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Mathematical Foundations For Finance

Exam

Question 1. Let (Ω,F ,P) be a finite probability space. We consider the following one period
market model with stochastic interest rate for the bank account. The price processes for the bank

account S̃0 and the risky asset S̃1 are given by the following tree:

(S̃0

S̃1

)
:
(

1
100

)

(
0.7
140

)

(
1
80

)

(
1

120

)
1
6

1
3

1
2

(a) Find all equivalent martingale measures for the discounted price process S1 = S̃1

S̃0
. Is the

market arbitrage-free ? Complete ?

(b) (i) Consider a put option on the stock, with maturity T = 1 and strike K̃ = 100. Its payoff

is P̃ =
(
K̃ − S̃1

1

)+

. Is it attainable ?

(ii) Compute a super-replicating strategy for the put defined in (i), with price

θ0
0 = supQ∈Pe(S1)EQ

[(
K̃ − S̃1

1

)+
]
.

(c) (i) We assume that the put is sold for 12 at time t=0. Show that the market (S̃0, S̃1, P̃ ) is

complete, where P̃ is as in b).

(ii) We now consider a call on the stock with maturity T = 1 and strike K̃ = 100. Write
down the put-call parity and find a super-replicating strategy for the call in the market

(S̃0, S̃1, P̃ ).

Solution 1. (a) First let us consider the discounted price tree:



S1 : 100

200

80

120

1
6

1
3

1
2

The process is adapted for the filtration it generates, and the probability space is finite. The
martingale measures for S1 that are equivalent to P are given by triple (qu, qm, qd) ∈ (0, 1)

3

such that :
EQ

[
S1

1 | F0

]
= S1

0

That is to say, Q is an EMM for S1if and only if
200qu + 120qm + 80qd = 100
qu + qm + qd = 1

(qu, qm, qd) ∈ (0, 1)
3

⇔


8qu − 4qd = −2
qu + qm + qd = 1

(qu, qm, qd) ∈ (0, 1)
3

And we finally get:

Q ∈ Pe
(
S1
)
⇔

 qu ∈
(
0, 1

6

)
qm = 1

2 − 3qu
qd = 1

2 + 2qu

and

Pe
(
S1
)

=

{(
λ,

1

2
− 3λ,

1

2
+ 2λ

)
| λ ∈

(
0,

1

6

)}
=

{(
1

6
− 1

3
µ, µ,

5

6
− 2

3
µ

)
| µ ∈

(
0,

1

2

)}
=

{(
1

2
ν − 1

4
,

5

4
− 3

2
ν, ν

)
| ν ∈

(
1

2
,

5

6

)}
It is a non-empty, open set. The market is therefore arbitrage-free and incomplete.

(b) (i) Let us compute the set of arbitrage-free prices for this claim:EQ

(
K̃ − S̃1

1

)+

S̃0
1

 | Q ∈ Pe (S1
) =

{
EQ

[(
K̃ − S̃1

1

)+
]
| Q ∈ Pe

(
S1
)}

=

{
20

(
1

2
+ 2λ

)
| λ ∈

(
0,

1

6

)}
=

{
10 + 40λ | λ ∈

(
0,

1

6

)}
.

The function that maps an equivalent martingale measure to the expectation under this
measure of the claim payoff is not constant. By the criteria of attainability (LN p 49)
the put is not attainable.



(ii) We want to find
(
θ0

1, θ
1
1

)
such that θ0

1S̃
0
1 + θ1

1S̃
1
1 >

(
K̃ − S̃1

1

)+

P-a.s., that is to say: 0.7θ0
1 + 140θ1

1 > 0
θ0

1 + 120θ1
1 > 0

θ0
1 + 80θ1

1 > 20,

and such that
(
θ0

1 − θ0
0

)
S̃0

0 + θ1
1S̃

1
0 = 0, with θ0

0 = supQ∈Pe(S1)EQ

[(
K̃ − S̃1

1

)+
]

= 50
3 ,

the optimal super-replication price (notice that for claim having non-zero values in the
two lower states only, discounted and undiscounted prices are the same). We have then
θ0

1 = 50
3 − 100θ1

1. Substituting in the system gives: 0.7
(

50
3 − 100θ1

1

)
+ 140θ1

1 > 0
50
3 − 100θ1

1 + 120θ1
1 > 0

50
3 − 100θ1

1 + 80θ1
1 > 20,

35
3 + 70θ1

1 > 0
50
3 + 20θ1

1 > 0
50
3 − 20θ1

1 > 20,

We get finally θ1
1 = − 1

6 . The super-replicating strategy with price θ0
0 = 50

3 , holds
θ0

1 = 100
3 units of the bank account and θ1

1 = − 1
6 units of stocks at time 1.

(c) (i) Let us compute the set of martingale measures for the market
(
S1, P̃

S̃0

)
. The equivalent

martingale for this market are to be taken from Pe
(
S1
)
. We compute for Q ∈ Pe

(
S1
)
:

EQ

[
P̃

S̃0
| F0

]
= 12⇔

(
1

2
+ 2λ

)
20 = 12

⇔ λ =
1

20
.

Therefore there exists a unique equivalent martingale measure for the new market. It
is then complete.

(ii) Method 1, Super-replication in
(
S̃0, S̃1

)
: We have(

S̃1
1 − K̃

)+

−
(
K̃ − S̃1

1

)+

= S̃1
1 − K̃, so to super-replicate the call we just have to

super-replicate a put (we just computed how to do that), hold a stock, and super-

replicate −K̃, selling K̃

max{S̃0
1(ω) | ω∈Ω}

= K̃ units of the bank account. A possible

superreplicating strategy starts with a wealth θ0
0 = 50

3 , and holds θ0
1 = − 200

3 units of
the bank account and θ1

1 = 5
6 units of stocks in the first period.

Method 2, Super-replication in
(
S̃0, S̃1, P̃

)
: We have(

S̃1
1 − K̃

)+

−
(
K̃ − S̃1

1

)+

= S̃1
1 − K̃, so to super-replicate the call we just have to buy

a put and a stock at time 0 and short sell K̃ units of the bank account (which optimally

super-replicate the payoff −K̃ at time 1). Initial cost is θ0
0 = 12.

Method 3, exact replication in the complete market
(
S̃0, S̃1, P̃

)
: We have

θ0
0 = E

Q
1
20

[(
S̃1
1−K̃

)+

S̃0
1

]
= 69

7 . The replicating strategy φ=̂
(
θ0

0, (θ
1
1, θ

2
1)
)

satisfies :


69
7 + 100θ1

1 − 12θ2
1 = 40

0.7
69
7 + 20θ1

1 − 12θ2
1 = 20

69
7 − 20θ1

1 + 8θ2
1 = 0,



which yields : θ1
1 = 13

28 and θ2
1 = − 2

28 .



Question 2. Consider a probability space (Ω,F ,P) with Ω = {u,m, d} × {u, d}, F = 2Ω and P
defined by P({(x1, x2)}) = px1px1,x2 for

pu = 0.2, pm = 0.3, pd = 0.5,

pu,u = pu,d = 0.5, pm,u = 0.4, pm,d = 0.6,

pd,u = 0.75, and pd,d = 0.25.

Now define the random variables Y1 and Y2 by

Y1((u, x2)) = 1 + y1
u, Y1((m,x2)) = 1 + y1

m, Y1((d, x2)) = 1 + y1
d,

Y2((x1, u)) = 1 + y2
u and Y2((x1, d)) = 1 + y2

d.

for x1 ∈ {u,m, d}, x2 ∈ {u, d}, (y1
u, y

1
m, y

1
d) = (0.4, 0.2,−0.2) and (y2

u, y
2
d) = (0.1,−0.2).

Let (S̃0, S̃1) be a financial market consisting of a bank account and one stock defined as

S̃0
0 = S̃0

1 = S̃0
2 = 1,

S̃1
0 = 1, S̃1

1 = Y1 and S̃1
2 = Y1Y2.

Define the discounted price processes: S0 ≡ 1, and S1 = S̃1

S̃0
.

(a) Draw a tree showing the evolution of the asset S1.

(b) Find the set of equivalent martingale measures for (S0, S1).

(c) Define the claim with payoff HK = 1{S1
2≥K} for K ∈ R at maturity T = 2. For which values

of K ≥ 1 is HK attainable?

(d) Calculate the super-replication price πS(HK) of the claim defined above in c) as a function
of K for K ≥ 1.

Solution 2. (a) The evolution tree of the risky asset is:

S1 : 1

1.4

1.2

0.8

1.54

1.12

1.32

0.96

0.88

0.64

0.2

0.3

0.5

0.5

0.5

0.4

0.6

0.75

0.25

(b) Write Q({(x1, x2)}) = qx1qx1,x2 . The size of the increments in the second period do not
depend on the outcome of the first, and, since they are binomial with parameters y2

u, y
2
d for



the movements up and down respectively, Corollary 2.1.4 then states that the probabilities
qx1,x2 are uniquely determined by

qx1,u =
r − y2

d

y2
u − y2

d

=
−(−0.2)

0.1− (−0.2)
=

2

3
∀x1 ∈ {u,m, d}.

For the first period, write down the martingale property:

1 = E[S1
1 ] = (1 + 0.4)qu + (1 + 0.2)qm + (1− 0.2)qd.

Using the fact that the probabilities sum to 1 and parametrizing qm = λ yields

qu =
1

3
(1− 2λ) and qd =

1

3
(2− λ).

Equivalence to P means qu, qm, qd ∈ (0, 1), which is equivalent to λ ∈ (0, 1/2).

The equivalent martingale measures also have two other parametrizations. The first one is
obtained by setting qu = λ1. This yields

qm =
1− 3λ1

2
, and qd =

1 + λ1

2
, for λ1 ∈

(
0,

1

3

)
.

Finally, qd = λ2 gives

qm = 2− 3λ2 and qu = 2λ2 − 1, for λ2 ∈
(

1

2
,

2

3

)
.

(c) Parametrize the set of EMMs by λ and calculate the expected value of HK :

EQλ [HK ] =


0, 1.54 < K,

ququ,u 1.32 < K ≤ 1.54,

ququ,u + qmqm,u 1.12 < K ≤ 1.32,

qu + qmqm,u 1 ≤ K ≤ 1.12

=


0, 1.54 < K,
2
9 (1− 2λ), 1.32 < K ≤ 1.54,
2
9 (1 + λ), 1.12 < K ≤ 1.32,
1
3 , 1 ≤ K ≤ 1.12.

By the characterization of attainable payoffs we know that HK is attainable if and only if
λ 7→ EQλ [HK ] is constant, which is true only for K ∈ [1, 1.12] and K > 1.54..

For the other parametrizations, similar calculations yield the expressions

EQλ1 [HK ] =


0, 1.54 < K,
2
3λ1, 1.32 < K ≤ 1.54,
1
3 (1− λ1), 1.12 < K ≤ 1.32,
1
3 , 1 ≤ K ≤ 1.12,

and

EQλ2 [HK ] =


0, 1.54 < K,
2
3 (2λ2 − 1), 1.32 < K ≤ 1.54,
2
3 (1− λ2), 1.12 < K ≤ 1.32,
1
3 , 1 ≤ K ≤ 1.12,

but the conclusion is the same.



(d) We find the super-replication price by using the identity

πS(HK) = sup
λ∈(0,1/2)

EQλ [HK ] =


0, 1.54 < K,
2
9 , 1.32 < K ≤ 1.54,
1
3 , 1.12 < K ≤ 1.32,
1
3 , 1 ≤ K ≤ 1.12.



Question 3. Consider the market (S̃0, S̃1) on some probability space with filtration generated

by the assets. Let S̃0
t = (1 + r)t and

S̃1 : 100

150

50

225

75

75

25

1
2

1
2

1
2

1
2

1
2

1
2

for r = 0.25. Let H̃t = (K̃ − S̃1
t )+ with K̃ = 150. Do not forget to explain how you found your

solution in the following problems!

(a) Draw a tree of the discounted value process corresponding to the European option V Eu with

(undiscounted) payoff H̃2 at time t = 2.

(b) Draw a tree of the discounted value process corresponding to the American option V Am with

maturity 2 and (undiscounted) payoff process H̃.

Hint : Recall that the discounted value process of an American option with maturity T and
with discounted payoff process (Hk)k∈{0,...T} is given by the recursive scheme

V Am
t = max{Ht,EQ

[
V Am
t+1 | Ft

]
} for t ∈ {0, ...T − 1}, Q an equivalent martingale mea-

sure for the market, and V Am
T = HT .

(c) Determine whether there exist self-financing portfolios ϕAm and ϕEu such that Vt(ϕ
Am) =

V Am
t and Vt(ϕ

Eu) = V Eu
t for all t ∈ {0, 1, 2}. Find them if they exist.

Solution 3. The market can be written as a binomial model with u = 0.5, d = −0.5 and
r = 0.25. According to Corollary 2.1.4, the unique EMM Q will therefore assign the corresponding
probabilities

qu =
r − d
u− d

=
0.25− (−0.5)

0.5− (−0.5)
=

3

4
and qd = 1− qu =

1

4
.

We will also need the discounted values for all problems. The discounted process is then

S1 : 100

120

40

144

48

48

16

3
4

1
4

3
4

1
4

3
4

1
4

with probabilities given under Q. Discounting H̃ gives Ht = (150 · 0.8t − St)
+

, i.e.,



H : 50

0

80

0

48

48

80

3
4

1
4

3
4

1
4

3
4

1
4

(a) We calculate the values backwards from H2 in every node by computing the (conditional)
expectation of the following two nodes, e.g., the value in the first node below is calculated
as 3

412 + 1
456 = 23.

V Eu : 23

12

56

0

48

48

80

3
4

1
4

3
4

1
4

3
4

1
4

(b) To calculate the American option we proceed similarly, but in each step we compare the
expectation of the following two nodes with the current value of H and choose the largest.
This is the case since we can at any point stop and get H, but only do so if it gives more
profit than is expected from continuing. For example, the value in the first node below is
calculated as max{ 3

412 + 1
480, 50} = 50.

V Am : 50

12

80

0

48

48

80

3
4

1
4

3
4

1
4

3
4

1
4

(c) Start with the European option and let ϑu2 and ϑd2 be the strategies in the second period
given that the stock price increased respectively decreased in the first period. Furthermore,
let ϑ1 be the strategy for the first period. Using the relation Vt = V0 + Gt(ϑ) we have 6
equations in the variables V0, ϑ1, ϑu2 and ϑd2 (2 for the first time step and 4 for the second).



More precisely, we have 
1 20
1 −60
1 20 24
1 20 −72
1 −60 8
1 −60 −24



V0

ϑ1

ϑu2
ϑd2

 =


12
56
0
48
48
80

 ,

which is solved by (V0, ϑ1, ϑ
u
2 , ϑ

d
2) = (23,− 11

20 ,−
1
2 ,−1).

Note that the four last equations are enough to find the solution, but the first two have to
be satisfied since the equality is required for all time points, not only the last.

For the American option the idea is similar, but even at the first timestep the equations
cannot be fulfilled since it would require

50 + 20ϑ1 = 12,

50− 60ϑ1 = 80,

which has no solution. We conclude that there cannot exist such a self-financing portfolio.



Question 4. Let (Ω,F ,P) be a probability space on which exists a Brownian motion (Wt)t>0.
Let F = (Ft)t>0 be the P-augmented filtration generated by W .

We consider a market model with two assets whose price processes are the following:{
S̃0
t = ert,

S̃1
t = S1

0 exp
((
µ− 1

2σ
2
)
t+ σWt

)
,

for t > 0, with µ ∈ R, σ > 0 and S1
0 > 0, r > 0.

(a) What is the probability under the historical probability measure P that a call on the risky

asset S̃1, with strike K̃ and maturity T is exercised ?

(b) There exists a unique probability measure Q that is equivalent to P such that the process

S1 = S̃1

S̃0
is a Q-martingale on [0, T ]. Give the Radon-Nikodym derivative dQ

dP |FT
.

(c) We now consider two calls with same maturity T and strike K̃1 and K̃2, with K̃1 < K̃2. Let

C̃(K̃1) and C̃(K̃2) be the undiscounted price processes of these claims.

(i) Show the following relations:

C̃t(K̃2) 6 C̃t(K̃1), for t ∈ [0, T ]

C̃t(K̃1)− C̃t(K̃2) 6
K̃2 − K̃1

er(T−t)
, for t ∈ [0, T ]

(ii) Let K̃3 = λK̃1 +(1−λ)K̃2 for λ ∈ [0, 1]. Show that C̃t(K̃3) 6 λC̃t(K̃1)+(1−λ)C̃t(K̃2).

(d) Let us a consider a power option that pays
(
S̃1
T

)p
at maturity T , for p = 3. Compute the

discounted price process and the replicating strategy for this option.

Solution 4. (a) A call with strike K̃ and maturity T is exercised if and only if S̃1
T > K̃. The

probability of this event is:

P
[
S̃1
T > K̃

]
= P

[
S1

0 exp

((
µ− 1

2
σ2

)
T + σWT

)
> K̃

]
= P

[
WT >

1

σ

(
log

(
K̃

S1
0

)
−
(
µ− 1

2
σ2

)
T

)]

= 1− Φ

(
1

σ
√
T

(
log

(
K̃

S1
0

)
−
(
µ− 1

2
σ2

)
T

))

= Φ

(
1

σ
√
T

((
µ− 1

2
σ2

)
T − log

(
K̃

S1
0

)))
.

(b) Let us define the process Z = (Zt)t∈[0,T ] by:

Zt = exp

(
−µ− r

σ
Wt −

(µ− r)2

2σ2
t

)
which is a true P-martingale. By the theorem of Girsanov, the process(
W̃t

)
t∈[0,T ]

=
(
Wt + µ−r

σ t
)
t∈[0,T ]

is a Q-Brownian motion. We have:

S1
t = S1

0 exp

(
σW̃t −

1

2
σ2t

)
,



which is a martingale under Q on [0,T].

(c) (i) For x ∈ [0, K̃2],
(
x− K̃2

)+

= 0, so
(
x− K̃1

)+

>
(
x− K̃2

)+

, for x ∈ [K̃2,∞),(
x− K̃2

)+

= x − K̃2, and
(
x− K̃1

)+

= x − K̃1 and since K̃2 > K̃1, it holds that(
x− K̃1

)+

>
(
x− K̃2

)+

.

Conditional expectations are monotonous, so we have for all t ∈ [0, T ]:

C̃t(K̃2) = EQ

[
e−r(T−t)

(
S̃1
T − K̃2

)+

| Ft
]
6 EQ

[
e−r(T−t)

(
S̃1
T − K̃1

)+

| Ft
]

= C̃t(K̃1)

Furthermore if we notice that
(
x− K̃1

)+

−
(
x− K̃2

)+

6 K2 −K1, taking conditional

expectation given Ft:

e−r(T−t)EQ

[(
S̃1
T − K̃1

)+

−
(
S̃1
T − K̃2

)+

| Ft
]
6 e−r(T−t)

(
K̃2 − K̃1

)
C̃t(K̃1)− C̃t(K̃2) 6 e−r(T−t)

(
K̃2 − K̃1

)
(ii) Method 1 : Let λ ∈ (0, 1) and K̃3 = λK̃1 + (1 − λ)K̃2. Studying the different cases

we get:
(
x− K̃3

)+
= 0 < λ

(
x− K̃1

)+
+ (1− λ)

(
x− K̃2

)+
for x ∈ [0, K̃3](

x− K̃3

)+
= λ

(
x− K̃1

)
+ (1− λ)

(
x− K̃2

)
< λ

(
x− K̃1

)+
+ (1− λ)

(
x− K̃2

)+
for x ∈ (K̃3, K̃2)(

x− K̃3

)+
=

(
x− K̃3

)
= λ

(
x− K̃1

)+
+ (1− λ)

(
x− K̃2

)+
for x ∈ [K̃2,∞)

and then
(
x− K̃3

)+

6 λ
(
x− K̃1

)+

+ (1 − λ)
(
x− K̃2

)+

for all x ∈ R. Taking

conditional expectation given Ft with respect to Q gives:

e−r(T−t)EQ

[(
S̃1
T − K̃3

)+

| Ft
]
6 e−r(T−t)EQ

[
λ
(
S̃1
T − K̃1

)+

+ (1− λ)
(
S̃1
T − K̃2

)+

| Ft
]

C̃t(K̃3) 6 λC̃t(K̃1) + (1− λ)C̃t(K̃2).

The price of the call at time t is a convex function of the strike.

Method 2 : The function K̃ 7→ (x−K̃)+ is convex, conditional expectations are linear,

so the functions K̃ 7→ EQ

[
(x− K̃)+ | Ft

]
are convex for all t ∈ [0, T ], and we have the

result.

(d) Let (Vt)t∈[0,T ] be the discounted price process of the claim. We compute:

Vt = e−rTEQ

[(
S1

0 exp

((
µ− 1

2
σ2

)
T + σWT

))3

| Ft

]

= e−rTEQ

[(
S1

0 exp

(
σ

(
WT +

µ− r
σ

T

)
− 1

2
σ2T + rT

))3

| Ft

]
= e2rT

(
S1
t

)3
EQ

[
e3σ(W̃T−W̃t)− 3

2σ
2(T−t)

]
=
(
S1
t

)3
e3σ2(T−t)+2rT



We define u(y, s) = y3e3sσ2+2rT . Then Vt = u(S1
t , T − t). u is infinitely differentiable on R2,

so we can apply Itô to V :

Vt = V0 +

∫ t

0

3
(
S1
t

)2
e3σ2(T−t)+2rT dS1

t

+

∫ t

0

(
−3σ2

(
S1
t

)3
e3σ2(T−t)+2rT +

1

2
σ2
(
S1
t

)2
6
(
S1
t

)
e3σ2(T−t)+2rT

)
dt

= V0 +

∫ t

0

3
(
S1
t

)2
e3σ2(T−t)+2rT dS1

t .

We get the initial wealth necessary to replicate the portfolio V0 =
(
S1

0

)3
e3σ2T+2rT , and the

amounts of stock to hold over time: θt = 3
(
S1
t

)2
e3σ2(T−t)+2rT .



Question 5. Let (Ω,F ,P) be a probability space, on which we have a Brownian motion (Wt)t>0.
Let F be the P-augmented filtration generated by W . We consider a Bachelier market model with

two assets. The riskless asset is such that S̃0 ≡ 1 (no interest rate), and the risky asset has the
following price process:

S̃1
t = S1

t = S1
0 + σWt, for t > 0, with σ > 0, and S1

0 > 0,

so the discounted price process is already a martingale under the historical measure P which is
here the only equivalent martingale measure. The market is therefore complete and arbitrage-free.

We have seen in the lecture what European call and put options are. Gap call and put options
are small modifications of these options.

• For z > K > 0 a gap call option with maturity T has terminal payoff:
CGK,z(S

1
T ) =

(
S1
T −K

)
1{S1

T>z}.

• For K > z > 0 a gap put option with maturity T has terminal payoff:
PGK,z(S

1
T ) =

(
K − S1

T

)
1{S1

T<z}.

a) Let a > b > c > 0 with a − b = b − c, we consider the claim h(S1
T ) with payoff at time T

given by the function h:

h(x) =

{
a− x for x ∈ (−∞, b]
x− c for x ∈ [b,∞) .

Express this payoff as a linear combination of a gap call and a gap put.

b) Compute the price process V GC of a gap call with strike K1 and threshold z1 > K1 > 0 and
V P of a gap put with strike K2 and threshold 0 6 z2 < K2 . What is the price process V S

of the contingent claim with payoff h(S1
T ) ?

c) The price process V S can be written as:

V St = u(S1
t , T − t), for t ∈ [0, T ],

for some continuous function u. We assume that u satisfies the following partial differential
equation:

∂u

∂s
(y, s) =

1

2
σ2 ∂

2u

∂y2
(y, s).

Find a replicating strategy for h(S1
T ).

Hint : You can use that the density function φ of a standard normal distribution (i.e.∼ N (0, 1))
is symmetric : φ(x) = φ(−x) for x ∈ R, and that the cumulative distribution function of a
standard normal random variable Φ satisfies : Φ(−x) = 1 − Φ(x) for x ∈ R. Furthermore
φ′(x) = −xφ(x).

Solution 5. (a) One can rewrite the payoff h as follows:

h(x) = (a− x)1{x<b} + (x− c)1{x>b}
= PGa,b(x) + CGc,b(x).

The payoff of the option at time T is then : PGa,b(S
1
T ) + CGc,b(S

1
T ).



(b) The price process of the contingent claim is obtained by taking conditional expectation of
the terminal value of the contingent claim under the pricing measure. We get for the gap
call:

V GCt = EP

[(
S1
T −K1

)
1{S1

T>z1} | Ft
]

= EP

[(
σ (WT −Wt) + S1

t −K1

)
1{WT−Wt> 1

σ (z1−S1
t )} | Ft

]
= EP

[(
σ
√
T − tX + y −K1

)
1{X> 1

σ
√
T−t (z1−y)}

] ∣∣∣
y=S1

t

=

∫ ∞
1

σ
√
T−t (z1−S1

t )

(
σ
√
T − tx+ S1

t −K1

)
φ(x) dx

= σ
√
T − t

∫ ∞
1

σ
√
T−t (z1−S1

t )

xφ(x) dx+
(
S1
t −K1

)(
1− Φ

(
1

σ
√
T − t

(
z1 − S1

t

)))
= σ
√
T − t

∫ ∞
1

σ
√
T−t (z1−S1

t )

xφ(x) dx+
(
S1
t −K1

)
Φ

(
1

σ
√
T − t

(
S1
t − z1

))
= σ
√
T − tφ

(
1

σ
√
T − t

(
z1 − S1

t

))
+
(
S1
t −K1

)
Φ

(
1

σ
√
T − t

(
S1
t − z1

))
,

where X ∼ N (0, 1) is a standard normal random variable, φ is the density function of a
standard normal distribution, and Φ is its cumulative distribution function. We get similarly
for the gap put:

V GPt = EP

[(
K2 − S1

T

)
1{S1

T<z2} | Ft
]

= EP

[(
K2 − S1

t − σ (WT −Wt)
)
1{WT−Wt<

1
σ (z2−S1

t )} | Ft
]

= EP

[(
K2 − y − σ

√
T − tX

)
1{X< 1

σ
√
T−t (z2−y)}

] ∣∣∣
y=S1

t

=

∫ 1
σ
√
T−t (z2−S

1
t )

−∞

(
K2 − S1

t − σ
√
T − tx

)
φ(x) dx

=
(
K2 − S1

t

)
Φ

(
1

σ
√
T − t

(
z2 − S1

t

))
− σ
√
T − t

∫ 1
σ
√
T−t (z2−S

1
t )

−∞
xφ(x) dx

=
(
K2 − S1

t

)
Φ

(
1

σ
√
T − t

(
z2 − S1

t

))
+ σ
√
T − tφ

(
1

σ
√
T − t

(
z2 − S1

t

))
,

where X ∼ N (0, 1).

The price process of our contingent claim is the sum of these two prices processes for K1 = c,
K2 = a, z1 = z2 = b. We get:

V St =
(
a− S1

t

)
Φ

(
1

σ
√
T − t

(
b− S1

t

))
+ σ
√
T − tφ

(
1

σ
√
T − t

(
b− S1

t

))
+ σ
√
T − tφ

(
1

σ
√
T − t

(
S1
t − b

))
+
(
S1
t − c

)
Φ

(
1

σ
√
T − t

(
S1
t − b

))
=
(
S1
t − c

)
+
(
a+ c− 2S1

t

)
Φ

(
1

σ
√
T − t

(
b− S1

t

))
+ 2σ

√
T − tφ

(
1

σ
√
T − t

(
S1
t − b

))
= u(S1

t , T − t).

(c) The function u defined above is infinitely differentiable on R× [0, T ), we apply Itô’s formula,



and with our assumption:

V ST = V S0 +

∫ T

0

∂u

∂y

(
S1
t , T − t

)
dS1

t +

∫ T

0

(
−∂u
∂s

(
S1
t , T − t

)
+

1

2
σ2 ∂

2u

∂y2

(
S1
t , T − t

))
dt

= V S0 +

∫ T

0

∂u

∂y

(
S1
t , T − t

)
dS1

t

= V S0 +

∫ T

0

(
1− a+ c− 2S1

t

σ
√
T − t

φ

(
1

σ
√
T − t

(
b− S1

t

))
− 2Φ

(
1

σ
√
T − t

(
b− S1

t

))
−2

1

σ
√
T − t

(
S1
t − b

)
φ

(
1

σ
√
T − t

(
S1
t − b

)))
dS1

t

= V S0 +

∫ T

0

(
1− 2Φ

(
1

σ
√
T − t

(
b− S1

t

)))
dS1

t .

The trading strategy is given by

V S0 =
(
S1

0 − c
)

+
(
a+ c− 2S1

0

)
Φ

(
1

σ
√
T

(
b− S1

0

))
+ 2σ

√
Tφ

(
1

σ
√
T

(
S1

0 − b
))

,

θt = 1− 2Φ

(
1

σ
√
T − t

(
b− S1

t

))
.


