Exercise 1

The correct answers are:
(a) (2)
(b) (3)
(c) (2)
(d) (1)
(e) (2)
(f) (2)
(g) (3)
(h) (2)

Exercise 2

(a) An arbitrage opportunity is an admissible, self-financing strategy $\varphi \widehat{=}(0, \vartheta)$ with $\vartheta=$ $\left(\vartheta_{k}\right)_{k=0,1}$ such that $\vartheta_{0}=0$ and

$$
\begin{array}{r}
V_{1}(\varphi)=\vartheta_{1} \Delta S_{1}^{1} \geq 0 \\
P\left[\vartheta_{1} \Delta S_{1}^{1}>0\right]>0 \tag{2}
\end{array}
$$

In this context, admissibility is automatically satisfied; hence we only have to focus on conditions (??) and (??). For the first one, we have

$$
\begin{aligned}
& \vartheta_{1}\left(S_{1}^{1}-S_{0}^{1}\right) \geq 0 \\
& \Leftrightarrow\left\{\begin{array}{l}
0 \leq \vartheta_{1}(101-101) \\
0 \leq \vartheta_{1}(102-101) \\
0 \leq \vartheta_{1}(105-101)
\end{array}\right. \\
& \Leftrightarrow \vartheta_{1} \geq 0
\end{aligned}
$$

Moreover, at least one of the three inequalities is strict if and only if $\vartheta_{1}>0$. As a result, an arbitrary arbitrage opportunity has to be of the form $\varphi \widehat{=}(0, \vartheta)$ with $\vartheta=\left(\vartheta_{k}\right)_{k=0,1}$ such that $\vartheta_{0}=0$ and $\vartheta_{1}>0$.
For example, the strategy $\varphi \widehat{=}(0, \vartheta)$ with $\vartheta=\left(\vartheta_{k}\right)_{k=0,1}$ such that $\vartheta_{0}=0$ and $\vartheta_{1}=1$ is an arbitrage opportunity.
For an arbitrary d, a self-financing trading strategy $\varphi \widehat{=}(0, \vartheta)$ is an arbitrage opportunity if and only if

$$
\left\{\begin{array}{l}
0 \leq \vartheta_{1}(100(1+d)-101) \\
0 \leq \vartheta_{1}(102-101) \\
0 \leq \vartheta_{1}(105-101)
\end{array}\right.
$$

where at least one of the listed inequalities has to be strict. The second and the third inequalities are satisfied if and only if $\vartheta_{1} \geq 0$. As a result, the market is free of arbitrage if and only if $100(1+d)-101<0$ which is equivalent to the condition $d<0.01$.
(b) We first compute the set of all equivalent martingale measures Q for S^{1}. Define

$$
q_{d}:=Q\left[\left\{\omega_{d}\right\}\right], \quad q_{m}:=Q\left[\left\{\omega_{m}\right\}\right], \quad q_{u}:=Q\left[\left\{\omega_{u}\right\}\right] .
$$

Then Q is an EMM for S^{1} if and only if $q_{d}, q_{m}, q_{u} \in(0,1), q_{d}+q_{m}+q_{u}=1$, and

$$
101(1+d) q_{d}+101(1+m) q_{m}+101(1+u) q_{u}=101(1+r)
$$

or equivalently

$$
\begin{aligned}
\left(q_{d}, q_{m}, q_{u}\right) & =\left(\frac{u-r}{u-d}, 0, \frac{r-d}{u-d}\right)+\lambda\left(-\frac{u-m}{u-d}, 1,-\frac{m-d}{u-d}\right) \\
& =\left(\frac{2}{3}, 0, \frac{1}{3}\right)+\lambda\left(-\frac{1}{2}, 1,-\frac{1}{2}\right)
\end{aligned}
$$

for some $\lambda \in(0,2 / 3)$.
For the second part, recall that a payoff H is attainable if and only if H has the same and finite expectation under all EMMs Q for S^{1}.
For $\lambda \in(0,2 / 3)$, let now Q^{λ} be the EMM for S^{1} given by

$$
\left(q_{d}^{\lambda}, q_{m}^{\lambda}, q_{u}^{\lambda}\right)=\left(\frac{2}{3}, 0, \frac{1}{3}\right)+\lambda\left(-\frac{1}{2}, 1,-\frac{1}{2}\right)
$$

Computing

$$
E_{Q^{\lambda}}\left[H^{P u t}\right]=3\left(\frac{2}{3}-\lambda \frac{1}{2}\right)+0 \lambda+0\left(\frac{1}{3}-\lambda \frac{1}{2}\right)=2-\frac{3}{2} \lambda
$$

we can thus conclude that $H^{P u t}$ is not attainable.
(c) (i) Since S^{1} and $S^{2}:=\frac{\widetilde{S}^{2}}{\widetilde{S}^{0}}$ are both martingales with respect to Q^{*}, by the fundamental theorem of asset pricing, the proposed enlargement of the market is free of arbitrage.
(ii) For this sub-point, there are two possible answers:

- One can see from the calculations of point (b) that S^{2} is not a Q-martingale for any $Q \in \mathbb{P}_{e}\left(S^{1}\right) \backslash\left\{Q^{*}\right\}$. As a result, Q^{*} is the unique EMM for this market, which is thus complete.
- First note that

$$
\begin{equation*}
S_{0}^{2}=\widetilde{S}_{0}^{2}=E_{Q^{*}}\left[H^{P u t}\right]=3 q_{d}^{*}+0 q_{m}^{*}+0 q_{u}^{*}=\frac{3}{2} \tag{3}
\end{equation*}
$$

One can then show that the system of linear equations given by

$$
\left\{\begin{array}{l}
h_{1}=V_{0}+\vartheta_{1}^{1} \Delta S_{1}^{1}\left(\omega_{d}\right)+\vartheta_{1}^{2} \Delta S_{1}^{2}\left(\omega_{d}\right) \\
h_{2}=V_{0}+\vartheta_{1}^{1} \Delta S_{1}^{1}\left(\omega_{m}\right)+\vartheta_{1}^{2} \Delta S_{1}^{2}\left(\omega_{m}\right) \\
h_{3}=V_{0}+\vartheta_{1}^{1} \Delta S_{1}^{1}\left(\omega_{u}\right)+\vartheta_{1}^{2} \Delta S_{1}^{2}\left(\omega_{u}\right)
\end{array}\right.
$$

has a solution $\left(V_{0}, \vartheta_{1}^{1}, \vartheta_{1}^{2}\right) \in \mathbb{R}^{3}$ for every triple $\left(h_{1}, h_{2}, h_{3}\right)$ such that $h_{i} \geq 0$ for all $i=1,2,3$. For instance, this can be proved by showing that the determinant of the coefficients matrix is different from 0 :

$$
\left|\left(\begin{array}{ccc}
1 & \Delta S_{1}^{1}\left(\omega_{d}\right) & \Delta S_{1}^{2}\left(\omega_{d}\right) \\
1 & \Delta S_{1}^{1}\left(\omega_{m}\right) & \Delta S_{1}^{2}\left(\omega_{m}\right) \\
1 & \Delta S_{1}^{1}\left(\omega_{u}\right) & \Delta S_{1}^{2}\left(\omega_{u}\right)
\end{array}\right)\right|=\left|\left(\begin{array}{ccc}
1 & -2 & 3 / 2 \\
1 & 1 & -3 / 2 \\
1 & 4 & -3 / 2
\end{array}\right)\right|=9 \neq 0
$$

(d) A replication strategy for $H^{\text {Call }}:=\frac{1}{1+r} \widetilde{H}^{\text {Call }}=\left(S_{1}^{1}-101\right)^{+}$is an admissible, self-financing strategy $\varphi \widehat{=}\left(V_{0}^{H^{\text {Call }}}, \vartheta^{1}, \vartheta^{2}\right)$ with $\vartheta^{i}=\left(\vartheta_{k}^{i}\right)_{k=0,1}$ for $i=1,2$ such that $\vartheta_{0}^{1}=\vartheta_{0}^{2}=0$ and

$$
\begin{equation*}
H^{\text {Call }}=V_{T}(\varphi)=V_{0}^{H^{\text {Call }}}+\vartheta_{1}^{1} \Delta S_{1}^{1}+\vartheta_{1}^{2} \Delta S_{1}^{2} \quad P \text {-a.s. } \tag{4}
\end{equation*}
$$

In our context, admissibility is automatically satisfied. Note that $S_{0}^{2}=3 / 2$, as showed in equation (??). By condition (??), we then have

$$
\begin{aligned}
& H^{\text {Call }}=V_{0}^{H^{\text {Call }}}+\vartheta_{1}^{1}\left(S_{1}^{1}-S_{0}^{1}\right)+\vartheta_{1}^{2}\left(S_{1}^{2}-S_{0}^{2}\right) \\
& \Leftrightarrow\left\{\begin{array}{l}
0=V_{0}^{H^{\text {Call }}}+\vartheta_{1}^{1}(99-101)+\vartheta_{1}^{2}(3-3 / 2) \\
1=V_{0}^{H^{\text {Call }}}+\vartheta_{1}^{1}(102-101)+\vartheta_{1}^{2}(0-3 / 2) \\
4=V_{0}^{H^{\text {Call }}}+\vartheta_{1}^{1}(105-101)+\vartheta_{1}^{2}(0-3 / 2)
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
0=V_{0}^{H^{\text {Call }}}-2 \vartheta_{1}^{1}+\frac{3}{2} \vartheta_{1}^{2} \\
1=V_{0}^{H^{\text {Call }}}+\vartheta_{1}^{1}-\frac{3}{2} \vartheta_{1}^{2} \\
4=V_{0}^{H^{\text {Call }}+4 \vartheta_{1}^{1}-\frac{3}{2} \vartheta_{1}^{2}}
\end{array}\right.
\end{aligned}
$$

end hence $\vartheta_{1}^{1}=1, \vartheta_{1}^{2}=\frac{2}{3}$, and $V_{0}^{H^{\text {Call }}}=1$.

Exercise 3

(a) Start computing the density process Z of Q^{*} with respect to P.

$$
\begin{aligned}
Z_{k}=E\left[\left.\frac{\mathrm{~d} Q^{*}}{\mathrm{~d} P} \right\rvert\, \mathcal{F}_{k}\right]=E\left[\left.\left(\frac{4}{3}\right)^{T} S_{T}^{1} \right\rvert\, \mathcal{F}_{k}\right] & \stackrel{(*)}{=}\left(\frac{4}{3}\right)^{T}\left(\prod_{j=1}^{k} Y_{j}\right) E\left[Y_{1}\right]^{T-k} \\
& =\left(\frac{4}{3}\right)^{T}\left(\prod_{j=1}^{k} Y_{j}\right)\left(\frac{3}{4}\right)^{T-k}=\left(\frac{4}{3}\right)^{k} S_{k}^{1},
\end{aligned}
$$

for $k=1, \ldots, T$ and $Z_{0}=\left(\frac{4}{3}\right)^{T} E\left[Y_{1}\right]^{T}=1$. In $(*)$, we used the i.i.d. property of $\left(Y_{j}\right)_{j=1, \ldots, T}$ and the fact that Y_{j} is \mathcal{F}_{j}-measurable for each $j=1, \ldots, T$.
Since $\frac{\mathrm{d} Q^{*}}{\mathrm{~d} P}>0 P$-a.s., we already have that $Q^{*} \approx P$. One thus only has to show that S^{1} is a $\left(Q^{*}, \mathbb{F}\right)$-martingale.

- Adaptedness is clear.
- For the integrability, note that $\left|S_{k}^{1}\right| \leq(3 / 2)^{k} P$-a.s. for each $k=1, \ldots, T$, since $\left|Y_{j}\right| \leq 3 / 2 P$-a.s. for each $j=1, \ldots, T$.
- It only remains to show the $\left(Q^{*}, \mathbb{F}\right)$-martingale property of S^{1}. Fix $k \in\{0, \ldots, T-1\}$, then we have

$$
\begin{aligned}
E_{Q^{*}}\left[S_{k+1}^{1} / S_{k}^{1} \mid \mathcal{F}_{k}\right] & =E_{Q^{*}}\left[Y_{k+1} \mid \mathcal{F}_{k}\right] \stackrel{\text { Bayes }}{=} \frac{1}{Z_{k}} E\left[Z_{k+1} Y_{k+1} \mid \mathcal{F}_{k}\right] \\
& =E\left[\left.\frac{4}{3} Y_{k+1}^{2} \right\rvert\, \mathcal{F}_{k}\right] \stackrel{\text { i.i.d. }}{=} E\left[\frac{4}{3} Y_{1}^{2}\right]=1
\end{aligned}
$$

Alternatively, by the lecture we know that S^{1} is a $\left(Q^{*}, \mathbb{F}\right)$-martingale is and only if $Z S^{1}$ is a (P, \mathbb{F})-martingale. But $Z_{k} S_{k}^{1}=\left(\frac{4}{3}\right)^{k}\left(S_{k}^{1}\right)^{2}=\prod_{j=1}^{k} \frac{4}{3} Y_{j}^{2}$ is a product of P-i.i.d. random variables, hence a (P, \mathbb{F})-martingale if and only if each factor has expectation 1 with respect to P. Noting that $E\left[\frac{4}{3} Y_{j}^{2}\right]=1$ by the remark, we can thus conclude that S^{1} is a $\left(Q^{*}, \mathbb{F}\right)$ martingale.
(b) We start proving that τ is a stopping time. Fix $k \in\{1, \ldots, T-1\}$; then we can compute

$$
\{\tau \leq k\}=\bigcup_{j=1}^{k} \underbrace{\left\{Y_{j}>1\right\}}_{\in \mathcal{F}_{j} \subseteq \mathcal{F}_{k}} \in \mathcal{F}_{k}
$$

since σ-algebras are closed under countable unions. Moreover, since $\tau \geq 1$, we have that $\{\tau \leq 0\}=\emptyset \in \mathcal{F}_{0}$, and since $\tau \leq T$, we have that $\{\tau \leq T\}=\Omega \in \mathcal{F}_{T}$.
For the second part, we need to show that φ^{0} is adapted, $\vartheta_{0}=0$, and ϑ is predictable. By construction, $\vartheta_{0}=0$. For the predictability of ϑ, we only need to show that $\{k \leq \tau\} \in \mathcal{F}_{k-1}$ for each $k=1, \ldots, T$. Fixing $k \in\{1, \ldots, T\}$ we have

$$
\{k \leq \tau\}=\{k>\tau\}^{c}=\{k-1 \geq \tau\}^{c} \in \mathcal{F}_{k-1}
$$

since $\{k-1 \geq \tau\} \in \mathcal{F}_{k-1}$ by the definition of a stopping time and since σ-algebras are closed under taking complements. The proof of the adaptedness of φ^{0} is analogous; in fact, $\varphi^{0}=-\vartheta$ is even predictable like ϑ.
(c) The strategy $\bar{\varphi}$ is self-financing if and only if

$$
\bar{\varphi}_{k+1}^{0}-\bar{\varphi}_{k}^{0}+\left(\vartheta_{k+1}-\vartheta_{k}\right) S_{k}^{1}=\Delta C_{k+1}(\bar{\varphi})=0 \quad P \text {-a.s. }
$$

for all $k=0, \ldots, T-1$. Hence, $\bar{\varphi}$ is self-financing if and only if

$$
\bar{\varphi}_{k+1}^{0}-\bar{\varphi}_{k}^{0}=-\left(\vartheta_{k+1}-\vartheta_{k}\right) S_{k}^{1}= \begin{cases}1 & \text { if } k=0 \\ -S_{k}^{1} & \text { if } k=\tau . \\ 0 & \text { else }\end{cases}
$$

Thus, using that $\bar{\varphi}_{0}^{0}=0$, for each $k=1, \ldots, T$ we must have that

$$
\bar{\varphi}_{k}^{0}=\bar{\varphi}_{0}^{0}+\sum_{j=0}^{k-1}\left(\bar{\varphi}_{j+1}^{0}-\bar{\varphi}_{j}^{0}\right)=0+\mathbb{1}_{\{k-1 \geq 0\}}-S_{\tau}^{1} \mathbb{1}_{\{k-1 \geq \tau\}}=1-S_{\tau}^{1} \mathbb{1}_{\{k>\tau\}} .
$$

The value process of $\bar{\varphi}$ is then given by $V_{0}(\bar{\varphi})=\bar{\varphi}_{0}^{0}=0$ and

$$
V_{k}(\bar{\varphi})=V_{0}(\bar{\varphi})+G_{k}(\vartheta)=0+\sum_{j=1}^{k} \vartheta_{j} \Delta S_{j}^{1}=-\sum_{j=1}^{\tau \wedge k} \Delta S_{j}^{1}+\sum_{j=(\tau \wedge k)+1}^{k} 0=1-S_{\tau \wedge k}^{1},
$$

for all $k=1, \ldots, T$.
Alternatively, one can also deduce $\bar{\varphi}^{0}$ from the value process of $\bar{\varphi}$. Indeed for all $k=$ $1, \ldots, T$ we can compute

$$
\bar{\varphi}_{k}^{0}=V_{k}(\bar{\varphi})-\vartheta_{k} S_{k}^{1}=1-S_{\tau \wedge k}^{1}+\mathbb{1}_{\{k \leq \tau\}} S_{k}^{1}=1-S_{\tau}^{1} \mathbb{1}_{\{k>\tau\}} .
$$

Finally, since $S_{k}^{1}=\prod_{j=1}^{k} Y_{j} \leq(3 / 2)^{k} \leq(3 / 2)^{T}$, we can conclude that for each $k=1, \ldots, T$

$$
1-S_{\tau \wedge k}^{1} \geq 1-(3 / 2)^{T} \quad P \text {-a.s. }
$$

and thus that $\bar{\varphi}$ is an admissible trading strategy.
(d) There are different possible argumentations:

- S^{1} is a $\left(Q^{*}, \mathbb{F}\right)$-martingale; hence by the stopping theorem, the process

$$
V(\bar{\varphi})=\left(1-S_{\tau \wedge k}^{1}\right)_{k=0, \ldots, T}
$$

is a $\left(Q^{*}, \mathbb{F}\right)$-martingale as well (Corollary 1.3.2).

- S^{1} is a $\left(Q^{*}, \mathbb{F}\right)$-martingale and ϑ is bounded, hence $V(\bar{\varphi})=\vartheta \cdot S^{1}$ is a $\left(Q^{*}, \mathbb{F}\right)$ martingale as well (Theorem 1.3.1).

In general, it is always true that the value process $V(\varphi)$ of an admissible self-financing strategy φ is a $\left(Q^{*}, \mathbb{F}\right)$-martingale. Indeed, first note that the a-admissibility of φ gives us that the gains process can be written as a stochastic integral process bounded from below:

$$
G(\vartheta)=\vartheta \cdot S^{1}=V(\varphi)-V_{0} \geq-a-\left|V_{0}\right| \quad P \text {-a.s. }
$$

Since S^{1} is a $\left(Q^{*}, \mathbb{F}\right)$-martingale, we can then directly conclude that $G(\vartheta)$, and thus $V(\varphi)$, is a $\left(Q^{*}, \mathbb{F}\right)$-martingale as well (Theorem 1.3.3).

Exercise 4

(a) By the product rule, using that the process $(2 T-t)_{t \in[0, T]}$ is continuous and of finite variation,

$$
\mathrm{d} X_{t}=(2 T-t) \mathrm{d} I_{t}-I_{t} \mathrm{~d} t=(2 T-t) \frac{1}{2 T-t} \mathrm{~d} W_{t}-I_{t} \mathrm{~d} t=\mathrm{d} W_{t}-I_{t} \mathrm{~d} t
$$

Thus, the quadratic variation of X is $[X]_{t}=[W]_{t}=t, t \in[0, T]$. Since I is not P-a.s. zero, X is not a local martingale and hence cannot be a Brownian motion.
(b) Fix $a, b \in \mathbb{R}$ and note that $M_{t}=f\left(t, W_{t}\right)$ for the smooth function $f(t, x)=a t x+b x^{3}$, $t \geq 0, x \in \mathbb{R}$. Hence, by Itô's formula,

$$
\mathrm{d} M_{t}=a W_{t} \mathrm{~d} t+\left(a t+3 b W_{t}^{2}\right) \mathrm{d} W_{t}+\frac{1}{2}\left(6 b W_{t}\right) \mathrm{d}\langle W\rangle_{t}=(a+3 b) W_{t} \mathrm{~d} t+\left(a t+3 b W_{t}^{2}\right) \mathrm{d} W_{t}
$$

where we use that $\langle W\rangle_{t}=t$. Therefore, M is a local martingale (with respect to P and \mathbb{F}) if and only if its finite variation part is zero, i.e. if and only if $a+3 b=0$. We claim that in this case, M is even a (true) martingale. Indeed, for $a+3 b=0$, we have

$$
M_{t}=M_{0}+a \int_{0}^{t} u \mathrm{~d} W_{u}+3 b \int_{0}^{t} W_{u}^{2} \mathrm{~d} W_{u}
$$

and both stochastic integrals are martingales by Exercise 12-3 (c) and (d).
(c) First, assume that $\alpha \neq 0$. Then

$$
\lim _{t \rightarrow \infty}\left(W_{t}+\alpha t\right)^{2}=\lim _{t \rightarrow \infty} t^{2}\left(\frac{W_{t}}{t}+\alpha\right)^{2}=+\infty \quad P \text {-a.s. }
$$

by the law of large numbers for Brownian motion, and therefore $\lim _{t \rightarrow \infty} Z_{t}=0 P$-a.s.
Second, assume that $\alpha=0$. Then $\limsup _{t \rightarrow \infty} W_{t}=+\infty P$-a.s. and $\liminf _{t \rightarrow \infty} W_{t}=-\infty$ P-a.s. by the (global) law of the iterated logarithm. Hence, $\limsup _{t \rightarrow \infty} W_{t}^{2}=+\infty P$-a.s. and $\liminf _{t \rightarrow \infty} W_{t}^{2}=0 P$-a.s. as W crosses 0 infinitely often. Therefore, $\limsup _{t \rightarrow \infty} Z_{t}=1 P$-a.s. and $\liminf _{t \rightarrow \infty} Z_{t}=0 P$-a.s.

Exercise 5

(a) Define the process $Z=\left(Z_{t}\right)_{t \in[0, T]}$ by $Z_{t}=S_{t}^{1} / S_{0}^{1}$. Then Z is a $\left(Q^{*}, \mathbb{F}\right)$-martingale because Q^{*} is an equivalent martingale measure for $S^{1}, Z_{0}=1$ by construction, and as $S^{1}>0$ P-a.s., also $Z>0 P$-a.s. Hence, Z is the density process of \widehat{Q} with respect to Q^{*} and \widehat{Q} is a probability measure equivalent to Q^{*}.
Now, let $\widetilde{H} \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$ and fix $t \in[0, T]$. By the Bayes formula (Lemma 6.2.1 in the lecture notes),

$$
\begin{aligned}
\widetilde{S}_{t}^{1} E_{\widehat{Q}}\left[\left.\frac{\widetilde{H}}{\widetilde{S}_{T}^{1}} \right\rvert\, \mathcal{F}_{t}\right] & =\frac{\widetilde{S}_{t}^{1}}{Z_{t}} E_{Q^{*}}\left[\left.Z_{T} \frac{\widetilde{H}}{\widetilde{S}_{T}^{1}} \right\rvert\, \mathcal{F}_{t}\right]=\frac{\widetilde{S}_{t}^{1}}{S_{t}^{1}} E_{Q^{*}}\left[\left.S_{T}^{1} \frac{\widetilde{H}}{\widetilde{S}_{T}^{1}} \right\rvert\, \mathcal{F}_{t}\right] \\
& =\widetilde{S}_{t}^{0} E_{Q^{*}}\left[\left.\frac{\widetilde{H}}{\widetilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right] \widehat{Q} \text {-a.s. }
\end{aligned}
$$

The assertion follows because $\widehat{Q} \approx Q^{*} \approx P$ on \mathcal{F}_{T}.
(b) It is known from the lecture notes that

$$
W_{t}^{*}:=W_{t}+\frac{\mu-r}{\sigma} t, \quad t \in[0, T],
$$

defines a Q^{*}-Brownian motion W^{*} and that S^{1} satisfies the SDE

$$
\mathrm{d} S_{t}^{1}=S_{t}^{1} \sigma \mathrm{~d} W_{t}^{*}
$$

Using Itô's formula, we can compute the dynamics of $\widehat{S}^{0}=1 / S^{1}$ under Q^{*} :

$$
\begin{aligned}
\mathrm{d} \widehat{S}_{t}^{0} & =-\frac{1}{\left(S_{t}^{1}\right)^{2}} \mathrm{~d} S_{t}^{1}+\frac{1}{\left(S_{t}^{1}\right)^{3}} \mathrm{~d}\left\langle S^{1}\right\rangle_{t}=-\widehat{S}_{t}^{0} \sigma \mathrm{~d} W_{t}^{*}+\widehat{S}_{t}^{0} \sigma^{2} \mathrm{~d} t \\
& =\widehat{S}_{t}^{0} \sigma\left(\sigma \mathrm{~d} t-\mathrm{d} W_{t}^{*}\right)
\end{aligned}
$$

Note that $Z=S^{1} / S_{0}^{1}=\mathcal{E}\left(\sigma W^{*}\right)$. Hence, by Girsanov's theorem (Theorem 6.2.3 in the lecture notes),

$$
W_{t}^{* *}:=W_{t}^{*}-\left\langle\sigma W^{*}, W^{*}\right\rangle_{t}=W_{t}^{*}-\sigma t, \quad t \in[0, T]
$$

defines a \widehat{Q}-Brownian motion $W^{* *}$. Thus,

$$
\mathrm{d} \widehat{S}_{t}^{0}=-\widehat{S}_{t}^{0} \sigma \mathrm{~d} W_{t}^{* *}
$$

As $\widehat{W}:=-W^{* *}$ is again a \widehat{Q}-Brownian motion (Exercise 8-3), the assertion follows.
(c) Method 1: By part (b), \widehat{S}^{0} has the explicit representation as a stochastic exponential

$$
\widehat{S}_{t}^{0}=\widehat{S}_{0}^{0} \mathcal{E}(\sigma \widehat{W})_{t}=\frac{1}{S_{0}^{1}} \exp \left(\sigma \widehat{W}_{t}-\frac{1}{2} \sigma^{2} t\right), \quad t \in[0, T]
$$

and $\widetilde{S}_{t}^{0}=\exp (r t), t \in[0, T]$. Thus,

$$
\widetilde{S}_{t}^{1}=\frac{\widetilde{S}_{t}^{0}}{\widehat{S}_{t}^{0}}=S_{0}^{1} \exp \left(-\sigma \widehat{W}_{t}+\left(r+\frac{\sigma^{2}}{2}\right) t\right), \quad t \in[0, T]
$$

and a standard application of Itô's formula yields

$$
\mathrm{d} \widetilde{S}_{t}^{1}=\widetilde{S}_{t}^{1}\left(\left(r+\sigma^{2}\right) \mathrm{d} t-\sigma \mathrm{d} \widehat{W}_{t}\right)
$$

Method 2: By Itô's formula and the dynamics of \widehat{S}^{0} from part (b),

$$
\mathrm{d}\left(\frac{1}{\widehat{S}^{0}}\right)_{t}=-\frac{1}{\left(\widehat{S}_{t}^{0}\right)^{2}} \mathrm{~d} \widehat{S}_{t}^{0}+\frac{1}{\left(\widehat{S}_{t}^{0}\right)^{3}} \mathrm{~d}\left\langle\widehat{S}^{0}\right\rangle_{t}=\frac{1}{\widehat{S}_{t}^{0}}\left(-\sigma \mathrm{d} \widehat{W}_{t}+\sigma^{2} \mathrm{~d} t\right)
$$

Using the product rule, the given dynamics of \widetilde{S}^{0}, and the fact that \widetilde{S}^{0} is continuous and of finite variation, we then obtain

$$
\mathrm{d} \widetilde{S}_{t}^{1}=\mathrm{d}\left(\frac{1}{\widehat{S}^{0}} \widetilde{S}^{0}\right)_{t}=\frac{1}{\widehat{S}_{t}^{0}} \mathrm{~d} \widetilde{S}_{t}^{0}+\widetilde{S}_{t}^{0} \mathrm{~d}\left(\frac{1}{\widehat{S}^{0}}\right)_{t}=\widetilde{S}_{t}^{1}\left(\left(r+\sigma^{2}\right) \mathrm{d} t-\sigma \mathrm{d} \widehat{W}_{t}\right)
$$

(d) Let $\widetilde{H}=\widetilde{S}_{T}^{1} \mathbb{1}_{\left\{\widetilde{S}_{T}^{1} \geq \widetilde{K}\right\}}$ denote the undiscounted payoff of the asset-or-nothing call with strike $\widetilde{K}>0$. To replicate this claim, we first have to compute the discounted value process $V_{t}:=E_{Q^{*}}\left[\left.\frac{\widetilde{H}}{\widetilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right], t \in[0, T]$. To this end, we first conclude from part (c) that

$$
\widetilde{S}_{t}^{1}=\widetilde{S}_{0}^{1} \mathcal{E}\left(\int_{0}^{.}\left(r+\sigma^{2}\right) \mathrm{d} u-\sigma \widehat{W}\right)_{t}=S_{0}^{1} \exp \left(\left(r+\frac{1}{2} \sigma^{2}\right) t-\sigma \widehat{W}_{t}\right), \quad t \in[0, T]
$$

so that for $t \in[0, T]$,

$$
\begin{equation*}
\widetilde{S}_{T}^{1}=\widetilde{S}_{t}^{1} \exp \left(-\sigma\left(\widehat{W}_{T}-\widehat{W}_{t}\right)+\left(r+\frac{1}{2} \sigma^{2}\right)(T-t)\right) \tag{5}
\end{equation*}
$$

Now, fix $t \in[0, T]$. Using the result from part (a),

$$
V_{t}=\frac{1}{\widetilde{S}_{t}^{0}} \widetilde{S}_{t}^{0} E_{Q^{*}}\left[\left.\frac{\widetilde{H}}{\widetilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{t}\right]=\frac{\widetilde{S}_{t}^{1}}{\widetilde{S}_{t}^{0}} E_{\widehat{Q}}\left[\left.\frac{\widetilde{H}}{\widetilde{S}_{T}^{1}} \right\rvert\, \mathcal{F}_{t}\right]=S_{t}^{1} E_{\widehat{Q}}\left[\mathbb{1}_{\left\{\widetilde{S}_{T}^{1} \geq \widetilde{K}\right\}} \mid \mathcal{F}_{t}\right] \quad P \text {-a.s. }
$$

Using (??), we find that

$$
\left\{\widetilde{S}_{T}^{1} \geq \widetilde{K}\right\}=\left\{\frac{\widehat{W}_{T}-\widehat{W}_{t}}{\sqrt{T-t}} \leq d_{1}\left(t, \widetilde{S}_{t}^{1}\right)\right\}
$$

where

$$
d_{1}(t, \widetilde{s})=\frac{\log \frac{\widetilde{\widetilde{s}}}{\widetilde{K}}+\left(r+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}, \quad \widetilde{s}>0
$$

As \widehat{W} is a \widehat{Q}-Brownian motion, $\frac{\widehat{W}_{T}-\widehat{W}_{t}}{\sqrt{T-t}}$ is independent of \mathcal{F}_{t} and standard normally distributed under \widehat{Q}. Using also that \widetilde{S}_{t}^{1} is \mathcal{F}_{t}-measurable, we obtain

$$
V_{t}=S_{t}^{1} \Phi\left(d_{1}\left(t, \widetilde{S}_{t}^{1}\right)\right)=S_{t}^{1} \Phi\left(d_{1}\left(t, S_{t}^{1} e^{r t}\right)\right)=v\left(t, S_{t}^{1}\right) \quad P \text {-a.s. }
$$

where Φ denotes the cumulative distribution function of the standard normal distribution and

$$
v(t, x)=x \Phi\left(d_{1}\left(t, x e^{r t}\right)\right), \quad t \in[0, T], x>0
$$

By definition of V and Itô's formula, $\frac{\widetilde{S}_{T}^{1}}{\widetilde{S}_{T}^{0}} \mathbb{1}_{\left\{\widetilde{S}_{T}^{1} \geq \widetilde{K}\right\}}=V_{T}=v\left(T, S_{T}^{1}\right)$ and for all $t \in[0, T]$

$$
\begin{equation*}
V_{t}=v\left(t, S_{t}^{1}\right)=v\left(0, S_{0}^{1}\right)+\int_{0}^{t} \frac{\partial v}{\partial x}\left(u, S_{u}^{1}\right) \mathrm{d} S_{u}^{1} \quad P \text {-a.s.; } \tag{6}
\end{equation*}
$$

note that the finite variation terms must vanish since V and S^{1} are continuous (Q^{*}, \mathbb{F})martingales by construction. In particular, the stochastic integral in (??) is a $\left(Q^{*}, \mathbb{F}\right)$ martingale. We can thus set

$$
\begin{aligned}
V_{0} & :=v\left(0, S_{0}^{1}\right)=S_{0}^{1} \Phi\left(d_{1}\left(0, S_{0}^{1}\right)\right), \\
\vartheta_{t} & :=\frac{\partial v}{\partial x}\left(t, S_{t}^{1}\right)=\Phi\left(d_{1}\left(t, S_{t}^{1} e^{r t}\right)\right)+S_{t}^{1} \varphi\left(d_{1}\left(t, S_{t}^{1} e^{r t}\right)\right) \frac{1}{S_{t}^{1} e^{r t} \sigma \sqrt{T-t}} e^{r t} \\
& =\Phi\left(d_{1}\left(t, S_{t}^{1} e^{r t}\right)\right)+\frac{\varphi\left(d_{1}\left(t, S_{t}^{1} e^{r t}\right)\right)}{\sigma \sqrt{T-t}},
\end{aligned}
$$

where φ denotes the density of the standard normal distribution. As ϑ is continuous and adapted, it is predictable and locally bounded.

