Question 1

The correct answers are:
(a) (2)
(b) (3)
(c) (3)
(d) (2)
(e) (1)
(f) (3)
(g) (2)
(h) (1)

Question 2

(a) Any probability measure \mathbb{Q} equivalent to \mathbb{P} on \mathcal{F}_{2} can be described by

$$
\mathbb{Q}\left[\left\{\left(x_{1}, x_{2}\right)\right\}\right]:=q_{x_{1}} q_{x_{1}, x_{2}},
$$

where $q_{x_{1}}, q_{x_{1}, x_{2}} \in(0,1)$ with $\sum_{x_{1} \in\{u, d\}} q_{x_{1}}=1$ and $\sum_{x_{2} \in\{u, d\}} q_{x_{1}, x_{2}}=1$ for all $x_{1} \in\{u, d\}$. Since $r=0, S^{1}$ is a \mathbb{Q}-martingale if and only if \widetilde{S}^{1} is, and that is equivalent to

$$
\begin{array}{lll}
\mathbb{E}_{\mathbb{Q}}\left[Y_{1}\right]=1 & \text { and } & \mathbb{E}_{\mathbb{Q}}\left[Y_{2} \mid Y_{1}=1.02\right]=1 \\
& \text { and } & \mathbb{E}_{\mathbb{Q}}\left[Y_{2} \mid Y_{1}=0.98\right]=1, \tag{1}
\end{array}
$$

since \mathcal{F}_{0} is trivial, $\mathcal{F}_{1}=\sigma\left(Y_{1}\right)$ and Y_{1} only takes two values. This is equivalent to

$$
\begin{align*}
q_{u} \times 1.02+\left(1-q_{u}\right) \times 0.98=1 & \Longleftrightarrow & q_{u}=\frac{1}{2} \\
q_{u, u} \times \frac{103}{102}+\left(1-q_{u, u}\right) \times \frac{101}{102}=1 & \Longleftrightarrow & q_{u, u}=\frac{1}{2} \\
q_{d, u} \times \frac{100}{98}+\left(1-q_{d, u}\right) \times \frac{97}{98}=1 & \Longleftrightarrow & q_{d, u}=\frac{1}{3} \tag{2}
\end{align*}
$$

(b) The density process $Z=\left(Z_{k}\right)_{k=0,1,2}$ is defined by

$$
Z_{k}:=\mathbb{E}_{\mathbb{P}}\left[\left.\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}} \right\rvert\, \mathcal{F}_{k}\right], \quad k=0,1,2 .
$$

Since \mathcal{F}_{0} is trivial, we have

$$
Z_{0}=\mathbb{E}_{\mathbb{P}}\left[\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}}\right]=\mathbb{E}_{\mathbb{Q}}[1]=1
$$

Since $\mathbb{Q} \approx \mathbb{P}$, we have $Z_{k}>0 \mathbb{P}$-a.s. for $k=0,1,2$. Therefore, we can define

$$
D_{k}:=\frac{Z_{k}}{Z_{k-1}} \quad \text { for } k=1,2 .
$$

Moreover, we know from the lecture (p. 42 in the lecture notes) that the $D_{k}, k=1,2$, play the role of "one step conditional densities" of \mathbb{Q} with respect to \mathbb{P}. Therefore, by plugging in the values for $p_{x_{1}}$ and $q_{x_{1}}$, where $x_{1} \in\{u, d\}$, we get

$$
\begin{align*}
& D_{1}((u, u))=D_{1}((u, d))=\frac{q_{u}}{p_{u}}=\frac{\frac{1}{2}}{\frac{2}{3}}=\frac{3}{4}, \\
& D_{1}((d, u))=D_{1}((d, d))=\frac{q_{d}}{p_{d}}=\frac{\frac{1}{2}}{\frac{1}{3}}=\frac{3}{2}, \tag{3}
\end{align*}
$$

and for $p_{x_{1}, x_{2}}$ and $q_{x_{1}, x_{2}}$, where $\left(x_{1}, x_{2}\right) \in\{u, d\}^{2}$, we get

$$
\begin{array}{ll}
D_{2}((u, u))=\frac{q_{u, u}}{p_{u}}=\frac{\frac{1}{2}}{\frac{2}{3}}=\frac{3}{4}, & D_{2}((u, d))=\frac{q_{u, d}}{p_{d}}=\frac{\frac{1}{2}}{\frac{1}{3}}=\frac{3}{2}, \\
D_{2}((d, u))=\frac{q_{d, u}}{p_{u}}=\frac{\frac{1}{3}}{\frac{2}{3}}=\frac{1}{2}, & D_{2}((d, d))=\frac{q_{d, d}}{p_{d}}=\frac{\frac{2}{3}}{\frac{1}{3}}=2 . \tag{4}
\end{array}
$$

The random variables D_{1} and D_{2} are not independent under \mathbb{P}, since for example we have

$$
P\left[D_{1}=\frac{3}{2}\right] \times P\left[D_{2}=\frac{3}{2}\right]=\frac{1}{3} \times \frac{2}{9}=\frac{2}{27}>0
$$

while

$$
P\left[D_{1}=\frac{3}{2}, D_{2}=\frac{3}{2}\right]=P[\emptyset]=0 .
$$

(c) In the current setup, an arbitrage opportunity is an admissible, self-financing strategy $\varphi \widehat{=}(0, \vartheta)$ with $\vartheta=\left(\vartheta_{k}\right)_{k=0,1,2}$ such that $\vartheta_{0}=0$ and

$$
\begin{aligned}
& V_{2}(\varphi) \geq 0 \mathbb{P} \text {-a.s. } \\
& \mathbb{P}\left[V_{2}(\varphi)>0\right]>0 .
\end{aligned}
$$

If such a strategy does not exist, we say that the market is arbitrage-free.
(c1) Let us write $u=0.02$ and $d=-0.02$. If $r=-0.02$, then for the first time step, from $k=0$ to $k=1$, the stock grows in each state of the world at least as fast as the bank account, but with positive probability faster since $u>d=r$. Therefore, the obvious arbitrage opportunity consists in borrowing money at time $k=0$ from the bank account to buy, say, one stock and selling the stock at time $k=1$.
In mathematical terms, this means that we consider the strategy $\varphi \hat{=}(0, \vartheta)$, where ϑ is given by $\vartheta_{0}=0, \vartheta_{1}=1$ and $\vartheta_{2}=0$, which is deterministic and therefore a fortiori predictable. Moreover, we have

$$
V_{1}(\varphi)=G_{1}(\vartheta)=S_{1}^{1}-S_{0}^{1} \geq 0 \mathbb{P} \text {-a.s. }
$$

because $S_{1}^{1}=\widetilde{S}_{1}^{1} / \widetilde{S}_{1}^{0}$ takes the values $\frac{102}{1-0.02}$ and $\frac{98}{1-0.02}$ which are both at least $100=S_{0}^{1}$, and

$$
V_{2}(\varphi)=G_{2}(\vartheta)=G_{1}(\vartheta)=S_{1}^{1}-S_{0}^{1} \geq 0 \mathbb{P} \text {-a.s. },
$$

so, the strategy φ is admissible, and

$$
\mathbb{P}\left[V_{2}(\varphi)>0\right]=\mathbb{P}\left[Y_{1}=1.02\right]>0
$$

as required. So, φ is an arbitrage opportunity.
(c2) Let us write $u=0.02$ and $d=-0.02, u \left\lvert\, u=\frac{1}{102}\right.$ and $d \left\lvert\, u=-\frac{1}{102}\right.$, and $u \left\lvert\, d=\frac{2}{98}\right.$ and $d \left\lvert\, u=-\frac{1}{98}\right.$. We have that $d<r<u$ and $(d \mid d)<r<(u \mid d)$, so by Corollary 2.3 in the lecture notes, we know that the first time step from $k=0$ to $k=1$ does not admit arbitrage and neither does the second time step from $k=1$ to $k=2$ under the condition that the stock price went down on the first step. However, we have $(d \mid u)<(u \mid u)<r$. This means that the stock grows strictly less than the bank account after it goes up in the first time step. Therefore, the arbitrage opportunity consists in short-selling, say, one share of stock at time $k=1$ if the stock price went up at the initial time step, and investing the money into the bank account until the time horizon $k=2$, and doing nothing if the stock price goes down in the first time step.
In mathematical terms, this means that we consider the strategy $\varphi \hat{=}(0, \vartheta)$, where ϑ is given by $\vartheta_{0}=0, \vartheta_{1}=0$ and $\vartheta_{2}=-1_{A}$, where $A=\left\{Y_{1}=1.02\right\} \in \mathcal{F}_{1}$, so ϑ is predictable. We have

$$
V_{1}(\varphi)=G_{1}(\vartheta)=0 \mathbb{P} \text {-a.s. }
$$

and

$$
V_{2}(\varphi)=G_{2}(\vartheta)=\Delta G_{2}(\vartheta)=\vartheta_{2}\left(S_{2}^{1}-S_{1}^{1}\right)=-1_{A}\left(S_{2}^{1}-S_{1}^{1}\right) \geq 0 \mathbb{P} \text {-a.s. }
$$

because on A,

$$
S_{2}^{1}-S_{1}^{1}=\frac{103}{1.01^{2}}-\frac{102}{1.01}=\frac{103-102 \times 1.01}{(1.01)^{2}}<0
$$

so, the strategy φ is admissible, and since

$$
\mathbb{P}\left[V_{2}(\varphi)>0\right]=\mathbb{P}[A]=\frac{2}{3}>0,
$$

the strategy φ is an arbitrage opportunity.

Question 3

(a) From $Y_{2}=X_{2}$ and the equalities

$$
Y_{k}=\max \left\{X_{k}, E_{Q}\left[Y_{k+1} \mid \mathcal{F}_{k}\right]\right\}, k=0,1,
$$

it follows that Y is a Q-supermartingale dominating X. Indeed, $Y_{2}=X_{2}$ and

$$
Y_{k}=\max \left\{X_{k}, E_{Q}\left[Y_{k+1} \mid \mathcal{F}_{k}\right]\right\} \geq X_{k}, \quad k=0,1,
$$

so Y dominates X. Moreover, we see that Y_{2} is \mathcal{F}_{2}-measurable and Q-integrable, because X_{2} is, and

$$
Y_{1}=\max \left\{X_{1}, E_{Q}\left[Y_{2} \mid \mathcal{F}_{1}\right]\right\}
$$

is \mathcal{F}_{1}-measurable and Q-integrable, because X_{1} and $E_{Q}\left[Y_{2} \mid \mathcal{F}_{1}\right]$ are, which further implies that Y_{0} is \mathcal{F}_{0}-measurable and Q-integrable, so the process Y is Q-integrable and \mathbb{F}-adapted, and we check from its definition that

$$
Y_{k}=\max \left\{X_{k}, E_{Q}\left[Y_{k+1} \mid \mathcal{F}_{k}\right]\right\} \geq E_{Q}\left[Y_{k+1} \mid \mathcal{F}_{k}\right], k=0,1
$$

Thus, the process Y is a Q-supermartingale. Assume that Z is another Q-supermartingale dominating X; then $Z_{2} \geq X_{2}=Y_{2}$. So, we have

$$
Z_{1} \geq E_{Q}\left[Z_{2} \mid \mathcal{F}_{1}\right] \geq E_{Q}\left[Y_{2} \mid \mathcal{F}_{1}\right]
$$

whence

$$
Z_{1} \geq \max \left\{X_{1}, E_{Q}\left[Y_{2} \mid \mathcal{F}_{1}\right]\right\}=Y_{1}
$$

Hence, $Z_{1} \geq Y_{1}$. Repeating the same reasoning, we get

$$
Z_{0} \geq E_{Q}\left[Z_{1} \mid \mathcal{F}_{0}\right] \geq E_{Q}\left[Y_{1} \mid \mathcal{F}_{0}\right]
$$

whence

$$
Z_{0} \geq \max \left\{X_{0}, E_{Q}\left[Y_{1} \mid \mathcal{F}_{0}\right]\right\}=Y_{0}
$$

(b) We have

$$
\tau=\inf \left\{k \in\{0,1,2\}: Y_{k}=X_{k}\right\}=\inf \left\{k \in\{0,1,2\}: Y_{k}-X_{k}=0\right\}
$$

Since $Y_{2}=X_{2}, \tau$ is indeed $\{0,1,2\}$-valued and since $Y-X$ is \mathbb{F}-adapted, we conclude that τ is a stopping time with respect to \mathbb{F} as the hitting time of $Y-X$ to $\{0\}$.

Alternatively, we could argue that

$$
\{\tau=0\}=\left\{Y_{0}=X_{0}\right\} \in \mathcal{F}_{0}
$$

and

$$
\{\tau=1\}=\left\{Y_{0}>X_{0}\right\} \cap\left\{Y_{1}=X_{1}\right\} \in \mathcal{F}_{1}
$$

and

$$
\{\tau=2\}=\left\{Y_{0}>X_{0}\right\} \cap\left\{Y_{1}>X_{1}\right\} \cap\left\{Y_{2}=X_{2}\right\} \in \mathcal{F}_{2}
$$

(c) By definition, $Y_{k}=\max \left\{X_{k}, E_{Q}\left[Y_{k+1} \mid \mathcal{F}_{k}\right]\right\}$ and $Y_{k}>X_{k}$ on the set $\{k+1 \leq \tau\}$. Consequently, $Y_{k}=E_{Q}\left[Y_{k+1} \mid \mathcal{F}_{k}\right]$ on the set $\{k+1 \leq \tau\}$ and taking \mathcal{F}_{k}-conditional expectations on both sides of (1), we get

$$
E_{Q}\left[Y_{k+1}^{\tau}-Y_{k}^{\tau} \mid \mathcal{F}_{k}\right]=1_{\{k+1 \leq \tau\}}\left(E_{Q}\left[Y_{k+1} \mid \mathcal{F}_{k}\right]-Y_{k}\right)
$$

because $\{k+1 \leq \tau\} \in \mathcal{F}_{k}(\{k+1 \leq \tau\}$ is the complement of $\{\tau \leq k\})$. Hence,

$$
E\left[Y_{k+1}^{\tau}-Y_{k}^{\tau} \mid \mathcal{F}_{k}\right]=0
$$

which proves that Y^{τ} has the martingale property. From

$$
Y_{k}^{\tau}=Y_{\tau \wedge k}=Y_{0}+\sum_{j=1}^{k} 1_{\{j \leq \tau\}}\left(Y_{j}-Y_{j-1}\right), k=1,2
$$

it follows that the process Y^{τ} is \mathbb{F}-adapted and Q-integrable, because $\left(1_{\{k \leq \tau\}}\right)_{k=0,1,2}$ is a bounded \mathbb{F}-predictable process and the process Y is \mathbb{F}-adapted and Q-integrable by (a). Thus, Y^{τ} is a Q-martingale.
(d) Since Y^{τ} is a martingale by (c), τ is a $\{0,1,2\}$-valued \mathbb{F}-stopping time by (b), and \mathcal{F}_{0} is trivial by our assumption, we have

$$
Y_{0}=Y_{0}^{\tau}=E_{Q}\left[Y_{2}^{\tau} \mid \mathcal{F}_{0}\right]=E_{Q}\left[Y_{2}^{\tau}\right]=E_{Q}\left[Y_{\tau}\right]=E_{Q}\left[X_{\tau}\right]
$$

as claimed.
(e) For the process $f(S)$, the Q-integrability is assumed and the \mathbb{F}-adaptedness follows from the fact that the function f is measurable combined with the fact that the process S is \mathbb{F}-adapted. By Jensen's inequality,

$$
E_{Q}\left[f\left(S_{k+1}\right) \mid \mathcal{F}_{k}\right] \geq f\left(E_{Q}\left[S_{k+1} \mid \mathcal{F}_{k}\right]\right)=f\left(S_{k}\right), k=0,1
$$

as claimed.
(f) Because $\sigma \equiv 2$ is in \mathcal{T}, we get

$$
V^{C, E u}=E_{Q}\left[X_{2}\right] \leq V^{C, A m}
$$

On the other hand, the function $x \mapsto(x-K)^{+}$is convex; so by (e), X is a Q-submartingale. So for all $\sigma \in \mathcal{T}$, the optional stopping theorem gives

$$
E_{Q}\left[X_{2}\right] \geq E_{Q}\left[X_{\sigma}\right]
$$

and therefore

$$
V^{C, E u}=E_{Q}\left[X_{2}\right] \geq \sup _{\sigma \in \mathcal{T}} E_{Q}\left[X_{\sigma}\right]=V^{C, A m}
$$

Hence, $V^{C, A m}=V^{C, E u}$.

Question 4

(a) By Itô's formula,

$$
\begin{equation*}
d\left(W_{t}^{4}\right)=4 W_{t}^{3} d W_{t}+\frac{1}{2} 12 W_{t}^{2} d\langle W, W\rangle_{t}=4 W_{t}^{3} d W_{t}+6 W_{t}^{2} d t \tag{5}
\end{equation*}
$$

Since $4 W^{3} \in L^{2}\left(W^{T}\right)$ for $T<\infty$, we have $\left(\int 4 W^{3} d W\right)^{T} \in \mathcal{M}_{0}^{2}$, so that in particular,

$$
E\left[\int_{0}^{T} 4 W_{t}^{3} d W_{t}\right]=0
$$

Hence,

$$
E\left[W_{T}^{4}\right]=E\left[\int_{0}^{T} 6 W_{t}^{2} d t\right]=6 \int_{0}^{T} E\left[W_{t}^{2}\right] d t=6 \int_{0}^{T} t d t=3 T^{2}
$$

where we used Fubini's theorem to change the order of integration.
(b) By Itô's formula,

$$
d\left(W_{t}^{2}\right)=2 W_{t} d W_{t}+d t
$$

Since the finite variation term $d t$ plays no role, we get

$$
\left\langle W^{2}, W^{2}\right\rangle_{T}=\left\langle\int 2 W d W, \int 2 W d W\right\rangle_{T}=4 \int_{0}^{T} W_{t}^{2} d t
$$

(c) By Itô's formula, it follows that

$$
X_{t}=X_{0}+\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, W_{s}\right) \mathrm{d} W_{s}+\int_{0}^{t}\left(\frac{\partial f}{\partial t}\left(s, W_{s}\right)+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(s, W_{s}\right)\right) \mathrm{d} s
$$

Since W is a continuous (P, \mathbb{F})-martingale and since the integrand $\left(\frac{\partial f}{\partial x}\left(t, W_{t}\right)\right)_{t \geq 0}$ is continuous and adapted, and thus an element of $L_{\mathrm{loc}}^{2}(W)$, we have that

$$
\int_{0}\left(\frac{\partial f}{\partial x}\left(s, W_{s}\right)\right) \mathrm{d} W_{s}
$$

is a local (P, \mathbb{F})-martingale. Moreover, the process X is a (continuous) local (P, \mathbb{F}) martingale because the assumption on f gives

$$
\int_{0}^{t}\left(\frac{\partial f}{\partial t}\left(s, W_{s}\right)+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(s, W_{s}\right)\right) \mathrm{d} s=0, \quad \forall t \geq 0
$$

We know that $\left[W^{T}\right]=[W]^{T}$ so that

$$
\left[W^{T}\right]_{t}=t \wedge T
$$

for all $t \geq 0$. Hence

$$
\begin{aligned}
E\left[\int_{0}^{\infty}\left(\frac{\partial f}{\partial x}\left(s, W_{s}\right)\right)^{2} d\left[W^{T}\right]_{s}\right] & =E\left[\int_{0}^{\infty}\left(\frac{\partial f}{\partial x}\left(s, W_{s}\right)\right)^{2} d(s \wedge T)\right] \\
& =E\left[\int_{0}^{T}\left(\frac{\partial f}{\partial x}\left(s, W_{s}\right)\right)^{2} d s\right]<\infty
\end{aligned}
$$

and thus $\frac{\partial f}{\partial x}\left(s, W_{s}\right) \in L^{2}\left(W^{T}\right)$. Since $W^{T} \in \mathcal{M}_{0}^{2}$, this directly implies that $\int \frac{\partial f}{\partial x}\left(s, W_{s}\right) d W_{s}^{T}$ is in \mathcal{M}_{0}^{2}. Moreover, since

$$
\int \frac{\partial f}{\partial x}\left(s, W_{s}\right) d W_{s}^{T}=\left(\int \frac{\partial f}{\partial x}\left(s, W_{s}\right) d W_{s}\right)^{T}
$$

we get that $\left(\int \frac{\partial f}{\partial x}\left(s, W_{s}\right) d W_{s}\right)^{T} \in \mathcal{M}_{0}^{2}$. So, $\left(X_{t}\right)_{0 \leq t \leq T}=\left(\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, W_{s}\right) d W_{s}\right)_{0 \leq t \leq T}$ is a (square-integrable) martingale on $[0, T]$.

Question 5

(a) By Girsanov's theorem, for

$$
W_{t}^{Q^{\prime}}:=W_{t}+\frac{\mu+r}{\sigma} t=W_{t}+\int_{0}^{t} \frac{\mu+r}{\sigma} d s
$$

a measure Q^{\prime} under which $W^{Q^{\prime}}$ is a Brownian motion is given by the Radon-Nikodým derivative

$$
\frac{d Q^{\prime}}{d P}=\mathcal{E}\left(-\int \frac{\mu+r}{\sigma} d W\right)_{T}=\exp \left(-\frac{\mu+r}{\sigma} W_{T}-\frac{1}{2}\left(\frac{\mu+r}{\sigma}\right)^{2} T\right)
$$

(b) The unique equivalent martingale measure Q for the discounted stock price S (and a Q Brownian motion W^{Q}) is obtained by replacing $\frac{\mu+r}{\sigma}$ with $\frac{\mu-r}{\sigma}$ in (a) (Lecture notes p. 117).
Under the measure Q, the undiscounted stock price process \widetilde{S} is given by

$$
\widetilde{S}_{t}=e^{r t} S_{t}:=e^{r t} S_{0} \exp \left(\sigma W_{t}^{Q}-\frac{1}{2} \sigma^{2} t\right), t \in[0, T]
$$

where $S_{t}:=S_{0} \exp \left(\sigma W_{t}^{Q}-\frac{1}{2} \sigma^{2} t\right)$ represents the discounted stock price at time $t \in[0, T]$ under the measure Q. We have

$$
\widetilde{S}_{T}=e^{r(T-t)} \widetilde{S}_{t} \exp \left(\sigma\left(W_{T}^{Q}-W_{t}^{Q}\right)-\frac{1}{2} \sigma^{2}(T-t)\right), t \in[0, T]
$$

The discounted value V_{t} of a power option at time t with undiscounted payoff $h\left(\widetilde{S}_{T}\right)=\widetilde{S}_{T}^{p}$ is the payoff's discounted \mathcal{F}_{t}-conditional Q-expected value, i.e.,

$$
V_{t}=E_{Q}\left[e^{-r T} h\left(\widetilde{S}_{T}\right) \mid \mathcal{F}_{t}\right]=E_{Q}\left[e^{-r T} \widetilde{S}_{T}^{p} \mid \mathcal{F}_{t}\right]
$$

We have

$$
\begin{equation*}
e^{-r T} \widetilde{S}_{T}^{p}=e^{p r T-r T}\left(e^{-r T} \widetilde{S}_{T}\right)^{p}=e^{r(p-1) T} S_{T}^{p} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
S_{T}^{p} & =S_{t}^{p} \exp \left(\sigma p\left(W_{T}^{Q}-W_{t}^{Q}\right)-\frac{1}{2} \sigma^{2} p(T-t)\right) \\
& =S_{t}^{p} \exp \left(\sigma p\left(W_{T}^{Q}-W_{t}^{Q}\right)-\frac{1}{2} \sigma^{2} p^{2}(T-t)\right) \exp \left(\frac{1}{2} \sigma^{2} p(p-1)(T-t)\right)
\end{aligned}
$$

The middle factor has \mathcal{F}_{t}-conditional Q-expectation 1 ; so we get

$$
\begin{aligned}
V_{t} & =S_{t}^{p} \exp \left(\frac{1}{2} \sigma^{2} p(p-1)(T-t)+r(p-1) T\right) \\
& =e^{-r t} \widetilde{S}_{t}^{p} \exp \left(\left(\frac{1}{2} \sigma^{2} p+r\right)(p-1)(T-t)\right)
\end{aligned}
$$

where we used that $S_{t}^{p}=e^{-r t} \widetilde{S}_{t}^{p} e^{-r(p-1) t}$; c.f. (6). The undiscounted value at time t is

$$
\widetilde{V}_{t}=e^{r t} V_{t}=\widetilde{S}_{t}^{p} \exp \left(\left(\frac{1}{2} \sigma^{2} p+r\right)(p-1)(T-t)\right)
$$

(c) We know from the lecture (notes page 123) that for the value process

$$
V_{t}=v\left(t, S_{t}\right)
$$

the hedging strategy is

$$
\vartheta_{t}=\frac{\partial v}{\partial x}\left(t, S_{t}\right), \eta_{t}=V_{t}-\vartheta_{t} S_{t}
$$

Since

$$
V_{t}=S_{t}^{p} \exp \left(\frac{1}{2} \sigma^{2} p(p-1)(T-t)+r(p-1) T\right)
$$

we can compute

$$
\vartheta_{t}=p S_{t}^{p-1} \exp \left(\frac{1}{2} \sigma^{2} p(p-1)(T-t)+r(p-1) T\right)
$$

and then obtain

$$
\eta_{t}=(1-p) S_{t}^{p} \exp \left(\frac{1}{2} \sigma^{2} p(p-1)(T-t)+r(p-1) T\right)
$$

