
Question 1

The correct answers are:

(a) (2)

(b) (3)

(c) (3)

(d) (2)

(e) (1)

(f) (3)

(g) (2)

(h) (1)



Question 2

(a) Any probability measure Q equivalent to P on F2 can be described by

Q[{(x1, x2)}] := qx1qx1,x2 ,

where qx1 , qx1,x2 ∈ (0, 1) with
∑

x1∈{u,d} qx1 = 1 and
∑

x2∈{u,d} qx1,x2 = 1 for all x1 ∈ {u, d}.
Since r = 0, S1 is a Q-martingale if and only if S̃1 is, and that is equivalent to

EQ [Y1] = 1 and EQ [Y2|Y1 = 1.02] = 1

and EQ [Y2 |Y1 = 0.98] = 1, (1)

since F0 is trivial, F1 = σ(Y1) and Y1 only takes two values. This is equivalent to

qu × 1.02 + (1− qu)× 0.98 = 1 ⇐⇒ qu =
1

2
,

qu,u ×
103

102
+ (1− qu,u)× 101

102
= 1 ⇐⇒ qu,u =

1

2
,

qd,u ×
100

98
+ (1− qd,u)× 97

98
= 1 ⇐⇒ qd,u =

1

3
. (2)

(b) The density process Z = (Zk)k=0,1,2 is defined by

Zk := EP

[
dQ

dP

∣∣∣∣Fk] , k = 0, 1, 2.

Since F0 is trivial, we have

Z0 = EP

[
dQ

dP

]
= EQ[1] = 1.

Since Q ≈ P, we have Zk > 0 P-a.s. for k = 0, 1, 2. Therefore, we can define

Dk :=
Zk
Zk−1

for k = 1, 2.

Moreover, we know from the lecture (p. 42 in the lecture notes) that the Dk, k = 1, 2, play
the role of "one step conditional densities" of Q with respect to P. Therefore, by plugging
in the values for px1 and qx1 , where x1 ∈ {u, d}, we get

D1((u, u)) = D1((u, d)) =
qu
pu

=
1
2
2
3

=
3

4
,

D1((d, u)) = D1((d, d)) =
qd
pd

=
1
2
1
3

=
3

2
, (3)

and for px1,x2 and qx1,x2 , where (x1, x2) ∈ {u, d}2, we get

D2((u, u)) =
qu,u
pu

=
1
2
2
3

=
3

4
, D2((u, d)) =

qu,d
pd

=
1
2
1
3

=
3

2
,

D2((d, u)) =
qd,u
pu

=
1
3
2
3

=
1

2
, D2((d, d)) =

qd,d
pd

=
2
3
1
3

= 2. (4)

The random variables D1 and D2 are not independent under P, since for example we have

P

[
D1 =

3

2

]
× P

[
D2 =

3

2

]
=

1

3
× 2

9
=

2

27
> 0

while
P

[
D1 =

3

2
, D2 =

3

2

]
= P [∅] = 0.



(c) In the current setup, an arbitrage opportunity is an admissible, self-financing strategy
ϕ =̂ (0, ϑ) with ϑ = (ϑk)k=0,1,2 such that ϑ0 = 0 and

V2(ϕ) ≥ 0 P-a.s.
P
[
V2(ϕ) > 0

]
> 0.

If such a strategy does not exist, we say that the market is arbitrage-free.
(c1) Let us write u = 0.02 and d = −0.02. If r = −0.02, then for the first time step,
from k = 0 to k = 1, the stock grows in each state of the world at least as fast as the
bank account, but with positive probability faster since u > d = r. Therefore, the obvious
arbitrage opportunity consists in borrowing money at time k = 0 from the bank account
to buy, say, one stock and selling the stock at time k = 1.
In mathematical terms, this means that we consider the strategy ϕ =̂ (0, ϑ), where ϑ
is given by ϑ0 = 0, ϑ1 = 1 and ϑ2 = 0, which is deterministic and therefore a fortiori
predictable. Moreover, we have

V1(ϕ) = G1(ϑ) = S1
1 − S1

0 ≥ 0 P-a.s.,

because S1
1 = S̃1

1/S̃
0
1 takes the values 102

1−0.02 and 98
1−0.02 which are both at least 100 = S1

0 ,
and

V2(ϕ) = G2(ϑ) = G1(ϑ) = S1
1 − S1

0 ≥ 0 P-a.s.,

so, the strategy ϕ is admissible, and

P[V2(ϕ) > 0] = P[Y1 = 1.02] > 0

as required. So, ϕ is an arbitrage opportunity.
(c2) Let us write u = 0.02 and d = −0.02, u | u = 1

102 and d | u = − 1
102 , and u | d = 2

98

and d | u = − 1
98 . We have that d < r < u and (d | d) < r < (u | d), so by Corollary 2.3

in the lecture notes, we know that the first time step from k = 0 to k = 1 does not admit
arbitrage and neither does the second time step from k = 1 to k = 2 under the condition
that the stock price went down on the first step. However, we have (d | u) < (u | u) < r.
This means that the stock grows strictly less than the bank account after it goes up in the
first time step. Therefore, the arbitrage opportunity consists in short-selling, say, one share
of stock at time k = 1 if the stock price went up at the initial time step, and investing the
money into the bank account until the time horizon k = 2, and doing nothing if the stock
price goes down in the first time step.
In mathematical terms, this means that we consider the strategy ϕ =̂ (0, ϑ), where ϑ is
given by ϑ0 = 0, ϑ1 = 0 and ϑ2 = −1A, where A = {Y1 = 1.02} ∈ F1, so ϑ is predictable.
We have

V1(ϕ) = G1(ϑ) = 0 P-a.s.

and
V2(ϕ) = G2(ϑ) = ∆G2(ϑ) = ϑ2

(
S1
2 − S1

1

)
= −1A

(
S1
2 − S1

1

)
≥ 0 P-a.s.,

because on A,

S1
2 − S1

1 =
103

1.012
− 102

1.01
=

103− 102× 1.01

(1.01)2
< 0,

so, the strategy ϕ is admissible, and since

P[V2(ϕ) > 0] = P[A] =
2

3
> 0,

the strategy ϕ is an arbitrage opportunity.



Question 3

(a) From Y2 = X2 and the equalities

Yk = max{Xk, EQ[Yk+1 | Fk]}, k = 0, 1,

it follows that Y is a Q-supermartingale dominating X. Indeed, Y2 = X2 and

Yk = max{Xk, EQ[Yk+1 | Fk]} ≥ Xk, k = 0, 1,

so Y dominates X. Moreover, we see that Y2 is F2-measurable and Q-integrable, because
X2 is, and

Y1 = max{X1, EQ[Y2 | F1]}
is F1-measurable and Q-integrable, because X1 and EQ[Y2 | F1] are, which further implies
that Y0 is F0-measurable and Q-integrable, so the process Y is Q-integrable and F-adapted,
and we check from its definition that

Yk = max{Xk, EQ[Yk+1 | Fk]} ≥ EQ[Yk+1 | Fk], k = 0, 1.

Thus, the process Y is a Q-supermartingale. Assume that Z is another Q-supermartingale
dominating X; then Z2 ≥ X2 = Y2. So, we have

Z1 ≥ EQ[Z2 | F1] ≥ EQ[Y2 | F1]

whence
Z1 ≥ max{X1, EQ[Y2 | F1]} = Y1.

Hence, Z1 ≥ Y1. Repeating the same reasoning, we get

Z0 ≥ EQ[Z1 | F0] ≥ EQ[Y1 | F0]

whence
Z0 ≥ max{X0, EQ[Y1 | F0]} = Y0.

(b) We have

τ = inf{k ∈ {0, 1, 2} : Yk = Xk} = inf{k ∈ {0, 1, 2} : Yk −Xk = 0}.

Since Y2 = X2, τ is indeed {0, 1, 2}-valued and since Y −X is F-adapted, we conclude that
τ is a stopping time with respect to F as the hitting time of Y −X to {0}.
Alternatively, we could argue that

{τ = 0} = {Y0 = X0} ∈ F0

and
{τ = 1} = {Y0 > X0} ∩ {Y1 = X1} ∈ F1

and
{τ = 2} = {Y0 > X0} ∩ {Y1 > X1} ∩ {Y2 = X2} ∈ F2.

(c) By definition, Yk = max{Xk, EQ[Yk+1 | Fk]} and Yk > Xk on the set {k + 1 ≤ τ}.
Consequently, Yk = EQ[Yk+1 | Fk] on the set {k + 1 ≤ τ} and taking Fk-conditional
expectations on both sides of (1), we get

EQ[Y τ
k+1 − Y τ

k | Fk] = 1{k+1≤τ}(EQ[Yk+1 | Fk]− Yk)

because {k + 1 ≤ τ} ∈ Fk ({k + 1 ≤ τ} is the complement of {τ ≤ k}). Hence,

E[Y τ
k+1 − Y τ

k | Fk] = 0,



which proves that Y τ has the martingale property. From

Y τ
k = Yτ∧k = Y0 +

k∑
j=1

1{j≤τ}(Yj − Yj−1), k = 1, 2,

it follows that the process Y τ is F-adapted and Q-integrable, because (1{k≤τ})k=0,1,2 is a
bounded F-predictable process and the process Y is F-adapted and Q-integrable by (a).
Thus, Y τ is a Q-martingale.

(d) Since Y τ is a martingale by (c), τ is a {0, 1, 2}-valued F-stopping time by (b), and F0 is
trivial by our assumption, we have

Y0 = Y τ
0 = EQ[Y τ

2 | F0] = EQ[Y τ
2 ] = EQ[Yτ ] = EQ[Xτ ]

as claimed.

(e) For the process f(S), the Q-integrability is assumed and the F-adaptedness follows from
the fact that the function f is measurable combined with the fact that the process S is
F-adapted. By Jensen’s inequality,

EQ[f(Sk+1) | Fk] ≥ f(EQ[Sk+1 | Fk]) = f(Sk), k = 0, 1,

as claimed.

(f) Because σ ≡ 2 is in T , we get

V C,Eu = EQ[X2] ≤ V C,Am.

On the other hand, the function x 7→ (x−K)+ is convex; so by (e), X is a Q-submartingale.
So for all σ ∈ T , the optional stopping theorem gives

EQ[X2] ≥ EQ[Xσ]

and therefore
V C,Eu = EQ[X2] ≥ sup

σ∈T
EQ[Xσ] = V C,Am.

Hence, V C,Am = V C,Eu.



Question 4

(a) By Itô’s formula,

d(W 4
t ) = 4W 3

t dWt +
1

2
12W 2

t d〈W,W 〉t = 4W 3
t dWt + 6W 2

t dt. (5)

Since 4W 3 ∈ L2(W T ) for T <∞, we have
(∫

4W 3dW
)T ∈M2

0, so that in particular,

E

[∫ T

0
4W 3

t dWt

]
= 0.

Hence,

E[W 4
T ] = E

[∫ T

0
6W 2

t dt

]
= 6

∫ T

0
E[W 2

t ]dt = 6

∫ T

0
tdt = 3T 2,

where we used Fubini’s theorem to change the order of integration.

(b) By Itô’s formula,
d(W 2

t ) = 2WtdWt + dt.

Since the finite variation term dt plays no role, we get

〈W 2,W 2〉T =

〈∫
2WdW,

∫
2WdW

〉
T

= 4

∫ T

0
W 2
t dt.

(c) By Itô’s formula, it follows that

Xt = X0 +

∫ t

0

∂f

∂x
(s,Ws) dWs +

∫ t

0

(
∂f

∂t
(s,Ws) +

1

2

∂2f

∂x2
(s,Ws)

)
ds.

Since W is a continuous (P,F)-martingale and since the integrand
(∂f
∂x (t,Wt)

)
t≥0 is con-

tinuous and adapted, and thus an element of L2
loc(W ), we have that∫ ·

0

(
∂f

∂x
(s,Ws)

)
dWs

is a local (P,F)-martingale. Moreover, the process X is a (continuous) local (P,F)-
martingale because the assumption on f gives∫ t

0

(
∂f

∂t
(s,Ws) +

1

2

∂2f

∂x2
(s,Ws)

)
ds = 0, ∀t ≥ 0.

We know that [W T ] = [W ]T so that

[W T ]t = t ∧ T
for all t ≥ 0. Hence

E

[ ∫ ∞
0

(
∂f

∂x
(s,Ws)

)2

d
[
W T

]
s

]
= E

[ ∫ ∞
0

(
∂f

∂x
(s,Ws)

)2

d(s ∧ T )

]
= E

[ ∫ T

0

(
∂f

∂x
(s,Ws)

)2

ds

]
<∞,

and thus ∂f∂x (s,Ws) ∈ L2
(
W T

)
. SinceW T ∈M2

0, this directly implies that
∫ ∂f
∂x (s,Ws)dW

T
s

is inM2
0. Moreover, since∫

∂f

∂x
(s,Ws)dW

T
s =

(∫
∂f

∂x
(s,Ws)dWs

)T
,

we get that
( ∫ ∂f

∂x (s,Ws)dWs

)T ∈ M2
0. So, (Xt)0≤t≤T =

( ∫ t
0
∂f
∂x (s,Ws)dWs

)
0≤t≤T is a

(square-integrable) martingale on [0, T ].



Question 5

(a) By Girsanov’s theorem, for

WQ′

t := Wt +
µ+ r

σ
t = Wt +

∫ t

0

µ+ r

σ
ds,

a measure Q′ under which WQ′ is a Brownian motion is given by the Radon–Nikodým
derivative

dQ′

dP
= E

(
−
∫
µ+ r

σ
dW

)
T

= exp

(
− µ+ r

σ
WT −

1

2

(
µ+ r

σ

)2

T

)
.

(b) The unique equivalent martingale measure Q for the discounted stock price S (and a Q-
Brownian motionWQ) is obtained by replacing µ+r

σ with µ−r
σ in (a) (Lecture notes p. 117).

Under the measure Q, the undiscounted stock price process S̃ is given by

S̃t = ertSt := ertS0 exp(σWQ
t −

1

2
σ2t), t ∈ [0, T ],

where St := S0 exp(σWQ
t − 1

2σ
2t) represents the discounted stock price at time t ∈ [0, T ]

under the measure Q. We have

S̃T = er(T−t)S̃t exp
(
σ(WQ

T −W
Q
t )− 1

2
σ2(T − t)

)
, t ∈ [0, T ].

The discounted value Vt of a power option at time t with undiscounted payoff h(S̃T ) = S̃pT
is the payoff’s discounted Ft-conditional Q-expected value, i.e.,

Vt = EQ[e−rTh(S̃T )|Ft] = EQ[e−rT S̃pT |Ft].

We have
e−rT S̃pT = eprT−rT

(
e−rT S̃T

)p
= er(p−1)TSpT , (6)

where

SpT = Spt exp

(
σp(WQ

T −W
Q
t )− 1

2
σ2p(T − t)

)
= Spt exp

(
σp(WQ

T −W
Q
t )− 1

2
σ2p2(T − t)

)
exp

(
1

2
σ2p(p− 1)(T − t)

)
.

The middle factor has Ft-conditional Q-expectation 1; so we get

Vt = Spt exp

(
1

2
σ2p(p− 1)(T − t) + r(p− 1)T

)
= e−rtS̃pt exp

((
1

2
σ2p+ r

)
(p− 1)(T − t)

)
,

where we used that Spt = e−rtS̃pt e
−r(p−1)t; c.f. (6). The undiscounted value at time t is

Ṽt = ertVt = S̃pt exp

((
1

2
σ2p+ r

)
(p− 1)(T − t)

)
.



(c) We know from the lecture (notes page 123) that for the value process

Vt = v(t, St),

the hedging strategy is

ϑt =
∂v

∂x
(t, St), ηt = Vt − ϑtSt.

Since
Vt = Spt exp

(
1

2
σ2p(p− 1)(T − t) + r(p− 1)T

)
,

we can compute

ϑt = pSp−1t exp

(
1

2
σ2p(p− 1)(T − t) + r(p− 1)T

)
and then obtain

ηt = (1− p)Spt exp

(
1

2
σ2p(p− 1)(T − t) + r(p− 1)T

)
.


