Exercise 1
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Exercise 2

(a)

An arbitrage opportunity is an admissible, self-financing strategy ¢ = (0,¢) with ¥ =
(V%) k=0,1 such that ¥g = 0 and

Vi(p) = hAS] >0, (1)

P[91AS] >0] >0 (2)

In this context, admissibility is automatically satisfied; hence we only have to focus on
conditions (??) and (??). For the first one, we have

01 (5] — Sp) >
0< 191(101 —101)
&{0<9,(102 — 101)
0 < 9,(105 — 101)
& > 0.
Moreover, at least one of the three inequalities is strict if and only if ;1 > 0. As a result,

an arbitrary arbitrage opportunity has to be of the form ¢ = (0,9) with ¥ = (¥)k=01
such that 99 = 0 and ¥ > 0.

For example, the strategy ¢ = (0,¢) with ¥ = (¥} )x=0,1 such that Jp = 0 and ¥; = 1is an
arbitrage opportunity.

For an arbitrary d, a self-financing trading strategy ¢ = (0,9) is an arbitrage opportunity
if and only if

0 < ¥1(100(1 + d) — 101)
0 < 91(102 — 101) ,
0 < 91(105 — 101)

where at least one of the listed inequalities has to be strict. The second and the third
inequalities are satisfied if and only if ¥1 > 0. As a result, the market is free of arbitrage
if and only if 100(1 + d) — 101 < 0 which is equivalent to the condition d < 0.01.

We first compute the set of all equivalent martingale measures @ for S'. Define
g0 = QUwall,  am=QUwnls = Ql{wu}]
Then Q is an EMM for S! if and only if ¢4, ¢m, qu € (0,1), ¢4 + @m + g = 1, and
101(1 4 d)gg + 101(1 + m) g + 101(1 + u)q, = 101(1 + 1),

or equivalently

(0 @ 0u) = (2,0, d)+/\< ZZ’L_T:;)
1
2

(Godyeacha)
for some X € (0,2/3).

For the second part, recall that a payoff H is attainable if and only if H has the same and
finite expectation under all EMMs Q for S!.

For A € (0,2/3), let now Q* be the EMM for S! given by

Dexchid)

Eon [HP") = 3(% - A%) +O>\+0<% - A%) 2 ;)\,

2
(qs\7 q';\rm Qi\) = (§7 07
Computing

we can thus conclude that H¥% is not attainable.



(c) (i) Since S* and S? := % are both martingales with respect to Q*, by the fundamental
theorem of asset pricing, the proposed enlargement of the market is free of arbitrage.

(ii) For this sub-point, there are two possible answers:

— One can see from the calculations of point (b) that S? is not a Q-martingale for
any Q € P.(S1)\{Q*}. As aresult, Q* is the unique EMM for this market, which
is thus complete.

— First note that

(V]

S} = S2 = Eg-[HP™] = 3¢ + 0g};, + 0 = =. (3)

TN

One can then show that the system of linear equations given by

hy = Vo + 01 AS] (wq) + 9TAS? (wa)
hy = Vo + 01 AS] (wm) + 9TASE (win)
hy = Vo + 91AS5] (wy) + 97ASF (wy)

has a solution (Vp,91,9%) € R3 for every triple (hi, he, h3) such that h; > 0 for
all ¢ = 1,2,3. For instance, this can be proved by showing that the determinant
of the coefficients matrix is different from O:

1 ASHwg) AS?(wag) 1 -2 3/2
1 AS{(wm) AS?(wm) ||=|| 1 1 =3/2 ||=9#0.
1 AS{(wy) AS?(wy) 1 4 -3)2

(d) A replication strategy for H¢ .= ﬁﬁca” = (S{ —101)" is an admissible, self-financing
strategy ¢ = (V(]Hcau,ﬁl, ¥?) with 9% = (9% )g—0,1 for i = 1,2 such that ¥} = 9% = 0 and
HCall

HON = V(o) = Vi +91AS] +97AS]  P-as. (4)

In our context, admissibility is automatically satisfied. Note that Sg = 3/2, as showed in
equation (?77). By condition (??), we then have

a Call
HO I gl 5+ S )

0= VA £ 9199 — 101) + ¥2(3 — 3/2)

&1 =VHE 4+ 91102 — 101) 4+ 92(0 — 3/2)
4=V 491105 — 101) + 93 (0 — 3/2)
0= VI —201 4+ 393

HCall

1=V + 9] — 3093
4=V 449l - 392

HCall

end hence 91 = 1, ¥? = %, and Vj =1



Exercise 3

(a) Start computing the density process Z of Q* with respect to P.

.Fk] = E[(i)Ts; ]—'k,] ® (§>T<EE>E[YHT-;€

UINDOREOR

J=1

dQ*
dpr

Zk:E{

fork=1,...,Tand Zy = (4)TE[Y1]T = 1. In (%), we used the i.i.d. property of (Y});=1,..1

3
and the fact that Y; is Fj-measurable for each j =1,...,T.

20ty

Since (i%* > 0 P-a.s., we already have that Q* ~ P. One thus only has to show that S is
a (Q*, F)-martingale.
e Adaptedness is clear.

e For the integrability, note that |Si| < (3/2)* P-as. for each k = 1,...,T, since
|Y;| <3/2 P-as. foreach j =1,...,T.

e It only remains to show the (Q*, F)-martingale property of S'. Fix k € {0,...,T—1},
then we have

Bayes 1

EqQ-[Shi1/ S| Frl = Ege [Yis1|F] "= ZE[Zk+1Yk+1‘fk]
4 idd. 4
= E[g Y2, }'k] L4 E[?) Yf] ~ 1

Alternatively, by the lecture we know that S! is a (Q*, F)-martingale is and only if ZS?! is
a (P,TF)-martingale. But Z;S} = (%)k(S,i)z = H?:l %Yf is a product of P-i.i.d. random
variables, hence a (P, [F')-martingale if and only if each factor has expectation 1 with respect
to P. Noting that E[%YJQ] = 1 by the remark, we can thus conclude that S! is a (Q*,TF)-

martingale.
(b) We start proving that 7 is a stopping time. Fix k € {1,...,T — 1}; then we can compute

k
{(r<k}={J{v;>1}eR,
j:lw
G]'—jgfk
since g-algebras are closed under countable unions. Moreover, since 7 > 1, we have that
{r <0} =0 € Fy, and since 7 < T, we have that {T < T} =Q € Fr.

For the second part, we need to show that ¢° is adapted, g = 0, and 9 is predictable. By
construction, ¥y = 0. For the predictability of J, we only need to show that {k < 7} € F_;
foreach k =1,...,T. Fixing k € {1,...,T} we have

{k<t}={k>71}={k—-1>7}°€ Frp,
since {k — 1 > 7} € Fi_1 by the definition of a stopping time and since o-algebras are

closed under taking complements. The proof of the adaptedness of ¢ is analogous; in fact,

@Y = —1 is even predictable like ).

(c) The strategy @ is self-financing if and only if

Briq — P+ (V1 — 9k)Sk = ACk+1(P) =0 P-as.,



forall k =0,...,T — 1. Hence, © is self-financing if and only if

1 if k=0
P — P =~ —VR)SE =< =S} ifk=1.
0 else

Thus, using that ¢8 =0, for each £ =1,...,T we must have that

B
—_

Br=20+ Y (@141 — BN =0+1g 1500 — SHlp_15,3 =1 — St gany.

<.
Il
o

The value process of P is then given by V() = 73 = 0 and

k TNk k
V(@) =Vo(@) + Ge(0) =0+ > 0;AS; ==Y ASj+ > 0=1-5},,
j=1 j=1 J=(rAk)+1

forall k=1,...,T.

Alternatively, one can also deduce @" from the value process of ®. Indeed for all k =
1,...,T we can compute

@h=Vi(®) = 0kS; =1 = St + Lipary Sp = 1 = Spl sy
Finally, since S} = H§:1 Y; < (3/2)% < (3/2)T, we can conclude that for each k =1,...,T
1-8,>1-(3/2)7 P-as,
and thus that p is an admissible trading strategy.

There are different possible argumentations:

e Slis a (Q*,F)-martingale; hence by the stopping theorem, the process
V(@) =(1- Si/\k)k:l),...,T

is a (Q*, F)-martingale as well (Corollary 1.3.2).
e Sl is a (Q*,F)-martingale and ¥ is bounded, hence V(@) = 9 - St is a (Q*,F)-
martingale as well (Theorem 1.3.1).

In general, it is always true that the value process V(¢) of an admissible self-financing
strategy ¢ is a (Q*,F)-martingale. Indeed, first note that the a-admissibility of ¢ gives us
that the gains process can be written as a stochastic integral process bounded from below:

GW)=19-5' =V(p)— Vo > —a—|Vy| P-as.

Since S' is a (Q*, F)-martingale, we can then directly conclude that G(¥9), and thus V (),
is a (Q*,F)-martingale as well (Theorem 1.3.3).



Exercise 4

(a)

By the product rule, using that the process (27" — t)ic[o,7) is continuous and of finite
variation,

dX, = (2T —t)dl, — I, dt = (2T — 1) AW, — I, dt = dW, — I, dt.

2T —t

Thus, the quadratic variation of X is [X]; = [W]; =t, t € [0,T]. Since I is not P-a.s. zero,
X is not a local martingale and hence cannot be a Brownian motion.

Fix a,b € R and note that M; = f(¢t,W;) for the smooth function f(t,z) = atx + ba?,
t >0, z € R. Hence, by It6’s formula,

1
dM; = aW; dt + (at + 3bW7) dW; + 5(GbWt) d(W); = (a+ 3b)W,dt + (at + 3bW7?) dW;,

where we use that (W), = t. Therefore, M is a local martingale (with respect to P and )
if and only if its finite variation part is zero, i.e. if and only if a + 3b = 0. We claim that
in this case, M is even a (true) martingale. Indeed, for a + 3b = 0, we have

t t
Mt:Mo—i—a/ uqu—i—?)b/ W2 dw,,
0 0

and both stochastic integrals are martingales by Exercise 12-3 (c) and (d).

First, assume that o # 0. Then

W, 2
(W; + at)? = lim #? (t + a> =400 P-as.
t—00 t

lim
t—o00

by the law of large numbers for Brownian motion, and therefore lim; .., Z; = 0 P-a.s.

Second, assume that @« = 0. Then limsupW; = +oo P-a.s. and liminf W; = —o0
t—o0 t—00
P-a.s. by the (global) law of the iterated logarithm. Hence, lim sup W2 = +o0o P-a.s. and
t—o0
litrn inf W2 = 0 P-a.s. as W crosses 0 infinitely often. Therefore, limsup Z; = 1 P-a.s. and
—00

t—o00
liminf Z; = 0 P-a.s.
t—o00



Exercise 5

(a) Define the process Z = (Z;)epo,r) by Zi = St/Sg. Then Z is a (Q*, F)-martingale because
Q* is an equivalent martingale measure for S', Z; = 1 by construction, and as S* >0

P-a.s., also Z > 0 P-a.s. Hence, Z is the den51ty process of Q with respect to Q* and Q is
a probablhty measure equlvalent to Q*.

Now, let H € LY (Fr) and fix t € [0,T]. By the Bayes formula (Lemma 6.2.1 in the lecture

notes),

o (A & il & i

SiEp | = | Fi| = 5 Ee |Zr= | Ft| = crBo |Sr= | Fe

T Zi St 5 St
= §?EQ* = ft] Q-a.s
T
The assertion follows because @ ~Q*=~ P on Fr.
(b) It is known from the lecture notes that
wy=w,+ L0 e [0,7],

defines a Q*-Brownian motion W* and that S! satisfies the SDE
ds} = Slodwy.

Using [t6’s formula, we can compute the dynamics of S0 =1 /St under Q*:

N 1
ds? = ds} +
! (51) (SH3

= 5% (o dt — dWy).

A(sy, = =% aw; + 8002 dt

Note that Z = S'/St = £(eW*). Hence, by Girsanov’s theorem (Theorem 6.2.3 in the
lecture notes),

Wi =W, — (oW* W*)y = W} —ot, t€]0,T],
defines a @—Brownian motion W**. Thus,
45Y = —5% dw;.
As W = —W* is again a @—Brownian motion (Exercise 8-3), the assertion follows.

(¢) Method 1: By part (b), SO has the explicit representation as a stochastic exponential

SY = SPE(eW); = — exp (UWt — §a2t), t € 10,7,

S
and §}3 = exp(rt), t € [0,T]. Thus,

- S0 A o2

S} = S’\—; = S} exp <0Wt+ (rJr 2> t) , tel0,T],

and a standard application of It6’s formula yields

a8l = g} ((r +o?)dt — ath) .



Method 2: By It6’s formula and the dynamics of 59 from part (b),

1 1 ~ 1 ~ 1 —~
d b~ :*A7d50+ = dSO = == *O’dW+O’2dt .
<50>t Gop T G S?( ot

Using the product rule, the given dynamics of §0, and the fact that SO is continuous and
of finite variation, we then obtain

~ 1 1 0 = 1 ~ o~
1 _ 0 _ 0 0 _cl 2
dS;y =d (§OS )t =% dsy + 5y d (§0>t =5 ((r—{—a ) dt Uth>.

t

(d) Let H = Sl {Sl SK} denote the undiscounted payoff of the asset-or-nothing call with

strike K > 0. To replicate this claim, we first have to compute the discounted value

|

Sh=2Ske (/ (T+02)du—aw> :Séexp«r—i—%aZ)t—aﬁ/\t), t € [0,7],
t

t € [0,T]. To this end, we first conclude from part (c) that

process V; 1= FEg« [~

0

so that for t € [0,T7,
~ ~ —~ — 1
1_ g1 _ _ L oo\ _
ST—SteXp( o(Wr Wt)—|—<r+20>(T t)). (5)

Now, fix ¢t € [0,T]. Using the result from part (a),

H S} H
— [ tp. | =
V—§OS 0 F- % 7-}] 5% Y 7-'] — SIE; [{51>K}‘ft} P-as.
Using (?7?), we find that
{Sp > K} = { TT_ tt <d1(t,Stl)}

where

di(t,s) = s>0
1t T—1
As Wis a @—Brownian motion, W\/T%t is independent of F; and standard normally dis-

tributed under @ Using also that gtl is Fi-measurable, we obtain
Vi, = Sto(dy(t, 51) = S @(dy(t, Ste™)) =v(t, S}) P-as.,

where ® denotes the cumulative distribution function of the standard normal distribution
and

v(t,z) = x®(dy(t, ze™)), t€[0,T], x> 0.

By definition of V and Itd’s formula, §0 ]I{S%Zf(} = Vr =v(T,S}) and for all ¢ € [0,7]

t
Vi =v(t, S}) = v(0,83) +/ gz;(u, shyds! P-as; (6)
0



note that the finite variation terms must vanish since V and S! are continuous (Q*,F)-
martingales by construction. In particular, the stochastic integral in (??) is a (Q*,TF)-
martingale. We can thus set

Vo :=v(0, S§) = Se®(d1 (0, 58)),
ov

Vpi= o (1, 5)) = B(di(t, Spe™)) + S p(da(t, Spe™))

1 rt
Stertoy/T — i
dy(t, Ste™))
— P(d t,Slrt _'_(p(lvt ,
( 1( t€ )) U\/ﬁ

where ¢ denotes the density of the standard normal distribution. As ¢ is continuous and
adapted, it is predictable and locally bounded.



