
Exercise 1

The correct answers are:

(a) (2)

(b) (3)

(c) (2)

(d) (1)

(e) (2)

(f) (2)

(g) (3)

(h) (2)



Exercise 2

(a) An arbitrage opportunity is an admissible, self-financing strategy ϕ =̂ (0, ϑ) with ϑ =
(ϑk)k=0,1 such that ϑ0 = 0 and

V1(ϕ) = ϑ1∆S
1
1 ≥ 0, (1)

P
[
ϑ1∆S

1
1 > 0

]
> 0 (2)

In this context, admissibility is automatically satisfied; hence we only have to focus on
conditions (??) and (??). For the first one, we have

ϑ1(S
1
1 − S1

0) ≥ 0

⇔


0 ≤ ϑ1(101− 101)

0 ≤ ϑ1(102− 101)

0 ≤ ϑ1(105− 101)

⇔ ϑ1 ≥ 0.

Moreover, at least one of the three inequalities is strict if and only if ϑ1 > 0. As a result,
an arbitrary arbitrage opportunity has to be of the form ϕ =̂ (0, ϑ) with ϑ = (ϑk)k=0,1

such that ϑ0 = 0 and ϑ1 > 0.
For example, the strategy ϕ =̂ (0, ϑ) with ϑ = (ϑk)k=0,1 such that ϑ0 = 0 and ϑ1 = 1 is an
arbitrage opportunity.
For an arbitrary d, a self-financing trading strategy ϕ =̂ (0, ϑ) is an arbitrage opportunity
if and only if 

0 ≤ ϑ1(100(1 + d)− 101)

0 ≤ ϑ1(102− 101)

0 ≤ ϑ1(105− 101)

,

where at least one of the listed inequalities has to be strict. The second and the third
inequalities are satisfied if and only if ϑ1 ≥ 0. As a result, the market is free of arbitrage
if and only if 100(1 + d)− 101 < 0 which is equivalent to the condition d < 0.01.

(b) We first compute the set of all equivalent martingale measures Q for S1. Define

qd := Q[{ωd}], qm := Q[{ωm}], qu := Q[{ωu}].

Then Q is an EMM for S1 if and only if qd, qm, qu ∈ (0, 1), qd + qm + qu = 1, and

101(1 + d)qd + 101(1 +m)qm + 101(1 + u)qu = 101(1 + r),

or equivalently

(qd, qm, qu) =
(u− r
u− d

, 0,
r − d
u− d

)
+ λ

(
− u−m
u− d

, 1,−m− d
u− d

)
=
(2

3
, 0,

1

3

)
+ λ(−1

2
, 1,−1

2

)
for some λ ∈ (0, 2/3).
For the second part, recall that a payoff H is attainable if and only if H has the same and
finite expectation under all EMMs Q for S1.
For λ ∈ (0, 2/3), let now Qλ be the EMM for S1 given by

(qλd , q
λ
m, q

λ
u) =

(2

3
, 0,

1

3

)
+ λ(−1

2
, 1,−1

2

)
.

Computing

EQλ [HPut] = 3
(2

3
− λ1

2

)
+ 0λ+ 0

(1

3
− λ1

2

)
= 2− 3

2
λ,

we can thus conclude that HPut is not attainable.



(c) (i) Since S1 and S2 := S̃2

S̃0
are both martingales with respect to Q∗, by the fundamental

theorem of asset pricing, the proposed enlargement of the market is free of arbitrage.
(ii) For this sub-point, there are two possible answers:

– One can see from the calculations of point (b) that S2 is not a Q-martingale for
any Q ∈ Pe(S1)\{Q∗}. As a result, Q∗ is the unique EMM for this market, which
is thus complete.

– First note that

S2
0 = S̃2

0 = EQ∗
[
HPut

]
= 3q∗d + 0q∗m + 0q∗u =

3

2
. (3)

One can then show that the system of linear equations given by
h1 = V0 + ϑ11∆S

1
1(ωd) + ϑ21∆S

2
1(ωd)

h2 = V0 + ϑ11∆S
1
1(ωm) + ϑ21∆S

2
1(ωm)

h3 = V0 + ϑ11∆S
1
1(ωu) + ϑ21∆S

2
1(ωu)

has a solution (V0, ϑ
1
1, ϑ

2
1) ∈ R3 for every triple (h1, h2, h3) such that hi ≥ 0 for

all i = 1, 2, 3. For instance, this can be proved by showing that the determinant
of the coefficients matrix is different from 0:∣∣∣∣∣∣

 1 ∆S1
1(ωd) ∆S2

1(ωd)
1 ∆S1

1(ωm) ∆S2
1(ωm)

1 ∆S1
1(ωu) ∆S2

1(ωu)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
 1 −2 3/2

1 1 −3/2
1 4 −3/2

∣∣∣∣∣∣ = 9 6= 0.

(d) A replication strategy for HCall := 1
1+r H̃

Call = (S1
1 −101)+ is an admissible, self-financing

strategy ϕ =̂ (V HCall

0 , ϑ1, ϑ2) with ϑi = (ϑik)k=0,1 for i = 1, 2 such that ϑ10 = ϑ20 = 0 and

HCall = VT (ϕ) = V HCall

0 + ϑ11∆S
1
1 + ϑ21∆S

2
1 P -a.s. (4)

In our context, admissibility is automatically satisfied. Note that S2
0 = 3/2, as showed in

equation (??). By condition (??), we then have

HCall =V HCall

0 + ϑ11(S
1
1 − S1

0) + ϑ21(S
2
1 − S2

0)

⇔


0 = V HCall

0 + ϑ11(99− 101) + ϑ21(3− 3/2)

1 = V HCall

0 + ϑ11(102− 101) + ϑ21(0− 3/2)

4 = V HCall

0 + ϑ11(105− 101) + ϑ21
(
0− 3/2

)
⇔


0 = V HCall

0 − 2ϑ11 + 3
2ϑ

2
1

1 = V HCall

0 + ϑ11 − 3
2ϑ

2
1

4 = V HCall

0 + 4ϑ11 − 3
2ϑ

2
1

end hence ϑ11 = 1, ϑ21 = 2
3 , and V

HCall

0 = 1.



Exercise 3

(a) Start computing the density process Z of Q∗ with respect to P .

Zk = E

[
dQ∗

dP

∣∣∣∣Fk] = E

[(
4

3

)T
S1
T

∣∣∣∣Fk] (∗)
=

(
4

3

)T( k∏
j=1

Yj

)
E[Y1]

T−k

=

(
4

3

)T( k∏
j=1

Yj

)(
3

4

)T−k
=

(
4

3

)k
S1
k ,

for k = 1, . . . , T and Z0 =
(
4
3

)T
E[Y1]

T = 1. In (∗), we used the i.i.d. property of (Yj)j=1,...,T

and the fact that Yj is Fj-measurable for each j = 1, . . . , T .

Since dQ∗

dP > 0 P -a.s., we already have that Q∗ ≈ P . One thus only has to show that S1 is
a (Q∗,F)-martingale.

• Adaptedness is clear.
• For the integrability, note that |S1

k | ≤ (3/2)k P -a.s. for each k = 1, . . . , T , since
|Yj | ≤ 3/2 P -a.s. for each j = 1, . . . , T .

• It only remains to show the (Q∗,F)-martingale property of S1. Fix k ∈ {0, . . . , T−1},
then we have

EQ∗ [S1
k+1/S

1
k |Fk] = EQ∗ [Yk+1|Fk]

Bayes
=

1

Zk
E[Zk+1Yk+1|Fk]

= E

[
4

3
Y 2
k+1

∣∣∣∣Fk] i.i.d.= E

[
4

3
Y 2
1

]
= 1.

Alternatively, by the lecture we know that S1 is a (Q∗,F)-martingale is and only if ZS1 is
a (P,F)-martingale. But ZkS1

k =
(
4
3

)k
(S1
k)2 =

∏k
j=1

4
3Y

2
j is a product of P -i.i.d. random

variables, hence a (P,F)-martingale if and only if each factor has expectation 1 with respect
to P . Noting that E

[
4
3Y

2
j

]
= 1 by the remark, we can thus conclude that S1 is a (Q∗,F)-

martingale.

(b) We start proving that τ is a stopping time. Fix k ∈ {1, . . . , T − 1}; then we can compute

{τ ≤ k} =
k⋃
j=1

{Yj > 1}︸ ︷︷ ︸
∈Fj⊆Fk

∈ Fk,

since σ-algebras are closed under countable unions. Moreover, since τ ≥ 1, we have that
{τ ≤ 0} = ∅ ∈ F0, and since τ ≤ T , we have that {τ ≤ T} = Ω ∈ FT .
For the second part, we need to show that ϕ0 is adapted, ϑ0 = 0, and ϑ is predictable. By
construction, ϑ0 = 0. For the predictability of ϑ, we only need to show that {k ≤ τ} ∈ Fk−1
for each k = 1, . . . , T . Fixing k ∈ {1, . . . , T} we have

{k ≤ τ} = {k > τ}c = {k − 1 ≥ τ}c ∈ Fk−1,

since {k − 1 ≥ τ} ∈ Fk−1 by the definition of a stopping time and since σ-algebras are
closed under taking complements. The proof of the adaptedness of ϕ0 is analogous; in fact,
ϕ0 = −ϑ is even predictable like ϑ.

(c) The strategy ϕ is self-financing if and only if

ϕ0
k+1 − ϕ0

k + (ϑk+1 − ϑk)S1
k = ∆Ck+1(ϕ) = 0 P -a.s.,



for all k = 0, . . . , T − 1. Hence, ϕ is self-financing if and only if

ϕ0
k+1 − ϕ0

k = −(ϑk+1 − ϑk)S1
k =


1 if k = 0

−S1
k if k = τ

0 else
.

Thus, using that ϕ0
0 = 0, for each k = 1, . . . , T we must have that

ϕ0
k = ϕ0

0 +

k−1∑
j=0

(ϕ0
j+1 − ϕ0

j ) = 0 + 1{k−1≥0} − S1
τ1{k−1≥τ} = 1− S1

τ1{k>τ}.

The value process of ϕ is then given by V0(ϕ) = ϕ0
0 = 0 and

Vk(ϕ) = V0(ϕ) +Gk(ϑ) = 0 +
k∑
j=1

ϑj∆S
1
j = −

τ∧k∑
j=1

∆S1
j +

k∑
j=(τ∧k)+1

0 = 1− S1
τ∧k,

for all k = 1, . . . , T .
Alternatively, one can also deduce ϕ0 from the value process of ϕ. Indeed for all k =
1, . . . , T we can compute

ϕ0
k = Vk(ϕ)− ϑkS1

k = 1− S1
τ∧k + 1{k≤τ}S

1
k = 1− S1

τ1{k>τ}.

Finally, since S1
k =

∏k
j=1 Yj ≤ (3/2)k ≤ (3/2)T , we can conclude that for each k = 1, . . . , T

1− S1
τ∧k ≥ 1− (3/2)T P -a.s.,

and thus that ϕ is an admissible trading strategy.

(d) There are different possible argumentations:

• S1 is a (Q∗,F)-martingale; hence by the stopping theorem, the process

V (ϕ) =
(
1− S1

τ∧k
)
k=0,...,T

is a (Q∗,F)-martingale as well (Corollary 1.3.2).
• S1 is a (Q∗,F)-martingale and ϑ is bounded, hence V (ϕ) = ϑ · S1 is a (Q∗,F)-

martingale as well (Theorem 1.3.1).

In general, it is always true that the value process V (ϕ) of an admissible self-financing
strategy ϕ is a (Q∗,F)-martingale. Indeed, first note that the a-admissibility of ϕ gives us
that the gains process can be written as a stochastic integral process bounded from below:

G(ϑ) = ϑ · S1 = V (ϕ)− V0 ≥ −a− |V0| P -a.s.

Since S1 is a (Q∗,F)-martingale, we can then directly conclude that G(ϑ), and thus V (ϕ),
is a (Q∗,F)-martingale as well (Theorem 1.3.3).



Exercise 4

(a) By the product rule, using that the process (2T − t)t∈[0,T ] is continuous and of finite
variation,

dXt = (2T − t) dIt − It dt = (2T − t) 1

2T − t
dWt − It dt = dWt − It dt.

Thus, the quadratic variation of X is [X]t = [W ]t = t, t ∈ [0, T ]. Since I is not P -a.s. zero,
X is not a local martingale and hence cannot be a Brownian motion.

(b) Fix a, b ∈ R and note that Mt = f(t,Wt) for the smooth function f(t, x) = atx + bx3,
t ≥ 0, x ∈ R. Hence, by Itô’s formula,

dMt = aWt dt+ (at+ 3bW 2
t ) dWt +

1

2
(6bWt) d〈W 〉t = (a+ 3b)Wt dt+ (at+ 3bW 2

t ) dWt,

where we use that 〈W 〉t = t. Therefore, M is a local martingale (with respect to P and F)
if and only if its finite variation part is zero, i.e. if and only if a + 3b = 0. We claim that
in this case, M is even a (true) martingale. Indeed, for a+ 3b = 0, we have

Mt = M0 + a

∫ t

0
udWu + 3b

∫ t

0
W 2
u dWu,

and both stochastic integrals are martingales by Exercise 12-3 (c) and (d).

(c) First, assume that α 6= 0. Then

lim
t→∞

(Wt + αt)2 = lim
t→∞

t2
(
Wt

t
+ α

)2

= +∞ P -a.s.

by the law of large numbers for Brownian motion, and therefore limt→∞ Zt = 0 P -a.s.
Second, assume that α = 0. Then lim sup

t→∞
Wt = +∞ P -a.s. and lim inf

t→∞
Wt = −∞

P -a.s. by the (global) law of the iterated logarithm. Hence, lim sup
t→∞

W 2
t = +∞ P -a.s. and

lim inf
t→∞

W 2
t = 0 P -a.s. as W crosses 0 infinitely often. Therefore, lim sup

t→∞
Zt = 1 P -a.s. and

lim inf
t→∞

Zt = 0 P -a.s.



Exercise 5

(a) Define the process Z = (Zt)t∈[0,T ] by Zt = S1
t /S

1
0 . Then Z is a (Q∗,F)-martingale because

Q∗ is an equivalent martingale measure for S1, Z0 = 1 by construction, and as S1 > 0

P -a.s., also Z > 0 P -a.s. Hence, Z is the density process of Q̂ with respect to Q∗ and Q̂ is
a probability measure equivalent to Q∗.

Now, let H̃ ∈ L0
+(FT ) and fix t ∈ [0, T ]. By the Bayes formula (Lemma 6.2.1 in the lecture

notes),

S̃1
tEQ̂

[
H̃

S̃1
T

∣∣∣∣∣Ft
]

=
S̃1
t

Zt
EQ∗

[
ZT

H̃

S̃1
T

∣∣∣∣∣Ft
]

=
S̃1
t

S1
t

EQ∗

[
S1
T

H̃

S̃1
T

∣∣∣∣∣Ft
]

= S̃0
tEQ∗

[
H̃

S̃0
T

∣∣∣∣∣Ft
]

Q̂-a.s.

The assertion follows because Q̂ ≈ Q∗ ≈ P on FT .

(b) It is known from the lecture notes that

W ∗t := Wt +
µ− r
σ

t, t ∈ [0, T ],

defines a Q∗-Brownian motion W ∗ and that S1 satisfies the SDE

dS1
t = S1

t σ dW ∗t .

Using Itô’s formula, we can compute the dynamics of Ŝ0 = 1/S1 under Q∗:

dŜ0
t = − 1

(S1
t )2

dS1
t +

1

(S1
t )3

d〈S1〉t = −Ŝ0
t σ dW ∗t + Ŝ0

t σ
2 dt

= Ŝ0
t σ(σ dt− dW ∗t ).

Note that Z = S1/S1
0 = E(σW ∗). Hence, by Girsanov’s theorem (Theorem 6.2.3 in the

lecture notes),

W ∗∗t := W ∗t − 〈σW ∗,W ∗〉t = W ∗t − σt, t ∈ [0, T ],

defines a Q̂-Brownian motion W ∗∗. Thus,

dŜ0
t = −Ŝ0

t σ dW ∗∗t .

As Ŵ := −W ∗∗ is again a Q̂-Brownian motion (Exercise 8-3), the assertion follows.

(c) Method 1: By part (b), Ŝ0 has the explicit representation as a stochastic exponential

Ŝ0
t = Ŝ0

0E(σŴ )t =
1

S1
0

exp
(
σŴt −

1

2
σ2t
)
, t ∈ [0, T ],

and S̃0
t = exp(rt), t ∈ [0, T ]. Thus,

S̃1
t =

S̃0
t

Ŝ0
t

= S1
0 exp

(
−σŴt +

(
r +

σ2

2

)
t

)
, t ∈ [0, T ],

and a standard application of Itô’s formula yields

dS̃1
t = S̃1

t

(
(r + σ2) dt− σ dŴt

)
.



Method 2: By Itô’s formula and the dynamics of Ŝ0 from part (b),

d

(
1

Ŝ0

)
t

= − 1

(Ŝ0
t )2

dŜ0
t +

1

(Ŝ0
t )3

d〈Ŝ0〉t =
1

Ŝ0
t

(
−σ dŴt + σ2 dt

)
.

Using the product rule, the given dynamics of S̃0, and the fact that S̃0 is continuous and
of finite variation, we then obtain

dS̃1
t = d

(
1

Ŝ0
S̃0

)
t

=
1

Ŝ0
t

dS̃0
t + S̃0

t d

(
1

Ŝ0

)
t

= S̃1
t

(
(r + σ2) dt− σ dŴt

)
.

(d) Let H̃ = S̃1
T1{S̃1

T≥K̃}
denote the undiscounted payoff of the asset-or-nothing call with

strike K̃ > 0. To replicate this claim, we first have to compute the discounted value

process Vt := EQ∗

[
H̃

S̃0
T

∣∣∣∣Ft], t ∈ [0, T ]. To this end, we first conclude from part (c) that

S̃1
t = S̃1

0E
(∫ ·

0
(r + σ2) du− σŴ

)
t

= S1
0 exp

((
r +

1

2
σ2
)
t− σŴt

)
, t ∈ [0, T ],

so that for t ∈ [0, T ],

S̃1
T = S̃1

t exp
(
− σ(ŴT − Ŵt) +

(
r +

1

2
σ2
)

(T − t)
)
. (5)

Now, fix t ∈ [0, T ]. Using the result from part (a),

Vt =
1

S̃0
t

S̃0
tEQ∗

[
H̃

S̃0
T

∣∣∣∣∣Ft
]

=
S̃1
t

S̃0
t

E
Q̂

[
H̃

S̃1
T

∣∣∣∣∣Ft
]

= S1
tEQ̂

[
1{S̃1

T≥K̃}

∣∣∣Ft] P -a.s.

Using (??), we find that

{S̃1
T ≥ K̃} =

{
ŴT − Ŵt√
T − t

≤ d1(t, S̃1
t )

}

where

d1(t, s̃) =
log s̃

K̃
+ (r + 1

2σ
2)(T − t)

σ
√
T − t

, s̃ > 0.

As Ŵ is a Q̂-Brownian motion, ŴT−Ŵt√
T−t is independent of Ft and standard normally dis-

tributed under Q̂. Using also that S̃1
t is Ft-measurable, we obtain

Vt = S1
t Φ(d1(t, S̃

1
t )) = S1

t Φ(d1(t, S
1
t e
rt)) = v(t, S1

t ) P -a.s.,

where Φ denotes the cumulative distribution function of the standard normal distribution
and

v(t, x) = xΦ(d1(t, xe
rt)), t ∈ [0, T ], x > 0.

By definition of V and Itô’s formula, S̃
1
T

S̃0
T

1{S̃1
T≥K̃}

= VT = v(T, S1
T ) and for all t ∈ [0, T ]

Vt = v(t, S1
t ) = v(0, S1

0) +

∫ t

0

∂v

∂x
(u, S1

u) dS1
u P -a.s.; (6)



note that the finite variation terms must vanish since V and S1 are continuous (Q∗,F)-
martingales by construction. In particular, the stochastic integral in (??) is a (Q∗,F)-
martingale. We can thus set

V0 := v(0, S1
0) = S1

0Φ(d1(0, S
1
0)),

ϑt :=
∂v

∂x
(t, S1

t ) = Φ(d1(t, S
1
t e
rt)) + S1

t ϕ(d1(t, S
1
t e
rt))

1

S1
t e
rtσ
√
T − t

ert

= Φ(d1(t, S
1
t e
rt)) +

ϕ(d1(t, S
1
t e
rt))

σ
√
T − t

,

where ϕ denotes the density of the standard normal distribution. As ϑ is continuous and
adapted, it is predictable and locally bounded.


