
Question 1

The correct answers are:

(a) (2)

(b) (2)

(c) (1)

(d) (3)

(e) (3)

(f) (2)

(g) (1)

(h) (3)



Question 2

(a) We need to find real numbers qu, qm and qd satisfying

qu + qm + qd = 1,

qu, qm, qd > 0,

200qu + 100qm + 50qd = 100.

(1)

Setting qu = 1− qm − qd and plugging this into the third equation in (1), we obtain after
straightforward simplifications that qm = 1 − 3

2qd. Parametrising qd = λ where λ ∈ (0, 1)

so that we satisfy the first and the second equation in (1), we obtain qm = 1 − 3
2λ. This

gives us the condition λ ∈
(
0, 23
)
again so that the first and the second equation in (1) are

satisfied. Plugging the expressions for qm and qd involving λ back into qu = 1 − qm − qd,
we obtain that qu = 1

2λ, which implies no additional restrictions on λ. Therefore, the set
of all EMMs for S1 is given by

Pe(S1) =

{
Qλ =̂ (qu,λ, qm,λ, qd,λ) =

(
1

2
λ, 1− 3

2
λ, λ

)
: λ ∈

(
0,

2

3

)}
.

Two specific solutions are for instance given by the vectors
(
1
4 ,

1
4 ,

1
2

)
and

(
1
5 ,

2
5 ,

2
5

)
obtained

for λ = 1
2 and λ = 2

5 , respectively.

(b) Let ‖H‖∞ = maxi=1,2,3H(ωi) denote the sup-norm of H. The self-financing strategy ϑ = 0
and V0 = α‖H‖∞ is clearly a superreplicating strategy for H for any α ≥ 1.

(c) Because V1(ϕ) = V0 + ϑ(S1
1 − S1

0), we need to solve

V0 + 100ϑ ≥ 110,

V0 ≥ 10,

V0 − 50ϑ ≥ 0

for V0, ϑ ∈ R. Adding the first equation to twice the last one gives 3V0 ≥ 110, which implies
the middle inequality. We thus need to solve

V0 + 100ϑ = 110,

V0 − 50ϑ = 0

to get ϑ = 11
15 and then V0 = 50ϑ = 110

3 . So π(H) = 110
3 .

(d) We need to find nonnegative numbers q∗u, q∗m and q∗d satisfying

q∗u + q∗m + q∗d = 1,

200q∗u + 100q∗m + 50q∗d = 100,

110q∗u + 10q∗m =
110

3
.

Similarly to (a), the first two equations imply q∗m = 1 − 3q∗u and q∗d = 2q∗u. Plugging back
into the third equation, we get q∗u = 1

3 , q
∗
m = 0 and q∗d = 2

3 . The measure Q∗ is therefore
not equivalent to P since q∗m = 0.



Question 3

(a) Adaptedness of X follows from the fact that X is a local (P,F)-martingale. Integrability
is also clear since |Xk| ≤ Yk ∈ L1(P ) for all k ∈ N0 by assumption. It therefore remains to
show the martingale property.
Let (τn)n∈N be a localising sequence for X. The assumption |Xj | ≤ Yk P -a.s. for all
0 ≤ j ≤ k and Yk ∈ L1(P ) for all k ∈ N enables us to use the dominated convergence
theorem to write for all k ∈ N that

E [Xk |Fk−1] = E
[

lim
n→∞

Xk∧τn

∣∣∣Fk−1] = lim
n→∞

E [Xk∧τn |Fk−1] = lim
n→∞

X(k−1)∧τn = Xk−1.

The process X is therefore a true (P,F)-martingale.

(b) Define Y = (Yk)k∈N0
by Yk :=

∑k
j=0 |Xj |. The process Y is integrable by assumption and

|Xj | ≤ Yk for all 0 ≤ j ≤ k. The result thus follows by a direct application of (a).

(c) Let (τn)n∈N be a localising sequence for X. First, we show that X is integrable. Fix a
k ≥ 0 and note that Fatou’s lemma yields

E [Xk] = E
[

lim
n→∞

Xk∧τn

]
≤ lim inf

n→∞
E [Xk∧τn ] = lim

n→∞
E [X0] = E [|X0|] <∞.

It follows from (b) that X is a true (P,F)-martingale.

(d) Define τn := inf{k ∈ N0 : |Hk+1| > n} with inf ∅ = +∞. Then τn is an F-stopping time
because H is F-predictable; indeed,

{τn ≤ `} =
⋃̀
k=0

{|Hk+1| > n} =
`+1⋃
k=1

{|Hk| > n} ∈ F`

because each {|Hk| > n} ∈ Fk−1 ⊆ F` for k ≤ `+ 1. Moreover, τn ↑ ∞ as n→∞ because
H is real-valued, and for each n and k,

|Hτn
k | = |Hk∧τn | = |Hk|1{τn≥k} + |Hτn |1{τn<k} ≤ n

because |Hj | ≤ n for j ≤ τn by the definition of τn. So H is locally bounded with the
localising sequence (τn)n∈N.



Question 4

(a) We compute

∥∥Ñ−∥∥2L2(WT )
= E

[∫ ∞
0

Ñ2
t−d
[
W T

]
t

]
= E

[∫ T

0
Ñ2
t−dt

]
= E

[∫ T

0
Ñ2
t dt

]
=

∫ T

0
E
[
Ñ2
t

]
dt =

∫ T

0
λtdt =

λ

2
T 2,

(2)

where the third equality uses that Ñt = Ñt− almost everywhere with respect to the
Lebesgue measure on [0, T ], the fourth uses Fubini’s theorem and the fifth that E

[
Ñ2
t

]
= λt

since the process
(
Ñ2
t − λt

)
t≥0 is a (P,F)-martingale, as shown in Exercise 9.2 (b) in the

exercise sheets.

(b) Since Ñ− ∈ L2(W T ) by (a), the process
∫
Ñ−dW is a square-integrable martingale on

[0, T ]. So

E

[∫ T

0
Ñt−dWt

]
= 0.

This gives

Var
[∫ T

0
Ñt−dWt

]
= E

[(∫ T

0
Ñt−dWt

)2
]

= E

[∫ T

0
Ñ2
t−dt

]
=
λ

2
T 2.

The second equality uses Itô’s isometry and the third uses (2).

(c) We know from from Exercise 9.2 (a) of the exercise sheets that Ñ is a (P,F)-martingale.
So if W ∈ L2(Ñ) on [0, T ], then M is a (P,F)-martingale. We estimate

E

[∫ T

0
W 2
t d
[
Ñ
]
t

]
= E

[∫ T

0
W 2
t dNt

]
≤ E

[∫ T

0

(
sup
t∈[0,T ]

W 2
t

)
dNt

]
= E

[
NT sup

t∈[0,T ]
W 2
t

]
,

where the first equality follows from Exercise 9.2 (b) in which it is shown that
[
Ñ
]
t

= Nt.
By the Cauchy–Schwarz inequality, it then follows that

E

[
NT sup

t∈[0,T ]
W 2
t

]
≤

(
E
[
N2
T

]
E

[(
sup
t∈[0,T ]

W 2
t

)2]) 1
2

<∞.

This is because all moments of the Poisson distribution are finite and because

sup
t∈[0,T ]

W 2
t = sup

t∈[0,T ]
|Wt|2 =

(
sup
t∈[0,T ]

|Wt|
)2

and all moments of supt∈[0,T ] |Wt| are finite as given in the hint. The second equality above
follows from the fact that R+ 3 x 7→ x2 is an increasing function.

(d) Note that the process S is like N a pure jump process and of finite variation. Unlike N ,
the size of the k-th jump of S is given by Wk and is thus random. Therefore we know from
the lecture that

[S]t =
∑

0<s≤t

(
∆Ss

)2
=

Nt∑
k=0

W 2
k .



Question 5

(a) Applying Itô’s formula to the continuous semimartingale S̃ = (S̃0, S̃1) and the C2-function
f(x, y) := x/y on R2

++, we obtain that the P -dynamics of S1 is given by

dS1
t = d

(
S̃1
t

S̃0
t

)
=

1

S̃0
t

dS̃1
t −

S̃1
t

(S̃0
t )

2dS̃
0
t = S1

t

(
(µ− r)dt+ σdWt

)
.

Applying again Itô’s formula to the continuous semimartingale S1 and the C2-function
f(x) := 1/x on R++ leads to

d
(
1/S1

t

)
=

1

S1
t

dS1
t

((
r − µ+ σ2

)
dt− σdWt

)
= − 1

S1
t

σ

(
dWt −

r − µ+ σ2

σ
dt

)
= − 1

S1
t

dŴt,

where Ŵt = Wt − r−µ+σ2

σ t. Girsanov’s theorem gives that

Ŵ = W −
∫
r − µ+ σ2

σ
ds = Wt −

〈∫
r − µ+ σ2

σ
dW,W

〉
t

is a (Q̂,F)-Brownian motion, where Q̂ ≈ P on FT is given via the Radon–Nikodým deriva-
tive

dQ̂

dP
= E

(∫
r − µ+ σ2

σ
dW

)
T

= exp

((
r − µ+ σ2

σ

)
WT −

1

2

(
r − µ+ σ2

σ

)2

T

)
.

(b) Expressing dWt = dŴt+
r−µ+σ2

σ dt in terms of dŴt and plugging back into the P -dynamics
of S̃1, we get that the Q̂-dynamics of the undiscounted stock process S̃1 is given by

dS̃1 = S̃1
(

(r + σ2)dt+ σdŴt

)
.

Applying Itô’s formula with the C2-function g(x) = log x on R++, we get

d log S̃1
t =

(
r + σ2/2

)
dt+ σdŴt,

and hence

log S̃1
T = logS1

0 +
(
r + σ2/2

)
T + σŴT ∼ N

(
logS1

0 +
(
r + σ2/2

)
T, σ2T

)
.

(c) Bayes’ formula gives

EQ [H] = E
Q̂

[
dQ

dQ̂
H

]
.

To compute the Radon–Nikodým derivative dQ

dQ̂
, we recall from (a) and from the lecture

that the Radon–Nikodým derivative of Q̂ (respectively Q) with respect to P is given by

dQ̂

dP
= exp

((
r − µ+ σ2

σ

)
WT −

1

2

(
r − µ+ σ2

σ

)2

T

)
,

dQ

dP
= exp

((
r − µ
σ

)
WT −

1

2

(
r − µ
σ

)2

T

)
.

The Radon–Nikodým derivative dQ

dQ̂
is therefore given by

dQ

dQ̂
= 1/ exp

(
σWT +

(
µ− r − σ2/2

)
T
)

= S1
0/S

1
T ,

and hence

EQ [H] = E
Q̂

[
dQ

dQ̂
H

]
= E

Q̂

[
S̃0
T

S̃1
T

S1
0H

]
= S̃0

TS
1
0EQ̂

[
H

S̃1
T

]
.



(d) The discounted initial price of the option is given by the expectation of the discounted
payoff under the EMM for S1, which in turn can be computed under the measure Q̂ as

Ṽ0

S̃0
0

= EQ

[
S̃1
T log S̃1

T

S̃0
T

]
= S1

0EQ̂

[
log S̃1

T

]
= S1

0

(
logS1

0 + (r + σ2/2)T
)
,

where in the last equality we have used the result from (b).

(e) To avoid arbitrage opportunities, the pricing of any derivative must be done under the
EMM Q under which

dS̃it = rS̃itdt+ σS̃itdW
∗,i
t

for i = 1, 2, where r ∈ R is the risk-free rate of return. Despite having different drifts
under P , the prices of the European call options on S̃1 and S̃2 therefore coincide. This is
consistent with the observation that the Black–Scholes formula does not contain the drift
parameter µ.


