The correct answers are:

- (a) (2)
- (b) (3)
- (c) (2)
- (d) (1)
- (e) (2)
- (f) (2)
- (g) (3)
- (h) (2)

(a) An arbitrage opportunity is an admissible, self-financing strategy $\varphi \cong (0, \vartheta)$ with $\vartheta = (\vartheta_k)_{k=0,1}$ such that $\vartheta_0 = 0$ and

$$V_1(\varphi) = \vartheta_1 \Delta S_1^1 \ge 0, \tag{1}$$

,

$$P\left[\vartheta_1 \Delta S_1^1 > 0\right] > 0 \tag{2}$$

In this context, admissibility is automatically satisfied; hence we only have to focus on conditions (??) and (??). For the first one, we have

$$\begin{split} \vartheta_1(S_1^1 - S_0^1) &\geq 0 \\ \Leftrightarrow \begin{cases} 0 \leq \vartheta_1(101 - 101) \\ 0 \leq \vartheta_1(102 - 101) \\ 0 \leq \vartheta_1(105 - 101) \\ \Leftrightarrow \vartheta_1 \geq 0. \end{split}$$

Moreover, at least one of the three inequalities is strict if and only if $\vartheta_1 > 0$. As a result, an arbitrary arbitrage opportunity has to be of the form $\varphi \cong (0, \vartheta)$ with $\vartheta = (\vartheta_k)_{k=0,1}$ such that $\vartheta_0 = 0$ and $\vartheta_1 > 0$.

For example, the strategy $\varphi \cong (0, \vartheta)$ with $\vartheta = (\vartheta_k)_{k=0,1}$ such that $\vartheta_0 = 0$ and $\vartheta_1 = 1$ is an arbitrage opportunity.

For an arbitrary d, a self-financing trading strategy $\varphi \cong (0, \vartheta)$ is an arbitrage opportunity if and only if

$$\begin{cases} 0 \le \vartheta_1(100(1+d) - 101) \\ 0 \le \vartheta_1(102 - 101) \\ 0 \le \vartheta_1(105 - 101) \end{cases}$$

where at least one of the listed inequalities has to be strict. The second and the third inequalities are satisfied if and only if $\vartheta_1 \ge 0$. As a result, the market is free of arbitrage if and only if 100(1 + d) - 101 < 0 which is equivalent to the condition d < 0.01.

(b) We first compute the set of all equivalent martingale measures Q for S^1 . Define

$$q_d := Q[\{\omega_d\}], \qquad q_m := Q[\{\omega_m\}], \qquad q_u := Q[\{\omega_u\}].$$

Then Q is an EMM for S^1 if and only if $q_d, q_m, q_u \in (0, 1), q_d + q_m + q_u = 1$, and

$$101(1+d)q_d + 101(1+m)q_m + 101(1+u)q_u = 101(1+r),$$

or equivalently

$$(q_d, q_m, q_u) = \left(\frac{u-r}{u-d}, 0, \frac{r-d}{u-d}\right) + \lambda \left(-\frac{u-m}{u-d}, 1, -\frac{m-d}{u-d}\right) \\ = \left(\frac{2}{3}, 0, \frac{1}{3}\right) + \lambda \left(-\frac{1}{2}, 1, -\frac{1}{2}\right)$$

for some $\lambda \in (0, 2/3)$.

For the second part, recall that a payoff H is attainable if and only if H has the same and finite expectation under all EMMs Q for S^1 .

For $\lambda \in (0, 2/3)$, let now Q^{λ} be the EMM for S^1 given by

$$(q_d^{\lambda}, q_m^{\lambda}, q_u^{\lambda}) = \left(\frac{2}{3}, 0, \frac{1}{3}\right) + \lambda\left(-\frac{1}{2}, 1, -\frac{1}{2}\right)$$

Computing

$$E_{Q^{\lambda}}[H^{Put}] = 3\left(\frac{2}{3} - \lambda\frac{1}{2}\right) + 0\lambda + 0\left(\frac{1}{3} - \lambda\frac{1}{2}\right) = 2 - \frac{3}{2}\lambda,$$

we can thus conclude that H^{Put} is not attainable.

- (c) (i) Since S^1 and $S^2 := \frac{\tilde{S}^2}{\tilde{S}^0}$ are both martingales with respect to Q^* , by the fundamental theorem of asset pricing, the proposed enlargement of the market is free of arbitrage.
 - (ii) For this sub-point, there are two possible answers:
 - One can see from the calculations of point (b) that S^2 is not a Q-martingale for any $Q \in \mathbb{P}_e(S^1) \setminus \{Q^*\}$. As a result, Q^* is the unique EMM for this market, which is thus complete.
 - First note that

$$S_0^2 = \widetilde{S}_0^2 = E_{Q^*} \left[H^{Put} \right] = 3q_d^* + 0q_m^* + 0q_u^* = \frac{3}{2}.$$
 (3)

One can then show that the system of linear equations given by

$$\begin{cases} h_1 = V_0 + \vartheta_1^1 \Delta S_1^1(\omega_d) + \vartheta_1^2 \Delta S_1^2(\omega_d) \\ h_2 = V_0 + \vartheta_1^1 \Delta S_1^1(\omega_m) + \vartheta_1^2 \Delta S_1^2(\omega_m) \\ h_3 = V_0 + \vartheta_1^1 \Delta S_1^1(\omega_u) + \vartheta_1^2 \Delta S_1^2(\omega_u) \end{cases}$$

has a solution $(V_0, \vartheta_1^1, \vartheta_1^2) \in \mathbb{R}^3$ for every triple (h_1, h_2, h_3) such that $h_i \geq 0$ for all i = 1, 2, 3. For instance, this can be proved by showing that the determinant of the coefficients matrix is different from 0:

$$\left| \begin{pmatrix} 1 & \Delta S_1^1(\omega_d) & \Delta S_1^2(\omega_d) \\ 1 & \Delta S_1^1(\omega_m) & \Delta S_1^2(\omega_m) \\ 1 & \Delta S_1^1(\omega_u) & \Delta S_1^2(\omega_u) \end{pmatrix} \right| = \left| \begin{pmatrix} 1 & -2 & 3/2 \\ 1 & 1 & -3/2 \\ 1 & 4 & -3/2 \end{pmatrix} \right| = 9 \neq 0.$$

(d) A replication strategy for $H^{Call} := \frac{1}{1+r} \widetilde{H}^{Call} = (S_1^1 - 101)^+$ is an admissible, self-financing strategy $\varphi \cong (V_0^{H^{Call}}, \vartheta^1, \vartheta^2)$ with $\vartheta^i = (\vartheta^i_k)_{k=0,1}$ for i = 1, 2 such that $\vartheta^1_0 = \vartheta^2_0 = 0$ and

$$H^{Call} = V_T(\varphi) = V_0^{H^{Call}} + \vartheta_1^1 \Delta S_1^1 + \vartheta_1^2 \Delta S_1^2 \qquad P\text{-a.s.}$$
(4)

In our context, admissibility is automatically satisfied. Note that $S_0^2 = 3/2$, as showed in equation (??). By condition (??), we then have

$$\begin{split} H^{Call} = &V_0^{H^{Call}} + \vartheta_1^1 (S_1^1 - S_0^1) + \vartheta_1^2 (S_1^2 - S_0^2) \\ \Leftrightarrow \begin{cases} 0 = V_0^{H^{Call}} + \vartheta_1^1 (99 - 101) + \vartheta_1^2 (3 - 3/2) \\ 1 = V_0^{H^{Call}} + \vartheta_1^1 (102 - 101) + \vartheta_1^2 (0 - 3/2) \\ 4 = V_0^{H^{Call}} + \vartheta_1^1 (105 - 101) + \vartheta_1^2 (0 - 3/2) \end{cases} \\ \Leftrightarrow \begin{cases} 0 = V_0^{H^{Call}} - 2\vartheta_1^1 + \frac{3}{2}\vartheta_1^2 \\ 1 = V_0^{H^{Call}} + \vartheta_1^1 - \frac{3}{2}\vartheta_1^2 \\ 4 = V_0^{H^{Call}} + 4\vartheta_1^1 - \frac{3}{2}\vartheta_1^2 \end{cases} \end{split}$$

end hence $\vartheta_1^1=1,\, \vartheta_1^2=\frac{2}{3},\, {\rm and}\,\, V_0^{H^{Call}}=1.$

(a) Start computing the density process Z of Q^* with respect to P.

$$Z_{k} = E\left[\frac{\mathrm{d}Q^{*}}{\mathrm{d}P}\Big|\mathcal{F}_{k}\right] = E\left[\left(\frac{4}{3}\right)^{T}S_{T}^{1}\Big|\mathcal{F}_{k}\right] \stackrel{(*)}{=} \left(\frac{4}{3}\right)^{T}\left(\prod_{j=1}^{k}Y_{j}\right)E[Y_{1}]^{T-k}$$
$$= \left(\frac{4}{3}\right)^{T}\left(\prod_{j=1}^{k}Y_{j}\right)\left(\frac{3}{4}\right)^{T-k} = \left(\frac{4}{3}\right)^{k}S_{k}^{1},$$

for k = 1, ..., T and $Z_0 = \left(\frac{4}{3}\right)^T E[Y_1]^T = 1$. In (*), we used the i.i.d. property of $(Y_j)_{j=1,...,T}$ and the fact that Y_j is \mathcal{F}_j -measurable for each j = 1, ..., T.

Since $\frac{dQ^*}{dP} > 0$ *P*-a.s., we already have that $Q^* \approx P$. One thus only has to show that S^1 is a (Q^*, \mathbb{F}) -martingale.

- Adaptedness is clear.
- For the integrability, note that $|S_k^1| \leq (3/2)^k$ *P*-a.s. for each $k = 1, \ldots, T$, since $|Y_j| \leq 3/2$ *P*-a.s. for each $j = 1, \ldots, T$.
- It only remains to show the (Q^*, \mathbb{F}) -martingale property of S^1 . Fix $k \in \{0, \ldots, T-1\}$, then we have

$$E_{Q^*}[S_{k+1}^1/S_k^1|\mathcal{F}_k] = E_{Q^*}[Y_{k+1}|\mathcal{F}_k] \stackrel{Bayes}{=} \frac{1}{Z_k} E[Z_{k+1}Y_{k+1}|\mathcal{F}_k]$$
$$= E\left[\frac{4}{3} Y_{k+1}^2 \middle| \mathcal{F}_k\right] \stackrel{i.i.d.}{=} E\left[\frac{4}{3} Y_1^2\right] = 1.$$

Alternatively, by the lecture we know that S^1 is a (Q^*, \mathbb{F}) -martingale is and only if ZS^1 is a (P, \mathbb{F}) -martingale. But $Z_k S_k^1 = \left(\frac{4}{3}\right)^k (S_k^1)^2 = \prod_{j=1}^k \frac{4}{3}Y_j^2$ is a product of *P*-i.i.d. random variables, hence a (P, \mathbb{F}) -martingale if and only if each factor has expectation 1 with respect to *P*. Noting that $E\left[\frac{4}{3}Y_j^2\right] = 1$ by the remark, we can thus conclude that S^1 is a (Q^*, \mathbb{F}) -martingale.

(b) We start proving that τ is a stopping time. Fix $k \in \{1, \ldots, T-1\}$; then we can compute

$$\{\tau \le k\} = \bigcup_{j=1}^{k} \underbrace{\{Y_j > 1\}}_{\in \mathcal{F}_j \subseteq \mathcal{F}_k} \in \mathcal{F}_k,$$

since σ -algebras are closed under countable unions. Moreover, since $\tau \geq 1$, we have that $\{\tau \leq 0\} = \emptyset \in \mathcal{F}_0$, and since $\tau \leq T$, we have that $\{\tau \leq T\} = \Omega \in \mathcal{F}_T$.

For the second part, we need to show that φ^0 is adapted, $\vartheta_0 = 0$, and ϑ is predictable. By construction, $\vartheta_0 = 0$. For the predictability of ϑ , we only need to show that $\{k \leq \tau\} \in \mathcal{F}_{k-1}$ for each $k = 1, \ldots, T$. Fixing $k \in \{1, \ldots, T\}$ we have

$$\{k \le \tau\} = \{k > \tau\}^c = \{k - 1 \ge \tau\}^c \in \mathcal{F}_{k-1},$$

since $\{k-1 \geq \tau\} \in \mathcal{F}_{k-1}$ by the definition of a stopping time and since σ -algebras are closed under taking complements. The proof of the adaptedness of φ^0 is analogous; in fact, $\varphi^0 = -\vartheta$ is even predictable like ϑ .

(c) The strategy $\overline{\varphi}$ is self-financing if and only if

$$\overline{\varphi}_{k+1}^0 - \overline{\varphi}_k^0 + (\vartheta_{k+1} - \vartheta_k)S_k^1 = \Delta C_{k+1}(\overline{\varphi}) = 0 \qquad P\text{-a.s.},$$

for all k = 0, ..., T - 1. Hence, $\overline{\varphi}$ is self-financing if and only if

$$\overline{\varphi}_{k+1}^0 - \overline{\varphi}_k^0 = -(\vartheta_{k+1} - \vartheta_k)S_k^1 = \begin{cases} 1 & \text{if } k = 0\\ -S_k^1 & \text{if } k = \tau \\ 0 & \text{else} \end{cases}$$

Thus, using that $\overline{\varphi}_0^0 = 0$, for each $k = 1, \ldots, T$ we must have that

$$\overline{\varphi}_{k}^{0} = \overline{\varphi}_{0}^{0} + \sum_{j=0}^{k-1} (\overline{\varphi}_{j+1}^{0} - \overline{\varphi}_{j}^{0}) = 0 + \mathbb{1}_{\{k-1 \ge 0\}} - S_{\tau}^{1} \mathbb{1}_{\{k-1 \ge \tau\}} = 1 - S_{\tau}^{1} \mathbb{1}_{\{k>\tau\}}.$$

The value process of $\overline{\varphi}$ is then given by $V_0(\overline{\varphi}) = \overline{\varphi}_0^0 = 0$ and

$$V_k(\overline{\varphi}) = V_0(\overline{\varphi}) + G_k(\vartheta) = 0 + \sum_{j=1}^k \vartheta_j \Delta S_j^1 = -\sum_{j=1}^{\tau \wedge k} \Delta S_j^1 + \sum_{j=(\tau \wedge k)+1}^k 0 = 1 - S_{\tau \wedge k}^1,$$

for all $k = 1, \ldots, T$.

Alternatively, one can also deduce $\overline{\varphi}^0$ from the value process of $\overline{\varphi}$. Indeed for all $k = 1, \ldots, T$ we can compute

$$\overline{\varphi}_k^0 = V_k(\overline{\varphi}) - \vartheta_k S_k^1 = 1 - S_{\tau \wedge k}^1 + \mathbb{1}_{\{k \le \tau\}} S_k^1 = 1 - S_{\tau}^1 \mathbb{1}_{\{k > \tau\}}.$$

Finally, since $S_k^1 = \prod_{j=1}^k Y_j \le (3/2)^k \le (3/2)^T$, we can conclude that for each $k = 1, \ldots, T$

$$1 - S_{\tau \wedge k}^1 \ge 1 - (3/2)^T$$
 P-a.s.,

and thus that $\overline{\varphi}$ is an admissible trading strategy.

- (d) There are different possible argumentations:
 - S^1 is a (Q^*, \mathbb{F}) -martingale; hence by the stopping theorem, the process

$$V(\overline{\varphi}) = \left(1 - S^1_{\tau \wedge k}\right)_{k=0,\dots,T}$$

is a (Q^*, \mathbb{F}) -martingale as well (Corollary 1.3.2).

• S^1 is a (Q^*, \mathbb{F}) -martingale and ϑ is bounded, hence $V(\overline{\varphi}) = \vartheta \cdot S^1$ is a (Q^*, \mathbb{F}) -martingale as well (Theorem 1.3.1).

In general, it is always true that the value process $V(\varphi)$ of an admissible self-financing strategy φ is a (Q^*, \mathbb{F}) -martingale. Indeed, first note that the *a*-admissibility of φ gives us that the gains process can be written as a stochastic integral process bounded from below:

$$G(\vartheta) = \vartheta \cdot S^1 = V(\varphi) - V_0 \ge -a - |V_0|$$
 P-a.s.

Since S^1 is a (Q^*, \mathbb{F}) -martingale, we can then directly conclude that $G(\vartheta)$, and thus $V(\varphi)$, is a (Q^*, \mathbb{F}) -martingale as well (Theorem 1.3.3).

(a) By the product rule, using that the process $(2T - t)_{t \in [0,T]}$ is continuous and of finite variation,

$$dX_t = (2T - t) dI_t - I_t dt = (2T - t) \frac{1}{2T - t} dW_t - I_t dt = dW_t - I_t dt.$$

Thus, the quadratic variation of X is $[X]_t = [W]_t = t, t \in [0, T]$. Since I is not P-a.s. zero, X is not a local martingale and hence cannot be a Brownian motion.

(b) Fix $a, b \in \mathbb{R}$ and note that $M_t = f(t, W_t)$ for the smooth function $f(t, x) = atx + bx^3$, $t \ge 0, x \in \mathbb{R}$. Hence, by Itô's formula,

$$dM_t = aW_t dt + (at + 3bW_t^2) dW_t + \frac{1}{2}(6bW_t) d\langle W \rangle_t = (a + 3b)W_t dt + (at + 3bW_t^2) dW_t,$$

where we use that $\langle W \rangle_t = t$. Therefore, M is a local martingale (with respect to P and \mathbb{F}) if and only if its finite variation part is zero, i.e. if and only if a + 3b = 0. We claim that in this case, M is even a (true) martingale. Indeed, for a + 3b = 0, we have

$$M_t = M_0 + a \int_0^t u \, \mathrm{d}W_u + 3b \int_0^t W_u^2 \, \mathrm{d}W_u,$$

and both stochastic integrals are martingales by Exercise 12-3 (c) and (d).

(c) First, assume that $\alpha \neq 0$. Then

$$\lim_{t \to \infty} (W_t + \alpha t)^2 = \lim_{t \to \infty} t^2 \left(\frac{W_t}{t} + \alpha\right)^2 = +\infty \quad P\text{-a.s}$$

by the law of large numbers for Brownian motion, and therefore $\lim_{t\to\infty} Z_t = 0$ *P*-a.s. Second, assume that $\alpha = 0$. Then $\limsup_{t\to\infty} W_t = +\infty$ *P*-a.s. and $\liminf_{t\to\infty} W_t = -\infty$ *P*-a.s. by the (global) law of the iterated logarithm. Hence, $\limsup_{t\to\infty} W_t^2 = +\infty$ *P*-a.s. and $\liminf_{t\to\infty} W_t^2 = 0$ *P*-a.s. as *W* crosses 0 infinitely often. Therefore, $\limsup_{t\to\infty} Z_t = 1$ *P*-a.s. and $\liminf_{t\to\infty} Z_t = 0$ *P*-a.s.

(a) Define the process $Z = (Z_t)_{t \in [0,T]}$ by $Z_t = S_t^1/S_0^1$. Then Z is a (Q^*, \mathbb{F}) -martingale because Q^* is an equivalent martingale measure for S^1 , $Z_0 = 1$ by construction, and as $S^1 > 0$ *P*-a.s., also Z > 0 *P*-a.s. Hence, Z is the density process of \hat{Q} with respect to Q^* and \hat{Q} is a probability measure equivalent to Q^* .

Now, let $\widetilde{H} \in L^0_+(\mathcal{F}_T)$ and fix $t \in [0, T]$. By the Bayes formula (Lemma 6.2.1 in the lecture notes),

$$\begin{split} \widetilde{S}_{t}^{1} E_{\widehat{Q}} \left[\frac{\widetilde{H}}{\widetilde{S}_{T}^{1}} \middle| \mathcal{F}_{t} \right] &= \frac{\widetilde{S}_{t}^{1}}{Z_{t}} E_{Q^{*}} \left[Z_{T} \frac{\widetilde{H}}{\widetilde{S}_{T}^{1}} \middle| \mathcal{F}_{t} \right] = \frac{\widetilde{S}_{t}^{1}}{S_{t}^{1}} E_{Q^{*}} \left[S_{T}^{1} \frac{\widetilde{H}}{\widetilde{S}_{T}^{1}} \middle| \mathcal{F}_{t} \right] \\ &= \widetilde{S}_{t}^{0} E_{Q^{*}} \left[\frac{\widetilde{H}}{\widetilde{S}_{T}^{0}} \middle| \mathcal{F}_{t} \right] \quad \widehat{Q}\text{-a.s.} \end{split}$$

The assertion follows because $\hat{Q} \approx Q^* \approx P$ on \mathcal{F}_T .

(b) It is known from the lecture notes that

$$W_t^* := W_t + \frac{\mu - r}{\sigma}t, \quad t \in [0, T],$$

defines a Q^* -Brownian motion W^* and that S^1 satisfies the SDE

$$\mathrm{d}S_t^1 = S_t^1 \sigma \,\mathrm{d}W_t^*$$

Using Itô's formula, we can compute the dynamics of $\widehat{S}^0 = 1/S^1$ under Q^* :

$$d\widehat{S}_t^0 = -\frac{1}{(S_t^1)^2} dS_t^1 + \frac{1}{(S_t^1)^3} d\langle S^1 \rangle_t = -\widehat{S}_t^0 \sigma dW_t^* + \widehat{S}_t^0 \sigma^2 dt$$
$$= \widehat{S}_t^0 \sigma (\sigma dt - dW_t^*).$$

Note that $Z = S^1/S_0^1 = \mathcal{E}(\sigma W^*)$. Hence, by Girsanov's theorem (Theorem 6.2.3 in the lecture notes),

$$W_t^{**} := W_t^* - \langle \sigma W^*, W^* \rangle_t = W_t^* - \sigma t, \quad t \in [0, T],$$

defines a \widehat{Q} -Brownian motion W^{**} . Thus,

$$\mathrm{d}\widehat{S}^0_t = -\widehat{S}^0_t \sigma \,\mathrm{d}W^{**}_t.$$

As $\widehat{W} := -W^{**}$ is again a \widehat{Q} -Brownian motion (Exercise 8-3), the assertion follows.

(c) Method 1: By part (b), \widehat{S}^0 has the explicit representation as a stochastic exponential

$$\widehat{S}_t^0 = \widehat{S}_0^0 \mathcal{E}(\sigma \widehat{W})_t = \frac{1}{S_0^1} \exp\left(\sigma \widehat{W}_t - \frac{1}{2}\sigma^2 t\right), \quad t \in [0, T],$$

and $\widetilde{S}_t^0 = \exp(rt), t \in [0, T]$. Thus,

$$\widetilde{S}_t^1 = \frac{\widetilde{S}_t^0}{\widehat{S}_t^0} = S_0^1 \exp\left(-\sigma \widehat{W}_t + \left(r + \frac{\sigma^2}{2}\right)t\right), \quad t \in [0, T],$$

and a standard application of Itô's formula yields

$$\mathrm{d}\widetilde{S}_t^1 = \widetilde{S}_t^1 \left((r + \sigma^2) \,\mathrm{d}t - \sigma \,\mathrm{d}\widehat{W}_t \right).$$

Method 2: By Itô's formula and the dynamics of \widehat{S}^0 from part (b),

$$\mathrm{d}\left(\frac{1}{\widehat{S}^{0}}\right)_{t} = -\frac{1}{(\widehat{S}^{0}_{t})^{2}} \,\mathrm{d}\widehat{S}^{0}_{t} + \frac{1}{(\widehat{S}^{0}_{t})^{3}} \,\mathrm{d}\langle\widehat{S}^{0}\rangle_{t} = \frac{1}{\widehat{S}^{0}_{t}} \left(-\sigma \,\mathrm{d}\widehat{W}_{t} + \sigma^{2} \,\mathrm{d}t\right).$$

Using the product rule, the given dynamics of \tilde{S}^0 , and the fact that \tilde{S}^0 is continuous and of finite variation, we then obtain

$$\mathrm{d}\widetilde{S}_t^1 = \mathrm{d}\left(\frac{1}{\widehat{S}^0}\widetilde{S}^0\right)_t = \frac{1}{\widehat{S}_t^0}\,\mathrm{d}\widetilde{S}_t^0 + \widetilde{S}_t^0\,\mathrm{d}\left(\frac{1}{\widehat{S}^0}\right)_t = \widetilde{S}_t^1\left((r+\sigma^2)\,\mathrm{d}t - \sigma\,\mathrm{d}\widehat{W}_t\right).$$

(d) Let $\widetilde{H} = \widetilde{S}_T^1 \mathbb{1}_{\{\widetilde{S}_T^1 \ge \widetilde{K}\}}$ denote the undiscounted payoff of the asset-or-nothing call with strike $\widetilde{K} > 0$. To replicate this claim, we first have to compute the discounted value process $V_t := E_{Q^*} \left[\frac{\widetilde{H}}{\widetilde{S}_T^0} \middle| \mathcal{F}_t \right], t \in [0, T]$. To this end, we first conclude from part (c) that $\widetilde{C}^1 = \widetilde{C}^1 \mathcal{L} \left(\int_{-\infty}^{\infty} (u_t + u_t^2) \, du_t = u_t \widetilde{W} \right) = \mathcal{L} \left[\mathcal{L} \left(u_t + u_t^2 \right) \, du_t = u_t \widetilde{W} \right)$

$$\widetilde{S}_t^1 = \widetilde{S}_0^1 \mathcal{E}\left(\int_0^t (r+\sigma^2) \,\mathrm{d}u - \sigma \widehat{W}\right)_t = S_0^1 \exp\left(\left(r+\frac{1}{2}\sigma^2\right)t - \sigma \widehat{W}_t\right), \quad t \in [0,T]$$

so that for $t \in [0, T]$,

$$\widetilde{S}_T^1 = \widetilde{S}_t^1 \exp\left(-\sigma(\widehat{W}_T - \widehat{W}_t) + \left(r + \frac{1}{2}\sigma^2\right)(T-t)\right).$$
(5)

Now, fix $t \in [0, T]$. Using the result from part (a),

$$V_t = \frac{1}{\widetilde{S}_t^0} \widetilde{S}_t^0 E_{Q^*} \left[\frac{\widetilde{H}}{\widetilde{S}_T^0} \middle| \mathcal{F}_t \right] = \frac{\widetilde{S}_t^1}{\widetilde{S}_t^0} E_{\widehat{Q}} \left[\frac{\widetilde{H}}{\widetilde{S}_T^1} \middle| \mathcal{F}_t \right] = S_t^1 E_{\widehat{Q}} \left[\mathbbm{1}_{\{\widetilde{S}_T^1 \ge \widetilde{K}\}} \middle| \mathcal{F}_t \right] \quad P\text{-a.s.}$$

Using (??), we find that

$$\{\widetilde{S}_T^1 \ge \widetilde{K}\} = \left\{\frac{\widehat{W}_T - \widehat{W}_t}{\sqrt{T - t}} \le d_1(t, \widetilde{S}_t^1)\right\}$$

where

$$d_1(t,\tilde{s}) = \frac{\log \frac{\tilde{s}}{\tilde{K}} + (r + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}, \quad \tilde{s} > 0.$$

As \widehat{W} is a \widehat{Q} -Brownian motion, $\frac{\widehat{W}_T - \widehat{W}_t}{\sqrt{T-t}}$ is independent of \mathcal{F}_t and standard normally distributed under \widehat{Q} . Using also that \widetilde{S}_t^1 is \mathcal{F}_t -measurable, we obtain

$$V_t = S_t^1 \Phi(d_1(t, \widetilde{S}_t^1)) = S_t^1 \Phi(d_1(t, S_t^1 e^{rt})) = v(t, S_t^1) \quad P\text{-a.s.},$$

where Φ denotes the cumulative distribution function of the standard normal distribution and

$$v(t,x) = x\Phi(d_1(t,xe^{rt})), \quad t \in [0,T], \ x > 0$$

By definition of V and Itô's formula, $\frac{\widetilde{S}_T^1}{\widetilde{S}_T^0} \mathbb{1}_{\{\widetilde{S}_T^1 \geq \widetilde{K}\}} = V_T = v(T, S_T^1)$ and for all $t \in [0, T]$

$$V_t = v(t, S_t^1) = v(0, S_0^1) + \int_0^t \frac{\partial v}{\partial x}(u, S_u^1) \, \mathrm{d}S_u^1 \quad P\text{-a.s.};$$
(6)

note that the finite variation terms must vanish since V and S^1 are continuous (Q^*, \mathbb{F}) martingales by construction. In particular, the stochastic integral in (??) is a (Q^*, \mathbb{F}) martingale. We can thus set

$$\begin{split} V_0 &:= v(0, S_0^1) = S_0^1 \Phi(d_1(0, S_0^1)), \\ \vartheta_t &:= \frac{\partial v}{\partial x}(t, S_t^1) = \Phi(d_1(t, S_t^1 e^{rt})) + S_t^1 \varphi(d_1(t, S_t^1 e^{rt})) \frac{1}{S_t^1 e^{rt} \sigma \sqrt{T - t}} e^{rt} \\ &= \Phi(d_1(t, S_t^1 e^{rt})) + \frac{\varphi(d_1(t, S_t^1 e^{rt}))}{\sigma \sqrt{T - t}}, \end{split}$$

where φ denotes the density of the standard normal distribution. As ϑ is continuous and adapted, it is predictable and locally bounded.