Question 1

The correct answers are:
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Question 2

(a)

Any probability measure Q) equivalent to IP on F3 can be described by
Q[{(xhw?)}] = 4z19z1 22>

where ¢y, oy wy € (0,1) With 37, e 0 Goy =1and 3o, cry, gy G120 = 1forall 2y € {u, d}.

Since r = 0, S' is a Q-martingale if and only if S! is, and that is equivalent to

Eg[Yi]=1 and Eg[Ys|Y;=1.02]=1
and EQ [Y2 |Y1 = 098] = 1,

since Fy is trivial, 71 = o(Y1) and Y] only takes two values. This is equivalent to

1
Gu X 1.024+ (1 —¢q,) x0.98 =1 — Qu =3
NELLIS )y do . 1
Qu,u 102 Qu,u 102 - Quu = 2a
X@'F(l— )><9—7—1 = _2
qd,u 08 ddu 98 qdu = 3
The density process Z = (Zj)=0,1,2 is defined by
dQ
Zy = Ep | —| F k=0,1,2.
k P |: dIP‘ k:| ) s Ly
Since JFy is trivial, we have
dQ
0= Ep [(ﬂp} Q]
Since Q@ ~ P, we have Z; > 0 IP-a.s. for k = 0,1, 2. Therefore, we can define
Zy,
Dy = for k=1,2.
T 2

(1)

Moreover, we know from the lecture (p. 42 in the lecture notes) that the Dy, k = 1,2, play
the role of "one step conditional densities" of () with respect to IP. Therefore, by plugging

in the values for p,, and g,,, where z; € {u,d}, we get

1
u b) 3
Di((u,u)) = Di((u,d) = 2 = 2 ==,
Pu 3 4
qd % 3
1((d,w)) = D1((d,d)) b 177
2
and for pg, 2, and ¢g, 4., Where (21, 22) € {u,d}?, we get
1 1
quvu § 3 Qu,d 5 3
D2 U, U = —— =5 = -, _D2 U7d = =T =,
((u,u)) e 2171 ((u,d)) b 173
1 2
Qdu _ 5 _ 1 qdd 3
Do((d,u)) = 224 = 3 — = Do((d,d)) = 44 — 3 _ o
2(( )) P % 92 2(( )) Dd %

The random variables Dy and D are not independent under P, since for example we have

0

=3%97 77

1 2 2
P|:D1:Z:|XP|:D2:;):|_

while



(c) In the current setup, an arbitrage opportunity is an admissible, self-financing strategy
@ = (0,9) with ¥ = (Jx)r=0,1,2 such that ¥9 = 0 and

Va(p) > 0 P-aus.
P[Va(y) > 0] > 0.

If such a strategy does not exist, we say that the market is arbitrage-free.

(cl) Let us write v = 0.02 and d = —0.02. If » = —0.02, then for the first time step,
from k = 0 to k = 1, the stock grows in each state of the world at least as fast as the
bank account, but with positive probability faster since u > d = r. Therefore, the obvious
arbitrage opportunity consists in borrowing money at time k = 0 from the bank account
to buy, say, one stock and selling the stock at time k = 1.

In mathematical terms, this means that we consider the strategy ¢ = (0,9), where ¢
is given by Y9 = 0, ¥; = 1 and 92 = 0, which is deterministic and therefore a fortiori
predictable. Moreover, we have

Vi(p) = Gi(9) = 8! — S} > 0 P-ass.,

because S} = S’v%/g? takes the values 1}8?02 and 17908.02 which are both at least 100 = Sé,
and

Va(p) = Go(¥) = G1(9) = S — Sé > 0 P-a.s.,

so, the strategy ¢ is admissible, and
P[Va(p) > 0] =P[Y1 =1.02] >0

as required. So, ¢ is an arbitrage opportunity.

(c2) Let us write u = 0.02 and d = —0.02, u | u = 55 and d | u = — 355, and u | d = &
and d | u = —g5. We have that d < r < w and (d | d) <r < (u | d), so by Corollary 2.3
in the lecture notes, we know that the first time step from k£ = 0 to £k = 1 does not admit
arbitrage and neither does the second time step from k£ = 1 to £ = 2 under the condition
that the stock price went down on the first step. However, we have (d | u) < (u | u) < r.
This means that the stock grows strictly less than the bank account after it goes up in the
first time step. Therefore, the arbitrage opportunity consists in short-selling, say, one share
of stock at time k = 1 if the stock price went up at the initial time step, and investing the
money into the bank account until the time horizon k£ = 2, and doing nothing if the stock
price goes down in the first time step.

In mathematical terms, this means that we consider the strategy ¢ = (0,%), where 9 is
given by ¥9 = 0, J; = 0 and ¥ = —14, where A = {Y; = 1.02} € Fi, so ¥ is predictable.
We have

V1(<p> = Gl(ﬁ) =0 P-a.s.

and
Vao(p) = Ga2(¥) = AG2(09) = ¥ (521 - 511) =—14 (521 - Sll) >0 P-a.s.,

because on A,
103 102 103 — 102 x 1.01

1012 1.01 (1.01)2

S0, the strategy ¢ is admissible, and since

S)— 8= <0,

PIVs(p) > 0] = B[] = > >0,

the strategy ¢ is an arbitrage opportunity.



Question 3

(a)

From Y5 = X5 and the equalities
Yy, = max{ Xy, EQ[Yit+1 | Fil}, £=0,1,
it follows that Y is a Q-supermartingale dominating X. Indeed, Yo = X5 and
Yy = max{Xy, EQ[Yit1 | Fi)} > Xk, k=0,1,

so Y dominates X. Moreover, we see that Ys is Fo-measurable and @Q-integrable, because
X5 is, and
1/1 = maX{Xl, EQ[YQ | fl]}

is Fi-measurable and Q-integrable, because X; and Eg[Ys | F1] are, which further implies
that Yp is Fo-measurable and Q-integrable, so the process Y is Q-integrable and F-adapted,
and we check from its definition that

Yy, = max{ X, EQ[Ye41 | Fil} = EQ[Ye1 | Fi], k=0,1.

Thus, the process Y is a Q-supermartingale. Assume that Z is another ()-supermartingale
dominating X; then Zy > X5 = Y5. So, we have

Z1 > EqlZs | F1] = Eq[Ya | Fi

whence
Zl Z max{Xl,EQ[YQ ‘ fl]} = Yl.

Hence, Z; > Y7. Repeating the same reasoning, we get
Zy > Eq[Z1 | Fol 2 Eq[Y1 | Fol

whence
Zy > maX{XO,EQ[Y1 ‘ fo]} =Y.

We have
T =inf{k € {0,1,2} : Y = X} = inf{k € {0,1,2} : Y}, — X}, = 0}.

Since Y3 = X, 7 is indeed {0, 1, 2}-valued and since Y — X is F-adapted, we conclude that
T is a stopping time with respect to F as the hitting time of ¥ — X to {0}.

Alternatively, we could argue that
{r =0} ={Yo = Xo} € Fo

and
{721}:{Y0>X0}H{Y1:X1}€f1

and

{TZQ}Z{YO>X0}Q{Y1 >X1}Q{Y2:X2}€]:2.
By definition, Y, = max{Xy, EQ[Yi+1 | Fi]} and Y > Xj on the set {k +1 < 7}.

Consequently, Yy, = Eq[Yiy1 | Fi] on the set {k + 1 < 7} and taking Fj-conditional
expectations on both sides of (1), we get

EQlYiyr — Y | Fil = Yp1<ry (BEQ[Yk41 | Fil — Yi)
because {k +1 <7} € Fr, {k+1 < 7} is the complement of {7 < k}). Hence,

EYi, - Y] [ A] =0,



which proves that Y7 has the martingale property. From

k
Y7 =Yen=Yo+ ) 1en (Y = Yim), k=12,
j=1

it follows that the process Y7 is F-adapted and @Q-integrable, because (1{%7});@:0,172 is a
bounded F-predictable process and the process Y is F-adapted and Q-integrable by (a).
Thus, Y7 is a Q-martingale.

Since Y7 is a martingale by (c), 7 is a {0, 1, 2}-valued F-stopping time by (b), and Fy is
trivial by our assumption, we have

Yo =Yy = EQlYy | Fol = Eq[Yy] = EqlYr] = Eq[X/]
as claimed.

For the process f(.5), the Q-integrability is assumed and the F-adaptedness follows from
the fact that the function f is measurable combined with the fact that the process S is
F-adapted. By Jensen’s inequality,

EQlf(Sk+1) | Fi] = f(EQ[Sk+1 | Fxl) = f(Sk), k=0,1,
as claimed.

Because o0 = 2 is in T, we get
VC7Eu _ EQ[XQ] < VC’Am.

On the other hand, the function z + (z—K)T is convex; so by (e), X is a Q-submartingale.
So for all o € T, the optional stopping theorem gives

Eq[Xs] > EqQ[Xo]

and therefore
VOEY = Bo[Xy] > sugEQ[Xg] = yoam,
oe

Hence, V&AM = yC.EBu,



Question 4

(a)

By It¢’s formula,
1
d(W) = AWPdW, + J12WPd(W. W), = AW dW, + 6Wdb. (5)

Since 4W3 € L2(WT) for T < oo, we have (f 4W3dW)T € M2, so that in particular,
T
E [/ 4Wt3th] = 0.
0

EW;]=E {/ 6Wt2dt} =6 [ EW?dt= 6/ tdt = 372,
0 0 0

Hence,

where we used Fubini’s theorem to change the order of integration.

By It6’s formula,
d(W?) = 2WdW; + dt.

Since the finite variation term dt plays no role, we get

T
(W2 W = </2WdW,/2WdW> = 4/ W2dt.
T 0

By Ité’s formula, it follows that

Lof of 10%f
X=X, — (s, Ws) dWj W Ws) | ds.
=0+ [ Lswpaw [(Fwy+ 156w as
Since W is a continuous (P, F)-martingale and since the integrand (%(t, W) >0 18 con-

tinuous and adapted, and thus an element of L (W), we have that

/O (gf(s W)> AW,

is a local (P,F)-martingale. Moreover, the process X is a (continuous) local (P,F)-
martingale because the assumption on f gives

trof 102f -
/0<8t( W)—i_iﬁ(s W)) ds =0, vt > 0.

We know that [W7] = [W]7 so that
[WT]t =tAT
for all t > 0. Hence

E[/OOO (g‘;(s,ws)>2d[WT]s] :E[/O (gi(s W))Qd(s/\T)}
e[ [ (S o <

and thus %(3, W) € L? (WT) Since WT € M2, this directly implies that [ %(s, Wi)dWT
is in ./\/1(2). Moreover, since

of of
Oz Oz

we get that (fg—i(s,Ws)dWS)T € MZ. So, (Xy)o<i<r = ( Otgi(s Ws)dWs)
(square-integrable) martingale on [0, 7).

== (s, Ws)dWT = < = (s, W)dWS>T,

o<t<T 18 2



Question 5

(a)

By Girsanov’s theorem, for

, t
we ::Wt—l—wt:Wt—l—/ AT g,
g 0 g

a measure Q' under which W' is a Brownian motion is given by the Radon-Nikodym

derivative
/ 1 2
dQ =& /M+TdW = exp f'udHnWTff porr T).
dP o T o 2 o

The unique equivalent martingale measure @ for the discounted stock price S (and a Q-

Brownian motion W) is obtained by replacing £ with 4" in (a) (Lecture notes p. 117).

Under the measure @), the undiscounted stock price process S is given by
~ 1
S, =eS, = eS exp(thQ — 50215), te[0,7],

where S; := Sy eXp(aWtQ — 30°t) represents the discounted stock price at time ¢t € [0, 7]
under the measure ). We have

~ ~ 1
Sr=e"THG, exp (O‘(W,IQ - WtQ) - 502(T —t)), t€[0,T].

The discounted value V; of a power option at time ¢ with undiscounted payoff h(gT) = gf_’;
is the payoft’s discounted F;-conditional QQ-expected value, i.e.,

Vi = Egle ™ h(S7)|F] = Egle " SP | F).

We have N N
e—rTSg _ ep?"T—rT <€_TTST> _ €T(p_1)TS§~, (6)

where
S = SV exp <Jp(W:,C;2 - WtQ) - %azp(T - t))
= SV exp <op(I/V;2 — W) — %O’ZPQ(T — t)> exp <;02p(p —1)(T - t)> :
The middle factor has Fi-conditional Q-expectation 1; so we get
V; = S exp <;J2p(p — (T —t)+7r(p— 1)T>
= ¢ " 5P exp <<;c72p + 7‘> (p—1)(T — t)) ,
where we used that S? = e*’"tgfe”(pfl)t; c.f. (6). The undiscounted value at time t is

. . 1
V; ="V, = SPexp ((20217—1— 7“) (p—1)(T — t)> .



(c) We know from the lecture (notes page 123) that for the value process
V;f = U(tv St)a

the hedging strategy is

ov
Uy = %(K St), ne = Vi — 045y

Since .
Vi = spexp (30~ (T 0+ rlp - 1T ).
we can compute
0= p5t ™" exp (3%l - D=0+ r(p- 1T

and then obtain

m = (1 —p)S} exp (;azp(p — )T —t)+r(p- 1)T> :



