp\left(\left(\frac{r-\mu+\sigma^2}{\sigma}\right)W_T - \frac{1}{2}\left(\frac{r-\mu+\sigma^2}{\sigma}\right)^2T\right),\\ \frac{dQ}{dP} = \exp\left(\left(\frac{r-\mu}{\sigma}\right)W_T - \frac{1}{2}\left(\frac{r-\mu}{\sigma}\right)^2T\right).$$

The Radon–Nikodým derivative $\frac{dQ}{d\hat{Q}}$ is therefore given by

$$\frac{dQ}{d\hat{Q}} = 1/\exp\left(\sigma W_T + \left(\mu - r - \sigma^2/2\right)T\right) = S_0^1/S_T^1,$$

and hence

$$E_Q[H] = E_{\widehat{Q}}\left[\frac{dQ}{d\widehat{Q}}H\right] = E_{\widehat{Q}}\left[\frac{\widetilde{S}_T^0}{\widetilde{S}_T^1}S_0^1H\right] = \widetilde{S}_T^0S_0^1E_{\widehat{Q}}\left[\frac{H}{\widetilde{S}_T^1}\right].$$

(d) The discounted initial price of the option is given by the expectation of the discounted payoff under the EMM for S^1 , which in turn can be computed under the measure \hat{Q} as

$$\frac{\widetilde{V}_0}{\widetilde{S}_0^0} = E_Q \left[\frac{\widetilde{S}_T^1 \log \widetilde{S}_T^1}{\widetilde{S}_T^0} \right] = S_0^1 E_{\widehat{Q}} \left[\log \widetilde{S}_T^1 \right] = S_0^1 \left(\log S_0^1 + (r + \sigma^2/2)T \right),$$

where in the last equality we have used the result from (b).

(e) To avoid arbitrage opportunities, the pricing of any derivative must be done under the EMM Q under which

$$d\widetilde{S}_t^i = r\widetilde{S}_t^i dt + \sigma \widetilde{S}_t^i dW_t^{*,i}$$

for i = 1, 2, where $r \in \mathbb{R}$ is the risk-free rate of return. Despite having different drifts under P, the prices of the European call options on \tilde{S}^1 and \tilde{S}^2 therefore coincide. This is consistent with the observation that the Black–Scholes formula does not contain the drift parameter μ .